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†NEC Labs Europe & ?EURECOM

Tel : (+33) 4 93 00 81 00 — Fax : (+33) 4 93 00 82 00
Email : dan.dobre@neclab.eu

{paolo.viotti, marko.vukolic}@eurecom.fr

1EURECOM’s research is partially supported by its industrial members: BMW Group Research & Technology,
IABG, Monaco Telecom, Orange, SAP, SFR, ST Microelectronics, Swisscom, Symantec.

i



Hybris: Consistency Hardening in
Robust Hybrid Cloud Storage

Dan Dobre†, Paolo Viotti? and Marko Vukolić?

†NEC Labs Europe & ?EURECOM

Abstract

We present Hybris key-value store, the first robust hybrid cloud storage system. Hy-
bris robustly replicates metadata on trusted private premises (private cloud), separately
from data which is replicated across multiple untrusted public clouds. Hybris introduces a
technique we call consistency hardening which consists in leveraging strong metadata consis-
tency to guarantee to Hybris applications strong data consistency (linearizability) without
entailing any modifications to weakly (e.g., eventually) consistent public clouds, which ac-
tually store data. Moreover, Hybris efficiently and robustly tolerates up to f potentially
malicious clouds. Namely, in the common case, Hybris writes replicate data across f + 1
clouds, whereas reads involve a single cloud. In the worst case, f additional clouds are used.

We evaluate Hybris using a series of micro and macrobenchmarks and show that Hy-
bris significantly outperforms comparable multi-cloud storage systems and approaches the
performance of bare-bone commodity public cloud storage.

Index Terms

consistency hardening, efficiency, hybrid cloud storage, multi cloud storage, strong con-
sistency.
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1 Introduction

Hybrid cloud storage entails storing data on private premises as well as on one (or more)
remote, public cloud storage providers. To enterprises, such hybrid design brings the best of
both worlds: the benefits of public cloud storage (e.g., elasticity, flexible payment schemes and
disaster-safe durability) as well as the control over enterprise data. In a sense, hybrid cloud
eliminates to a large extent the concerns that companies have with entrusting their data to
commercial clouds 1 — as a result, enterprise-class hybrid cloud storage solutions are booming
with all leading storage providers, such as EMC2, IBM3, Microsoft4 and others, offering their
proprietary solutions.

As an alternative approach to addressing trust and reliability concerns associated with public
cloud storage providers, several research works (e.g., [5, 4, 25]) considered storing data robustly
into public clouds, by leveraging multiple commodity cloud providers. In short, the idea behind
these public multi-cloud storage systems such as DepSky [5], ICStore [4] and SPANStore [25]
is to leverage multiple cloud providers with the goals of distributing the trust across clouds,
increasing reliability, availability and performance, and/or addressing vendor lock-in concerns
(e.g., cost).

However, the existing robust multi-cloud storage systems suffer from serious limitations. In
particular, the robustness of these systems does not concern consistency: namely, these systems
provide consistency that is at best proportional [5] to that of the underlying clouds which very
often provides only eventual consistency [23]. Moreover, these storage systems scatter storage
metadata across public clouds increasing the difficulty of storage management and impacting
performance. Finally, despite the benefits of the hybrid cloud approach, none of the existing
robust storage systems considered leveraging resources on private premises (e.g., in companies
and even in many households).

In this paper, we unify the hybrid cloud approach with that of robust multi-cloud storage
and present Hybris, the first robust hybrid cloud storage system. The key idea behind Hybris
is that it keeps all storage metadata on private premises, even when those metadata pertain to
data outsourced to public clouds. This separation of metadata from data allows Hybris to signif-
icantly outperform existing robust public multi-cloud storage systems, both in terms of system
performance (e.g., latency) and storage cost, while providing strong consistency guarantees.
The salient features of Hybris are as follows:

• Consistency Hardening: Hybris is a multi-writer multi-reader key-value storage system
that guarantees linearizability (atomicity) [16] of reads and writes even in presence of
eventually consistent public clouds [23]. To this end, Hybris employs a novel scheme we
call consistency hardening : Hybris leverages the atomicity of metadata stored locally on
premises to mask the possible inconsistencies of data stored at public clouds.

• Robustness to malicious clouds: Hybris puts no trust in any given public cloud provider;
namely, Hybris can mask arbitrary (including malicious) faults of up to f public clouds.
Interestingly, Hybris relies on as few as f + 1 clouds in the common case (when the system
is synchronous and without faults), using up to f additional clouds in the worst case (e.g.,
network partitions, cloud inconsistencies and faults). This is in sharp contrast to existing
multi-cloud storage systems that involve up to 3f + 1 clouds to mask f malicious ones
(e.g., [5]).

1See e.g., http://blogs.vmware.com/consulting/2013/09/the-snowden-leak-a-windfall-for-hybrid-cloud.
html.

2http://www.emc.com/campaign/global/hybridcloud/.
3http://www.ibm.com/software/tivoli/products/hybrid-cloud/.
4http://www.storsimple.com/.
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• Efficiency: Hybris is efficient and incurs low cost. In common case, a Hybris write in-
volves as few as f + 1 public clouds, whereas reads involve only a single cloud, despite
the fact that clouds are untrusted. Hybris achieves this without relying on expensive
cryptographic primitives; indeed, in masking malicious faults, Hybris relies solely on cryp-
tographic hashes.

Clearly, for Hybris to be truly robust, it has also to replicate metadata reliably. Given
inherent trust in private premises, we assume faults within private premises that can affect
Hybris metadata to be crash-only. To maintain the Hybris footprint small and to facilitate its
adoption, we chose to replicate Hybris metadata layering Hybris on top of Apache ZooKeeper
coordination service [17]. Hybris clients act simply as ZooKeeper clients — our system does not
entail any modifications to ZooKeeper, hence facilitating Hybris deployment. In addition, we
designed Hybris metadata service to be easily portable to SQL-based replicated RDBMS as well
as NoSQL data stores that export conditional update operation (e.g., HBase or MongoDB),
which can then serve as alternatives to ZooKeeper.

Finally, Hybris optionally supports caching of data stored at public clouds, as well as
symmetric-key encryption for data confidentiality leveraging trusted Hybris metadata to store
and share cryptographic keys.

We implemented Hybris in Java and evaluated it using both microbenchmarks and the YCSB
[9] macrobenchmark. Our evaluation shows that Hybris significantly outperforms state-of-the-
art robust multi-cloud storage systems, with a fraction of the cost and stronger consistency.

The rest of the paper is organized as follows. In § 2, we present the Hybris architecture
and system model. Then, in § 3, we give the algorithmic aspects of the Hybris protocol. In
§ 4 we discuss Hybris implementation and optimizations. In § 5 we present Hybris performance
evaluation. We overview related work in § 6, and conclude in § 7.

2 Hybris overview

Hybris architecture. High-level design of Hybris is given in Figure 1. Hybris mixes two types
of resources: 1) private, trusted resources that consist of computation and (limited) storage
resources and 2) public (and virtually unlimited) untrusted storage resources in the clouds.
Hybris is designed to leverage commodity public cloud storage repositories whose API does not
offer computation, i.e., key-value stores (e.g., Amazon S3).

Hybris stores metadata separately from public cloud data. Metadata is stored within the
key component of Hybris called Reliable MetaData Service (RMDS). RMDS has no single point
of failure and, in our implementation, resides on private premises.

On the other hand, Hybris stores data (mainly) in untrusted public clouds. Data is replicated
across multiple cloud storage providers for robustness, i.e., to mask cloud outages and even
malicious faults. In addition to storing data in public clouds, Hybris architecture supports data
caching on private premises. While different caching solutions exist, our Hybris implementation
reuses Memcached5, an open source distributed caching system.

Finally, at the heart of the system is the Hybris client, whose library is responsible for inter-
actions with public clouds, RMDS and the caching service. Hybris clients are also responsible
for encrypting and decrypting data in case data confidentiality is enabled — in this case, clients
leverage RMDS for sharing encryption keys (see Sec. 3.7).

In the following, we first specify our system model and assumptions. Then we define Hybris
data model and specify its consistency and liveness semantics.

5http://memcached.org/.
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Figure 1: Hybris architecture. Reused (open-source) components are depicted in grey.

System model. We assume an unreliable distributed system where any of the components
might fail. In particular, we consider dual fault model, where: (i) the processes on private
premises (i.e., in the private cloud) can fail by crashing, and (ii) we model public clouds as
potentially malicious (i.e., arbitrary-fault prone [20]) processes. Processes that do not fail are
called correct.

Processes on private premises are clients and metadata servers. We assume that any number
of clients and any minority of metadata servers can be (crash) faulty. Moreover, we allow up
to f public clouds to be (arbitrary) faulty; to guarantee Hybris availability, we require at least
2f+1 public clouds in total. However, Hybris consistency is maintained regardless of the number
of public clouds.

Similarly to our fault model, our communication model is dual, with the model boundary
coinciding with our trust boundary (see Fig. 1).6 Namely, we assume that the communication
among processes located in the private portion of the cloud is partially synchronous [12] (i.e.,
with arbitrary but finite periods of asynchrony), whereas the communication among clients and
public clouds is entirely asynchronous (i.e., does not rely on any timing assumption) yet reliable,
with messages between correct clients and clouds being eventually delivered.

Our consistency model is likewise dual. We model processes on private premises as classical
state machines, with their computation proceeding in indivisible, atomic steps. On the other
hand, we model clouds as eventually consistent [23]; roughly speaking, eventual consistency
guarantees that, if no new updates are made to a given data item, eventually all accesses to
that item will return the last updated value.

Finally, for simplicity, we assume an adversary that can coordinate malicious processes
as well as process crashes. However, we assume that the adversary cannot subvert crypto-
graphic hash functions we use (SHA-1), and that it cannot spoof the communication among
non-malicious processes.

6We believe that our dual fault and communication models reasonably model the typical hybrid cloud deploy-
ment scenarios.
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Hybris data model and semantics. Similarly to commodity public cloud storage services,
Hybris exports a key-value store (KVS) API; in particular, Hybris address space consists of
flat containers, each holding multiple keys. The KVS API features four main operations: (i)
put(cont, key, value), to put value under key in container cont; (ii) get(cont, key, value), to
retrieve the value; delete(cont, key) to remove the respective entry and (iv) list(cont) to list
the keys present in container cont. We collectively refer to Hybris operations that modify storage
state (e.g., put and delete) as write operations, whereas the other operations (e.g., get and
list) are called read operations.

Hybris implements a multi-writer multi-reader key-value storage. Hybris is strongly consis-
tent, i.e., it implements atomic (or linearizable [16]) semantics. In distributed storage context,
atomicity provides an illusion that a complete operation op is executed instantly at some point
in time between its invocation and response, whereas the operations invoked by faulty clients
appear either as complete or not invoked at all.

Despite providing strong consistency, Hybris is highly available. Hybris writes by a correct
client are guaranteed to eventually complete [15]. On the other hand, Hybris guarantees a read
operation by a correct client to complete always, except in an obscure corner case where there
is an infinite number of writes to the same key concurrent with the read operation (this is called
finite-write termination [1]).

3 Hybris Protocol
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Figure 2: Hybris put and get protocol illustration (f = 1). Common-case communication is
depicted in solid lines.

3.1 Overview

The key component of Hybris is its RMDS component which maintains metadata associated
with each key-value pair. In the vein of Farsite [3], Hybris RMDS maintains pointers to data
locations and cryptographic hashes of the data. However, unlike Farsite, RMDS additionally
includes a client-managed logical timestamp for concurrency control, as well as data size.

Such Hybris metadata, despite being lightweight, is powerful enough to enable tolerating
arbitrary cloud failures. Intuitively, the cryptographic hash within a trusted and consistent
RMDS enables end-to-end integrity protection: it ensures that neither corrupted values pro-
duced by malicious clouds, nor stale values retrieved from inconsistent clouds, are ever returned
to the application. Complementarily, data size helps prevent certain denial-of-service attack
vectors by a malicious cloud (see Sec. 4.2).

Furthermore, Hybris metadata acts as a directory pointing to f + 1 clouds that have been
previously updated, enabling a client to retrieve the correct value despite f of them being arbi-
trary faulty. In fact, with Hybris, as few as f +1 clouds are sufficient to ensure both consistency
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and availability of read operations (namely get) — indeed, Hybris get never involves more
than f + 1 clouds (see Sec. 3.3). Additional f clouds (totaling 2f + 1 clouds) are only needed
to guarantee that write operations (namely put) are available as well (see Sec. 3.2). Note that
since f clouds can be faulty, and a value needs to be stored in f +1 clouds for durability, overall
2f + 1 clouds are required for put operations to be available in the presence of f cloud outages.

Finally, besides cryptographic hash and pointers to clouds, metadata includes a timestamp
that, roughly speaking, induces a partial order of operations which captures the real-time prece-
dence ordering among operations (atomic consistency). The subtlety of Hybris (see Sec. 3.5 for
details) is in the way it combines timestamp-based lock-free multi-writer concurrency control
within RMDS with garbage collection (Sec. 3.4) of stale values from public clouds to save on
storage costs.

In the following we detail each Hybris operation individually.

3.2 put Protocol

Hybris put protocol entails a sequence of consecutive steps illustrated in Figure 2(a). To write
a value v under key k, a client first fetches from RMDS the latest authoritative timestamp ts by
requesting the metadata associated with key k. Timestamp ts is a tuple consisting of a sequence
number sn and a client id cid. Based on timestamp ts, the client computes a new timestamp
tsnew, whose value is (sn+1, cid). Next, the client combines the key k and timestamp tsnew to a
new key knew = k|tsnew and invokes put (knew, v) on f +1 clouds in parallel. Concurrently, the
clients starts a timer whose expiration is set to typically observed upload latencies (for a given
value size). In the common case, the f + 1 clouds reply to the the client in a timely fashion,
before the timer expires. Otherwise, the client invokes put (knew, v) on up to f secondary
clouds (see dashed arrows in Fig. 2(a)). Once the client has received acks from f + 1 different
clouds, it is assured that the put is durable and proceeds to the final stage of the operation.

In the final step, the client attempts to store in RMDS the metadata associated with key
k, consisting of the timestamp tsnew, the cryptographic hash H(v), size of value v size(v), and
the list (cloudList) of pointers to those f + 1 clouds that have acknowledged storage of value
v. Notice, that since this final step is the linearization point of put it has to be performed in
a specific way as discussed below.

Namely, if the client performs a straightforward update of metadata in RMDS, then it
may occur that stored metadata is overwritten by metadata with a lower timestamp (old-
new inversion), breaking the timestamp ordering of operations and Hybris consistency. To
solve the old-new inversion problem, we require RMDS to export an atomic conditional update
operation. Then, in the final step of Hybris put, the client issues conditional update to RMDS
which updates the metadata for key k only if the written timestamp tsnew is greater than the
timestamp for key k that RMDS already stores. In Section 4 we describe how we implement
this functionality over Apache ZooKeeper API; alternatively other NoSQL and SQL DBMSs
that support conditional updates can be used.

3.3 get in the common case

Hybris get protocol is illustrated in Figure 2(b). To read a value stored under key k, the client
first obtains from RMDS the latest metadata, comprised of timestamp ts, cryptographic hash
h, value size s, as well a list cloudList of pointers to f + 1 clouds that store the corresponding
value. Next, the client selects the first cloud c1 from cloudList and invokes get (k|ts) on c1,
where k|ts denotes the key under which the value is stored. Besides requesting the value, the
client starts a timer set to the typically observed download latency from c1 (given the value size
s) (for that particular cloud). In the common case, the client is able to download the correct
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value from the first cloud c1 in a timely manner, before expiration of its timer. Once it receives
value v, the client checks that v hashes to hash h comprised in metadata (i.e., if H(v) = h).
If the value passes the check, then the client returns the value to the application and the get
completes.

In case the timer expires, or if the value downloaded from the first cloud does not pass the
hash check, the client sequentially proceeds to downloading the data from the second cloud from
cloudList (see dashed arrows in Fig. 2(b)) and so on, until the client exhausts all f + 1 clouds
from cloudList.7

In specific corner cases, caused by concurrent garbage collection (described in Sec. 3.4), fail-
ures, repeated timeouts (asynchrony), or clouds’ inconsistency, the client has to take additional
actions in get (described in Sec. 3.5).

3.4 Garbage Collection

The purpose of garbage collection is to reclaim storage space by deleting obsolete versions of
keys from clouds while allowing read and write operations to execute concurrently. Garbage
collection in Hybris is performed by the writing client asynchronously in the background. As
such, the put operation can give back control to the application without waiting for completion
of garbage collection.

To perform garbage collection for key k, the client retrieves the list of keys prefixed by k
from each cloud as well as the latest authoritative timestamp ts. This involves invoking list(k|∗)
on every cloud and fetching metadata associated with key k from RMDS. Then for each key
kold, where kold < k|ts, the client invokes delete (kold) on every cloud.

3.5 get in the worst-case: Consistency Hardening

In the context of cloud storage, there are known issues with weak, e.g., eventual [23] consistency.
With eventual consistency, even a correct, non-malicious cloud might deviate from atomic se-
mantics (strong consistency) and return an unexpected value, typically a stale one. In this
case, sequential common-case reading from f + 1 clouds as described in Section 3.3 might not
return a value since a hash verification might fail at all f + 1 clouds. In addition to the case of
inconsistent clouds, this anomaly may also occur if: (i) timers set by the client for a otherwise
non-faulty cloud expire prematurely (i.e., in case of asynchrony or network outages), and/or (ii)
values read by the client were concurrently garbage collected (Sec. 3.4).

To cope with these issues and eventual consistency in particular, Hybris introduces consis-
tency hardening : namely, we leverage metadata service consistency to mask data inconsistencies
in the clouds. Roughly speaking, with consistency hardening Hybris client indulgently reiterates
the get by reissuing a get to all clouds in parallel, and waiting to receive at least one value
matching the desired hash. However, due to possible concurrent garbage collection (Sec. 3.4), a
client needs to make sure it always compares the values received from clouds to the most recent
key metadata. This can be achieved in two ways: (i) by simply looping the entire get including
metadata retrieval from RMDS, or (ii) by looping only get operations at f + 1 clouds while
fetching metadata from RMDS only when metadata actually changes.

In Hybris, we use the second approach. Notice that this suggests that RMDS must be able
to inform the client proactively about metadata changes. This can be achieved by having a
RMDS that supports subscriptions to metadata updates, which is possible to achieve in, e.g..,

7As we discuss in details in Section 4, in our implementation, clouds in cloudList are ranked by the client by
their typical latency in the ascending order, i.e., when reading the client will first read from the “fastest” cloud
from cloudList and then proceed to slower clouds.
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Apache ZooKeeper (using the concepts of watches, see Sec. 4 for details). The entire protocol
executed only is common-case get fails (Sec. 3.3) proceeds as follows:

1. A client first reads key k metadata from RMDS (i.e., timestamp ts, hash h, size s and
cloud list cloudList) and subscribes for updates for key k metadata with RMDS.

2. Then, a client issues a parallel get (k|ts) at all f + 1 clouds from cloudList.

3. When a cloud c ∈cloudList responds with value vc, the client verifies H(vc) against h8.

(a) If the hash verification succeeds, the get returns vc.

(b) Otherwise, the client discards vc and reissues get (k|ts) at cloud c.

4. At any point in time, if the client receives a metadata update notification for key k from
RMDS, the client cancels all pending downloads, and repeats the procedure by going to
step 1.

The complete Hybris get, as described above, ensures finite-write termination [1] in presence
of eventually consistent clouds. Namely, a get may fail to return a value only theoretically, in
case of infinite number of concurrent writes to the same key, in which case the garbage collection
at clouds (Sec. 3.4) might systematically and indefinitely often remove the written values before
the client manages to retrieve them.9

3.6 delete and list

Besides put and get, Hybris exports the additional functions: delete and list— here, we
only briefly sketch how these functions are implemented.

Both delete and list are local to RMDS and do not access public clouds. To delete a
value, the client performs the put protocol with a special cloudList value ⊥ denoting the lack
of a value. Deleting a value creates metadata tombstones in RMDS, i.e. metadata that lacks
a corresponding value in cloud storage. On the other hand, Hybris list simply retrieves from
RMDS all keys associated with a given container cont and filters out deleted (tombstone) keys.

3.7 Confidentiality

Adding confidentiality to Hybris is straightforward.To this end, during a put, just before upload-
ing data to f +1 public clouds, the client encrypts the data with a symmetric cryptographic key
kenc. Then, in the final step of the put protocol (see Sec. 3.2), when the client writes metadata
to RMDS using conditional update, the client simply adds kenc to metadata and computes the
hash on ciphertext (rather than on cleartext). The rest of the put protocol remains unchanged.
The client may generate a new key with each new encryption, or fetch the last used key from
the metadata service, at the same time it fetches the last used timestamp.

To decrypt data, a client first obtains the most recently used encryption key kenc from
metadata retrieved from RMDS during a get. Then, upon the retrieved ciphertext from some
cloud successfully passes the hash test, the client decrypts data using kenc.

8For simplicity, we model the absence of a value as a special NULL value that can be hashed.
9Notice that it is straightforward to modify Hybris to guarantee read availability even in case of an infinite

number of concurrent writes, by switching off the garbage collection.
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4 Implementation

We implemented Hybris in Java. The implementation pertains solely to the Hybris client side
since the entire functionality of the metadata service (RMDS) is layered on top of Apache
ZooKeeper client. Namely, Hybris does not entail any modification to the ZooKeeper server side.
Our Hybris client is lightweight and consists of 2030 lines of Java code. Hybris client interactions
with public clouds are implemented by wrapping individual native Java SDK clients (drivers)
for each particular cloud storage provider10 into a common lightweight interface that masks the
small differences across native client libraries.

In the following, we first discuss in details our RMDS implementation with Zookeper API.
Then, we describe several Hybris optimizations that we implemented.

4.1 ZooKeeper-based RMDS

We layered Hybris implementation over Apache ZooKeeper [17]. In particular, we durably store
Hybris metadata as ZooKeeper znodes; in ZooKeeper znodes are data objects addressed by
paths in a hierarchical namespace. In particular, for each instance of Hybris, we generate a root
znode. Then, the metadata pertaining to Hybris container cont is stored under ZooKeeper path
〈root〉/cont. In principle, for each Hybris key k in container cont, we store a znode with path
pathk = 〈root〉/cont/k.

ZooKeeper exports a fairly modest API to its applications. The ZooKeeper API calls rel-
evant to us here are: (i) create/setData(p, data), which creates/updates znode with path p
containing data, (ii) getData(p) to retrieve data stores under znode with p, and (iii) sync(),
which synchronizes a ZooKeeper replica that maintains the client’s session with ZooKeeper
leader. Only reads that follow after sync() will be atomic.11

Besides data, znodes have some specific Zookepeer metadata (not be confused with Hybris
metadata which we store in znodes). In particular, our implementation uses znode version
number vn, that can be supplied as an additional parameter to setData operation which then
becomes a conditional update operation which updates znode only if its version number exactly
matches vn.

Hybris put. At the beginning of put (k, v), when client fetches the latest timestamp ts for
k, the Hybris client issues a sync() followed by getData(pathk) to ensure an atomic read of
ts. This getData call returns, besides Hybris timestamp ts, the internal version number vn of
the znode pathk which the client uses when writing metadata md to RMDS in the final step of
put.

In the final step of put, the client issues setData(pathk,md, vn) which succeeds only if the
znode pathk version is still vn. If the ZooKeeper version of pathk changed, the client retrieves
the new authoritative Hybris timestamp tslast and compares it to ts. If tslast > ts, the client
simply completes a put (which appears as immediately overwritten by a later put with tslast).
In case, tslast < ts, the client retries the last step of put with ZooKeeper version number vnlast

that corresponds to tslast. This scheme (inspired by [7]) is guaranteed to terminate since only
a finite number of concurrent put operations use a timestamp smaller than ts.

Hybris get. In interacting with RMDS during get, Hybris client simply needs to make sure
its metadata is read atomically. To this end, a client always issues a sync() followed by get-

10Currently, Hybris supports Amazon S3, Google Cloud Storage, Rackspace Cloud Files and Windows Azure.
11Without sync, ZooKeeper may return stale data to client, since reads are served locally by ZooKeeper

replicas which might have not yet received the latest update.
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Data(pathk), just like in our put protocol. In addition, for subscriptions for metadata updates
in get (Sec. 3.5) we use the concept of ZooKeeper watches (set by e.g., getData) which are sub-
scriptions on znode update notifications. We use these notifications in Step 4 of the algorithm
described in Section 3.5.

4.2 Optimizations

Cloud latency ranks. In our Hybris implementation, clients rank clouds by latency and
prioritize clouds with lower latency. Hybris client then uses these cloud latency ranks in common
case to: (i) write to f +1 clouds with the lowest latency in put, and (ii) to select from cloudList
the cloud with the lowest latency as preferred cloud in get. Initially, we implemented the cloud
latency ranks by reading once (i.e., upon initialization of the Hybris client) a default, fixed-
size (100kB) object from each of the public clouds. Interestingly, during our experiments, we
observed that the cloud latency rank significantly varies with object size as well as the type
of the operation (put vs. get). Hence, our implementation establishes several cloud latency
ranks depending on the file size and the type of operation. In addition, Hybris client can be
instructed to refresh these latency ranks when necessary.

Preventing “Big File” DoS attacks. A malicious preferred cloud may mount a DoS attack
against Hybris client during a read by sending, instead of the correct file, a file of arbitrary length.
In this way, a client would not detect a malicious fault until computing a hash of the received
file. To cope with this attack, Hybris client uses value size s that Hybris stores and simply cancels
the downloads whose payload size extends over s.

Caching. Our Hybris implementation enables data caching on private portion of the system.
We implemented simple write-through cache and caching-on-read policies. With write-through
caching enabled, Hybris client simply writes to cache in parallel to writing to clouds. On the other
hand, with caching-on-read enabled, Hybris client upon returning a get value to the application,
writes lazily the get value to the cache. In our implementation, we use Memcached distributed
cache that exports a key-value interface just like public clouds. Hence, all Hybris writes to the
cache use exactly the same addressing as writes to public clouds (i.e., using put(k|ts, v)). To
leverage cache within a get, Hybris client upon fetching metadata always tries first to read data
from the cache (i.e., by issuing get (k|ts) to Memcached), before proceeding normally with a
get.

5 Evaluation

For evaluation purposes, we deployed Hybris “private” components (namely, Hybris client, meta-
data service (RMDS) and cache) as virtual machines (VMs) within an OpenStack12 cluster that
acts as our private cloud located in Sophia Antipolis, France. Our OpenStack cluster consists
of: two master nodes running on a dual quad-core Xeon L5320 server clocked at 1.86GHz, with
16GB of RAM, two 1TB hardware RAID5 volumes, and two 1Gb/s network interfaces; and
worker nodes that execute on six dual exa-core Xeon E5-2650L servers clocked at 1.8GHz, with
128GB of RAM, ten 1TB disks and four 1Gb/s network cards.13 We use the KVM hypervisor,
and each machine in the physical cluster runs the Grizzly release of OpenStack on top of a
Ubuntu 12.04.2 Linux distribution.

12http://www.openstack.org/.
13Our hardware and network configuration closely resembles the one suggested by commercial private cloud

providers, such as Rackspace.
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We collocate ZooKeeper and Memcached (in their default configurations) using three VMs
of the aforementioned private cloud. Each VM has one quad-core virtual processor clocked at
2.40GHz, 4GB of RAM, one PATA virtual hard drive and it is connected to the others through
a gigabit Ethernet network. All VMs run the Ubuntu Linux 13.10 distribution images, updated
with the most recent patches.

In addition, several OpenStack VMs with same characteristics are used for running the
client instances. Each VM has 100Mb/s internet connectivity for both upload and download
bandwidths. Clients are configured to interact with four cloud providers: Amazon S3, Rackspace
CloudFiles, Microsoft Azure (all located in Europe) and Google Cloud Storage (in US).

We evaluated Hybris performance in several experiments that focus on the arguably most
interesting case where f = 1 [10], i.e., where at most one public cloud can exhibit arbitrary
faults.

Experiment 1: Common-case latency. In this experiment, we benchmark the common-case
latency of Hybris with respect to those of DepSky-A [5],14 DepSky-EC (i.e. a version of DepSky
featuring erasure codes support), and the four individual clouds underlying Hybris and DepSky,
namely Amazon, Azure, Rackspace and Google. For this microbenchmark we perform a set of
independent put and get operations for sizes ranging from 100kB to 50MB and output the
median latencies together with 95% confidence intervals on boxplot graphs.

We repeated each experiment 30 times, and each set of get and put operations has been
performed one after the other in order to avoid side effects due to internet routing and traffic
fluctuations.

In Figures 3 and 4 we show latency boxplots of the clients as we vary the size of the object
to be written or read.15 We observe that Hybris get latency (Fig. 3) closely follows those of the
fastest cloud provider, as in fact it downloads the object from that specific cloud, according to
Hybris cloud latency ranks (see Sec. 4). The difference between the fastest clouds and Hybris get
is slightly more pronounced for larger files (e.g., 10MB) due to time Hybris needs to perform hash
integrity check which linearly increases with object size. We further observe (Fig. 4) that Hybris
roughly performs as fast as the second fastest cloud storage provider. This is expected since
Hybris uploads to clouds are carried out in parallel to the first two cloud providers previously
ranked by their latency.
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Figure 3: Latencies of get operations.

It is worth noting that Hybris outperforms DepSky-A and DepSky-EC in both put and get
operations. The difference is significant in particularly for smaller to medium object sizes (100kB

14We used open-source DepSky implementation available at https://code.google.com/p/depsky/.
15In the boxplots the central line is showing the median, the box corresponds to 1st and 3rd quartiles while

whiskers are drawn at the most extreme data points within 1.5 times the interquartile range from 1st and 3rd

quartiles.
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Figure 4: Latencies of put operations.

and 1MB). This is explained by the fact that Hybris stores metadata locally, whereas DepSky
needs to fetch metadata across clouds. With increasing file sizes (10MB) network latency takes
over and the difference is less pronounced in particular since DepSky-EC erasure codes data
and uploads some 25% less data than Hybris.

Throughout the tests, we observed a significant variance in cloud performance and in partic-
ular for uploading large objects at Amazon. This variance was confirmed in several repetitions
of the experiment.

Experiment 2: Latency under faults. In order to assess the impact of faulty clouds on
Hybris get performance, we repeat Experiment 1 with one cloud serving tampered objects.
This experiment aims at stress testing the common case optimization of Hybris to download
objects from a single cloud. In particular, we focused on the worst case for Hybris, that is, we
injected the fault on the closest cloud, i.e. the one likely to be chosen for the download because
of its low latency. The failure injection has been carried out by manually tampering the data
to be subsequently downloaded by the clients.
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Figure 5: Latencies of get operations with one faulty cloud.

Figure 5 shows the download times of Hybris, DepSky-A and DepSky-EC for objects of dif-
ferent sizes, as well as those of individual clouds, for reference. Hybris performance is nearly
the sum of the download times by the two fastest clouds, as the get downloads in this case
sequentially. However, despite its single cloud read optimization, Hybris performance under
faults remains comparable to that of DepSky variants that download objects in parallel.

Experiment 3: Throughput scalability. The aim of this experiment is to test the scalability
limits of Hybris. To assess the usage of the available bandwidth by Hybris we run several Hybris
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clients simultaneously, each uploading a different object, thus not generating any collisions on
RMDS. In the experiment, clients are collocated and share the network bandwidth.
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Figure 6: Aggregated throughput of Hybris clients performing put operations.

As Figure 5 shows, a relatively small number of Hybris clients can fully saturate network
upload bandwidth, which in this case was of about 85Mb/s. Since the number of clients needed
to saturate the internet throughput is small when clients share upload bandwidth, in the next
experiment we modify the scalability experiment to isolate Hybris RMDS and test its scalability
limits.

Experiment 4: RMDS performance. In this experiment we stress our ZooKeeper-based
RMDS implementation in order to assess its performance when the links to clouds are not the
bottleneck. For this purpose, we short-circuit public clouds and simulate upload by writing a
100 byte payload to an in-memory hash map. To mitigate possible performance impact of the
shared OpenStack cloud we perform (only) this experiment deploying RMDS on a dedicated
cluster of three 8-core Xeon E3-1230 V2 machines (3.30GHz, 20 GB ECC RAM, 1GB Ethernet,
128GB SATA SSD, 250 GB SATA HDD 10000rpm). The obtained results concerning metadata
reads and writes performance are shown in Figure 7.

Figure 7(a) shows get latency as we increase throughput. The observed peak throughput
of roughly 180 kops/s achieved with latencies below 4 ms is due to the fact that syncing reads in
ZooKeeper comes with a modest overhead and we take advantage of read locality in ZooKeeper
to balance requests across ZooKeeper nodes. Furthermore, since RMDS has a small footprint,
all read requests are serviced directly from memory without incurring the cost of stable storage
access.

On the other hand, put operations incur the expense of atomic broadcast within ZooKeeper
and stable storage accesses in the critical path. Figure 7(b) shows the latency-throughput curve
for three different classes of stable storage backing ZooKeeper, namely conventional HDD, SSD
and RAMDISK, which would be replaced by non-volatile RAM in a production-ready system.
The observed differences suggest that the choice of stable storage for RMDS is crucial for overall
system performance, with HDD-based RMDS incurring latencies nearly one order of magnitude
higher than RAMDISK-based at peak throughput of 28 kops/s (resp. 35 kops/s). As expected,
SSD-based RMDS is in the middle of the latency spectrum spanned by the other two storage
types.

To understand the impact of concurrency on RMDS performance, we evaluated the latency
of put under heavy contention to a single key. Figure 7(c) shows that despite 128 clients writing
concurrently to the same key, which in our view represents a conservative concurrency upper
bound, the latency overhead incurred is only 30% over clients writing to separate keys.
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Finally, Figures 7(d) and 7(e) depict throughput growth curves as more clients performing
operations in closed-loop are added to the system. Specifically 7(d) suggests that ZooKeeper-
based RMDS is able to service read requests coming from 2K clients near peak throughput.
On the other hand, Figure 7(e) shows again the performance discrepancy when using different
stable storage types, with RAMDISK and HDD at opposite ends of the spectrum. Observe
that HDD peak throughput, despite being below that of RAMDISK, slightly overtakes SSD
throughput with 5K clients.
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Figure 7: Performance of metadata read and write operations.

Experiment 5: Caching. In this experiment we test caching in Hybris which is configured to
implement both write-through and caching-on-read policies. We configured Memcached with
128 MB cache limit and with 10MB single object limit. In our experiment we varied blob
sizes from 1kB to 10 MB and measure average latency. The Experiment workload is YCSB
workload B (95% reads, 5% writes). The results for get with and without caching are depicted
in Figure 8.

We can observe that caching decreases Hybris latency by an order of magnitude when cache
is large enough compared to object size. As expected, the benefits of cache diminish with in-
crease in cache misses. This experiment shows that Hybris can very simply benefit from caching,
unlike other multi-cloud storage protocols (see also Table 2).
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Figure 8: Hybris get latency with YCSB workload B.

System PUT GET Storage Cost / Month Total

ICStore [4] 60 376 570 1006

DepSky-A [5] 30 376 285 691

DepSky-EC [5] 30 196 142 368

Hybris 10 120 190 320

Amazon S3 5 120 95 220

Table 1: Cost of cloud storage systems in USD for 106 transactions and 1MB files, totaling to
1TB of storage.

Cost comparison. Table 1 summarizes the monetary costs incurred by several cloud storage
systems in the common case (i.e. synchrony, no failures, no concurrency), including Amazon
S3 as the baseline. For the purpose of calculating costs, given in USD, we set f = 1 and
assume a symmetric workload that involves 106 put (i.e. modify) and 106 get operations
accessing 1MB files totaling to 1TB of storage over the period of 1 month. This corresponds to
a modest workload of roughly 40 hourly operations. We abstract away the cost of private cloud
infrastructure in Hybris, and assume that such infrastructure is available on premises ahead of
time. Further the cost per transaction, storage, and outbound traffic are taken from Amazon
S3 as of 10/12/2013. The basis for costs calculation is Table 2.

We observe that Hybris overhead is twice the baseline both for put and storage because
Hybris stores data in 2 clouds in the common case. Since Hybris touches a single cloud once for
each get operation, the cost of get equals that of the baseline, and hence is optimal.

6 Related Work

Multi-cloud storage systems. Several storage systems (e.g., [2, 6, 25, 5, 4]) have used
multiple clouds in boosting data robustness, notably reliability and availability. Early multi-
cloud systems such as RACS [2] and HAIL [6] assumed immutable data, hence not addressing
any concurrency aspects.

Multi-cloud storage systems closest to Hybris are DepSky [5] and ICStore [4]. For clarity, we
overview main aspects of these three systems in Table 2. ICStore is a cloud storage system that
models cloud faults as outages and implements robust access to shared data. Hybris advantages
over ICStore include tolerating malicious clouds and smaller storage blowup16. On the other
hand, DepSky considers malicious clouds, yet requires 3f+1 clouds, unlike Hybris. Furthermore,
DepSky consistency guarantees are weaker than those of Hybris, even when clouds behave as

16Blowup of a given redundancy scheme is defined as the ratio between the total storage size needed to store
redundant copies of a file, over the original unreplicated file size.
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Protocol
Semantics Common case performance

Cloud faults Consistency No. of Cloud operations Blow-up

ICStore [4] crash-only atomic1
(4f + 2)(D + m) (writes)

4f + 2
(2f + 1)(D + m) (reads)

DepSky [5] arbitrary regular
1 (2f + 1)(D + m) (writes)

2f + 1
2

(2f + 1)(D + m) (reads)

Hybris arbitrary atomic
(f + 1)D (writes)

f + 1
1D (reads)

1Unlike Hybris, to achieve atomic (resp., regular) semantics, ICStore (resp., DepSky) require public clouds to
be atomic (resp., regular).

2DepSky also implements an erasure coding variant which features 2f+1
f+1

storage blowup.

Table 2: Comparison of existing robust multi-writer cloud storage protocols. We distinguish
cloud data operations (D) from cloud metadata operations (m).

strongly consistent. Finally, the distinctive feature of Hybris is consistency hardening which
guarantees Hybris atomicity even in presence of eventually consistent clouds, which may harm
the consistency guarantees of both ICStore and DepSky.

Finally, SPANStore [25] is a recent multi-cloud storage system that seeks to minimize the
cost of use of multi-cloud storage. However, the reliability of SPANStore is considerably below
that of Hybris. Namely, SPANStore is not robust, as it features a centralized cloud placement
manager which is a single point of failure. Furthermore, SPANStore considers crash-only clouds
and uses leased lock-based writes.

Separating data from metadata. Separating metadata from data is not a novel idea in
distributed systems. For example, Farsite [3] is an early protocol that tolerates malicious faults
by replicating metadata (e.g., cryptographic hashes and directory) separately from data. Hybris
builds upon these techniques yet, unlike Farsite, Hybris implements multi-writer/multi-reader
semantics and is robust against timing failures as it relies on lock-free concurrency control rather
than locks (or leases). Furthermore, unlike Farsite, Hybris supports ephemeral clients and has
no server code, targeting commodity cloud APIs.

Separation of data from metadata is intensively used in crash-tolerant protocols. For ex-
ample in the Hadoop Distributed File System (HDFS), modeled after the Google File System
[14], HDFS NameNode is responsible for maintaining metadata, while data is stored on HDFS
DataNodes.

Other notable crash-tolerant storage systems that separate metadata from data include
LDR [13] and BookKeeper [18]. LDR [13] implements asynchronous multi-writer multi-reader
read/write storage and, like Hybris, uses pointers to data storage nodes within its metadata
and requires 2f + 1 data storage nodes. However, unlike Hybris, LDR considers full-fledged
servers as data storage nodes and tolerates only their crash faults. BookKeeper [18] implements
reliable single-writer multi-reader shared storage for logs. BookKeeper stores metadata on
servers (bookies) and data (i.e., log entries) in log files (ledgers). Like in Hybris RMDS, bookies
point to ledgers, facilitating writes to f + 1 ledgers and reads from a single ledger in common-
case. However, Hybris differs significantly from BookKeeper: namely, Hybris supports multiple
writers, tolerates malicious faults of data repositories and is designed with different deployment
environment and applications in mind.

Interestingly, all crash-tolerant protocols related to Hybris, that separate metadata from
data (e.g., [13, 18], but also Gnothi [24]), need 2f + 1 data repositories in the worst case, just
like our Hybris which tolerates arbitrary faults.
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Finally, the idea of separating control and data planes in systems tolerating arbitrary faults
was used also in [26] in the context of replicated state machines (RSM). While the RSM ap-
proach of [26] could obviously be used for implementing storage as well, Hybris proposes a far
more scalable and practical solution, while also tolerating pure asynchrony across data commu-
nication links, unlike [26].

Systems based on trusted components. Several systems have used trusted hardware com-
ponents to reduce the overhead of replication despite malicious faults from 3f + 1 to 2f + 1
replicas, typically in the context of RSM (e.g., [11, 8, 19, 22]). Some of these systems, like
CheapBFT [19], employ only f + 1 replicas in the common case.

Conceptually, Hybris is similar to these systems in that Hybris relies on trusted hardware and
uses 2f + 1 trusted metadata replicas (needed for ZooKeeper) and 2f + 1 (untrusted) clouds.
However, compared to these systems, Hybris is novel in several ways. Most importantly, existing
systems typically entail placing a trusted hardware component within an untrusted process,
which raises concerns over practicality of such an approach. In contrast, Hybris trusted hardware
(private cloud) exists separately from untrusted processes (public clouds), with this model (of a
hybrid cloud) being in fact inspired by actual practical system deployments. Moreover, Hybris
focuses on storage rather than on generic RSM and offers a practical, deployment-ready solution.

7 Conclusion and Future Work

In this paper we presented Hybris, the first robust hybrid storage system. Hybris replicates data
across multiple untrusted and possibly inconsistent public clouds, while it replicates metadata
within trusted premises of a private cloud. This design allows consistency hardening — Hybris
leverages strong consistency of metadata stored off-clouds to mask the weak consistency of data
stored in clouds and turn it into strong consistency. Hybris tolerates up to f arbitrary public
cloud faults and is very efficient: Hybris write accesses only f + 1 clouds in the synchronous,
failure-free common-case, while a Hybris read accesses a single, “closest” cloud. In the worst
case, f additional clouds are used. Hybris is modular and reuses open-source software. Our
evaluation confirms the practicality of our system.

In future work, we plan to extend Hybris to support erasure coding schemes to further reduce
storage blowup. Our system architecture does not prevent such erasure coding variants of Hybris
that, however induce numerous tradeoffs [21] and require deeper insight.
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