
Reference monitors for security and
interoperability in OAuth 2.0?

Ronan-Alexandre Cherrueau1, Rémi Douence1, Jean-Claude Royer1,
Mario Südholt1, Anderson Santana de Oliveira2, Yves Roudier3, and

Matteo Dell’Amico3

1 École des Mines de Nantes, Nantes, France
2 SAP Applied Research, Mougins, France
3 EURECOM, Sophia Antipolis, France

Abstract. OAuth 2.0 is a recent IETF standard devoted to providing
authorization to clients requiring access to specific resources over HTTP.
It was recently adopted by major internet players like Google, Facebook,
and Microsoft. It has been pointed out that this framework is potentially
subject to security issues, as well as difficulties concerning the interop-
erability between protocol participants and application evolution. As we
show in this paper, there are indeed multiple reasons that make this pro-
tocol hard to implement and impede interoperability in the presence of
different kinds of client. Our main contribution consists in a framework
that harnesses a type-based policy language and aspect-based support
for protocol adaptation through flexible reference monitors in order to
handle security, interoperability and evolution issues of OAuth 2.0. We
apply our framework in the context of three scenarios that make explicit
variations in the protocol and show how to handle those issues.

1 Introduction

Web services and applications are implemented more and more frequently
using open standards for security goals such as WS-policy for SOAP-
based services, and, more commonly as part of RESTful APIs, OpenID
for authentication as well as OAuth for authorization. OAuth has gained
a lot of interest, its 2.0 version recently becoming an IETF standard.
All major internet players (Google, Facebook, Microsoft, among others)
have already released API’s to allow resource access delegation in web
applications using this standard.

Although the specifications of the standard are sufficiently clear, devel-
opers often have difficulties to correctly implement all of its features. There
? This work has been partially supported by the CESSA ANR project (ANR 09-
SEGI-002-01, http://cessa.gforge.inria.fr) and the A4Cloud project (FP7 317550,
http://www.a4cloud.eu/).

are frequently subject to general problems concerning security and inter-
operability. For example, the design of OAuth 2.0 has put forward simplic-
ity instead of security when choosing to support bearer tokens, which do
not require to prove the possession of a cryptographic key. Token confiden-
tiality relies then on storage and transport security (SSL/TLS); therefore,
all resources mediated via OAuth 2.0 would be exposed if the transport
layer security breaks (in the following, we will use simply “OAuth” instead
of OAuth 2.0).

Another problem developers face when using OAuth is to actually pro-
duce interoperable implementations. The OAuth standard is not simply
an authentication and delegation protocol, but an “authorization frame-
work,” whose design was heavily influenced by enterprise use cases. In
order to support those use cases, the standard allows for extensibility and
defines several components as optional. The standard also specifies several
important features only partially, such as client registration, authorization
server capabilities, and endpoint discovery, all features that are fundamen-
tal to automate service compositions in real implementations.

In this paper we provide a framework that integrates three main fea-
tures in order to enable programmers to handle such security and interop-
erability issues, as well as related evolution scenarios: i) an abstract and
typed language for the high-level definition of security policies over service
interactions, ii) the HiPoLDS [10] model for flexible reference monitors,
and iii) aspect-oriented programming techniques for the manipulation of
service implementations. More concretely, we provide four correspond-
ing contributions. First, we show how to use a type system with explicit
channel types and service subtypes in order to provide correctness guar-
antees over service compositions and to improve interoperability of the
OAuth framework. Second, we harness the high level abstract policy lan-
guage HiPoLDS for the definition of flexible reference monitors that help
enforcing policies on the message level. Third, we leverage a set of aspect-
oriented secure software development techniques to manage the evolution
of service security capabilities and decouple them from the underlying ser-
vice implementation; overall, we thus increase the dependability of OAuth
deployments. Finally, we apply these techniques in the context of three re-
alistic scenarios that exhibit security, interoperability and evolution issues
of the OAuth standard.

This paper is structured as follows. Section 2 introduces the OAuth
framework and some of its issues. Section 3 is dedicated to the description
of the typed service language and the techniques for service manipulation

we use. An application to OAuth in the context of three scenarios is
described in Sec. 4. We finish with related work in Sec. 5 and a conclusion.

2 The OAuth 2.0 Authorization Framework

OAuth is an IETF standard devoted to providing authorization to clients
requiring access to specific resources over HTTP. The standard was issued
as RFC 6749 [22] in October 2012 and is not compatible with the first ver-
sion. Several web application providers are currently using this framework,
among them: Google, GitHub, Windows Live, and Facebook. OAuth de-
fines several protocols for resource owners to grant third-party access to
their resources without exposing their passwords to resource users.

2.1 The Authorization Code Flow Case Study

We will concentrate our study on a central part of the protocol, the Au-
thorization Code Flow (or ACF), which is described in Section 4.1 of the
standard. The general architecture is depicted in Figure 1. This protocol
assumes several parties with different roles. The Resource Owner (RO) is
an entity (either a human being, the end-user, or some software he uses)
that grants access to some protected resources. A client (C) is a third-
party application requesting the use of resources owned by the resource
owner. The Authorization Server (AS) is a software application dedicated
to checking client rights to access protected resources and delivering re-
lated access tokens. The User Agent (UA) is a software application which
mediates communications between the client, the resource owner, and the
authorization server. The authorization server has two HTTP endpoints:
The authorization request (arep) and the token request (trep), while the
client requires only one endpoint (crep). There are two types of clients:
confidential or public depending if they are capable (or not) of maintaining
the confidentiality of their credentials (password, identity, authorization
code, token, ...). To get an access token the client C interacts with the
authorization server in order to first get an authorization code. This au-
thorization code is delivered by the AS to the client on the behalf of the
resource owner. The client and the resource owner do not directly inter-
act in this setting. The protocol assumes that the RO and the clients are
registered to the AS. At registration time the confidential client gives an
identifier and a URI. For a public client, the authentication method is
optional and depends from the AS requirements.

The communication steps of the Authorization Code Flow, depicted
in Figure 1, are as follows:

Resource Owner
 (RO)

Authorization Server
 (AS)

User Agent
 (UA)

Client
 (C)(1)

(2)

(3)

(4)

(5)

arep

trep

crep

Fig. 1. The Authorization Code Flow (ACF)

1. C initiates a request and directs UA to AS. C includes its identifier, a
state, and optionally a scope and a URI in the message.

2. RO is authenticated via its user agent UA. In this step RO grants or
denies access to C.

3. AS replies to C (via UA) with either an authorization code or an error
code.

4. C requests an access token from AS. C uses the token endpoint and
includes its authorization code, and a URI to redirect the reply.

5. AS authenticates C and checks that the authorization code was pre-
viously delivered to C. Authentication is mandatory for confidential
clients or if an authentication scheme has been previously established
with a public client. AS also checks that if a URI was provided, it
is the same as the URI provided when C requested the authorization
code. If all these controls are valid, AS sends a token to the redirection
URI (and optionally a refresh token).

The OAuth framework specifies further details about the authorization
code and token in RFC 6750 [23]. The recommended time life for an
authorization code is 10 minutes and it must not be used more than once.
Access tokens are credentials used to access the protected resources stored
on a resource server and they have a specific scope and a duration limit.

2.2 Interoperability, Security and Evolution Issues

We now present the relevant problems faced by OAuth implementations.

Interoperability. The OAuth standard has been criticized4 for its likeli-
hood in producing non-interoperable implementations. There are multiple
sources for this problem. A large number of components are optional, for
example; tokens may assume the “bearer” or “MAC” formats according to
the standard, or yet SAML assertions may be used [21]. Furthermore, sev-
eral components are only partially defined in the standard; this applies, in
particular, for the client registration process, server authorization capabil-
ities, and endpoint discovery mechanism. Generally, developers of OAuth
client application are interested in creating services that are as flexible as
possible in order to be able to access data from multiple resource servers.
Because of the interoperability issues, this requires the handling of a large
number of distinct settings for each different authorization server, raising
maintainability and reusability difficulties.

Evolution. As OAuth is a web authorization framework, its adoption in
diverse enterprise scenarios is to be expected. Existing implementations
need to be modified in order to cover requirements coming from the enter-
prise world: resource owners, for example, are unlikely to be individuals
but rather organizations. Therefore we envisage in this paper a scenario
where authorization needs to be obtained from a user on behalf of its
organization.

Security. Several security problems of OAuth are known and the specifi-
cation warns about a number of potential security issues (Sec. 10 of [22]).
Furthermore, threats related to injection attacks and the insufficient pro-
tection of credentials have also been investigated [12,4].

3 A Typed Framework for Policy Enforcement

In this section we introduce the framework we leverage to solve the se-
curity, evolution and interoperability problems of OAuth. Our solution
relies on a typed policy language for service interactions and two main
concepts for service manipulations: aspect-oriented programming and ref-
erence monitors for policy enforcement.

3.1 Typed Service Interactions

We propose to use a rich type system for service interactions which is
sound even in presence of attackers [2]. This type system is defined using
4 See, e.g., Hammer: hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell

hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell

so-called semantic typing [5], it supports negation, intersection and union
types which are convenient in a query or declarative context. Adding sub-
typing is important for two main reasons: i) it extends dynamic channel
discovery since required services may be provided by more specific ones
and ii) it improves interoperability, a client can connect to various com-
patible services. Since we can discover new channels at runtime, type in-
ference is done at message reception time. Type inference checks that the
message is well-formed and computes the types of the discovered channels
in the messages.

Concretely, our type system provides the following types: Classic basic
types (like String, Integer, ...), structured types as labeled type list
("label"[Type],Type), record types ({"label":Type; ...}) and type
for channels (or URIs) that are denoted <Type>. We have also nega-
tion types (NOT Type), union types (Type + Type), and intersection types
(Type & Type). Furthermore we type provided endpoints (channel, URI)
as well as required ones. For the definition of the type system, see [2].

This type system has the following benefits: i) it makes explicit a
contract that has to be obeyed by servers and clients, ii) it is subject to
verification and avoids some ill-formed messages that result from errors
or code injection attacks, iii) it provides powerful and declarative means
to define properties of data, channels and parties in communications, iv)
it supports subtyping which is convenient for more flexible discovery and
interoperability. Currently the type system and its machinery has been
implemented as a Java library. Work on the integration of the type system
in Apache’s service framework CXF is on-going.

3.2 Security Domains and Policies

In order to extend OAuth with security policies about resource access,
we are using the HiPoLDS language we defined in [10]. Security policies
in HiPoLDS rely on the description of the information flows between so-
called policy domains. Those domains can capture both component and
protocol entities. Policies are expressed using rules that match with the
content or with specific properties of the information flow. In particular,
HiPoLDS describes patterns in the flow based on the notion of informa-
tion tag, a construct of the policy language used to annotate the message
with security metadata. Some tags can relate to the content of a message
payload, at different levels in a protocol stack, like the IP address, some
field value at a given offset in the payload, or an encrypted blob in some
other part of the message; alternately, other tags refer to more structural
component or protocol concepts. In particular, the type system described

above can be seen as an example of the latter category: types can be in-
troduced into HiPoLDS rules by annotating the message with a specific
information tag. Payload related tags can also be identified through mes-
sage annotation at the type inference phase. Section 4.2 illustrates both
situations.

3.3 Monitors and Aspects

The implementation of both the type system and of policy enforcement
at the protocol level can be done with reference monitors [18,8]. Refer-
ence monitors represent a flexible solution to evolve existing applications
without modifying their code. They act as wrappers around agents and in-
tercept incoming and outgoing messages. Many actions can be associated
with messages: control, remove, modify, resend, etc. This is for instance a
good way to add extra control on messages to avoid some attacks. In our
case, we use monitors, implemented using the HiPoLDS rules, to secure
the storage of credentials and to oblige agents to use SSL/TLS connections
as advocated by the OAuth standard.

Sometimes we need more intrusive actions to modify the internal code
of agents. In this case we propose to use an aspect-oriented approach to
complement the monitors. To this end, we have defined a (new) aspect
system for Apache’s CXF service framework, see [3] for a publicly avail-
able implementation. This aspect system enables programmers to stati-
cally or dynamically modify service compositions, interceptor definitions
and Java-based implementations of CXF services. The events that trig-
ger modifications are defined in terms of finite-state based sequences of
service invocations, interceptor calls or features of the service implemen-
tation. Once such events are identified, new Java code may be injected or
used to replace existing code.

4 Application to OAuth

We now demonstrate how our techniques can overcome the issues impact-
ing OAuth introduced in Section 2.2. To this end we consider a workflow
from the banking domain, see Fig. 2, as part of which a bank and an
insurance company together provide services to private customers.

Alice is a customer of the bank where she has contracted a loan. The
bank proposes Alice to use third party services to acquire an insurance
concerning her loan and buy a share portfolio. For that, Alice uses her
web browser to open the web service from the insurance company, which

Fig. 2. Enterprise usage of OAuth

requests access to her loan data stored at the bank. In OAuth terms,
Alice is thus the resource owner with her web browser as user agent, the
insurance company plays the role of the client, and the bank acts as a
resource and an authorization server. Note that Alice is not bound to use
only the service of the insurance company (as she is the only responsible
for her personal data); she can therefore choose to use any other client
registered to the bank’s authorization server.

In the following we consider three OAuth-related extension scenarios
and show how our framework solves the interoperability and evolution
issues raised by these scenarios.

4.1 Type-based Definition of OAuth-conform Interactions

Scenario 1. As a first interoperability scenario we assume that the client,
the insurance company, was built to work with an existing AS server,
e.g., provided by its headquarters, which does not issue refresh tokens.
Provided that the same client will request access to resources held in
the resource server, the problem now is to equip or modify the client
implementation such that it will also be able to use refresh tokens, as
imposed by the AS from Alice’s bank.

Another token-related interoperability issue consists in different types
of access tokens. The OAuth standard allows for bearer and MAC tokens.
For instance, the client was built to use bearer tokens, whereas the Bank
server requires the MAC token type.

Solution. In order to handle incompatibilities between stakeholders we
have to be able to define suitable channel types for the endpoints for

OAuth-related interactions and then provide suitable types for the differ-
ent token types as discussed in scenario 1 above.

The client endpoint (called redirection URI of the client and noted
crep) should receive rich information from the AS, and its type can be
defined as

crep = < ({"grant":AuthCode; "state":State}
+ Token + DenyError) & Secure >

On this endpoint the client can receive an authentication code with a state
or a token or an error, this is a union type noted +. It further specifies
that the client should receive secure information with an intersection type
(noted &). Each type should be as complex as needed, for instance specify-
ing the various cases of errors or the fact that the authorization code and
the token have a time duration. Agents are responsible to implement the
types and to use values according to their types, types explicit a contract
the interacting parties must observe.

The authorization endpoint provided by the bank has type:

arep = < ({ "id":Credents ; "state":State }
⊕ Scope ⊕ C.crep) & Secure >

Mandatory information (client identifier, secret and state) are collected
in a record type, while optional information (scope and client redirection
URI) is typed using the ⊕ operator. This is a syntactic sugar for a combi-
nation of record and union types defining optional information type. Note
that we found the provided C.crep type from C in arep since the client
has the option to send its proper URI to the AS.

In the first scenario we need different kinds of token, which can be
represented by the subtype hierarchy depicted in Figure 3.

Fig. 3. A UML like Hierarchy of Tokens

The hierarchy uses unrelated types for “real” tokens and refresh tokens
because the latter are not used for resource access but for token manage-
ment. The client URI should be connected to several servers and with

two required endpoints (AS.crep (3) and AS.crep (5)). Component typ-
ing rules imply that these required endpoints should be supertypes of the
C.crep channel type. For instance, <(Token + DenyError) & Secure>
or <MACToken> are such supertypes (this can be easily shown using the
rules in appendix A Table 1). The type-checking ensures this control and
excludes dynamic type errors.

In scenario 1, the client should receive either tokens from the insur-
ance AS, or tokens and refresh tokens from the bank AS. All of this token
information could be secured using either bearer or MAC kinds of to-
ken. We have then to change the crep type. We can use for instance,
one endpoint with the following type: crep = <(AuthCode + Token +
{"token":Token; "refresh":RefreshToken} + DenyError) & Secure>.

To evolve the client, we encapsulate it into a reference monitor which
manages types, incoming and outgoing messages. To handle the different
interoperability situations, the monitor for the client could either have a
unique general URI as above or several dedicated URIs connected to each
server endpoint. Defining only one endpoint for the client is better at least
from a coupling point of view. Decreasing component coupling increases
the endpoint type complexity and this requires a powerful type system
as the one proposed here. In this case, the adaptation code checks the
dynamic type of the received values in messages and triggers additional
codes. This is the place where HiPoLDS rules or aspects can be used as
shown below.

4.2 Extending the OAuth Framework Using a Policy

Scenario 2. The OAuth framework describes the overall protocol to grant
clients access tokens to the resource server using the Authorization Code
Flow. We consider here a scenario in which we need to extend the protocol
in order to handle additional security strategies.

Consider that David, a bank employee, needs to analyze the profitabil-
ity of the fund he manages. In order to do so, he uses an external service
from the stock market analysis company E_Stock to evaluate the fund
portfolio that contains no personally identifiable information about bank
customers. Clearly, E_Stock is acting as a client with respect to the Bank,
which still plays the role of a resource server and owner.

The difference to OAuth’s standard protocol is here that David cannot
be considered as the only resource owner since the actual data owner is
the bank. Furthermore, we consider another requirement: banks today
typically need to ensure additional accountability guarantees with respect
to their employees’ behavior. For instance, David should not be able to

delegate access to arbitrary external services. He should also not be able to
delegate access to stock managed by the bank outside of his fund portfolio.

Solution. The OAuth framework thus has to be extended with the en-
forcement of a mandatory security policy defined by the bank with respect
to its employees’ actions. The User Agent’s authentication is therefore it-
self subject to the granting of an authorization by the bank.

The implementation of this mandatory access control on top of OAuth
depends essentially on the entity that runs the AS. If it is the bank,
then the AS provides a perfect point of enforcement; otherwise, if the AS
is managed by a third party, the bank will need to intercept messages
between the client and the AS. In the latter case, an aspect based im-
plementation of the reference monitor is necessary as network traffic is
likely encrypted (the use of an SSL/TLS secure session being typically
recommended in the OAuth framework), whereas in the former case, the
reference monitor can be directly introduced by the bank after decryption.

In this scenario, a HiPoLDS reference monitor at the bank would make
sure that David only authorizes reading data about stock from his own
portfolio, and that the client is an acceptable third party, as identified
among a set of authorized services. The following HiPoLDS rule expresses
these constraints, by dropping messages not conforming to the policy:

m:arep, m.scope.obj in Funds,
(m.id not in AuthorizedServices

or (m.scope.obj not in Portfolio[useragent]))
=> m is dropped

HiPoLDS rules are composed of two parts: the left part, before the ‘=>’
construct, performs pattern matching on messages; the right part defines
the security mechanisms that should apply – dropping the message, in
this case. The m:arep clause applies when m is annotated with the arep
information tag. Tags can be associated with a message based on either
type inference and/or the structure of the message payload (we do not
describe this here for brevity). m.scope.obj and m.id are extracted from
the actual message content, part of which can also be identified from the
type. In the example, m.scope.obj identifies the list of stocks in the fund
E_Stock will be granted access to, and m.id refers to E_Stock. Finally,
Funds and AuthorizedServices are sets, respectively comprising object
identifiers on funds and external clients authorized to access fund data.
Portfolio is a mapping between identifiers of user agents of employees
(useragent) to the set of object identifiers for fund data.

4.3 Harnessing Types for Aspect-based Security

Scenario 3. Finally, we consider a scenario that requires some limited
invasive modifications by OAuth stakeholders to the implementation of
OAuth-related services. The OAuth standard mandates that sensitive
data items e.g. authorization grants, tokens, and client credentials are
stored securely. Developers frequently fail to adopt the best security mech-
anisms to protect assets, leading to vulnerable implementations. We con-
sider a scenario in which security-relevant information, such as tokens,
have to be stored at a remote user agent.

Solution. The OAuth standard contains a number of prescriptions that
do not directly restrict the communication between stakeholders but in-
stead manage security-relevant data has to be handled as part of service
implementations. It restricts, for instance, how the user-agent’s authen-
ticated state (e.g., session cookie, HTML5 local storage) is to be stored
(see OAuth standard, sec. 10.12). It prescribes that this data has to be
kept in a location accessible only to the client and the user-agent. While
this may be some common encrypted portion of the memory, it may also
involve the use of special-purpose secured storage services, for instance, if
the client uses a user agent remotely.

In order to ensure the use of a correct secure storage strategy, a com-
bination of type-based security enforcement and aspect-based adaptation
is used: the types that guide service discovery are extended in order to
indicate the need of a particular storage strategy depending on the chan-
nel configuration between stakeholders and aspects are used to modify
the implementation of services in order to use secure storage services if
needed.

In the case of a remote user agent, the resource owner has to provide
a typed channel for communication between the resource owner and the
agent. Its type information makes explicit the need for a particular storage
strategy. The strategy is then implemented using an aspect, by statically
encapsulating the original token data structure in the user agent by a
secure data structure. Alternatively, aspects can be used to dynamically
encrypt the tokens and store them in a suitable data structure.

5 Related Work

We discuss related work in this section belonging to four domains: OAuth
security issues, types for services, security policy languages, and service
evolution, notably using aspects.

OAuth Security Issues. The main document describing OAuth 2.0
is [22] for a comprehensive OAuth security model and analysis. Several
classes of attacks are discussed: key and secret storing and transmission,
client authentication, token and refresh token, cross-site request forgery,
guessing and phishing attacks, click-jacking, open redirectors and code in-
jection. A real example of security problem with Twitter and OAuth 1.0a
was described in [16]. The key and secret of a client can be discovered by
a malicious third-party. The use of formal specification and verification
techniques is a major approach to discover flaws in protocols. [12] uses the
specification language Alloy and a SAT solver to discover security coun-
terexample. In [4], the authors use the π-calculus, the WebSpy library
and the ProVerif checker to make explicit various attacks on the OAuth
protocol. They claim to find dozens of previously unknown vulnerabilities
in connecting social networking like Twitter and Facebook with websites
like Yahoo and WordPress.

Types for Services. The type system of [13] is based on a nested
record type system with collections and universal polymorphism. This
type system is neither recursive nor does it allow channel mobility; its
checking algorithm is expensive even in this restricted setting. Sans and
Cervesato [17] deal with an abstract model that covers code mobility which
we do not address, we are only concerned with remote procedure calls. On
the other hand, they consider functions rather than channels and they do
not support sum types, nor recursive types. They require a centralized
typing table collecting types of services published everywhere in the In-
ternet and assume that this repository can be trusted. A distributed and
typed π-calculus for mobile agents is described in [15]. The type system
considers malicious agents with erroneous types. Type safety is enforced
by dynamically type checking agents when they enter a site. In contrast
to our work they do not consider channel discovery or subtyping. The last
piece of work is [6] which applies semantics subtyping to the π-calculus.
Despite the presence of a precise orchestration, their typing rules for ser-
vices are similar to ours. We are not concerned with a precise process
algebra for agent behaviors and this point is shared with all work on ses-
sion types. But we focused on typing the communications between several
agents leading to similar rules than in component systems (see [19]) and
we also consider type attacks from malicious agents.

Security Policy Languages. With respect to security policy languages,
HiPoLDS is particularly suited for this setting because it is especially de-

signed for complex distributed architectures, taking into account the fact
that different security policies apply in different parts of the distributed
system according to its security levels, and not all execution environments
where services are running can be controlled. Notice that XACML [11] can
be used in conjunction with OAuth 2.0 (e.g. for scope definitions), but it
is not suited to describe the reference monitor behavior.

Similarly to HiPoLDS, Law Governed Interactions (LGI) [20] provides
a hierarchical way of specifying the architecture of a distributed systems
and security policies that apply only to a subset of such a system; policy
enforcement is performed by reference monitors. Domains are governed by
a mandatory policy, their law. However, the approach fails short to account
for multiple stakeholders, since it does not consider that the enforcement
might not always be possible - or at least not by an authority that is
trusted enough to ensure the application of the law. Thus LGI requires
that all reference monitors (running at any location of the distributed
system) to be trusted by all participating entities: a strong assumption
that cannot be applied in our scenario.

The same assumption is present in SPL [14], a language that like
HiPoLDS allows to specify security requirements at different levels of ab-
straction. In addition to the requirement of trusting reference monitors,
SPL is limited to access control policies, and does not allow specifying
rules that results in reference monitors altering the messages that are
passed between monitors, for example by encrypting content or by adding
signatures or other type of security metadata.

The ConSpec language [1] aims at defining the behavior of reference
monitors with a simple policy language similarly to our approach. This
proposal focuses on the instrumentation of the control flow of an object-
oriented program using before- and after- method modifiers. In contrast,
our work aims at the high-level description of information flows, in partic-
ular materialized by the notions of messages, their types, and information
tags. In our approach, a message can be mapped at the instrumentation
phase to the interception of a protocol message at a client, a server, or an
intermediate party, or to the inlining of a reference monitor controlling
inter-component information flows at a protocol endpoint. Furthermore,
ConSpec addresses neither the specification of multiple overlapping secu-
rity policies, as illustrated in scenario 2 for instance, nor the definition of
roles or groups.

Service Evolution and Aspects. Service evolution can be achieved in
a flexible and non intrusive way using reference monitors [18] as long as

only the contents and recipients of messages have to be modified. Fre-
quently, these changes are performed using dedicated monitors and re-
configurations of orchestrations, for instance, using aspects that modify
BPEL-based service compositions (as, e.g., AO4BPEL [7]). Our approach
to service evolution is novel in that our reference monitors are derived from
HiPoLDS policy definitions and that our aspect system supports invasive
modifications to service interceptors and implementations [9] that are re-
quired to resolve some security and interoperability issues of OAuth 2.0
(notably the scenario in Sec. 4.3).

6 Conclusion

The OAuth 2.0 protocol is an IETF standard already adopted by major
internet application providers. However, it is often difficult to ensure that
the implementation of authorization protocols are secure and interopera-
ble because of the many optional features and different protocol flows of
the OAuth framework. In this paper we use a type-based policy language
in conjunction with reference monitors and aspect-oriented programming
in order to tackle these issues. Types enable the precise definition of com-
municated data and the rigorous analysis of input data. Further, we in-
tegrate a policy language based on security domain and abstract rules
to express security. Types and policies are implemented thanks to a ref-
erence monitor mechanism which encapsulates the agents that have to
be adapted. For advanced evolutions that require invasive modifications
of service interceptors and implementations, we use a new aspect-based
system for service manipulation. Finally, we have shown three realistic
evolution scenarios for which we have solved problems of input valida-
tion, interoperability and security issues. Future work is planned on the
complete implementation of our framework on top of Apache’s CXF web
service model and its integration with RESTful service models.

References

1. Irem Aktug and Katsiaryna Naliuka. Conspec - a formal language for policy spec-
ification. ENTCS, 197(1):45 – 58, 2008. Proceedings of REM 2007.

2. Diana Allam, Rémi Douence, Hervé Grall, Jean-Claude Royer, and Mario Südholt.
Well-Typed Services Cannot Go Wrong. Rapport de recherche RR-7899, INRIA,
May 2012.

3. Ascola team. An aspect framework for CXF.
http://a4cloud.gforge.inria.fr/doku. php?id=start:aspect4cxf, Jan.
2013.

4. Chetan Bansal, Karthikeyan Bhargavan, and Sergio Maffeis. Discovering concrete
attacks on website authorization by formal analysis. In CSF 2012, Cambridge,
MA, USA, pages 247–262. IEEE, 2012.

5. Giuseppe Castagna and Alain Frisch. A gentle introduction to semantic subtyping.
In Proc. of ICALP, volume 3580 of LNCS, pages 30–34. Springer, 2005.

6. Giuseppe Castagna, Rocco De Nicola, and Daniele Varacca. Semantic subtyping
for the pi-calculus. Theor. Comput. Sci., 398(1-3):217–242, May 2008.

7. Anis Charfi and Mira Mezini. Aspect-oriented web service composition with
AO4BPEL. In European Conf. on Web Services (ECOWS), volume 3250 of LNCS.
Springer, 2004.

8. Omar Chebaro, Diana Allam, Hervé Grall, et al. Mechanisms for Property Preser-
vation. Technical Report Deliverable D2.4, CESSA Project, July 2012.

9. Ronan-Alexandre Cherrueau, Omar Chebaro, and Mario Südholt. Flexible and
expressive aspect-based control over service compositions in the cloud. In 4th Int.
WS on Variability & Composition (VariComp). ACM DL, March 2013.

10. Matteo Dell’Amico, Gabriel Serme, Muhammad Sabir Idrees, Anderson Santana
de Oliveira, and Yves Roudier. Hipolds: A hierarchical security policy language
for distributed systems. Information Security Technical Report, 2012.

11. OASIS. eXtensible Access Control Markup Language (XACML) Version 3.0. Tech-
nical report, OASIS, January 2013.

12. Suhas Pai, Yash Sharma, Sunil Kumar, Radhika M. Pai, and Sanjay Singh. Formal
verification of oauth 2.0 using alloy framework. In CSNT ’11, pages 655–659,
Washington, DC, USA, 2011. IEEE Computer Society.

13. Ken Q. Pu. Service description and analysis from a type theoretic approach. In
ICDE Workshops, pages 379–386, 2007.

14. Carlos Ribeiro and Paulo Ferreira. A policy-oriented language for expressing secu-
rity specifications. International Journal of Network Security, 5(3):299–316, 2007.

15. James Riely and Matthew Hennessy. Trust and partial typing in open systems of
mobile agents. Journal of Automated Reasoning, 31(3-4):335–370, 2003.

16. Paul Ryan. Compromising twitter’s oauth security system. Technical report, Ars
Technica, 2010.

17. Thierry Sans and Iliano Cervesato. QWeSST for type-safe web programming. 2010.
18. Fred B. Schneider. Enforceable security policies. ACM Transactions on Informa-

tion and System Security, 3(1):30–50, 2000.
19. João Costa Seco and Luís Caires. A basic model of typed components. In Proc.

of ECOOP 2000, LNCS 1850, pages 108–128. Springer, 2000.
20. Constantin Serban, W. Zhang, and N. Minsky. A decentralized mechanism for ap-

plication level monitoring of distributed systems. In Proceedings of CollaborateCom
2009, pages 1–10. IEEE, 2009.

21. IETF Web Authorization (OAuth) Working Group. SAML 2.0 Profile for OAuth
2.0 Client Authentication and Authorization Grants. Technical Report V 17, In-
ternet Engineering Task Force (IETF).

22. IETF Web Authorization (OAuth) Working Group. The OAuth 2.0 Authorization
Framework. Technical Report RFC 6749, Internet Engineering Task Force (IETF),
October 2012.

23. IETF Web Authorization (OAuth) Working Group. The OAuth 2.0 Authorization
Framework: Bearer Token Usage. Technical Report RFC 6750, Internet Engineer-
ing Task Force (IETF), October 2012.

A Subtyping Rules and Endpoint Types Tables

Table 1 presents the main subtyping rules required in this paper. We

Table 1. Main Subtyping Rules

A ≤ (A + B) and B ≤ (A + B)
(A + B) ≤ C ⇐⇒ A ≤ C and B ≤ C

(A & B) ≤ A and (A & B) ≤ B
C ≤ (A & B) ⇐⇒ C ≤ A and C ≤ B

Covariance of record type
A ≤ A’ and B ≤ B’ ⇐⇒ {"a":A; "b":B; ...} ≤ {"a":A’; "b":B’}

Channel type contravariance
<R> ≤ <T> ⇐⇒ T ≤ R

Compatibility of a required service r connected to a provided one p
p:Provided ≤ r:Required

give in Tables 2 the endpoint types (without the refresh token option) in
ACF. In these tables X.name denotes a provided service named name from
agent X. The notation X.name (<numbering>) corresponds to a required
endpoint connected to X.name.

Table 2. ACF Provided and Required Endpoint Types Table

Provided Endpoint Types
C.crep <({"grant":AuthCode; "state":State} + Token + DenyError) & Secure>
AS.trep <(AuthCode ⊕ crep) & Secure>
AS.arep <({"id":Credents ; "state":State} ⊕ Scope ⊕ C.crep) & Secure>

Required Endpoint Types
AS.crep (3) <({"grant":AuthCode; "state":State} + DenyError) & Secure>
AS.crep (5) <(Token + DenyError) & Secure>
C.trep (4) <(AuthCode ⊕ crep) & Secure>
C.arep (1) <({"id":Credents ; "state":State} ⊕ Scope ⊕ C.crep) & Secure>

	Reference monitors for security and interoperability in OAuth 2.0
	Introduction
	The OAuth 2.0 Authorization Framework
	The Authorization Code Flow Case Study
	Interoperability, Security and Evolution Issues
	Interoperability.
	Evolution.
	Security.

	A Typed Framework for Policy Enforcement
	Typed Service Interactions
	Security Domains and Policies
	Monitors and Aspects

	Application to OAuth
	Type-based Definition of OAuth-conform Interactions
	Scenario 1.
	Solution.

	Extending the OAuth Framework Using a Policy
	Scenario 2.
	Solution.

	Harnessing Types for Aspect-based Security
	Scenario 3.
	Solution.

	Related Work
	OAuth Security Issues.
	Types for Services.
	Security Policy Languages.
	Service Evolution and Aspects.

	Conclusion
	Subtyping Rules and Endpoint Types Tables

