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Abstract—In this work,1 we consider the optimization of
feedback in a point-to-point MISO channel with an energy
harvesting (EH) receiver (RX). The RX is interested in feeding
back the channel state to the transmitter (TX) to help improve
the transmission rate, yet must spend the harvested energy wisely
to do so. The objective is to maximize the throughput by a
deadline, subject to EH constraints at the RX. The throughput
metric considered is an upper bound on the ergodic capacity of
beamforming with limited feedback. The optimization problem
is shown to be concave and a simple algorithm for obtaining
the optimal feedback bit allocation policy is devised. Numerical
results show that the optimal feedback policy obtained for the
modified problem outperforms the naive scheme for the original
problem.

I. INTRODUCTION

In traditional wireless networks, nodes get their energy from
the power grid by always or periodically connecting to it.
While it is easy to connect the terminals to the grid in some
networks, in others, such as sensor networks, it cannot be
done once after the deployment. Therefore, in such networks a
node’s lifetime and hence the network lifetime is constrained
by the limited initial energy in the battery. One way to alleviate
this problem is to provide the nodes with EH capabilities
[1]. An EH node can scavenge energy from the environment
(typical sources are solar, wind, thermal, etc.) [2]. With EH
nodes in the network, in principle one can get perpetual
lifetime without the need of replacing batteries.

However, EH poses a new design challenge as the energy
sources are typically sporadic and random. The main challenge
lies in ensuring Quality of Service (QoS) constraints of the
network given the random and time varying energy sources.
In [3], the authors consider a point-to-point fading channel
with an EH transmitter (TX) and formulate the following
problems: maximization of the throughput by a deadline
and minimization of the transmission completion time. This
approach has been extended to the broadcast channel [4], [5],
relay channel [6], and imperfect battery [7] scenarios. See [8]
for a more extensive overview.

A common aspect of most works in EH communication
networks is that the TX is provided with perfect channel
state information (CSI). However, recent studies have demon-
strated that feedback resources (although feedback enhances
the system performance) are limited and must be spent wisely

1This work has been performed in the framework of the European research
project E-CROPS.
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Fig. 1. System model.

[9]. This problem is particularly relevant in multiple antenna
aided transmission systems. In such systems, although more
accurate CSI feedback increases the throughput, it consumes
more energy at the RX. As a result, an important question
arises: How do the EH constraints affect the design of feedback
enabled wireless networks?

In this paper we introduce the problem of feedback design
with EH constraints in the context of a simple multiple antenna
system, namely MISO channel, where feedback can be used
to improve the rate through array gain. First, we consider opti-
mizing an upper bound on the throughput which is shown to be
concave. Then, using some results from majorization theory,
we show that the optimization problem can be considerably
simplified. Interestingly, the feedback bit allocation follows a
similar structure to that of transmit power allocation in the
throughput maximization problem considered in [3].

II. SYSTEM MODEL

We consider a point-to-point MISO fading channel as shown
in Fig. 1. The TX is connected to the power grid (so it has an
uninterrupted power supply), whereas the RX harvests energy
from the environment. We assume that all the harvested energy
at the RX is used for communication purposes.

A. Energy Harvesting Model

The total observation time is divided into K equal length
EH intervals. At the beginning of the k-th (k ∈ {1, . . . ,K})
EH interval, a new energy packet of size Ek units arrives at
the RX. This energy can be stored in an infinite size battery
and it is used only for future communication purposes. We
assume that all Ek’s are known in advance at the beginning.
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Fig. 2. Energy harvesting time frame structure.

This model is suitable for an energy harvesting system where
the amount of harvested energy can be predicted in advance.
The time frame structure is shown in Fig. 2.

B. Communication System Model
An EH interval consists of L data frames, each of length T .

We assume a block fading channel model, where the channel is
constant over T channel uses and i.i.d. with elements CN (0, 1)
from frame to frame. The TX has M > 1 antennas. The
received signal in a given channel use is given by

y = hHx+ η, (1)

where h ∈ CM represents the vector of channel coefficients
from TX antenna array to the RX, x ∈ CM×1 represents the
transmit symbol (i.i.d Gaussian) with E[‖x‖2] = P and η ∼
CN (0, 1) represents the complex circular-symmetric additive
Gaussian noise at the RX.

C. Feedback Model
We assume that the receiver perfectly knows the channel at

the beginning of each frame and feed backs the quantized CSI
to the TX within the same frame. In the k-th EH interval, the
frame structure is as follows: The RX in τk channel uses sends
the CSI through a feedback channel (uplink) which is modeled
as AWGN. In the remaining T − τk channel uses, TX sends
data to the RX (downlink). The feedback model is adopted
from [10], where the CSI acquisition and data transmission are
performed in the same fading block. In Frequency-Division-
Duplex (FDD) systems uplink and downlink takes place in
different frequency bands. Therefore, a more realistic model
that captures the FDD system is the one in which acquisition
of CSI consumes uplink resources. Future work consists of
considering more realistic feedback models along the lines of
[10]. In the k-th EH interval, quantization of the channel is
performed using a codebook Ck known at both the TX and RX.
The receiver uses Random Vector Quantization. The codebook
consists of M-dimensional unit vectors Ck , {w1, . . . ,w2Bk }
, where Bk is the number of bits used for quantization. The
quantization of the channel h in the k-th EH interval is found
according to ĥ = arg max

w∈Ck

∣∣hHw
∣∣2. We assume that the length

of the EH interval is very large compared to the channel
coherence time (i.e., L very large). As a result, the achievable
ergodic rate in the k-th EH interval is given by

Rk =
(

1− τk
T

)
×

Eh,Wk

[
log2

(
1 +

P(
1− τk

T

) ‖h‖2 cos2
(
∠(h, ĥ)

))]
.

(2)

Even though there is no closed-form expression for the ergodic
rate in (2), an equivalent numerically computable expression
is given in [11]. However, this offers little insight into the
convexity of the problem which is required to reduce the
complexity of optimization. This motivates the use of a bound
on the ergodic rate as an objective function. By using Jensen’s
inequality and the bounds on the quantization error [12], an
upper bound on the ergodic rate is given by,

RUk =
(

1− τk
T

)
log2

[
1 +

PM(
1− τk

T

)(1−
(
M − 1

M

)
2

−Bk
M−1

)]
(3)

By using the AWGN feedback channel model, the number of
feedback bits Bk can be translated into the energy spent at the
RX Qk and the number of channel uses τk as follows,

Bk = τk log2

(
1 +

Qk
τkσ2

)
. (4)

For analytical tractability we neglect the practical constraint
that Bk should be an integer. From (3) and (4) the ergodic
rate upper bound is expressed as

RUk =
(

1− τk
T

)
×

log2

1 +
PM(

1− τk
T

)
1− M − 1

M

(
1 +

Qk
τkσ2

) −τk
M−1

 .
(5)

III. THROUGHPUT MAXIMIZATION

In this section we study the problem of maximizing the
throughput by a deadline (i.e., by the end of the K-th EH
interval). The optimization problem is given by

max
Qk,τk

U =

K∑
k=1

RUk (6a)

s.t. L

l∑
i=1

Qi ≤
l∑
i=1

Ei, l = 1, ...,K, (6b)

0 ≤ τk ≤ T, and Qk ≥ 0, k = 1, ...,K. (6c)

As the objective function is monotonic in Qk, the constraint
in (6b) must be satisfied with equality for l = K, otherwise,
we can always increase QK , and hence the objective, without
violating any constraints. We represent the feasible set as

F = {Q, τ |Qk, τk satisfy (6b), (6c)} , (7)

where Q = [Q1, . . . , QK ] and τ = [τ1, . . . , τK ]. To show that
the above problem is a convex optimization problem, we make
use of the following lemma.

Lemma 1. If the function f (x, t) is convex (resp. concave)
∀ (x, t) ∈ R2

+, t ∈ [0, T ), g (y) is convex (resp. concave)
and monotonically increasing ∀y ∈ R+, then the func-
tion h (x, t) = (T − t) g

(
f(x,t)
T−t

)
is convex (resp. concave)

∀ (x, t) ∈ R2
+, t ∈ [0, T ).

Proof: See Appendix.



Proposition 1. The objective function in the optimization
problem (6) is concave.

Proof: Since the objective function is the summation of
RUk ’s, showing that RUk is concave for Qk ≥ 0, τk ∈ [0, T ) for
any given k ∈ {1, . . . ,K} is enough to prove the proposition.
We can write

RUk =
T − τk
T

g

(
f (Qk, τk)

T − τk

)
, (8)

where f (Qk, τk) , PMT

(
1− M−1

M

(
1 + Qk

τkσ2

) −τk
M−1

)
and

g (y) = log2 (1 + y). Since Bk is concave in Qk and τk, it

can be easily seen that 2−
Bk
M−1 =

(
1 + Qk

τkσ2

) −τk
M−1

is convex,
and hence, f (Qk, τk) is concave. Using Lemma 1 we can see
that RUk is concave.

Since the objective function in (6) is concave and the
constraints are linear, it has a unique maximizer [13]. Using
the concavity of the objective function and some results from
multivariate majorization theory, we show that the optimal
energy allocation vector consist of finding the most majorized
feasible energy vector. To prove this, we need the following
results from multivariate majorization theory.2

Definition 1. [14, Definition 12.34] Let A =
[a1, . . . ,an]

T
,B = [b1, . . . , bn]

T
,A,B ∈ Rk×n, k ≥

2, n ≥ 2. A is majorized by B in the multivariate sense
(A �m B) if there exists a n× n doubly stochastic matrix P
such that A = BP.

Theorem 1. [14, Theorem 12.38] Let X,Y ∈ Rk×n as
defined above. If X �m Y, then f (X) ≥ f (Y) holds for
all f : Rk×n → R which are symmetric and concave in the
sense that (i) f (X) = f (XT) for all permutation matrices T
and (ii) f (αU + (1− α)V) ≥ αf (U)+(1− α) f (V)∀α ∈
[0, 1] and U,V ∈ Rk×n.

Proposition 2. If ∃ Q∗ ∈ F such that Q∗ � Q,∀ (Q, τ ) ∈ F
then (Q∗, τ ∗) is the global optimum of (6), where

τ ∗ =arg max
τk

K∑
k=1

RUk (Q∗k, τk) s.t. ∀k, (Q∗k, τk) ∈ F.

(9)

Proof: We first prove that the optimal energy vector must
be Q∗. Assume that there exists an optimal energy vector Qt

such that Qt 6= Q∗. Since Q∗ � Qt, there exists a doubly
stochastic matrix P such that Q∗ = QtP [14]. We can easily
check that the objective function U is symmetric and concave
in the sense of Theorem 1, we have

U
(
Q∗, τ (a)

)
≥ U (Qt, τ ) , ∀ (Qt, τ ) ∈ F, (10)

where τ (a) = τP. Now, it needs to be verified that
τ (a) ∈ F. The k-th element of τ (a) is denoted by τ

(a)
k , and

2Due to the space limitation we could not provide some basic definitions
in majorization theory that are used here. Please refer to [14].
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Fig. 3. Model for solar energy harvesting profile.

τ
(a)
k =

K∑
j=1

τj{P}j,k. Since P is doubly stochastic, we have

K∑
j=1

{P}j,k = 1. From the above two arguments we can see

that 0 ≤ τ
(a)
k < T, ∀k i.e., τ (a) ∈ F. Therefore, an energy

allocation vector Qt such that Qt 6= Q∗ cannot be optimal.
Since the optimal energy allocation vector is Q∗, the optimal
vector τ ∗ is obtained by (9).

There is an existing algorithm in literature that constructs
the optimal energy allocation policy, i.e., Q∗ � Q,∀ (Q, τ ) ∈
F given the EH constraints [3], [15]–[17]. The proof that the
algorithm constructs the most majorized feasible energy vector
is given in [17]. Due to the space limitation, details of the
algorithm are not included here. Although the original problem
is simplified to (9), there is no closed form expression for τ ∗.
Therefore we use numerical methods to obtain τ ∗.

IV. RESULTS

In this section, we compare different feedback bit allocation
schemes using numerical results. The RX is equipped with a
solar EH device. We take solar irradiance data from a database
[18]. Each EH interval is of duration 1 hour, T = 100 ms, and
L = 36000 frames. A hypothetical solar panel of variable area
is assumed. The area of the panel is adjusted such that we have
an EH profile shown in Fig. 3. In Fig. 3 harvested energy to
noise ratio per frame in each EH interval Ek

Lσ2 is shown.
The feedback bit allocation policy obtained from the opti-

mization serves two purposes:

(a) If used in evaluating (6a), gives an upper bound on the
throughput.

(b) If used in evaluating the exact ergodic capacity expression
[11, ( 27)], gives a lower bound on the throughput.

We compare this with a greedy scheme where optimization
is performed only on τ given Qk = Ek/L. Fig. 4 shows the
throughput of all the above mentioned policies for different
system SNRs. In Fig. 5, feedback bit allocation is shown for
the above mentioned policies for a system SNR of 10dB.
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Fig. 4. Comparison of ergodic capacity for different policies.
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Fig. 5. Feedback load at SNR of 10 dB.

V. CONCLUSION

In this paper, we formulated the problem of feedback design
with EH constraints in a point-to-point MISO channel with an
EH RX. The proposed policy not only outperforms the greedy
policy, but also achieves the performance which is quite close
to the upper bound. Finally, the extension to multiuser settings,
namely broadcast channel (where CSIT plays an even more
important role), and to MISO channel with both EH TX and
RX is currently under investigation.

APPENDIX

The proof is similar to that of showing the perspective of
a convex function is convex. Here the proof is given for the
concave case, the convex case follows similar steps. Let X1 =

[x1 t1]
T
, X2 = [x2 t2]

T, we have

h (λX1 + (1− λ)X2)

(a)

≥ Θg

(
λf (X1) + (1− λ) f (X2)

Θ

)
= Θg

(
Θ1

Θ

f (X1)

(T − t1)
+

Θ2

Θ

f (X2)

(T − t2)

)
(b)

≥ Θ1g

(
f (X1)

T − t1

)
+ Θ2g

(
f (X2)

T − t2

)
= λh (X1) + (1− λ)h (X2) ,

(11)
where Θ = Θ1 + Θ2,Θ1 = λ (T − t1) and Θ2 =
(1− λ) (T − t2), and
(a) follows from the fact that f (x, t) is concave and g (.) is

monotonically increasing.
(b) follows from the fact that Θ1

Θ + Θ2

Θ = 1 and g (.) is
concave.
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