
Hypervisor Memory Forensics

Mariano Graziano, Andrea Lanzi, and Davide Balzarotti

Eurecom, France
graziano,lanzi,balzarotti@eurecom.fr

Abstract. Memory forensics is the branch of computer forensics that
aims at extracting artifacts from memory snapshots taken from a run-
ning system. Even though it is a relatively recent field, it is rapidly
growing and it is attracting considerable attention from both industrial
and academic researchers.
In this paper, we present a set of techniques to extend the field of memory
forensics toward the analysis of hypervisors and virtual machines. With
the increasing adoption of virtualization techniques (both as part of the
cloud and in normal desktop environments), we believe that memory
forensics will soon play a very important role in many investigations
that involve virtual environments.
Our approach, implemented in an open source tool as an extension of the
Volatility framework, is designed to detect both the existence and the
characteristics of any hypervisor that uses the Intel VT-x technology. It
also supports the analysis of nested virtualization and it is able to infer
the hierarchy of multiple hypervisors and virtual machines. Finally, by
exploiting the techniques presented in this paper, our tool can reconstruct
the address space of a virtual machine in order to transparently support
any existing Volatility plugin - allowing analysts to reuse their code for
the analysis of virtual environments.

Keywords: Forensics, Memory Analysis, Intel Virtualization

1 Introduction

The recent increase in the popularity of physical memory forensics is certainly
one of the most relevant advancements in the digital investigation and computer
forensics field in the last decade. In the past, forensic analysts focused mostly on
the analysis of non-volatile information, such as the one contained in hard disks
and other data storage devices. However, by acquiring an image of the volatile
memory it is possible to gain a more complete picture of the system, including
running (and hidden) processes and kernel drivers, open network connections,
and signs of memory resident malware. Memory dumps can also contain other
critical information about the user activity, including passwords and encryption
keys that can then be used to circumvent disk-based protection. For example,
Elcomsoft Forensic Disk Decryptor [3] is able to break encrypted disks protected
with BitLocker, PGP and TrueCrypt, by extracting the required keys from mem-
ory.



Unfortunately, the increasing use of virtualization poses an obstacle to the
adoption of the current memory forensic techniques. The problem is twofold.
First, in presence of an hypervisor it is harder to take a complete dump of the
physical memory. In fact, most of the existing tools are software-based solutions
that rely on the operating system to acquire the memory. Unfortunately, such
techniques can only observe what the OS can see, and, therefore, might be unable
to access the memory reserved by the virtual machine monitor itself [31]. Second,
even when a complete physical image is acquired by using an hardware-based
solution (e.g., through a DMA-enable device [2]), existing tools are not able to
properly analyze the memory image. While solutions exist for the first problem,
such as a recently proposed technique based on the SMM [25], the second one is
still unsolved.

Virtualization is one of the main pillars of cloud computing but its adoption
is also rapidly increasing outside the cloud. Many users use virtual machines
as a simple way to make two different operating systems coexist on the same
machine (e.g., to run Windows inside a Linux environment), or to isolate critical
processes from the rest of the system (e.g., to run a web browser reserved for
home banking and financial transactions). These scenarios pose serious problem
for forensic investigations. Moreover, any incident in which the attacker try to
escape from a VM or to compromise the hypervisor in a cloud infrastructure
remain outside the scope of current memory forensic techniques.

In this paper we propose a new solution to detect the presence and the char-
acteristics of an hypervisor and to allow existing memory forensic techniques
to analyze the address space of each virtual machine running inside the sys-
tem. Nowadays, if an investigator takes a complete physical snapshot of Alice
computer’s memory while she is browsing the Internet from inside a VMware
machine, none of the state of the art memory analysis tools can completely
analyze the dump. In this scenario, Volatility [6], a very popular open source
memory forensic framework, would be able to properly analyze the host operat-
ing system and observe that the VMware process was running on the machine.
However, even though the memory of the virtual machine is available in the
dump, Volatility is currently not able to analyze it. In fact, only by properly
analyzing the hypervisor it is possible to gain the information required to trans-
late the guest virtual addresses into physical addresses, the first step required
by most of the subsequent analysis. Even worse, if Alice computer was infected
by some advanced hypervisor-based rootkit, Volatility would not even be able
to spot its presence.

In some way, the problem of finding an hypervisor is similar to the one of
being able to automatically reconstruct information about an operating system
in memory, even though that operating system may be completely unknown. The
number of commodity hypervisors is limited and, given enough time, it would
be possible to analyze all of them and reverse engineer their most relevant data
structures, following the same approach used to perform memory forensics of
known operating systems. However, custom hypervisors are easy to develop and
they are already adopted by many security-related tools [15,22,28,29]. Moreover,



malicious hypervisors (so far only proposed as research prototypes [12,19,26,33])
could soon become a reality - thus increasing the urgency of developing the area
of virtualization memory forensics.

The main idea behind our approach is that, even though the code and in-
ternals of the hypervisors may be unknown, there is still one important piece of
information that we can use to pinpoint the presence of an hypervisor. In fact,
in order to exploit the virtualization support provided by most of the modern
hardware architectures, the processor requires the use of particular data struc-
tures to store the information about the execution of each virtual environment.
By first finding these data structures and then analyzing their content, we can
reconstruct a precise representation of what was running in the system under
test.

Starting from this observation, this paper has three main goals. First, we
want to extend traditional memory forensic techniques to list the hypervisors
present in a physical memory image. As it is the case for traditional operating
systems, we also want to extract as much information as possible regarding those
hypervisors, such as their type, location, and the conditions that trigger their
behaviors. Second, we want to use the extracted information to reconstruct the
address space of each virtual machine. The objective is to be able to transparently
support existing memory analysis techniques. For example, if a Windows user is
running a second Windows OS inside a virtual machine, thanks to our techniques
a memory forensic tool to list the running processes should be able to apply its
analysis to either one or the other operating system. Finally, we want to be able
to detect cases of nested virtualization, and to properly reconstruct the hierarchy
of the hypervisors running in the system.

To summarize, in this paper we make the following contributions:

– We are the first to design a forensics framework to analyze hypervisor struc-
tures in physical memory dumps.

– We implemented our framework in a tool named Actaeon, consisting of a
Volatility plugin, a patch to the Volatility core, and a standalone tool to
dump the layout of the Virtual Machine Control Structure (VMCS) in dif-
ferent environments.

– We evaluate our framework on several open source and commercial hyper-
visors installed in different nested configurations. The results show that our
system is able to properly recognize the hypervisors in all the configuration
we tested.

2 Background

Before presenting our approach for hypervisor memory forensics we need to
introduce the Intel virtualization technology and present some background in-
formation on the main concepts we will use in the rest of the paper.



2.1 Intel VT-x Technology

In 2005, Intel introduced the VT-x Virtualization Technology [18], a set of
processor-level features to support virtualization on the x86 architecture. The
main goal of VT-x was to reduce the virtualization overhead by moving the
implementation of different tasks from software to hardware.

VT-x introduces a new instruction set, called Virtual Machine eXtension
(VMX) and it distinguishes two modes of operation: VMX root and VMX non
root. The VMX root operation is intended to run the hypervisor and it is there-
fore located below “ring 0”. The non root operation is instead used to run the
guest operating systems and it is therefore limited in the way it can access hard-
ware resources. Transitions between non root and root modes are called VMEXIT,
while the transition in the opposite direction are called VMENTRY. As part of the
VT-x technology, Intel introduced a set of new instructions that are available
when the processor is operating in VMX root operation, and modified some of
the existing instructions to trap (e.g., to cause a VMEXIT) when executed inside
a guest OS.

2.2 VMCS Layout

VMX transitions are controlled by a data structure called Virtual Machine Con-
trol Structure (VMCS). This structure manages the transitions from and to
VMX non root operation as well as the processor behavior in VMX non root op-
eration. Each logical processor reserves a special region in memory to contain the
VMCS, known as the VMCS region. The hypervisor can directly reference the
VMCS through a 64 bit, 4k-aligned physical address stored inside the VMCS
pointer. This pointer can be accessed using two special instructions (VMPTRST
and VMPTRLD) and the VMCS fields can be configured by the hypervisor through
the VMREAD, VMWRITE and VMCLEAR commands.

Theoretically, an hypervisor can maintain multiple VMCSs for each virtual
machine, but in practice the number of VMCSs normally matches the number
of virtual processors used by the guest VM. The first word of the VMCS region
contains a revision identifier that is used to specify which format is used in the
rest of the data structure. The second word is the VMX ABORT INDICATOR, and it
is always set to zero unless a VMX abort is generated during a VMEXIT operation
and the logical processor is switched to shutdown state. The rest of the structure
contains the actual VMCS data. Unfortunately, the memory layout (order and
offset) of the VMCS fields is not documented and different processors store the
information in a different way.

Every field in the VMCS is associated with a 32 bit value, called its encoding,
that needs to be provided to the VMREAD/VMWRITE instructions to specify how
the values has to be stored. For this reason, the hypervisor has to use these two
instructions and should never access or modify the VMCS data using ordinary
memory operations.

The VMCS data is organized into six logical groups: 1) a guest state area to
store the guest processor state when the hypervisor is executing; 2) a host state



HYPERVISOR / HOST (L0)HYPERVISOR / HOST (L0)

GUEST OS / NESTED HYPERVISOR (L1)GUEST OS / NESTED HYPERVISOR (L1)

NESTED OS (L2)NESTED OS (L2)

HARDWAREHARDWARE

VMCS02

VMCS01

VMCS12

Fig. 1. VMCS structures in a Turtle-based nested virtualization setup

area to store the processor state of the hypervisor when the guest is executing; 3)
a VM Execution Control Fields containing information to control the processor
behavior in VMX non root operation; 4) VM Exit Control Fields that control
the VMEXITs; 5) a VM Entry Control Fields to control the VMENTRIES; and
6) a VM Exit Info Fields that describe the cause and the nature of a VMEXIT.

Each group contains many different fields, but the offset and the alignment
of each field is not documented and it is not constant between different Intel
processor families1.

2.3 Nested Virtualization

Nested virtualization has been first defined by Popek and Goldberg [16, 24] in
1973. Since then, several implementation has been proposed. In a nested vir-
tualization setting, a guest virtual machine can run another hypervisor that
in turn can run other virtual machines, thus achieving some form of recursive
virtualization. However, since the x86 architecture provides only a single-level
architectural support for virtualization, there can only be one and only one hy-
pervisor mode and all the traps, at any given nested level, need to be handled
by this hypervisor (the “top” one in the hierarchy). The main consequence is
that only a single hypervisor is running at ring -1 and has access to the VMX
instructions. For all the other nested hypervisors the VMX instructions have
to be emulated by the top hypervisor to provide to the nested hypervisors the
illusion of running in root mode.

Because of these limitations, the support for nested virtualization needs to be
implemented in the top hypervisor. KVM has been the first x86 virtual machine
monitor to fully support nested virtualization using the Turtle technology [9]. For
this reason, in the rest of this paper we will use the KVM/Turtle nomenclature
when we refer to nested hypervisors. Recent versions of Xen also adopted the
same concepts and it is reasonable to think that also proprietary hypervisors
(such as VMware and Hyper-V) use similar implementations.

1 For more information on each VMCS section please refer to the Intel Manual Vol
3B Chapter 20



The Turtle architecture is depicted in Figure 1. In the example, the top
hypervisor (L0) runs a guest operating system inside which a second hypervisor
(L1) is installed. Finally, this second hypervisor runs a nested guest operating
system (L2). In this case the CPU uses a first VMCS (VMCS01) to control
the top hypervisor and its guest. The nested hypervisor has a “fake” VMCS
(VMCS12) to mange the interaction with its nested OS (L2). Since this VMCS
is not real but it is emulated by the top hypervisor, its layout is not decided by
the processor, but can be freely chosen by the hypervisor developers. The two
VMCSs are obviously related to each other. For example, in our experiments,
we observed that for KVM the VMCS12 Host State Area corresponds to the
VMCS01 Guest State Area.

The Turtle approach also adds one more VMCS (VMCS02), that is used by
the top hypervisor (L0) to manage the nested OS (L2). In theory, nested virtu-
alization could be implemented without using this additional memory structure.
However, all the hypervisors we analyzed in our tests adopted this approach.

Another important aspect that complicates the nested virtualization setup
is the memory virtualization. Without nested virtualization, the guest operating
system has its own page tables to translate the Guest Virtual Addresses (GVAs)
to the Guest Physical Addresses (GPAs). The GPA are then translated by the
hypervisor to Host Physical Addresses (HPAs) that are pointing to the actual
physical pages containing the data. This additional translation can be done either
in software (e.g., using shadow page tables [30]) or in hardware (e.g., using the
Extended Page Tables (EPT) described later in this section). The introduction
of the nested virtualization adds one more layer of translation. In fact, the two
dimensional support is no longer enough to handle the translation for nested
operating systems. For this reason, Turtle introduced a new technique called
multidimensional-paging in which the nested translations (from L2 to L1 in
Figure 1) are multiplexed into the two available layers.

2.4 Extended Page Table

Since the introduction of the Nehalem microarchitecture [5], Intel processors
adopted an hardware feature, called Extended Page Tables (EPT), to support
address translation between GPAs and HPAs. Since the use of this technology
greatly alleviated the overhead introduced by memory translation, it quickly
replaced the old and slow approach based on shadow pages tables.

When the EPT is enabled, it is marked with a dedicated flag in the Secondary
Based Execution Control Field in the VMCS structure. This tells the CPU that
the EPT mechanism is active and it has to be used to translate the guest physical
addresses.

The translation happens through different stages involving four EPT pag-
ing structures (namely PML4, PDPT, PD, and PT). These structures are very
similar to the ones used for the normal IA-32e address mode translation. If the
paging is enabled in the guest operating system the translation starts from the
guest paging structures. The PML4 table can be reached by following the cor-
responding pointer in the VMCS. Then, the GPA is split and used as offset to



Fig. 2. EPT-based Address Translation

choose the proper entry at each stage of the walk. The EPT translation process
is summarized in Figure 2.4. 2

3 Objectives and Motivations

Our goal is to bring the memory forensic area to the virtualization world. This
requires the introduction of new techniques to detect, recognize, and analyze the
footprint of hypervisors inside the physical memory. It also requires to support
previous techniques, so that existing tools to investigate operating systems and
user-space programs could be easily applied to each virtual machine inside a
memory image.

Locate Hypervisors in Memory

If an hypervisor is known, locating it in memory could be as simple as looking
for a certain pattern of bytes (e.g., by using a code-based signature). Unfortu-
nately, this approach have some practical limitations. In fact, given a snapshot
of the physical memory collected during an investigation, one of the main ques-
tion we want to ask is “Is there any hypervisor running on the system?”. Even
though a signature database could be a fast way to detect well-known products,
custom hypervisors are nowadays developed and used in many environments.
Moreover, thin hypervisor could also be used for malicious purposes, such as
the one described by Rutkowska [26], that is able to install itself in the system
and intercept critical operations. Detecting this kind of advanced threats is also
going to become a priority for computer forensics in the near future.

For these reasons, we decided to design a generic hypervisor detector. In
order to be generic, it needs to rely on some specific features that are required

2 For more detail about EPT look at Vol 3B, Chapter 25 Intel Manuals.



by all hypervisors to run. As explained in the previous section, to provide hard-
ware virtualization support, the processor requires certain data structures to be
maintained by the hypervisor. For Intel, this structure is called VMCS, while
the equivalent for AMD is called VMCB. If we can detect and analyze those
structures we could use them as entry points to find all the other components:
hypervisors, hosts, and guest virtual machines.

To show the feasibility of our approach, we decided to focus our effort on the
Intel architecture. There are two reasons behind this choice. First, Intel largely
dominates the market share (83% vs 16% in the second quarter of 2012 [1]).
Second, the AMD virtualization structures are fixed and well documented, while
Intel adopts a proprietary API to hide the implementation details. Even worse,
those details vary between different processor families. Therefore, it provided a
much harder scenario to test our techniques.

A limitation of our choice is that our approach can only be applied to hard-
ware assisted hypervisors. Old solutions based on para-virtualization are not
supported, since in this case the virtualization is completely implemented in
software. However, these solution are becoming less and less popular because of
their limitations in terms of performance.

Analysis of Nested Virtualization

Finding the top hypervisor, i.e. the one with full control over the machine, is
certainly the main objective of a forensic analysis. But since now most of the
commodity hypervisors support nested virtualization, extracting also the hier-
archy of nested hypervisors and virtual machines could help an analyst to gain
a better understanding of what is running inside the system.

Unfortunately, developing a completely generic and automated algorithm to
forensically analyze nested virtualization environments is - in the general case -
impossible. In fact, while the top hypervisor has to follow specific architectural
constraints, the way it supports nested hypervisors is completely implementa-
tion specific. In a nested setup, the top hypervisor has to emulate the VMX
instructions, but there are no constraints regarding the location and the format
in which it has to store the fields of the nested VMCS. In the best-case scenario,
the fields are recorded in a custom VMCS-like structure, that we can reverse
engineer in an automated way by using the same technique we use to analyze
the layouts of the different Intel processor families. In the worse case, the fields
could be stored in complex data structures (such as hash tables) or saved in an
encoded form, thus greatly complicating the task of locating them in the memory
dump.

Not every hypervisor support nested virtualization (e.g. VirtualBox does
not). KVM and Xen implement it using the Turtle [9] approach, and a simi-
lar technique to multiplex the inner hypervisors VT-x/EPT into the underlying
physical CPU is also used by VMware [7].

By looking for the nested VMCS structure (if known) or by recognizing the
VMCS02 of a Turtle-like environment (as presented in Figure 1 and explained



in details in Section 4), we can provide an extensible support to reconstruct the
hierarchy of nested virtualization.

Virtual Machine Forensic Introspection

Once a forensic analyst is able to list the hypervisors and virtual machines in a
memory dump, the next step is to allow her to run all her memory forensic tools
on each virtual machine. For example, the Volatility memory forensic framework
ships with over 60 commands implementing different kinds of analysis - and
many more are available through third-party plugins. Unfortunately, in presence
of virtualization, all these commands can only be applied to the host virtual
machine. In fact, the address spaces of the other VMs require to be extracted
and translated from guest to host physical addresses.

The goal of our introspection analysis is to parse the hypervisor informa-
tion, locate the tables used by the EPT, and use them to provide a transparent
mechanism to translate the address space of each VM.

4 System Design

Our hypervisor analysis technique consists of three different phases: memory
scanning, data structure validation, and hierarchy analysis. The Memory Scanner
takes as input a memory dump and the database of the known VMCS layouts
(i.e., the offset of each field in the VMCS memory area) and outputs a number
of candidate VMCS. Since the checks performed by the scanner can produce
false positives, in the second phase each structure is validated by analyzing
the corresponding page table. The final phase of our approach is the hierarchy
analysis, in which the validated VMCSs are analyzed to find the relationships
among the different hypervisors running on the machine.

In the following sections we will describe in details the algorithms that we
designed to perform each phase of our analysis.

4.1 Memory Scanner

The goal of the memory scanner is to scan a physical memory image looking for
data structures that can represent a VMCS. In order to do that, we need two
types of information: the memory layout of the structure, and a set of constraints
on the values of its fields that we can use to identify possible candidates. The
VMCS contains over 140 different fields, most of which can assume arbitrary
values or they can be easily obfuscated by a malicious hypervisors. The memory
scanner can tolerate false positives (that are later removed by the validation
routine) but we want to avoid any false negative that could result in a missed
hypervisor. Therefore we designed our scanner to focus only on few selected
fields:



– Revision ID: It is the identifier that determines the layout of the rest of
the structure. For the VMCS of the top hypervisor, this field has to match
the value of the IA32 VMX BASIC MSR register of the machine on which the
image was acquired (and that changes between different micro-architecture).
In case of nested virtualization, the revision ID of the VMCS12 is chosen by
the top hypervisor. The Revision ID is always the first word of the VMCS
data structure.

– VMX ABORT INDICATOR: This is the VMX abort indicator and its value has
to be zero. The field is the second entry of the VMCS area.

– VmcsLinkPointerCheck: The values of this field consists of two consecu-
tive words that, according to the Intel manual, should always be set to
0xffffffff. The position of this field is not fixed.

– Host CR4: This field contains the host CR4 register. Its 13th bit indicates if
the VMX is enabled or not. The position of this field is not fixed.

To be sure that our choice is robust against evasions, we implemented a simple
hypervisor in which we tried to obfuscate those fields during the guest operation
and re-store them only when the hypervisor is running, a similar approach is
described in [14]. This would simulate what a malicious hypervisor could do in
order to hide the VMCS and avoid being detected by our forensic technique. In
our experiments, any change on the values of the previous five fields produced a
system crash, with the only exception of the Revision ID itself. For this reason,
we keep the revision ID only as a key in the VMCS database, but we do not
check its value in the scanning phase.

The memory scanner first extracts the known VMCS layouts from the database
and then it scans the memory looking for pages containing the aforementioned
values at the offsets defined by the layout. Whenever a match is found, the
candidate VMCS is passed over to the validation step.

4.2 VMCS Validation

Our validation algorithm is based on a simple observation. Since the HOST CR3

field needs to point to the page table that is used by the processor to translate the
hypervisor addresses, that table should also contain the mapping from virtual to
physical address for the page containing the VMCS itself. We call this mechanism
self-referential validation.

For every candidate VMCS, we first extract the HOST CR3 field and we assume
that it points to a valid page table structure. Unfortunately, a page table can
be traversed only by starting from a virtual address to find the corresponding
physical one, but not vice-versa. In our case, since we only know the physical
address of the candidate VMCS, we need to perform the opposite operation. For
this reason, our validator walks the entire page tables (i.e., it tries to follow every
entry listed in them) and creates a tree representation where the leaves represent
the mapped physical memory pages and the different levels of the tree represent
the intermediate points of the translation algorithm (i.e., the page directory, and
the page tables).



Fig. 3. Self-referential Validation Technique

This structure has a double purpose. First, it serves as a way to validate a
candidate VMCS, by checking that one of the leaves points to the VMCS itself
(see Figure 3). If this check fails, the VMCS is discarded as a false positive.
Second, if the validation succeeded, the tree can be used to map all the memory
pages that were reserved by the hypervisor. This could be useful in case of
malicious hypervisors that need an in-depth analysis after being discovered.

It is important to note that the accuracy of our validation technique leverages
on the assumption that is extremely unlikely that such circular relationship can
appear by chance in a memory image.

4.3 Reverse Engineering The VMCS Layout

The previous analysis steps are based on the assumption that our database con-
tains the required VMCS layout information. However, as we already mentioned
in the previous sections, the Intel architecture does not specify a fix layout, but
provides instead an API to read and write each value, independently from its
position.

In our study we noticed that each processor micro-architecture defines dif-
ferent offsets for the VMCS fields. Since we need these offsets to perform our
analysis, we design and implement a small hypervisor-based tool to extract them
from a live system.

More in detail, our algorithm considers the processors microcode as a black
box and it works as follows. In the first step, we allocate a VMCS memory region
and we fill the corresponding page with a 16 bit-long incremental counter. At
this point the VMCS region contains a sequence of progressive numbers ranging
from 0 to 2048, each representing its own offset into the VMCS area. Then, we
perform a sequence of VMREAD operations, one for each field in the VMCS. As a
result, the processor retrieves the field from the right offset inside the VMCS page
and returns its value (in our case the counter that specifies the field location).



Fig. 4. Comparison between different VMCS fields in nested and parallel configurations

The same technique can also be used to dump the layout of nested VMCSs.
However, since in this case our tool would run as a nested hypervisor, the top
hypervisor could implement a protection mechanism to prevent write access to
the VMCS region (as done by VMware), thus preventing our technique to work.
In this case we adopt the opposite, but much slower, approach of writing each
field with a VMWRITE and then scan the memory for the written value.

4.4 Virtualization Hierarchy Analysis

If our previous techniques detect and validate more then one VMCS, we need to
distinguish between several possibilities, depending whether the VMCS repre-
sent parallel guests (i.e., a single hypervisor running multiple virtual machines),
nested guests (i.e, an hypervisor running a machine the runs another hypervisor),
or a combination of the previous ones.

Moreover, if we assume one virtual CPU per virtual machine, we can have
three different nested virtualization scenarios: Turtle approach and known nested
VMCS layout (three VMCSs found), Turtle approach and unknown nested layout
(two VMCSs found), and non-Turtle approach and known layout (two or more
VMCSs found).

In the first two cases (the only ones we could test in our experiments since
all the hypervisors in our tests adopted the Turtle approach), we can infer the
hierarchy between the hypervisors and distinguish between parallel and nested
VMs by comparing the values of three fields: the GUEST CR3, the HOST CR3, and
the HOST RIP. The first two fields represent the CR3 for the guest and for the
hypervisor. The third is the pointer to the hypervisor entry point, i.e., to the
first instruction to execute when the CPU transfer control to the hypervisor.

Figure 4 show a comparison of the values of these three fields in a parallel
and nested configurations. As the diagram shows, in a nested setup we have two
different hypervisors (represented by the two different HOST RIP addresses) while
for parallel virtual machine the hypervisor is the same (same value of HOST RIP).



Moreover, by comparing the GUEST CR3 and HOST CR3 values we can distinguish
among VMCS01, VMCS02, and VMCS12 in a nested virtualization setup. More
precisely, the VMCS01 and VMCS02 share the same HOST CR3, while the HOST

CR3 of the VMCS12 has to match the GUEST CR3 of the VMCS01.
Finally, in the third scenario in which the nested virtualization is not imple-

mented following the Turtle approach (possible in theory but something we never
observed in our experiments), the previous heuristics may not work. However,
also in this case we can still tell that a VMCS belongs to a nested hypervisor if
its layout matches the one of a known nested VMCS (e.g., the one emulated by
KVM).

4.5 Virtual Machine Introspection

The last component of our system is the algorithm to extract the EPT tables and
to provide support for the memory analysis of virtual machines. In this case the
algorithm is straightforward. First, we extract the pointer to the EPT from the
VMCS of the machine we want to analyze (see Figure 2.4 in Section 2). Then, we
simulate the EPT translation by programmatically walking through the PML4,
PDPT, PD, and PT tables for each address that need to be translated.

4.6 System Implementation

We implemented the previously described techniques in an open source tool
called Actaeon. Actaeon consists of three components: a standalone VMCS lay-
out Extractor derived from HyperDbg [15], an hypervisor Memory Analysis plu-
gin for the Volatility framework, and a patch for the Volatility core to provide
a transparent mechanism to analyze the virtual machines address spaces. The
tool, along with a number of datasets and usage examples, can be downloaded
from http://s3.eurecom.fr/tools/actaeon.

VMCS Layout Extractor This component is designed to extract and save into
a database the exact layout of a VMCS, by implementing the reverse engineering
algorithm described above. The tool is implemented as a small custom hypervisor
that re-uses the initialization code of HyperDbg, to which it adds around 200
lines of C code to implement the custom checks to identify the layout of the
VMCS.

Hyper-ls This component is implemented as a Python plugin for the Volatility
framework, and it consists of around 1,300 lines of code. Its goal is to scan the
memory image to extract the candidate VMCSs, run our validation algorithm
to filter out the false positives, and analyze the remaining structures to extract
the details about the corresponding hypervisors.

The tool is currently able to parse all the fields of the VMCS and to properly
interpret them and print them in a readable form. For example, our plugin can
show which physical devices and which events are trapped by the hypervisor,



the pointer to the hypervisor code, the Host and Guest CR3, and all the saved
CPU registers for the host and guest systems.

The hyperls plugin can also print a summary of the hierarchy between the
different hypervisors and virtual machines. For each VM, it also reports the
pointer to the corresponding EPT, required to further inspect their content.

Virtual Machine Introspection Patch An important functionality performed
by Acteon is to provide a transparent mechanism for the Volatility framework to
analyze each Virtual Machine address space. In order to provide such function-
ality, Acteon provides a patch for the Volatility core to add one command-line
parameter (that the user can use to specify in which virtual machine he wants
to run the analysis) and to modify the APIs used for address translations by
inserting an additional layer based on the EPT tables. The patch is currently
implemented in 250 lines of Python code.

5 Evaluation

The goal of our experiments is to evaluate the accuracy and reliability of our
techniques in locating hypervisors inside physical memory dumps, access their
private data, reconstruct the hierarchy in case of nested virtualization, and pro-
vide the support for other memory forensic techniques to inspect the guest op-
erating systems. All the experiments have been performed on an Intel Core 2
Duo P8600 and an Intel Core i5-2500 machines running the Ubuntu Linux 12.10
32bit operating system and with one virtual processor per guest.

5.1 Forensic Memory Acquisition

The first step of our experiments consisted in the acquisition of complete snap-
shots of the physical memory on a computer running a number of different
hypervisor configurations.

As we already mentioned in Section 1, this turned out to be a challenging
task. In fact, even though a large number of memory imaging solution exists
on the market, the vast majority adopt software-based techniques that uses
kernel modules to acquire the memory from the operating system point of view.
These approaches have not been designed to work in a virtualization environment
where the OS does not have a complete view of the system memory. In fact, if the
virtual machine monitor is protecting its own pages, the memory image collected
from the host operating system does not contain the pages of the hypervisor. To
overcome this limitation, whenever a software approach was not able to properly
capture the memory, we resorted to a hardware-based solution. In particular, we
used a PCI Firewire card with a Texas Instrument Chipset, and the Inception [4]
tool to dump the memory through a DMA attack [23]. In this case, we had to
disable the Intel VT-d support from the BIOS, to prevent the IOMMU from
blocking the DMA attack.



The main drawback of using the Firewire acquisition is that in our experi-
ments it was quite unstable, often requiring several consecutive attempts before
we could obtain a correct dump. Moreover, it is worth noting that in theory even
a DMA-based approach is not completely reliable. In 2007 Joanna Rutkowska
showed the feasibility of attacks against hardware-based RAM acquistion [27].
The presented attacks are based on the modification of the processor’s North-
Bridge memory map to denial of service the acquisition tool or to hide some
portions of the physical memory. However, we are not aware of any hypervisor
that uses these techniques to tamper with the memory acquisition process.

Today, the best solution to acquire a complete system memory in presence
of an hypervisor would be to use an acquisition tool implemented in the SMM
(therefore running at higher privileges than the hypervisor itself), as proposed
by A. Reina et al. [25]. Unfortunately, we were not able to find any tool of this
kind available on the Internet.

5.2 System Validation

The first step of our experiments was to perform a number of checks to ensure
that our memory acquisition process was correct and that our memory forensic
techniques were properly implemented.

In the first test, we wrote a simple program that stored a set of variables with
known values and we run it in the system under test. We also added a small kernel
driver to translate the program host virtual addresses to host physical addresses
and we used these physical addresses as offset in the memory image to read the
variable and verify their values.

The second test was designed to assess the correctness of the VMCS layout.
In this case we instrumented three open source hypervisors to intercept every
VMCS allocation and print both its virtual and physical addresses. These val-
ues were then compared with the output of our Volatility plugin to verify its
correctness. We also used our instrumented hypervisors to print the content of
all the VMCS fields and verify that their values matched the ones we extracted
from the memory image using our tool.

Our final test was designed to test the virtual machine address space recon-
struction through the EPT memory structures. The test was implemented by
instrumenting existing hypervisors code and by installing a kernel debugger in
the guest operating systems to follow every step of the address translation pro-
cess. The goal was to verify that our introspection module was able to properly
walk the EPT table and translate every address.

Once we verify the accuracy of our acquisition and implementation we started
the real experiments.

5.3 Single-Hypervisor Detection

In this experiment we ran the hyperls plugin to analyze a memory image con-
taining a single hypervisor.



Hypervisor Guests Candidate VMCS Validated VMCS

HyperDbg 1 1 1

KVM 2 4 2

Xen 2 3 2

VirtualBox 1 2 1

VMware 3 3 3
Table 1. Single Hypervisor Detection

Top Hypervisor Nested Hypervisor VMCS Detection Hierarchy Inference

KVM
HyperDbg 3 3

KVM 3 3

XEN
KVM 3 3

XEN 3 3

VMware
HyperDbg 3 3

KVM 3 3

VirtualBox 3 3

VMware 3 3

Table 2. Detection of Nested Virtualization

We tested our plugin on three open source hypervisors (KVM 3.6.0, Xen
4.2.0, and VirtualBox 4.2.6), one commercial hypervisor (VMware Workstation
9.0), and one ad-hoc hypervisor realized for debugging purposes (HyperDbg).
The results are summarized on Table 1. We run the different hypervisors with
a variable number of guests (between 1 and 4 virtual machines). The number
of candidate VMCS found by the memory scanner algorithm is reported in the
third column, while the number of validated ones is reported in the last column.
In all the experiments our tool was able to detect the running hypervisors and
all the virtual machines with no false positives.

The performance of our system are comparable with other offline memory
forensic tools. In our experiment, the average time to scan a 4GB memory image
to find the candidate VMCS structures was 13.83 seconds. The validation time
largely depends on the number of matches, with an average of 51.36 seconds in
our tests (all offline analysis performed on an Intel Xeon L5420 (2.50Ghz) with
4GB RAM).

In the second experiment, we chose a sample of virtual machines from the
previous test and we manually inspect them by running several Volatility com-
mands (e.g., to list processes and kernel drivers). In all cases, our patch was able
to transparently extract the EPT tables and provide the address translation
required to access the virtual machine address space.

5.4 Nested Virtualization Detection

In the final set of experiments we tested our techniques on memory images
containing cases of nested virtualization. This task is more complex due to the



implementation specific nature of the nested virtualization. First of all, only
three of the five hypervisors we tested supported this technology. Moreover, not
all combinations were possible because of the way the VMX instructions were
emulated by the top hypervisor. This turned out to be crucial for the nested
hypervisor to work properly, since an imperfect implementation would break the
equivalence principle and allow the nested hypervisor to detect that it is not
running on bare metal. For example, VMware refuses to run under KVM, while
Xen and VirtualBox under KVM start but without any hardware virtualization
support.

Because of these limitations we were able to set up eight different nested vir-
tualization installations (summarized in Table 2). In all the cases, hyperls was
able to detect and validate all the three VMCS structures (VMCS01, VMCS02,
and VMCS12) and to infer the correct hierarchy between the different hypervi-
sors.

6 Related Work

The idea to inspect the physical memory to retrieve sensitive information or to
find evidence of malicious activities has already been broadly explored in the
literature. For example, Alex Halderman et al. [17], described several attacks
where they exploited DRAM remanence effects to recover cryptographic keys
and other sensitive information. Several works focus their attention on the anal-
ysis of user space memory: Memparser [10] was one of the first memory analysis
tools that was able to provide information about the modules loaded and the
process parameters by leveraging the PEB memory structure. Dolan-Gavitt [13]
was the first to allow the analysis of the Windows user-space process by extract-
ing the VADs memory structure from a memory image. Arasteh and Debbabi [8]
used the information about the stack memory structures to rebuild the execu-
tion history of a process. On the other side, several papers proposed systems
to search kernel and user-space memory structures in memory with different
methodologies. Dolan-Gavitt et al. [14] presented a research work in which they
automatically generated robust signatures for important operating system struc-
tures. Such signatures can then be used by forensic tools to find the objects in
a physical memory dump.

Other works focused on the generation of strong signatures for structures in
which there are no values invariant fields [20,21]. Even though these approaches
are more general and they could be used for our algorithm, they produce a
significant number of false positives. Our approach is more ad-hoc, in order to
avoid false positives.

Another general approach was presented by A. Cozzie et al. in their system
called Laika [11], a tool to discover unknown data structures in memory. Laika is
based on probabilistic techniques, in particular on unsupervised Bayesian learn-
ing, and it was proved to be very effective for malware detection. Laika is inter-
esting because it is able to infer the proper layout also for unknown structures.
However, the drawback is related to its accuracy and the non negligible amount



of false positives and false negatives. Z. Lin et al. have developed DIMSUM [32]
in which, given a set of physical pages and a structure definition, their tool is
able to find the structure instances even if they have been unmapped.

Even though a lot of research have been done in the memory forensics field, to
the best of our knowledge there is no previous works on automatic virtualization
forensics. Our work is the first attempt to fill this gap.

Finally, it is important to note that several of the previously presented sys-
tems have been implemented as a plugin for Volatility [6] - the standard the
facto for open source memory forensics. Due to the importance of Volatility, we
also decided to implement our techniques as a series of different plugins and as
a patch to the main core of its framework.

7 Conclusion

In this paper, we presented a first step toward the forensics analysis of hypervi-
sors. In particular we discussed the design of a new forensic technique that starts
from a physical memory image and is able to achieve three important goals: lo-
cate hypervisors in memory, analyze nested virtualization setups and show the
relationships among different hypervisors running on the same machine, and
provide a transparent mechanism to recognize and support the address space of
the virtual machines.

The solution we propose is integrated in the Volatility framework and it
allows forensics analysts to apply all the previous analysis tools on the virtual
machine address space. Our experimental evaluation shows that Actaeon is able
to achieve the aforementioned goals, allowing for a real-world deployment of
hypervisor digital forensic analysis.

Acknowledgment

The research leading to these results was partially funded by the European Union
Seventh Framework Programme (contract N 257007) and by the French National
Research Agency through the MIDAS project. We would also like to thank En-
rico Canzonieri, Aristide Fattori, Wyatt Roersma, Michael Hale Ligh and Edgar
Barbosa for the discussions and their support to the Actaeon development.

References

1. Amd’s market share drops. http://www.cpu-wars.com/2012/11/

amds-market-share-drops-below-17-due-to.html.
2. Documentation/dma-mapping.txt.
3. Elcomsoft forensic disk decryptor. http://www.elcomsoft.com/edff.html.
4. Inception memory acquisition tool. http://www.breaknenter.org/projects/

inception/.
5. Nehalem architecture. http://www.intel.com/pressroom/archive/reference/

whitepaper_Nehalem.pdf.

http://www.cpu-wars.com/2012/11/amds-market-share-drops-below-17-due-to.html
http://www.cpu-wars.com/2012/11/amds-market-share-drops-below-17-due-to.html
http://www.elcomsoft.com/edff.html
http://www.breaknenter.org/projects/inception/
http://www.breaknenter.org/projects/inception/
http://www.intel.com/pressroom/archive/reference/whitepaper_Nehalem.pdf
http://www.intel.com/pressroom/archive/reference/whitepaper_Nehalem.pdf


6. Volatility framework: Volatile memory artifact extraction utility framework.
https://www.volatilesystems.com/default/volatility.

7. Ole Agesen, Jim Mattson, Radu Rugina, and Jeffrey Sheldon. Software techniques
for avoiding hardware virtualization exits. In Proceedings of the 2012 USENIX con-
ference on Annual Technical Conference, USENIX ATC’12, pages 35–35, Berkeley,
CA, USA, 2012. USENIX Association.

8. Ali Reza Arasteh and Mourad Debbabi. Forensic memory analysis: From stack
and code to execution history. Digit. Investig., 4:114–125, September 2007.

9. Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har’El,
Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. The
turtles project: design and implementation of nested virtualization. In Proceedings
of the 9th USENIX conference on Operating systems design and implementation,
OSDI’10, pages 1–6, Berkeley, CA, USA, 2010. USENIX Association.

10. Chris Betz. Memparser. http://www.dfrws.org/2005/challenge/memparser.

shtml.

11. Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King. Digging for data
structures. In Proceedings of the 8th USENIX conference on Operating systems
design and implementation, OSDI’08, pages 255–266, Berkeley, CA, USA, 2008.
USENIX Association.

12. Anthony Desnos, Eric Filiol, and Ivan Lefou. Detecting (and creating !) a hvm
rootkit (aka bluepill-like). Journal in Computer Virology, 7(1):23–49, 2011.

13. Brendan Dolan-Gavitt. The vad tree: A process-eye view of physical memory.
Digit. Investig., 4:62–64, September 2007.

14. Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Giffin.
Robust signatures for kernel data structures. In Proceedings of the 16th ACM
conference on Computer and communications security, CCS ’09, pages 566–577,
New York, NY, USA, 2009. ACM.

15. Aristide Fattori, Roberto Paleari, Lorenzo Martignoni, and Mattia Monga. Dy-
namic and transparent analysis of commodity production systems. In Proceedings
of the 25th International Conference on Automated Software Engineering (ASE),
pages 417–426, September 2010.

16. R. P. Goldberg. Architecture of virtual machines. In Proceedings of the workshop
on virtual computer systems, pages 74–112, New York, NY, USA, 1973. ACM.

17. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. Lest we remember: cold-boot attacks on encryption keys. Commun. ACM,
52(5):91–98, May 2009.

18. Intel. Intel R© 64 and IA-32 Architectures Software Developer’s Manual - Combined
Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C, Aug 2012.

19. Samuel T. King, Peter M. Chen, Yi min Wang, Chad Verbowski, Helen J. Wang,
and Jacob R. Lorch. Subvirt: Implementing malware with virtual machines. In In
IEEE Symposium on Security and Privacy, pages 314–327, 2006.

20. Bin Liang, Wei You, Wenchang Shi, and Zhaohui Liang. Detecting stealthy mal-
ware with inter-structure and imported signatures. In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security, ASIACCS
’11, pages 217–227, New York, NY, USA, 2011. ACM.

21. Zhiqiang Lin, Junghwan Rhee, Xiangyu Zhang, Dongyan Xu, and Xuxian Jiang.
Siggraph: Brute force scanning of kernel data structure instances using graph-based
signatures. In NDSS, 2011.

https://www.volatilesystems.com/default/volatility
http://www.dfrws.org/2005/challenge/memparser.shtml
http://www.dfrws.org/2005/challenge/memparser.shtml


22. Lorenzo Martignoni, Aristide Fattori, Roberto Paleari, and Lorenzo Cavallaro.
Live and Trustworthy Forensic Analysis of Commodity Production Systems. In
Proceedings of the 13th International Symposium on Recent Advances in Intrusion
Detection (RAID), September 2010.

23. Patrick Stewin and Iurii Bystrov. Understanding DMA Malware. In Proceedings
of the 9th Conference on Detection of Intrusions and Malware & Vulnerability
Assessment, 2012.

24. Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable
third generation architectures. Commun. ACM, 17(7):412–421, July 1974.

25. Alessandro Reina, Aristide Fattori, Fabio Pagani, Lorenzo Cavallaro, and Danilo
Bruschi. When Hardware Meets Software: a Bulletproof Solution to Forensic Mem-
ory Acquisition. In Proceedings of the 28th Annual Computer Security Applications
Conference (ACSAC), Orlando, Florida, USA, December 2012.

26. Joanna Rutkowska. Subverting Vista Kernel for Fun and Profit. Black Hat USA,
aug 2006.

27. Joanna Rutkowska. Beyond The CPU: Defeating Hardware Based RAM acquisi-
tion. Black Hat USA, 2007.

28. Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. Secvisor: a tiny hyper-
visor to provide lifetime kernel code integrity for commodity oses. In Proceedings
of twenty-first ACM SIGOPS symposium on Operating systems principles, SOSP
’07, pages 335–350, New York, NY, USA, 2007. ACM.

29. Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa Omote, Shoichi
Hasegawa, Takashi Horie, Manabu Hirano, Kenichi Kourai, Yoshihiro Oyama, Eiji
Kawai, Kenji Kono, Shigeru Chiba, Yasushi Shinjo, and Kazuhiko Kato. Bitvisor:
a thin hypervisor for enforcing i/o device security. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments,
VEE ’09, pages 121–130, New York, NY, USA, 2009. ACM.

30. Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and
Processes (The Morgan Kaufmann Series in Computer Architecture and Design).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

31. Xiantao Zhang and Eddie Dong. Nested Virtualization Update from Intel. Xen
Summit, 2012.

32. Lin Zhiqiang, Rhee Junghwan, Wu Chao, Zhang Xiangyu, and Xu. Dongyan. Dis-
covering semantic data of interest from un-mappable memory with confidence.
In Proceedings of the 19th Network and Distributed System Security Symposium,
NDSS’12, 2012.

33. Dino A. Dai Zovi. Hardware Virtualization Rootkits. Black Hat USA, aug 2006.


