
Quiver: a Middleware for Distributed Gaming

Giuseppe Reina
Technicolor - Eurecom

France
giuseppe.reina@technicolor.com

Ernst Biersack
Eurecom

Sophia Antipolis, France
ernst.biersack@eurecom.fr

Christophe Diot
Technicolor

Paris, France
christophe.diot@technicolor.com

ABSTRACT
Massively multiplayer online games have become popular in the
recent years. Scaling with the number of users is challenging due
to the low latency requirements of these games. Peer-to-peer tech-
niques naturally address the scalability issues at the expense of ad-
ditional complexity to maintain consistency among players.

We design and implement Quiver, a middleware that allows an
existing game to be played in peer-to-peer mode with minimal changes
to the engine. Quiver focuses on achieving scalability by distribut-
ing the game state. It achieves consistency by keeping the state
synchronized among all the players. We have built a working pro-
totype of Quake II using Quiver. We analyze the changes necessary
to Quake II and discuss how generic a software like Quiver can be.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware; C.2.4 [Computer-Communication Networks]: Distributed
Systems

Keywords
Distributed Gaming, Peer-to-peer Systems, First-Person Shooter
Games, Middleware Design, Distributed Gaming Challenges

1. INTRODUCTION
Over the last decade, the industry of multiplayer online games

has seen a rapid growth in popularity and revenue. With the rise of
Massively Multiplayer Online Games (MMOGs) large scale gam-
ing infrastructures allow thousands of players to share a consistent
experience over the Internet.

Most networked games rely on centralized architectures. The
virtual world is managed by a game server that stores the game
state and performs the game simulation, while coordinating remote
players. The game server can be either located on dedicated hard-
ware (i.e. a single dedicated machine or a cluster of servers) or on a
player machine. The players remotely interact with the game using
a client component that provides a graphical front-end to the re-
mote simulation. The success of the centralized architecture comes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’12, June 7–8, 2012, Toronto, Ontario, Canada.
Copyright 2012 ACM 978-1-4503-1430-5/12/06 ...$10.00.

from many advantages, namely ease of implementation, manage-
able game consistency (all players have the same view), cheating
prevention, access control and billing.

Centralized architectures have drawbacks: (i) the cost of hard-
ware is high, as game servers must be deployed on high-end servers
that have to be operated and maintained; (ii) scalability is limited
to the number of players that a server can support; (iii) finally, the
presence of single points of failure makes the architecture not ro-
bust. Fast paced games such as First Person Shooter (FPS) games
are more affected by the previous limitations. In FPS, the player
controls the movements and actions of its avatar by looking at the
world in a first-person perspective. The goal of such games is to
compete in gun-based combats (e.g. kill the opposite team, steal
the flag, etc.) as effectively as possible. The strict real time con-
straints limit the scale and the size of a FPS game session; only few
players with limited network delays can interact.

Peer-to-peer (p2p) mechanisms naturally address these drawbacks
by using players resources and offloading the servers from perform-
ing game management tasks. However, the absence of a central
coordination entity leads to a number of new design challenges, in-
cluding an efficient coordination of the distributed simulation, data
storage and discovery, handling player churn, load balancing, con-
sistency and latency related issues. These problems are extremely
difficult to address, typically require low-level programming skills
and a deep knowledge of the game architecture.

Our objective is to study the feasibility of a software that allows
any existing single player game or centralized multiplayer game to
be played in p2p mode (i.e. to be distributed among the players)
with minimal changes to the game engine.

In this paper, we first study the basic modus operandi of a generic
game engine (Section 2), we isolate the main functional compo-
nents and we analyze how to distribute the game on multiple ma-
chines while maintaining an unaltered game experience (Section 3).
We realize that design such a software to be as generic as possible
is a challenge and we focus our analysis on understanding to which
extent it is possible, and what the limitations are with current game
engines.

We introduce Quiver (Section 4), a middleware for distributed
multiplayer online games that can be applied to both, existing games
and newly developed games. Our middleware implements p2p tech-
niques to achieve system scalability and game state consistency.
Quiver is designed to be “plugged” to any commercial game with
minimal changes. It acts as a distributed entity storage that allows
the game programmer to develop a p2p multiplayer game without
the need to comprehend the low-level message exchange.

We show the feasibility of our approach by integrating Quiver
with Quake II (Section 5). We show that the integration of Quiver

in the Quake II game engine requires minimal code modifications
and we discuss about the the limit of this approach.

2. BACKGROUND

2.1 Game features
Games have specific requirements that depend on the gameplay.

We identify some fundamental properties that are common to most
networked games, namely consistency, responsiveness, data persis-
tency, scalability, and security.

The first and most important requirement of networked games is
consistency, it is achieved when the following two properties are
satisfied (i) the virtual world state is equally perceived by all the
players at any time and (ii) the outcome of a user action to the
virtual world reflects the intentions of the user (e.g. the action of
shooting a player should damage the targeted avatar). Due to a
number of issues, such as delayed traffic on the Internet and unpre-
dictability of the user demand, this task is considered to be one of
the most challenging in networked games.

Reactiveness is a strict requirement for fast-paced games. In such
games, the user must perceive quickly enough the changes in the
virtual world state, e.g. neighbor avatar movements or missile ex-
plosions. This requires the game architecture to communicate the
result of a user action, as well as it’s consequences within a time pe-
riod that preserve natural interaction (i.e. ≤ 100ms for FPS games
[?]).

Scalability indicates the ability of the game to handle high num-
ber of participants without sacrificing the user-experience. Pre-
cisely, a networked game architecture is required to sustain a the-
oretically unbounded growth in the user demand with a sub-linear
impact on the user experience. In FPS games, the real-time game-
play imposes strict reactiveness requirements that affect both con-
sistency, due to increased latency, and scalability, due to the high
workload of the simulation. In most centralized games, only few
players can interact in order to preserve consistency and reactive-
ness.

Persistency is the capability of the networked game architecture
to guarantee that information, e.g. objects or scores, are not lost
during the evolution of the virtual world.

Finally, security is one of the most sensitive requirement of mul-
tiplayer games. MMOGs have created complex virtual economies
as well as fierce competitions among users. Therefore, a networked
game architecture needs to guarantee security in order to ensure
fairness among its users (i.e. cheating prevention) as well as pri-
vacy of user information.

2.2 Game architecture
The software component behind a game is called the game en-

gine. It is responsible of capturing and processing player inten-
tions coming from input devices (i.e. mouse, keyboard, controller,
etc.). It stores and simulates the virtual world and finally renders
the most updated state to the output devices (i.e. screen, speakers,
etc.). A game engine includes several subsystems such as a physics
engine, graphics and audio rendering, artificial intelligence, net-
working, and others depending on the genre and complexity of the
game.

Regardless of whether the game is played locally or over the In-
ternet, few recurring abstractions are required to describe it, namely
the entity, the command and the game loop.

The dynamic part of the game state, can be described as a collec-
tion of virtual objects that make up the virtual world. Each virtual
object is stored in a data-structure called entity. Every part of the

Algorithm 1 Game loop
function tick():
cmds← fetchCommands(inputs_state)
gameStatei←executeCommands(cmds, gameStatei−1)
foreach entity in gameStatei

gameStatei← simulatePhysics(entity)
gameStatei← checkCollision(entity,gameStatei)
gameStatei← entity.think(gameStatei)

end
graphicRendering(gameStatei)

game that can change its state is described by an entity, this includes
avatars, monster, bullets, explosions, moving doors etc.

The command is a representation of the player intentions ob-
tained by processing the user inputs. The command encapsulates
an action that can be performed by the player on the subset of enti-
ties that he can control. The execution of a command by the game
engine causes a change on the entities state.

Finally, at the very heart of the game engine there is the game
loop, a single threaded execution process that periodically fetches
and executes user commands, invokes all the subsystems to perform
the simulation, and finally gives back the feedback to the player by
rendering the player view (see alg. 1 above). At each step of the
loop (often called tick), the simulation is performed by iteratively
simulating each entity of the game state in terms of physics, colli-
sions, and some internal behavior, often named think function that
usually wraps time-triggered behaviors or calls to the artificial in-
telligence subsystem.

2.3 Multiplayer gaming
Multiplayer games give a single machine the authority to modify

the game state. This architecture is called client/server or central-
ized.

The authoritative machine (i.e. the server) has the duty to com-
municate with the remote players (i.e. the game clients), to execute
the player commands and to run the simulation that alters the virtual
world. The client “packs” user inputs into commands to marshal to
the game server and receives the view to render to the player. The
game state can only be altered by the server, whereas the clients
provide the players with the game interface to remotely interact
with the state. The client also includes techniques to predict the
future state of the game in order to compensate for the latency in
the communication with the remote server [?, ?, ?].

While clients are deployed on player machines, the server com-
ponent can be either deployed on a dedicated machine or hosted
by one of the player machines. Scalability is often affected by the
reactiveness requirement of the game. In FPS, for example, due to
the high pace of simulation (20-60 ticks per seconds) and the high
amount of commands sent by the users, a single server can often
support as little as 20 players in a match.

3. PEER-TO-PEER GAMING

3.1 Requirements
The implementation of a scalable p2p game is still a research

topic, whose challenges have been identified by the community [?,
?]. While the scalability issue can be intuitively solved by a p2p
approach, it is challenging to perform the game simulation (see 2.2)
in a distributed way while preserving the main features of the game
consistency, reactiveness, scalability, persistency and security.

In addition, we identify churn and load balancing as two impor-
tant features for a distributed gaming architecture.

Churn is a major problem in p2p games. The dynamics of player
participation can change during the game: a player can join the on-
going game or can leave it with or without notifying the network,
e.g. for a connection drop or a general failure. In a P2P game
scenario, churn affects data availability, communication paths, and
game state consistency, as the amount of available resources for
computing and distributing the game state changes. Load balanc-
ing can be described as a set of methodologies for the distribution
of computational, storage and bandwidth workload among the ac-
tual available resources, with the aim of maximizing the overall
quality of experience. Thus, load balancing can be exploited for
both handling churn and maximizing resource consumption.

In this work, our objective is to provide a system that scales with
the number of users, while providing a level of consistency that
ensures a satisfactory game experience.

Game distribution.
In a p2p environment, the tasks of game simulation and state

storage, which for centralized architectures are performed by a sin-
gle machine, need to be performed in a distributed manner. The
distribution of a game can be divided in three subproblems: (i) state
partitioning, (ii) state discovery, and (iii) distributed simulation.

State partitioning.
The state of the world, represented as a set of entities, must be

stored and managed by multiple nodes, making sure that each node
maintains in its local store only the relevant fraction of the virtual
world. Scalability is affected by how the virtual world is distributed
as smaller fractions of the virtual world require less resources in the
player machines.

State discovery.
State discovery is a direct consequence of the state partitioning

algorithm. It takes care to dynamically fetch the part of the game
state that becomes relevant to the player. When new parts of the
map are explored, the peer node must locate the remote peers re-
sponsible for the missing portions of the newly discovered state and
fetch it from them.

Distributed simulation.
In the centralized architecture, the presence of a single author-

ity (the server) guarantees to all the players a consistent view of
the game. The p2p architecture inherently introduces a distributed
parallel execution of the simulation that should allow the players
to concurrently modify the game state. State replication and syn-
chronization is needed to achieve consistency in the distributed en-
vironment.

A modification of one of the replicas should be propagated in a
consistent manner to all the other instances in the remote nodes.
The system should also provide collaborative algorithms for con-
flict resolution to address the problem of concurrent modifications
of the same object.

4. QUIVER

4.1 Design
We present Quiver, a middleware for distributed multiplayer on-

line games. We design and implement Quiver to be portable across
different games (i.e. not based on any specific game engine1) and to
1Although FPS are the focus of this study we try to keep a broad

Game Engine

Game loop

Artificial
Intelligence

Physics
engine

Collision
detector

...

Graphics Rendering
Input

handler
Audio Rendering

Entity Storage

Quiver

S
ch

e
d
u
le

r

Memento Storage

Responsibility
Manager

O
v
e
rl

a
y

in
te

rf
a
ce

N
e
tw

o
rk

in
g

Interest
Manager

Synchronization
Manager

Figure 1: Quiver architecture and its interaction with the game
engine

be as little intrusive as possible for the game engine (i.e. few mod-
ifications are required to integrate Quiver into an existing game).
Quiver can be applied to both existing games and newly developed
games by working with the abstractions of commands, entity and
game loop discussed in section 2.2.

Quiver provides the game engine with object replication through
a distributed storage facility that enforces game synchronization.
Two high level predicates, the responsibility and the interest, are
used as a means to respectively store and discover the game state.
The distributed storage allows the game programmer to manipu-
late entities without the need to comprehend the low-level message
exchange of the underlying distributed algorithms.

Quiver extends the basic functionalities of the game engine by
scheduling its internal modules at each tick of the game loop and
providing them with high level networking channels and an overlay
network. We defined three abstract modules to address the chal-
lenges described in the previous section, namely the Synchroniza-
tion Manager for distributed simulation, the Responsibility Man-
ager for state partitioning, and the Interest Manager for state dis-
covery (fig. 1). Each of these modules, together with the overlay
network, can have multiple implementations depending on the re-
quirements of the gameplay.

Object replication for distributed simulation.
We choose to implement the distributed simulation at entity level

by providing a shared data-storage to the game engine. This way,
the game state is distributed among the peers by replicating single
entities ensuring that any entity can be instantiated in at least one
peer. Quiver enforces consistency by handling the communication
between the different replicas over the network.

Quiver treats the simulation phase at each tick of the game loop
as a black box. Upon its invocation, Quiver enables the synchro-
nization module to detect modifications applied to the game en-
tity during the simulation phase by monitoring the evolution of the
fields that describe the game entity.

The game synchronization module, defines the mechanisms that
propagate and remotely apply local modifications to the game en-
tity. Moreover, it specifies the conflict resolution policy upon con-
current write access to the same entity by two different peers in the
network.

We believe that the shared data-storage approach best satisfies
the portability and non intrusiveness requirements of Quiver. Pre-
cisely, as opposed to methodologies based on user commands or
events exchange, such as the Lockstep algorithm [?], Trailing State
Synchronization [?] and others [?, ?, ?, ?], the shared data-storage

view on other game genres, spanning from role-playing games to
real-time strategy games

Peer i
Responsibility i Responsibility j

Bomb
Avatar j

Quiver storage i

Bomb

Avatar j

Quiver storage j

Missile

Avatar j

Peer j
Responsibility i Responsibility j

Avatar j

Missile

state synchronization

InterestBomb

InterestMissile

InterestAvatar j

Figure 2: The three main modules in action: object replication
and synchronization using spatial interest and spatial responsi-
bility.

enforces a better decoupling from the logic of the game engine
components that perform the game simulation. Moreover, the event-
based approach would require the simulation to be performed only
once all the events from the other peers have been received [?], thus
violating the reactiveness requirement.

Responsibility Management and state partitioning.
We define the notion of responsibility to partition the game state

and to assign replicas every peer.
A responsibility is a predicate assigned to each peer in the net-

work, that applied to an entity returns true, if the object should be
replicated on the peer, false, otherwise. The responsibility of a peer
defines a subset of the game state that should be locally replicated.
We use the responsibility as a means to cluster entities onto peers
and ensure that for each entity there exists at least one peer respon-
sible for storing the entity. Peers trade and negotiate responsibilities
in the overlay network to achieve state persistency in an application
specific manner.

State partitioning can be performed spatially by clustering en-
tities according to their location inside the virtual world. This
specific case of spatial responsibility, called area of responsibil-
ity, makes sure that the entities located inside the region are locally
replicated (fig. 2).

Interest Management and state discovery.
While Responsibility Management defines how entities are dis-

seminated among the peers, the state discovery defines how the
peers communicate in order to fetch replicas of an entity located
outside their responsibility. There are two main cases in which a
peer should store a replica of an entity for which it is not responsi-
ble:

• The entity is “physiologically sensed” by the avatar of the
player (i.e. eyesight, hearing, etc.)

• The entity is accessed by the simulation of a local replica
during the execution of the local game loop.

We define the interest as a predicate of an entity that applied to
another entity returns true if the latter should be locally available in
the data-store, false otherwise. There are two kinds of interests, the
interest of an entity and the interest of the player.

The interest of an entity is used to fetch all the the entities that
can be modified during the future simulation of the local replica.
Every moving entity has a default spatial interest of a sphere cen-
tered around the object so that all the other objects close to it can be

Entity

Health

Ammo

Position

Velocity

Memento

Health

Ammo

Position

Velocity

G
a
m
e

E
n
g
in
e Interest

Changes Q
u
iv
e
r

M
o
d
u
le
s

Figure 3: Entity/Memento wrapping and its interaction with
the two layers

processed by the physics and collision engine. In addition, when a
moving entity implements a think function, the interest is used to
pre-fetch all the other entities that the think function can modify.

The interest of the player is a special kind of interest, and recalls
the area of interest used in centralized games [?]. Every player
perceives the virtual world by looking at the view rendered by its
client. Such a view depends on the specific game genre, FPS, for
example, renders the view as the player is seeing the world through
the eyes of his avatar, while real-time strategy games renders a bird-
eye view that can be controlled by the player. The peer, therefore,
must specify an interest in order to fetch all the objects that are re-
quired to render to the view of the player, regardless of the local
responsibility.

Figure 2 summarizes the described modules through a simple sce-
nario.

4.2 Implementation
Quiver has been implemented in Java and it has been designed

to be modular and extensible. The main scheduler (fig. 1) man-
ages the execution of three main modules that perform Synchro-
nization Management to achieve per-entity eventual consistency,
Interest Management for state discovery and Responsibility Man-
agement for state partitioning. Quiver provides the developer with
a library of different implementations of such modules that can be
used by the game engine or extended to meet specific game require-
ments. The low-level description and the implementation details of
these modules is out of the scope of this paper.

Quiver defines its own data-structure for the entity, called Me-
mento. The Memento exposes functionalities to both the game en-
gine and the middleware providing a shared data-structure for the
two communicating layers (fig. 3). The Memento keeps track of the
modifications applied to the entity from the game engine allowing
the underlying layer to detect when the entity state must be nego-
tiated with the remote peers. In addition, the memento exposes
the Interest of the entity at each step of the game simulation. Fi-
nally, the memento data-structure supports a transparent per-field
serialization used by the Synchronization module to marshal entity
updates across the network.

The Networking module provides the other Quiver modules with
high-level networked channels to communicate using message ex-
changes that can be either reliable or best effort.

Game Integration.
Integration of Quiver with a game engine is straightforward and

consists of three steps.

• Invoke the Quiver scheduler at the end of each tick of the
game loop

• Adopt the Quiver storage to store the game objects (i.e. in-
sertion, deletion and simulation must be notified to the mid-
dleware).

• Link or wrap each entity using a Memento.

In order to provide a single data-structure shared by the game
engine and middleware, some functionalities must be defined in the
Memento data-structure. In particular, a Memento must specify, at
each tick of the simulation, the Interest of the game entity used for
state discovery by the Interest Management module. The Interest
is used in the overlay network to subscribe for the portion of the
virtual world that is relevant to the entity associated. For example,
an avatar Memento is “interested” in the portion of the world it can
perceive, while a bomb is “interested” in the portion of the world
that can damage upon its explosion.

Quiver requires the entity to expose a bitmask that indicates which
fields or parts of the entity have been changed during the last tick.
The bitmask is used to reduce conflicts caused by simultaneous
modification of the game entity by acting at field-level rather than
object-level. Moreover, the bitmask is used to produce delta-encoded
updates to reduce load of the synchronization messages on the net-
work.

5. ANALYSIS

5.1 Quake case study
We evaluated Quiver with Quake II, the popular FPS developed

by idSoft (fig. 4). Quake II is the first FPS game that offered excel-
lent game-play in online matches. Moreover, Quake II has been the
object of several mods by the open source community that spawned
some of the most played free FPS such as WarSow and CodeRED:
Alien Arena.

We chose a Java version of Quake II called Jake22 created by
faithfully translating the original C code of Quake II into Java code3.
We chose the Java implementation since we need a rich environ-
ment of tools for testing and debugging, moreover Java makes the
game easily portable to different hardware architectures and op-
erating systems. Versions of Jake 2 have been ported to multiple
architectures spanning from embedded systems such as Android to
browser integrated HTML5 WebGL

We integrate Quiver with the server component of Jake2 main-
taining the decoupling with the client component. This integration
can be used for both, a pure p2p mode by simultaneously activating
both the client, the server and the middleware component in each
player machine, and multiple server architecture, by activating only
the server and the middleware on dedicated machines, while play-
ers connect to them by using ordinary clients.

We use Aspect Oriented Programming (AOP) and AspectJ [?],
to integrate the middleware into Jake2. AOP enabled us to inject
calls of the middleware without modifying the original game code.
Using AOP, we were able to decorate the entity state into a Quiver’s
Memento intercepting single reads and writes to the fields of the
entity and injecting control code used to monitor the evolution of
the entity state.

The resulting number of lines of code of the bridge between
Quiver and Quake is 8k, versus the 150k for Quiver. Due to the ver-
bosity of the Quake entity and the triviality of the wrapping opera-
tions, the code related to the entity-Memento integration has been
automatically generated using a compiler to Java code.

Game distribution modules.
In order to evaluate the middleware we implement some strate-

gies for the game distribution modules.
We adopt the replication strategy described by Bharambe et al.

2Jake2. http://www.bytonic.de/html/jake2.html
3Unofficial Jake2 Resource.
https://wiki.in-chemnitz.de/bin/view/RST/Jake2

Figure 4: Screenshot of Quake II in p2p using Quiver

[?] for game synchronization. Entities are replicated among the
peers either as primary copy or as a secondary copy. For each entity
in the virtual world, there exists a unique primary copy and the
peer that owns the primary copy is the authoritative peer for the
entity. The peers that can interact with the entity locally replicate
the remote entity by holding a secondary copy. The primary copy
owner acts as a central coordinator for all the secondary copies and
taking care of forwarding entity updates and managing conflicts
upon simultaneous modification of the same entity.

The game state is partitioned into disjoint spatial responsibili-
ties, or area of responsibility (AoR), such that each primary copy is
assigned to one and one peer only. We use the BSP tree nodes of
the Quake II map both to partition the game map into AoR’s and
to define Interests of the avatars and monsters. Negotiation of re-
sponsibilities and interests are done over an DHT network based on
Kademlia that has been adapted to better work with the BSP tree
nodes of Quake.

We establish that in order to reduce message exchanges between
the peers, and reduce conflicts caused by simultaneous modifica-
tions, the primary copy is the only copy that can be simulated4.

We handle parallel write attempts of an entity at the peer who
owns the primary copy. The primary copy decides which of the
concurrent modifications should win the race condition. The de-
cision on how to resolve the conflict comes from the entity itself
and its properties. By default, changes are applied in a first-come,
first-served basis in order to boost reactivity. Therefore, conflicts
between a primary and a secondary are always won by the owner
of the primary copy due to the direct modification by the game en-
gine.

There are, however, entities that need a different resolution mech-
anism. For example, the effect of rollback on an avatar position
negatively affects the game experience of the player controlling it.
Rollback of an avatar to an old position causes a change of the
whole view of the player and this operation must be avoided as
much as possible. In this context, we prefer to give priority to the
update coming from the machine that handles the player, regardless
of whether it stores a primary or a secondary copy.

Play experience.
The resulting prototype provides a good play experience. Opera-

tion of handing-over of an entity due to its migration from a respon-
sibility to an other is lightweight enough to not be noticed by the
players. The effects of rollback due to modification conflicts of an

4In FPS games, the high pace of simulation causes frequent
changes in the state of an entity.

http://www.bytonic.de/html/jake2.html
https://wiki.in-chemnitz.de/bin/view/RST/Jake2

entity are significantly reduced by the adoption of the Memento bit-
mask that allows multiple peers to simultaneously modify different
disjoint subsets of the entity fields. However, due to its early state
of development the prototype suffers from the classic inconsisten-
cies introduced by latency (jerky movements of the other players
outside the local responsibility).

5.2 Limits and future development
During our study we found two main limitations with our ap-

proach. First, the animations of entities that are synchronized by
remote peers appear jerky. This is a common problem in networked
games and is caused by the latency in the p2p communication. Our
choice of decoupling the game engine from the middleware, makes
the adoption of well known centralized techniques for latency com-
pensation [?] challenging. We are currently working on a new pre-
diction system able to work on our distributed environment without
sacrificing the modularity of our current design.

The second limitation regards inconsistencies inherently caused
by the object replication methodology. In particular, when execut-
ing the game loop it may happen that a think function (e.g. a bomb
exploding near a group of avatars) or a player command (e.g. a spell
is casted upon a team), can modify multiple entities at the same
time. Since each entity follows an isolated process of update prop-
agation, it may happen that the changes made locally on a subset
of objects are reverted back to an old state due to a remote conflict.
The result is that entities are not modified by the command or simu-
lation (i.e. an avatars survives the bomb explosion, or a player is not
affected by the spell) thus violating the consistency requirement.

Finally, we plan to support churn in the next version of Quiver
to allow each player in the game to freely join and leave the game
at any moment. The resources allocated by the leaving peer will
be redistributed to the remaining peers in a timely manner without
affecting the gameplay of other players.

6. CONCLUSIONS AND OUTLOOK
A scalable solution for p2p gaming requires to properly address

the following questions: (i) How to distribute the game state (ii)
How to discover the game state and (iii) How to perform the game
simulation on the game state in a distributed way.

We designed a middleware, called Quiver, that addresses the
three previous questions. Quiver encapsulates each aspect in one
of its modules. Precisely, the game state is distributed by defining a
Responsibility for each peer. The game state is discovered by sub-
scribing to the Interest exposed by each entity. Finally, entities are
replicated on the machines according to their Responsibility and
the Interest. We proved the feasibility of our approach by creating
a working prototype with a popular FPS game (i.e. Quake II).

We showed that our approach allowed us to abstract from the
internal design of the game and can be adopted with minor modifi-
cation to an existing engine: few entry points are required to Quiver
to interact with Quake II. Using Aspect Oriented Programming as
a methodology, we were able to integrate Quiver with Quake II by
simply injecting code into the game engine.

As future work, we plan to evaluate the performance of Quake
II comparing the centralized version against the Quiver-integrated
version. The results obtained will allow us to define the architec-
tural direction for the next generation of Quiver. Finally, we will
integrate Quiver in more recent and diverse games in order to con-
duct performance comparisons between different game genres.

7. REFERENCES
[1] Aspectj framework, cross-cutting objects for better

modularity. http://eclipse.org/aspectj/.
[2] Y. Bernier. Latency compensating methods in client/server

in-game protocol design and optimization.
http://bit.ly/wGNhMO, 2001.

[3] A. Bharambe, J. Pang, and S. Seshan. Colyseus: a distributed
architecture for online multiplayer games. In Proceedings of
the 3rd conference on Networked Systems Design &
Implementation, NSDI’06, Berkeley, CA, USA, May 2006.

[4] M. Claypool and K. Claypool. Latency and player actions in
online games. Commun. ACM, 49(11), November 2006.

[5] E. Cronin, A. Kurc, B. Filstrup, and S. Jamin. An efficient
synchronization mechanism for mirrored game architectures.
pages 7–30, Hingham, MA, USA, May 2004. Kluwer
Academic Publishers.

[6] L. Fan, P. Trinder, and H. Taylor. Design issues for
peer-to-peer massively multiplayer online games. Int. J. Adv.
Media Commun., pages 108–125, March 2010.

[7] G. Fiedler. What every programmer needs to know about
game networking. http://bit.ly/7jSZl5, January
2011.

[8] L. Gautier and C. Diot. Design and evaluation of mimaze, a
multi-player game on the internet. In Proceedings of the
IEEE International Conference on Multimedia Computing
and Systems, ICMCS ’98, pages 233–, Washington, DC,
USA, 1998. IEEE Computer Society.

[9] S. Hu, S. Chang, and J. Jiang. Voronoi State Management for
Peer-to-Peer Massively Multiplayer Online Games. In
Consumer Communications and Networking Conference,
CCNC ’08, pages 1134–1138, 2008.

[10] C. Neumann, N. Prigent, M. Varvello, and K. Suh.
Challenges in peer-to-peer gaming. SIGCOMM Comput.
Commun. Rev., 37(1):79–82, October 2007.

[11] A. Steed and M. Oliveira. Networked Graphics: Building
Networked Games and Virtual Environments. Morgan
Kaufmann publishers, 2009.

[12] J. Steinman. Breathing time warp. In Proceedings of the
seventh workshop on Parallel and distributed simulation,
PADS ’93, pages 109–118, New York, NY, USA, 1993.
ACM.

[13] J. Steinman and J. Wong. The speedes persistence framework
and the standard simulation architecture. In Proceedings of
the seventeenth workshop on Parallel and distributed
simulation, PADS ’03, pages 11–, Washington, DC, USA,
2003. IEEE Computer Society.

http://eclipse.org/aspectj/
http://bit.ly/wGNhMO
http://bit.ly/7jSZl5

	Introduction
	Background
	Game features
	Game architecture
	Multiplayer gaming

	Peer-to-peer gaming
	Requirements

	Quiver
	Design
	Implementation

	Analysis
	Quake case study
	Limits and future development

	Conclusions and outlook

