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Chapter 2

Introduction

The endeavor of this manuscript is to overview my work in the broad domain of
scalable data management systems. As the title implies, the common thread to the
research lines I will present in the following Chapters is the focus on the design
of algorithms, their analysis and performance evaluation with the ultimate goal of
building real systems or components thereof. In a general sense, the following Chap-
ters address problems related to the management of data, including distribution
(that is moving data over a computer network), storage (with several incarnations
of storage systems which depend on data access patterns) and processing (i.e., mak-
ing sense of the data, which obviously depends on the application scenario at hand).
A common characteristic that makes the above mentioned problems interesting is
– in a wide sense – the system scale. For the works that target data distribution
and storage, system scale (and dynamics) poses several challenges that call for the
design of distributed algorithms capable of handling millions of hosts and manage
their resources. For the works on systems used to process data, scalability is to be
studied along two dimensions: the number of components of such systems (e.g. com-
puting nodes) may be very large, and the volumes of data to be processed typically
outweigh the capacity (storage and memory) of a single machine.

In addition, the techniques and methodology used to achieve the goals outlined
above, also incorporate mathematical modeling and measurement campaigns, which
are mainly required to overcome some limitations of a purely systems approach to
research: in some cases, the scale of the systems under scrutiny implies that it simply
not feasible to work on real working prototypes, thus one has to revert to models; yet,
in other cases, it is important to understand the behavior of quantities (typically the
input to those systems, including available resources and the behavior of eventual
humans in the loop) that are not under the control of the system designer, which
call for a thorough methodology to collect traces and replay them when assessing
the performance of the system.

This manuscript is organized as follows. First, in this introductory Chapter,
I overview three main topics that my group and I covered in the past years. My
goal is to illustrate why I selected such topics, what are the important problems
we addressed and to overview our approach to solve such problems. Then I will
dedicate three Chapters to a more detailed, technical overview of the research lines
covered in this manuscript: for the sake of brevity as well as clarity, the outline of
all those chapter has a common theme. First, I start with an introduction to delin-
eate the context of each work, then I spell out the problem statement, and finally
I overview the solutions to the problem, which include a glance on the achieved
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results. The conclusion to each Chapter is a brief summary with highlights on the
contributions, and open problems that have motivated other researchers to pursue
the initial directions we established with our work.

Before proceeding with an overview of the contents of this manuscript, it is
important to notice that I deliberately omit several works that I have produced on
my own or with collaborators external to my group. Hence, in what follows I will
focus solely on the contributions achieved by students and researchers in my group.

Chapter 3 is dedicated to the work I did with the first Ph.D. student (now
graduated) under my supervision, Dr. Chi-Anh La. The topic of this line of research
is content replication for mobile, wireless networks, in which we blend theory
and practice relative to the design of distributed and scalable algorithms for the
dissemination of data (i.e., content residing in Internet servers) to a potentially large
population of wireless devices, such as last-generation smart phones, in possession
of individuals that move according to human-mobility patterns. This research work
began just a few years after Internet Content Distribution peaked in popularity with
the advent of applications such as BitTorrent. Peer-to-peer (P2P) applications for
file sharing were already a fertile ground for research, and several important works
in the domain [20,22,67,88,89,97] had appeared for the first time in the networking
community. In addition, concurrently with the initial works of Chi-Anh, I developed
invaluable experience in modeling, measuring real-life, deployed P2P applications,
which led me to the definition of a new set of problems (in the area of distributed
algorithms) which have been developed in the Ph.D. Thesis of Chi-Anh.

First, the network model we define in our work is substantially different from that
used in the literature. A large fraction of works in the domain of Internet content
dissemination assume whether a fixed infrastructure (the wired Internet) supporting
both content and client or a completely decentralized wireless network in which
content would be injected and disseminated by devices involved in operating the
network. Our approach considers an hybrid network model in which content resides
in Internet servers (on a fixed network) while the consumers of the content are
equipped with both a cellular network interface and a wireless network interface in
the family of the 802.11 standard. The first consequence of our network model is that
content dissemination can be cast as a replication problem: users’ devices replicate
content that initially reside on Internet servers. Although content replication is not
a new topic per-se, the constraints imposed by the new network model (which are
well discussed in the Chapter dedicated to this line of work) makes it particularly
challenging.

We thus study the problem of content replication and do so through the lenses
of Location Theory of which, as a reference, the un-capacitated facility location
problem is a simple and well-known incarnation. Our contribution is the design
of a scalable, distributed algorithm for content replication, which we implemented
and analyzed using a network simulation tool. In addition to the original context,
in which we make the implicit assumption that all mobile terminals executing our
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algorithm would abide to its specification, we also studied the problem of content
replication using non-cooperative game theory. Our main contribution is the defi-
nition of a new class of games that blend congestion and coordination games: we
addressed the problem of finding equilibrium in such game (both in pure and mixed
strategies) and arrived at the conclusion that (for a simple 2-player setting), the
equilibrium strategy is closely related to the distributed algorithm we have defined
for the cooperative version of the replication problem. This work has opened several
new challenges that other groups extended in the past years. Finally, an original
contribution of the work we present in Chapter 3 is that of defining an innovative
measurement methodology to capture user mobility traces. Our work stems from
the realization that performing measurement campaigns to study the behavior of
humans while they move is a very hard problem, which has been tackled mainly
by large research groups holding the necessary means to organize and deploy mea-
surement probes. In contrast, we designed software tools to monitor movements
of avatars in a popular (at the time) virtual world: our methodology makes the
collection of mobility traces a trivial exercise, and our measurements illustrate (and
validate) that mobility patterns in virtual worlds are, to a large extent, a very good
match of what happens in the real world.

Chapter 4 is dedicated to the work I did with the second Ph.D. student (now
graduated) under my supervision, Dr. Laszlo Toka. As it will become clear later on
in the manuscript, this line of work generated a large number of research papers and
software: for this I acknowledge the great work of Dr. Matteo Dell’Amico, who works
in my group as a Post-Doctoral researcher. The focus of our work is scalable content

storage, conceived both as an Internet application and an on-line service, offered
by the communion of of end-host resources and possibly those of servers residing
in large data centers. In this context, there are several problems that hinder the
task of building a service that can guarantee data availability (that is, low-latency
access to data) and durability (that is, negligible probability of data loss): storage
and bandwidth resources (that at a large scale may appear to be unlimited) are not
reliable because they are essentially bound to the on-line behavior of users.

When we first started our work in this domain, most of the research effort in
the community was devoted to the study of new mathematical tools (specifically
relevant to coding theory) to achieve data availability and durability in spite of
failures, “churn"1 and lack of a local copy of the original data, while minimizing
the network utilization. This was a crowded area, defining (and trying to solve)
important problems with (little) justification from the system perspective: was it
reasonable to assume content owned by a particular user to reside solely on remote
machines? Hence, we decided to focus on a specific instance of the storage problem,
namely data backup, which offered a rich set of new challenges, while at the same
time helped in defining a set of reasonable working assumptions.

1Churn is due to peers/users joining and leaving the system at any time.
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The work we have thus developed has two main components. The first, covers
our effort towards the definition of models of distributed storage systems deployed
as P2P applications; our approach relies on non-cooperative game theory, which we
use to understand and design incentive mechanisms aiming at mitigating the inter-
mittent on-line behavior of users. The second, focuses on the design of algorithms
and systems to offer efficient (both in terms of resource utilization and operational
costs) and fast on-line storage service, whereby storage and bandwidth resources of
end-hosts can be complemented by those available at servers, which are inherently
more stable. We can summarize the main contributions of this set of work as follows.

We begin with a new formulation of the well-known problem of stable matching:
this kind of problems can be modeled by a set of individuals willing to match with
a set of other individuals of a different population (a noteworthy sub-class of stable
matching is that of stable marriage problems), based on a preference list (a ranking of
individuals that are candidates for the match). In our formulation, which is based
on non-cooperative game theory, we model selfish individuals (that is, the users
operating the storage application) that are ranked based on a heuristic aggregation
of the “quantity" and “quality" of resources they offer to the storage application. The
strategy available to the players is to gauge the amount of resources they dedicate
to the system, which has the effect of modifying their ranking in the preference lists
of other players.

Then, we focus on systems aspects of a specific variant of on-line storage appli-
cations, that is data backup. In this setting, we proceed with a new formulation of
the problem of scheduling data transmission, which amounts to decide when and to
which remote party to upload fractions of the data to be stored remotely. We show
that the original combinatorial problem, which at a first glance appears to lack a
polynomial-time solution, can be cast as a network flow problem, and we propose
a solution based on well-known and efficient variants of Max-Flow algorithms. We
also present a new approach to redundancy management, which is based on the real-
ization that in a backup application: i) data durability is more important than data
availability; 2) the data access pattern is very particular, as backup data is written
once (never updated) and possibly read rarely. As a consequence, our method to
address the data redundancy problem uses a feedback mechanism to minimize (and
adapt) the redundancy required to durably store data, and makes use of rate-less
codes, which are a prerequisite to achieve adaptivity. Finally, we present a complete
hybrid system design which leverages both peers and server resources, where the
latter are seen as temporary buffers to boost data transfer performance.

Chapter 5 is dedicated to a new line of research of my group, that focus on
data-intensive scalable computing systems (DISC). This domain represents a natural
evolution of the research activities (and background) my team and myself developed
in the past years: it involves massive amounts of data that need to be “moved",
stored and processed.

The work I present in the Chapter has a strong “systems" component: in prac-
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tice, it requires great zeal for building solid prototypes and repeatable experiments,
in addition to produce original research in a very competitive domain. As a con-
sequence, this work requires substantially more provisioning (both in terms of hu-
man resources and hardware material) than the previous topics addressed in this
manuscript. In addition it should be noted that the research activity in this domain
is largely dominated by the industry: many of the problems addressed in this do-
main stem from real-life issues that arise in production settings, which hinders the
work of an academic research lab. To overcome the inherent limitation of working in
an environment in which large-scale data management problems can only be imag-
ined, my group and myself put a lot of effort in establishing collaborations with the
industry, so as to be able to collect real-life data and work on relevant problems.

Although in this line of work we cover several aspects ranging from the very
internal components of a DISC system, to high-level languages to overcome or extend
the basic programming models of such systems, for the sake of brevity, Chapter 5
only covers in depth a small selection of our work2:

• Scheduling problems in DISC, which amount to study resource allocation.
Production-level cluster traces, whereby DISC systems such as MapReduce
(and its open source incarnation, Hadoop) are heavily used, reveal that typ-
ical workloads involve several tens of thousands of jobs submitted weekly, to
process data for many different purposes. Recurrent analyses carried out by
production jobs blend with ad-hoc queries on data and even experimental jobs:
compute clusters are shared among users, because of a more efficient resource
utilization and less redundancy. In this context, job scheduling plays a crucial
role in determining the end-to-end performance (which we measure formally
with the sojourn time of a job, amounting to the time a job spends in a queue
waiting to be serviced and its execution time) of a DISC system. The line
of research I develop in this manuscript, covers an attempt at bringing the
benefits of a size-based approach to scheduling in a real system. This work
has important implications: first, it shows that size-based scheduling (which is
promoted by theoretical research, but largely disregarded in real systems) can
be used in practice, and that it brings advantages going beyond an improved
end-to-end performance. In addition, it represents a basic building block that
my group and I will exploit to cover an open problem in DISC and traditional
database systems: concurrent work sharing (aiming at efficient resource uti-
lization by avoiding redundant computation), in which scheduling also plays
a crucial role.

• The definition of new design patterns for the functional-style MapReduce pro-
gramming model and their inclusion in new high-level abstractions that aim at
simplifying the design of scalable algorithms. In this line of work, we tackle the

2A prominent example of a research line that is left outside of this manuscript is that of one of the

PhD students I supervise, Xiaolan Sha, who graduated during the preparation of this manuscript.

Her work deals with the design of scalable machine learning techniques to study time series data,

predict trends and build recommender systems.
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problem of optimizing the compilation of high-level languages into MapReduce
primitives, and focus – to begin with – on an omnipresent primitive in on-line
analytic processing (OLAP) system, that operates on hierarchical data and
provides layered aggregates. Working on the compiler, in conjunction with the
scheduler as defined above, allows the implementation of concurrent and non-
concurrent work sharing techniques. The evolution of this line of work touches
upon two main subjects: brining cost-based optimization techniques to DISC
systems, similarly to what have been done in the traditional database system
domain, to complement or eventually replace rule-based optimization; study-
ing models of the MapReduce programming paradigm to better understand
the trade-offs (and costs) related to the implementation of parallel algorithms.

Chapter 6 is dedicated to my teaching activities, including past and current
courses I coordinate and teach, and with a Section dedicated to my plans for the
evolution of my courses in the coming years.

Finally, Chapter 7 summarizes the main contributions I achieved and outlines
the research agenda of my group for the next years.
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Introduction

Academic and industrial research in the networking field is pursuing the idea that
networks should provide access to contents, rather than to hosts. This goal has
been extended to wireless networks as well, as witnessed by the tremendous growth
of services and applications offered to users equipped with recent mobile terminals.
Now, the inexorable consequence of a steady increase in data traffic exerted by
mobile devices fetching content from the Internet is a drainage of network resources
of mobile operators [4, 7]. As such, the problem of content distribution for mobile
devices – and solutions to avoid or at least mitigate network congestion – has gained
a lot of momentum.

The literature in the domain of content distribution over the Internet in general,
and for mobile wireless networks in particular, is abundant. For an overview of
related work, we defer the reader to Section 3.1. In general, prior works focus on
simple network scenarios, in which mobile nodes interact through an ad-hoc wire-
less network, and the content distribution process is confined within that network:
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a subset of the nodes are assumed to be initialized with an immutable copy of the
content, stored locally, and are responsible for disseminating it to all other nodes.
Despite elegant solutions for this particular setting have flourished, the underlying
network model limits the extent to which access congestion – that relates to de-
layed access to content and poor download performance – can be studied. Indeed,
depending on how sensitive to delays users are, there is nothing to prevent them
to exhaust the resources of a cellular network or, alternatively, to overcrowd the
wireless, device-to-device network, especially in case of “flash-crowds”.1

The work presented in this Chapter departs from the existing literature be-
cause it uses a more realistic – and thus more elaborate – network model: the
content distribution process begins in the wired Internet, in which a server (or a
content distribution network) holds the original content and mobile users attempt
at downloading it, whether directly – using a cellular network – or indirectly, using
device-to-device communications.

First, we present a promising approach to address the problem of content dis-
tribution in the realistic setting described above. Our work suggests that content
distribution can be cast as a replication problem: precisely, we formulate a variant
the well known facility location problem and design a distributed algorithm capable
of approximating an optimal solution, despite network and content demand dynam-
ics.

Originally, our solution to the content distribution problem holds in a coopera-
tive environment, that is where nodes abide to the algorithmic specification of our
replication mechanism. With the intent of relaxing such a fundamental assump-
tion, we extend our initial model to study the impact of a non-cooperative setup.
Using non-cooperative game theory, we cast the replication problem as an anti-

coordination game. In particular, our formulation accounts for content access delays
caused by congestion (modeled as a contention problem due to concurrent access to
network resources). In analogy to a “down-to-earth” setting, our model is akin to
a well-known formulation of the car-pooling problem: users have to decide whether
to use their own car or pool together and share a car to go to some destination.
Using a private car implies a direct route to the destination, as opposed to a multi-
hop route required to collect people prior to arriving at destination. However, if all
users decide to use their own car, there will be congestion, while car-pooling lanes
will be essentially free. The tension that exists between a direct route (and hence
potentially low delays) and road congestion, are the essence of the game.

This line of work allows us to arrive at the conclusion that a randomized strategy
– such as the one we use in the cooperative setting outlined above – represents an
equilibrium strategy also in the non-cooperative scenario. A number of challenging
open problems conclude this work.

We then conclude the Chapter by focusing on user mobility, and specifically
study human mobility with an original approach: we use traces collected from a

1Flash-crowd indicates a phenomenon by which a sudden raise in popularity of a content triggers

simultaneous attempts at downloading it.
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popular2 networked virtual environment – namely Second Life – and show that
“avatars” exhibit mobility traits that closely match those of real humans. As a con-
sequence, this work shows that the performance analysis of any mechanism involving
mobile terminals operated by humans can be assessed by complementing (as we did
in our work) mobility models with realistic traces extracted from virtual worlds.

3.1 Distributed Replication Algorithm

Traditionally, the problem of content distribution has been addressed with simple,
widely used techniques including gossiping and epidemic dissemination [59], where
content is forwarded to a randomly selected subset of neighboring nodes. Other
viable – albeit more complex – approaches are represented by probabilistic quorum
systems for information dissemination and sharing [52, 77]. In particular, in [52]
the authors propose a mechanism akin to random walks to build quorums of users
that would then exchange information. Node grouping has also been exploited
in [58], where groups with stable links are used to cooperatively store and share
information. Alternatively, some works attempted at modifying widely used peer-
to-peer applications designed for the Internet (such as BitTorrent [41]) to operate
on mobile wireless networks [81, 93].

In this Section, we overview a different, promising approach to solve the prob-
lem: content replication, that is used to create copies of information content at
user devices so as to exploit device-to-device communication for content delivery.
This approach has been shown to be effective especially in wireless networks with
medium-high node density, where access congestion is the main culprit for the poor
performance of content delivery (see, e.g., [44] for a survey on the topic).

In this line of work, we consider a mobile network and initially explore the con-
cept of content replication in a cooperative environment: nodes can fetch content
from the Internet using a cellular network, store it, and possibly serve other users
through device-to-device communication (e.g., IEEE 802.11) [34]. Our scenario ac-
commodates the possibility for content to exhibit variegate popularity patterns, as
well as to be updated upon expiration of a validity-time tag, so as to maintain
consistency with copies stored by servers in the Internet.

The scenario we target introduces several problems related to content replica-
tion. Our endeavor is to build upon the theoretic works that have flourished in the
Location Theory literature and address the joint problem of content replication and
placement, with the goal of designing a lightweight, distributed mechanism.

2This work was done in 2008, when Second Life was at the cusp of a rapid expansion in terms

of user activity, and adoption. Today, Second Life has lost traction in favor of more specialized

virtual worlds. Yet, our methodology has proven the point that measuring human mobility does

not necessarily require costly experiments and “real” humans.
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3.1.1 Problem Statement

First, we formalize the system model that applies to our application scenario. Based
on this model, we inherit the problem of replication typical of the wired Internet
and we discuss the new challenges introduced by the dynamic nature of wireless
networks.
System model: We investigate a scenario including mobile users (i.e., nodes),
equipped with devices offering 3G/4G Internet connectivity as well as device-to-
device communication capabilities (e.g., IEEE 802.11).

We denote the set of mobile nodes by V, with V = |V|, and we consider that
users may be interested in a set of “abstract” information items, I (|I| = I). Each
item i ∈ I , of size s(i), is tagged with a validity time and originally hosted on a
server in the Internet. We define the content popularity of a generic item i, π(i), as
the fraction of users/nodes interested in such an item. Thus, we have 0 ≤ π(i) ≤ 1,
with π(i) = 1 when all nodes in the system are interested in content i.

In this line of work we focus on a cooperative environment: a node j ∈ V
interested in an information item i first tries to retrieve (which involves content
lookup and download) it from other devices. If its search fails, the node downloads
a fresh content replica from the Internet server and temporarily stores it for a period
of time τj , termed storage time. For simplicity of presentation, we assume τj = τ,

∀j ∈ V. During the storage period, j serves the content to other nodes upon
receiving a request for it and, possibly, downloads from the Internet server a fresh
copy of the content if its validity time has expired. We refer to the nodes hosting
an information copy at a given time instant as replica nodes. We denote the set of
nodes storing a copy of item i at time t by Ri(t), and define R(t) = ∪i∈IRi(t), with
R = |R|. Also, we associate to each replica node j a capacity value cj , which, as we
shall see later, relates to the capability of the node to serve content requests.

A node, which is interested in a generic information item i and does not store
any copy of it, issues queries for such an item at a rate λ. Replica nodes, receiving
a query for an information item they currently store, will reply with a message
including the requested content.

In the following we model the network topology at a given time instant t through
a graph G(t) = (V, E(t)), whose set of vertices coincides with the set of nodes V and
the set of edges E(t) represents the set of links existing between the network nodes
at time t.
The Problem: Traditionally, content replication has been studied through the
lenses of Location Theory, by considering replicas to be created in the network
as facilities to open. As the first step to understand the problem under study,
we restrict our attention to a simplified network setting and revisit a centralized
approach for facility location problems. To simplify mathematical notation, we
assume static nodes and constant demand, hence we drop the time dependency from
our notation; we also let all users be interested in every content i (i = 1, . . . , I).

Given such a simplified scenario, we formulate content replication as a capac-

itated facility location problem where the set of replica nodes R = ∪iRi cor-
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responds to the set of facilities that are required to be opened, nodes requesting
content are referred to as clients and items correspond to the commodities that are
available at each facility. We model the capacity of a replica node as the number
of clients that a facility can serve. The goal is to identify the subset of facilities
that, at a given time instant, can serve the clients so as to minimize some global
cost function while satisfying the facility capacity constraints. Note that, in our
scenario, both clients and facilities lay on the same network graph G = (V, E). The
problem can be defined as follows:

Definition 1 Given the set V of nodes with pair-wise distance function d and the

cost fj of opening a facility at j ∈ V, select a subset of nodes as facilities, R ⊆ V,
so as to minimize the joint cost C(V, f) of opening the facilities and serving the

demand while ensuring that each facility j can only serve at most cj clients. Let

C(V, f) be:

C(V, f) =
∑

i∈I

∑

j∈Ri

fj(i) +
∑

i∈I

∑

h∈V
d(h,mh(i)) (3.1)

where fj(i) is the cost to open a facility for commodity i, Ri ⊆ V is the subset of

nodes acting as facilities for commodity i, mh(i) ∈ Ri is the facility holding item

i that is the closest3 to h, and the number uj(i) of clients requesting any content

i attached to facility j ∈ Ri, i.e., uj(i) = |{h ∈ V s.t. mh(i) = j}|, is such that
∑

i∈I uj(i) ≤ cj.

Note that our problem formulation is more complex than the traditional one,
where the intersection between the sets of facilities and clients is null. Indeed, since
in our settings any vertex of the graph G can host a facility (i.e., be a replica node for
an item) or be a client (i.e., request an item that does not currently own), a vertex
can assume both roles. Moreover, in the location theory literature, two copies of the
same facility can be opened at the same location, in order to increase the capacity
of a site. Instead, in our work a vertex of the graph can host only one copy of the
same facility, as it is reasonable that a node stores only one copy of the same item.

Finding approximate solutions to the problem of multi-commodity capacitated
facility locations, even in its (simpler) traditional formulation, is an open issue and
little is known concerning heuristics that can be effectively implemented in practice.
In our work, we take the following approach: a solution to the multi-commodity
problem is built from the union of the solutions to individual single-commodity
facility location problems. We transform the formulation from multi-commodity
to single-commodity by solving the above problem for each item i (i = 1, . . . , I)
separately4. Then, we denote the subset of commodities hosted at node j by Ij and
its cardinality by Ij, and we adopt two different techniques to verify the capacity
constraints:

3As distance function, we take the Euclidean distance between the nodes.
4A single-commodity facility location problems reduces to the k-median problem when the

number of facilities to be opened, k, is given.
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1. each opened facility (replica node) has a capacity that is allocated to each
commodity individually: this translates into having a separate budget allo-
cated to each commodity (item). The capacity constraints can be written as
uj(i) ≤ cj/Ij , ∀i ∈ Ij, where we equally split the budget cj available to facility
j over all the commodities it hosts. In the following, we name such a technique
split capacity budget;

2. we consider that the capacity of a facility is shared among the commodities it
currently hosts, i.e., each replica node allocates a preset budget that is used to
serve the requests by other nodes. We write the capacity constraints for this
case as:

∑

i∈Ij uj(i) ≤ cj , and we refer to such a technique as shared capacity

budget.

To solve such a problem, we resort to the local search heuristic detailed in [13],
which finds a solution to the capacitated, single-commodity location problem that
is one of the best known approximations to optimal replication and placement.
Hereinafter we term such a heuristic centralized facility location (CFL) algorithm
because it can only be executed in a centralized, synchronous environment. We
consider the CFL algorithm to be a baseline against which we compare the results
obtained by our distributed approach.

Note that existing distributed approximation algorithms that tackle facility lo-
cation problems either require global (or extended) knowledge of the network [13] or
are unpractical [82]. Therefore, in the next section we propose a new approach that
only requires local knowledge, which is acquired with simple measurements, and
adapts to the system dynamics. In addition, our scheme provides load-balancing; it
follows that, even in a static scenario, our distributed algorithm would not converge
to a static configuration in which a fixed set of nodes is selected to host content
replicas. As such, the traditional methods that are used in the literature to study
the convergence properties and the locality gap of local search algorithms cannot be
directly applied, which is the main reason for us to take an experimental perspective
and validate our work through simulation.

3.1.2 Distributed algorithm

Armed with the insights on the problem formulation discussed above, our mechanism
mimics a local search procedure, by allowing replica nodes to execute one of the
following three operations on the content: (1) handover, (2) replicate or (3) drop.
However, unlike the traditional local search procedures, in our mechanism the three
operations yield the solution to the content replication problem iteratively, albeit
asynchronously. Furthermore, in our network system, replicate and handover are
constrained operations: only vertexes that are connected by an edge to the current
vertex hosting a content replica can be selected as possible replica locations. Thus,
our operations are local and replicas can only move by one hop at the time in the
underlying network graph.
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In the following we describe our mechanism in terms of two objectives: content
replication and placement. Indeed, the handover operation amounts to solving the
optimal placement of content replicas, whose number is determined through the
replicate and drop operations. For simplicity, we consider again that all users are
interested in every content i (i = 1, . . . , I) and we fix the time instant, hence we
drop the time dependency from our notation.
Content replication: Let us define the workload of the generic replica node j

for content i, wj(i), as the number of requests for content i served by j during its
storage time. Also, recall that we introduced the value cj as the capacity of node j

and we provided a definition that suited the simplified, static scenario described in
Section 3.1.1. We now adapt the definition of cj to the dynamic scenario at hand,
as the reference volume of data that replica node j is willing to provide during the
time it acts as a replica node, i.e., in a storage time τ . Then, with reference to Eq.
(3.1), we denote by fj =

∑

i∈Ij fj(i) the cost that a node j must bear while acting
as a facility for any content.

Given the load balancing property we wish to achieve across all replica nodes
and the capacity constraints, the total workload for replica node j should equal cj .
Thus, we write fj as:

fj = cj −
∑

i∈Ij
s(i)wj(i) (3.2)

In other words, we let the cost associated with replica node j grow with the gap
between the workload experienced by j and its capacity cj .

Then, during storage time τ , the generic replica node j ∈ R measures the
number of queries it serves, i.e., wj(i) ∀i ∈ Ij. When its storage time expires, the
replica node j computes fj and takes the following decisions: if fj > ε the content
is dropped, if fj < −ε the content is replicated, otherwise the handover operation is
executed (see below). Here, ε is a tolerance value to avoid replication/drop decisions
in case of small changes in the node workload.

The rationale of our mechanism is the following. If fj < −ε, replica node j

presumes that the current number of content replicas in the area is insufficient to
satisfy the current content request workload: hence, the node replicates the content
and hands the copies over to two of its neighbors (one each), following the placement
mechanism described below. The two selected neighbors will act as replica nodes for
the subsequent storage time. Instead, if fj > ε, node j estimates that the current
number of replicas can satisfy a workload that exceeds the total demand: thus, it
drops the content copy. Finally, if the experienced workload is (about) the same as
the reference value, replica node j selects one of its neighbors to which to hand over
the current copy, again according to the mechanism detailed next.
Replica placement: As noted in Section 3.1, given the graph representing the
network topology at a fixed time instant, the placement of R=k replicas can be cast
as a k-median problem. By applying the approximation algorithm in [13], in [27] we
observed that the solution of such a problem for different instances of the topology
graph yields replica placements that are instances of a random variable uniformly
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distributed over the graph. Thus, in a dynamic environment our target is to design
a distributed, lightweight solution that closely approximates a uniform distribution
of the replicas over the network nodes while ensuring load balancing among them.
To this end, we leverage some properties of random walks and devise a mechanism,
called Random-Walk Diffusion (RWD), that drives the “movement” of replicas over
the network.

According to RWD, at the end of its storage time τ , a replica node j randomly
selects another node l to store the content for the following storage period, with
probability pj,l =

1
dj

if l is a neighbor of j, and 0 otherwise, where dj is the cur-
rent number of neighbors of node j. In this way, each replica performs a random
walk over the network, by moving from one node to another at each time step τ .
Thus, we can apply the result stating that in a connected, non-bipartite graph, the
probability of being at a particular node j converges with time to dj/(2|E|) [75].
In other words, if the network topology can be modeled by a regular graph5 with
the above characteristics, the distribution of replicas moving according to a random
walk converges to a stationary distribution, which is uniform over the nodes. In
general, real-world networks yield non-regular graphs. However, when V nodes are
uniformly deployed over the network area and have the same radio range, the node
degree likely has a binomial distribution with parameters (V − 1) and p, with p

being the probability that a link exists between any two nodes [60].
For practical values of p and V in the scenarios under study, we verified that

the node degree distribution is indeed binomial with low variance, i.e., all nodes
have similar degree. It follows that a random walk provides an acceptable uni-
form sampling of the network nodes, hence the replica placement distribution well
approximates the uniform distribution.

A similar result can be obtained also for clustered network topologies, where each
cluster core results to be an expander graph [16]. In this case, a uniform replica
placement over the nodes can be achieved within each of the network clusters, thus
ensuring the desired placement in all areas where the user demand is not negligible.

Finally, we stress that the presence of R replicas in the network corresponds
to R parallel random walks. This reduces by almost a factor R the expected time
to sample all nodes in the network, which is closely related to the time needed to
approximate the stationary distribution by a constant factor [73]. It follows that,
given a generic initial distribution of the replicas in the network, the higher the R,
the more quickly the replica placement approximates a uniform distribution.

3.1.3 Experimental results

This section overviews a selection of the experimental results obtained with a
simulation-based approach. A comprehensive set of results, including various kinds
of mobility models, and the simulation setup is available as a technical report [68].

We organize the main results of our work in several sections that cover the
parameter space we studied. To benchmark our distributed mechanism against the

5A graph is regular if each of its vertices has the same number of neighbors.
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Figure 3.1: Numerical solutions of the optimization problems in terms of number of
replicas (a) and query solving delay (b). In (b), we show the 5%, 25%, 50%, 75%
and 95% percentiles

centralized approach discussed in the introductory part of this work, we implement
the CFL algorithm as follows. Given the network time evolution, we take a
snapshot of the network topology every τ s. For every snapshot, we solve I separate
single-commodity problems derived from Eq. (3.1), under both split and shared
capacity budgets. To do so, we set fj(i) = cj/Ij − uj(i) and fj = cj −

∑

i∈Ij uj(i)
in the case of split and shared capacity budget respectively, with uj(i) = s(i)wj(i).

Benchmarking the replication scheme: First, we study the impact of the
allocation of the node capacity budget. We take a numerical approach and focus on
the CFL algorithm: our objective here is to determine the implications of split or
shared capacity allocations.

The optimal number of replicas per information item, denoted by C∗
i , is obtained

by numerically solving the optimization problem in Def. 1, in both its split and
shared capacity budget versions, and is shown in Fig. 3.1(a). The plot shows that, as
higher budgets allow replica nodes to satisfy larger amounts of requests, increasing
cj reduces the need for replication thus leading to a lower number of replicas in
the network. Using a common budget for all items (i.e., shared capacity budget),
forces replications only when the total workload for all items exceeds the budget.
Conversely, optimization with split capacity budget uses separate budgets for each
content and, thus, results in more frequent violations of such constraints.

Intuitively, more replicas should imply higher chances for queries to be satis-
fied through device-to-device communications. In Fig. 3.1(b) we show the most
important percentiles of content access delay. Contrary to the intuition, our results
indicate that the advantage granted by a high number of replicas under the split
capacity is quite negligible: indeed, the lower number of replicas deployed by the
shared capacity allocation suffices to satisfy most of the requests generated by nodes
in the ad hoc network.

In summary, these first experiments pinpoint that the replication mechanism
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Figure 3.2: Numerical solutions of the optimization problems, and comparison
against our replication scheme: temporal evolution of the number of replicas (a),
and of the χ2 index (b)

with shared capacity constraints is a suitable approach. Beside experimental results,
there are also practical reasons to opt for shared capacity constraints. Indeed, in
the split capacity case, a budget has to be assigned to each item currently stored
by a replica node, which is a quantity that may vary over time. As a consequence,
content replicas may not be suitably handled if the remaining capacity available to
a node is not appropriately re-distributed. Furthermore, it would be unfeasible to
ask a user to select a service budget to allocate to every possible item she will ever
replicate. In the following we will therefore focus on the shared capacity budget
only.

Next, we simulate our distributed replication scheme and compare it to the CFL
algorithm. As shown in Fig. 3.2(a), our distributed algorithm approximates well
the results obtained by solving the optimization problems in a centralized setting:
indeed, the number of replicas Ri generated by our scheme is very close to the
optimal value R∗

i . We then study the similarity between the replica placement
achieved by our technique and that obtained with the CFL algorithm. To do so, we
employ the well-known χ2 goodness-of-fit test on the inter-distance between content
replicas As depicted in Fig. 3.2(b), the χ2 error we obtain is well below the value
(namely, 23.685) needed to accept the null hypothesis that the two distributions are
the same at a 95% confidence level.

Comparison to other approaches: We now consider information items to
be associated to different popularity levels, and compare the performance of our
replication scheme with that of the square-root replication strategy [42]. According
to such a strategy, the allocation percentage for a content i is proportional to the
square root of the total demand per second for that content. In [42], it has been
proved that square-root replication is optimal in terms of number of solved queries.

Fig. 3.3 shows the fraction of the total number of replicas of item i, versus the as-
sociated query rate π(i)V λ, for I = 4 and cj={5, 15, 40} Mbytes. The plot compares
our scheme with: (i) the square-root strategy, (ii) a uniform strategy, which allocates



3.1. Distributed Replication Algorithm 27

0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

Query rate for item i

α(
i)

 

 

Uniform
Proportional
Square root
c

j
=5MB

c
j
=15MB

c
j
=40MB
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the same number of replicas per item, and (iii) a proportional strategy, where the
number of replicas is proportional to the content popularity. Our solution achieves
an allocation in between the square-root and proportional distributions, while it is
far from that obtained under the uniform strategy. This suggests that our replica-
tion mechanism well approximates the optimal replication strategy. In particular,
when cj is higher, i.e., replica nodes are more generous in reserving resources to serve
requests, the allocation tends to follow a proportional distribution. Conversely, in
presence of lower values of cj the allocation better fits the square-root rule.

Since our replication scheme roughly achieves the result obtained by a square-
root allocation, it is reasonable to wonder why a different approach to content repli-
cation is required. First of all, we have different objectives than that of [42]: load-
balancing, for example, requires an additional layer to complement the square root
allocation scheme, which instead we achieve as part of our design. Furthermore, the
distributed version of the replication algorithms proposed in [42] has some limita-
tions that render them less suitable to be deployed in a mobile, wireless environment.
The simple path replication scheme catering to low storage requirements, just like
our scheme, substantially over/undershoots the optimal number of replicas. The
other approaches discussed in [42] are better at converging to an optimal number
of replicas but require the bookkeeping of large amounts of information. Finally,
the design and the evaluation of such algorithms in [42] are performed in a static
wired environment and do not take into account the dynamics typical of a mobile
network, such as that we consider.

To complete the comparative study, we also implement a simple caching scheme
and compare its performance to that obtained with our distributed replication mech-
anism. In summary (details can be found in [68]), an approach based on content
replication achieves smaller content access delays – that is, the time required to fetch
the content, whether from the Internet using the cellular network, or from other



28 Chapter 3. Content Replication in Mobile Wireless Networks

nodes using device-to-device communications – and results in fewer downloads from
the (costly) cellular network.

In conclusion, our scheme clearly emerges as a simple, efficient and perform-
ing alternative to traditional mechanisms: by controlling the replicas number and
placement, it appears to be suitable especially when content popularity is not 100%.
Further experiments, omitted here for the sake of brevity, also show that our algo-
rithm achieves load balancing in a variety of settings, including multiple contents
with variable popularity, and scales well with node density and number of contents,
whereby the effects of scale are negligible both on load balancing and in access
delay.

3.2 Selfish Replication

We now address the problem of content replication in a hybrid wireless network
under the assumption that nodes are not cooperative, i.e., they do not abide to
a specific algorithm when taking decisions to replicate content. Similarly to what
discussed in Section 3.1, we assume a “flash-crowd” scenario, in which users discover a
new content and wish to access it concurrently. As a consequence, access congestion

determines to a large extent the download performance, for both the cellular and
the ad hoc network. To simplify the problem formulation, here we consider nodes
to be interested in a single information object.

The problem of replication (and caching) has received a lot of attention in the
past due to its importance in enhancing performance, availability and reliability
of content access in wireless systems. However, this problem has been addressed
often under the assumption that nodes would cooperate by following a strategy
that aims at optimizing the system performance, regardless of the costs incurred
by each individual node. Our goal is similar to the one described in the seminal
work [39], in that we build a model where nodes are selfish, i.e., they choose whether
to replicate or not some content so as to minimize their own cost. Our work differs
from [39] in how content demand is modeled.

3.2.1 Problem statement

Let I be a set of nodes uniformly deployed on area A = πR2. We consider a single
base station covering the network area, and we denote by r < R the radio range that
nodes use for device-to-device communications. Also, let the information object be
of size equal to L bytes; the object requires f updates per second from the origin
server (in order to obtain a fresh copy) and each update implies the download of U
bytes.

We now formulate the problem as a (simultaneous move) replication game: I is
the set of players, with |I| = I, and Si = {1, 0} is the set of all possible strategies
for player i ∈ I .

Additionally, let si ∈ Si be the strategy of player i, where si = 1 ∨ 0. The array
s = {s1, s2, ..., si, ..., sI} is a strategy profile of the game.
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Furthermore, let C ⊆ I be the set of players whose strategy is to access the
object from the origin server and cache it, that is si = 1,∀i ∈ C, and N ⊆ I = I \ C
the set of players whose strategy is to access a replica object served by another
player, that is si = 0,∀i ∈ N . Finally, let |C| = x and |N | = I − x.

In this game we need to impose C 6= ∅: at least one player has to replicate the
object for otherwise content would not be available to any player. Given a strategy
profile s, the cost incurred by player i is defined as:

Ci(s) = βi1Isi=1 + γi1Isi=0

where βi and γi are the air time costs if i obtains the content through the
cellular network and via device-to-device communication, respectively, and 1Isi is
the indicator function. In this work we focus on access costs, neglecting the energy
cost that a node caching the object experiences when serving other nodes.

We now define precisely the two terms βi and γi. To this end, let us introduce
the following quantities: Rc and Rh are the bit rates offered, respectively, by the
cellular and the ad hoc network; Tc is the time for which node i ∈ C caches the
object; h is the average number of hops required to access the closest cached object,
assuming a uniform distribution of nodes on A and a uniform distribution of caches.

Formally, h =
√

A
xπr2

= R
r

1√
x
.

With these definitions at hand, we can now focus on the two cost terms, βi and
γi:

βi = |C|
L+ TcfU

Rc
= |C|k1 γi =

|N |
√

|C|
k2 , k2 =

R

r

L

Rh

βi distinguishes “installation” and “maintenance” costs and models the congestion
incurred by nodes trying to access the information object at the same time: the bit
rate Rc is inversely proportional to the number of concurrent users accessing a single

3G base station [105]. Similarly, γi represents the air time consumed to access the
current version of the cached object and models the congestion cost created by
simultaneous access of nodes operating in ad hoc mode6.

3.2.2 Results

First, we focus on the analysis of the game by computing the so-called social op-

timum, which is defined, for a given strategy profile, as the total cost incurred by
all players, namely:

C(s) =
∑

i∈C
βi +

∑

i∈N
γi → C(x) = x2k1 +

(I − x)2√
x

k2

The minimum social cost is Ĉ(s) = minsC(s). Our results are quite intuitive:
as the communication capability of nodes increase – for example, when the
transmission radio range increases, or when the data rate for device-to-device

6Our congestion model is more conservative than the capacity scaling law defined in [57].
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communication increases – the number of replicas in the socially-optimal solution
decreases sharply. Instead, when the area in which nodes are deployed increases
(but the number of nodes is constant), the number of content replicas also has to
increase. The interested reader may refer to [80] for more details on the solutions
we obtain by solving the optimization problem.

Next, we focus on a simple two-player game, derive its equilibrium points
and compare their efficiency to the social optimum. The two-player version of the
replication game involves two players whose strategy set is Si = {1, 0} as defined
above. For clarity, we label si = 1 → C and si = 0 → N . Table 3.1 illustrates the
normal form game7.

p2(C) p2(N)

p1(C)
(

1
4k1

, 1
4k1

) (

1
k1
, 1
k2

)

p1(N)
(

1
k2
, 1
k1

)

(0, 0)

Table 3.1: Payoff matrix, πij . pi(x) indicates player i choosing strategy x.

Clearly, strategy N is strictly dominated by strategy C if and only if 4k1 < k2: in
this case, we would have only one Nash Equilibrium (NE), which is (C,C). Instead8,
when 4k1 > k2, we face an anti-coordination game, in which players randomize their
strategies. Indeed, there are two conflicting (in terms of payoffs) NE points, i.e., the
(N,C) and (C,N) strategy profiles. It is well known that mixed-strategies profiles
and expected payoffs πi can be derived as follows. Suppose player 2 chooses C with
probability α, then E[π1(C,α)] =

4−3α
4k1

and E[π1(N,α)] = α
k2

. Hence, α = 4k2
4k1+3k2

.
Due to the symmetry of the game, player 1 chooses C with probability β = α.
Considering the joint mixing probabilities, the expected payoff for both players is
E[π∗

i ] =
4

4k1+3k2
∀i ∈ 1, 2.

It is worth noting that in this anti-coordination game the mixed strategy NE is
inefficient. Indeed, when players can correlate their strategies based on the result
of an observable randomizing device (i.e., a correlated equilibrium), the expected
payoff is E[π̂i] =

k1+k2
2k1k2

∀i ∈ 1, 2. We observe that E[π̂i], which corresponds to the
social optimum, is strictly larger than E[π∗

i ]. This clearly suggests that some cor-
relation among the nodes’ actions should be introduced in order to improve system
performance.

3.2.3 Discussion and open problems

The results above can be extended to an n-player setting, which is an extension to
this work we didn’t pursue further. Instead, our concern is to pur into a practical

7When no player replicates the object, access costs are infinite.
8This is the case that happens in practice, e.g., with the values of the system parameters used

to compute the minimum cost.
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perspective our theoretic findings. We do so by defining two problems that are left
open for the research community to address.

• On the one hand, in the n-player replication game, a player can compute her
best response if the current number x of caches in the network is known. Since
in practice global knowledge cannot be assumed, it is important to study how
far from efficiency the system settles when nodes compute an estimate of x.
Such an estimate can be obtained either through random sampling techniques
based on gossiping, or by exploiting local measurements of the number of
queries received by each node caching the content (as we did in the cooperative
scenario described in detail in Section 3.1). A further open question is to
determine how sensitive to estimation errors the achieved equilibrium is.

• On the other hand, we observe that a correlated equilibrium is impractical
in an asynchronous setting. To address this issue, it is common to allow
communication between players through signaling, that replaces the external
randomization device cited above and is used by a player to notify its strategy
to others. The use of signaling however implies taking into account neighboring
relations among players, as dictated by the underlying communication graph
defined by the network topology.

3.3 Measuring Human Mobility

Characterizing the mobility of users has been the subject of several studies in a
variety of domains, especially in that of wireless, mobile ad hoc networks (MANET)
[26]. For example, the literature on MANET routing is rich in mobility models that
have been designed, analyzed and used for simulation-based performance evaluation
of ad hoc routing schemes [24, 61, 84]. Some of these models have also been heavily
criticized in the literature [107].

In recent years, a new class of problems rised by the delay tolerant network-
ing (DTN) paradigm has encouraged the study of human mobility. For exam-
ple, [29,30,62] conducted several experiments mainly in confined areas and studied
analytical models of human mobility with the goal of assessing the performance
of message forwarding in DTNs. Experimental approaches such as the ones dis-
cussed above, rely on users volunteering to take part in such experiments. Users are
equipped with a wireless device (for example a sensor device, a mobile phone, ...)
running a custom software that records temporal information about their contacts.
Individual measurements are collected, combined and parsed to obtain the temporal
distribution of contact times. Real-life experiments are hindered by several factors,
including logistics, software/hardware failures, scalability and are bound to specific
events (e.g. conferences, public events).

Our contribution in this domain is a novel methodology to capture spatio-
temporal dynamics of user mobility that overcomes most of the limitations of pre-
vious attempts: it is cheap, it requires no logistic organization, it is not bound to a
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specific wireless technology and can potentially scale up to a very large number of
participants. Our measurement approach exploits the tremendous raise in popular-
ity of Networked Virtual Environments (NVEs), wherein thousands of users connect
daily to interact, play, do business and follow university courses just to name a few
potential applications. Here we focus on the SecondLife (SL) “metaverse” [9] which
has recently gained momentum in the on-line community.

Our primary goal is to perform a temporal, spatial and topological analysis of
user interaction in SL. Prior works that attempted the difficult task of measuring
and collecting traces of human mobility and contact opportunities are restricted
by logistic constraints (number of participants to the experiments, duration of the
experiments, failures of hardware devices, wireless technology used). In general,
position information of mobile users is not available, thus a spatial analysis is difficult
to achieve [30]. Some experiments with GPS-enabled devices have been done in the
past [66, 91], but these experiments are limited to outdoor environments.

In the following, we outline the measurement tool we built to achieve our goals,
which is essentially a crawler. Our crawler connects to SL and extracts position
information of all users concurrently connected to a sub-space of the metaverse.

One striking evidence of our results is that they approximately fit real life data,
raising the legitimate question whether measurements taken in a virtual environment
present similar traits to those taken in a real setting. Our methodology allows
performing large experiments at a very low cost and generate data that can be used
in a variety of applications. Although our plan is to use them to perform trace-
driven simulations of communication schemes in delay tolerant networks and their
performance evaluation, our dataset can be used for social science and epidemiology
studies not to mention their value for the design and evaluation of virtual world
architectures.

3.3.1 Crawling Second Life

The task of monitoring user activity in the whole SL metaverse is very complex:
in this work we focus on measurements made on a selected subspace of SL, that
is called a land (or island). In the following we use the terminology target land

to indicate the land we wish to monitor. Lands in SL can be private, public or
conceived as sandboxes and different restrictions apply: for example private lands
forbid the creation and the deployment of objects without prior authorization.

Mining data in a NVE can be approached from different angles. A possible
approach is to create sensor objects so as to mimic the deployment of a sensor
network which is used to capture user activity. However, there are several limitations
intrinsic to this approach that hinder our ultimate goal, which is to collect a large
data set of user mobility patterns. These limitations mostly come from inner design
choices made by the developers of SL to protect from external attackers aiming at
disrupting the system operation. An example of such attacks consists in indefinitely
cloning of a simple object (such as a sphere). Due to the centralized nature of the SL
architecture, which allocates a single physical machine to handle a land, its objects
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and its users, the simple procedure outlined above constitutes a very effective denial
of service attack.

For this work, we adopt a different approach and build a custom SL client soft-
ware (termed a crawler) using libsecondlife [8]. The crawler is able to monitor
the position of every user using a specific feature of libsecondlife that enables
the creation of simple maps of the target land. Measurement data is stored in a
database that can be queried through an interactive web application. The crawler
connects to the SL metaverse as a normal user, thus it is not confined by limitations
imposed by private lands: any accessible land can be monitored in its totality; the
maximum number of users that can be tracked is bounded only by the SL architec-
ture (as of today, roughly concurrent 100 users per land); communication between
the crawler and the database is not limited by SL.

During our experiments, we noted that introducing measurement probes in a
NVE can cause unexpected effects that perturb the normal behavior of users and
hence the measured user mobility patterns. Since our crawler is nothing but a
stripped-down version of the legacy SL client and requires a valid login/password
to connect to the metaverse, it is perceived in the SL space as an avatar, and as
such may attract the attention of other users that try to interact with it: our initial
experiments showed a steady convergence of user movements towards our crawler.
To mitigate this perturbing effect we designed a crawler that mimics the behavior
of a normal user: our crawler randomly moves over the target land and broadcasts
chat messages chosen from a small set of predefined phrases.

3.3.1.1 Measurement methodology

Using the physical coordinates of users connected to a target land, we create snap-
shots of radio networks: given an arbitrary communication range r, a communication
link exists two users vi, vj if their distance is less than r. In the following we use
a temporal sequence of networks extracted from the traces we collected using our
crawler and analyze contact opportunities between users, their spatial distribution
and graph-theoretic properties of their communication network.

A precondition for being able to gather useful data is to select an appropriate
target land and measurement parameters. Choosing an appropriate target land in
the SL metaverse is not an easy task because a large number of lands host very few
users and lands with a large population are usually built to distribute virtual money:
all a user has to do is to sit and wait for a long enough time to earn money (for free).
In this work, we manually selected and analyzed the following lands: Apfel Land,
a german-speaking arena for newbies; Dance Island, a virtual discotheque; Isle of

View, a land in which an event (St. Valentines) was organized. These lands have
been chosen as they are representative of out-door (Apfel Land) and in-door (Dance
Island) environments; the third land represents an example of SL events which
supposedly attract many users. Next, we present results for 24 hours traces: while
the analysis of longer traces yields analogous results to those presented here, long
experiments are sometimes affected by instabilities of libsecondlife under a Linux
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environment and we decided to focus on a set of shorter but stable measurements.
A summary of the traces we analyzed can be defined based on the total number of
unique users and the average number of concurrently logged in users: Isle of View
had 2656 unique visitors with an average of 65 concurrent users, Dance Island had
3347 unique users and 34 concurrent users in average and Apfel Land had 1568 users
and 13 concurrent users in average.

We launched the crawler on the selected target lands and set the time granularity
(intervals at which we take a snapshot of the users’ positions) to τ = 10 sec. We
selected a communication range r to simulate users equipped with WiFi (802.11a at
54 Mbps) device, namely rw = 80 meters. In this work we assume an ideal wireless

channel : radio networks extracted from our traces neglect the presence of obstacles
such as buildings and trees.

3.3.2 Results

We now discuss a selection of the main results of our measurement campaign for three
selected target lands. Here we focus on the analysis of the statistical distribution of
contact opportunities between users, which has been extensively covered by related
work addressing experiments in the “real-world”.

In this work, we used Maximum likelihood estimation (MLE) [40] for fitting our
traces to well-known models of contact-time distributions. The three baseline models
we used are summarized in Table 3.2. We applied MLE to analyze the distribution
of contact times. The CCDF of the contact time CT can be best fit to an exponential

distribution: when r = rb we have that λ = {0.010, 0.003, 0.008} and when r = rw
we have that λ = {0.007, 0.002, 0.004} respectively for ApfelLand, Dance Island and
Isle Of View. MLE applied to our empirical data on inter contact times indicates
that the best fit is the the power-law with cutoff distribution. We observe that the
CCDF of the inter contact time ICT has two phases: a first power-law phase and
an exponential cut-off phase. The values of the coefficients of these distributions
are: α = {0.34, 0.47, 0.42} and λ = {0.00049, 0.00041, 0.00046} respectively for
ApfelLand, Dance Island and Isle Of View, when r = rb and α = {0.46, 0.44, 0.59},
λ = {0.00045, 0.00037, 0.00041} when r = rw.

Table 3.2: Definition of the power-law distribution and other reference statistical
distributions we used for the MLE. For each distribution we give the basic functional
form f(x) and the appropriate normalization constant C.

name f(x) C
power-law x−α (α− 1)xα−1

min

power-law with cutoff x−αe−λx λα−1

Γ(1−α,λxmin)

exponential e−λx λeλxmin

These results are quite surprising: we obtained a statistical distribution of con-
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tact opportunities that mimics what has been obtained for experiments in the real

world [30, 66, 91]. It should be noted, however, that human activity roughly spans
the 12 hours interval, while even the most assiduous user which we were able to
track in our traces spent less than 4 consecutive hours on SL.

For the sake of brevity, there are a number of results that we omit from this
Section: we studied the most important graph-theoretic properties of the radio
networks emerging from contact opportunities among users in our traces, and we
analyzed in more detail the characteristics of user movements in terms of distance
covered during periods of mobility. The interested reader can refer to [69] for a
comprehensive view of our measurement data. In summary, all our results indicate
that the approach described in this Section represents a viable and elegant substitute
to more complicated and costly experiments with real humans.

3.4 Summary

In the line of research presented in this Chapter, we made several contributions,
that can be summarized as follows:

• We revisit traditional Location Theory and propose a distributed mechanism
inspired by local search approximation algorithms (Section 3.1). Our solu-
tion exploits a formulation of a multi-commodity capacitated facility location
problem to compute an approximate solution based on local measurements
only. Through an extensive simulation study, we show that our scheme well
approximates an optimal solution when both network and content dynamics
are considered. Our mechanism achieves load balancing across the network
and scales well with the network size, making it suitable for scenarios in which
access congestion may appear. Furthermore, we compare our content replica-
tion scheme with existing mechanisms, and show under which conditions our
approach yields better performance.

• We drop the (typical) assumption of a cooperative environment and formalize
the problem of selfish replication (Section 3.2). Essentially, we assume users
that operate their mobile devices to be rational and selfish when downloading
content. As such, we model a game in which players are sensitive to content
access delay, which is a function of the congestion level in the network and
study both social optimum and equilibrium solutions for a simple instance (two
players) of the game. The main findings of this approach is that an equilibrium
(yet not efficient) strategy for selfish players is to randomize, in a way that
bears substantial similarity to our distributed replication algorithm presented
for a cooperative setting. Also, several open problems stem from this work,
which require more elaborate equilibrium concepts (in game theoretic terms).

• We introduce a novel methodology to study human mobility and collect data
that can be used in trace-driven experiments for the performance evaluation
of a variety of mechanisms (routing, content distribution, etc...) that operate
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on mobile networks. Our contribution consists in a software component –
called a crawler – that can be used to mine user activity on a popular virtual
world, namely SecondLife. Using our crawler, we launch several measurement
campaigns that allow us to study contact opportunities, network properties
and mobility features of the avatars operated by SecondLife users. Our findings
indicate that avatar mobility and traces thereof represent an efficient and
realistic alternative to complex experiments to study human mobility in the
real-world.
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Introduction

This Chapter covers a selection of our work on the broad topic of on-line data
storage. Similarly to what happened to content distribution for the Internet, the
literature on content storage has followed a cyclic path: it started with a naive,
client-server approach, attempted at solving outstanding issues due to a peer-to-
peer (P2P) architecture, resorted to hybrid architectures (called, peer-assisted), and
finally went back to a client-server approach, with the server-side being represented
by “the Cloud”.

On-line data storage has gained traction in the research community since its first
incarnation, which deals with the design of a peer-to-peer (P2P) application for user
data storage. Simply put, the idea of a P2P storage system is to use edge resources
– such as storage space and bandwidth – available at the fringe of the Internet (that
is end-host machines) to store user data. Due to the intermittent on-line behavior
that characterize peers and because failures are the norm rather than the exception
at such system scales, data availability and durability require special care. Coding
techniques, that inject redundancy in the system, have been at the core of a large
body of research in this domain, with a special focus on advanced techniques to
mitigate bandwidth utilization.
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In this context, the line of work discussed in this Chapter departs substantially
from related work, in several aspects:

• We focus on a particular class of storage applications: data backup. While
bearing some similarities with the storage counterpart, backup applications
have salient characteristic (that we outline later) that make the design of P2P,
hybrid and centralized architectures simpler: data access patterns are sub-
stantially different from typical storage workloads. We exploit this in several
works discussed in this Chapter.

• We show that there are a series of important aspects that drive the behav-
ior of on-line data storage applications that have been largely overlooked in
previous work: namely, we focus on scheduling problems, and on redun-

dancy management. For the former, the common approach in the literature
is that of using random strategies, which we show to be inferior to scheduling
decisions based on a-posteriori knowledge of peer behavior. For the latter, we
show that – in the context of a backup application – it is possible to go beyond
the largely adopted technique of computing redundancy in an off-line manner,
and come up with an on-line approach that lowers resource strain on peers.

• We present a new an hybrid architecture, in which a “Cloud” storage service
(e.g., servers in a data-center) is used as a temporary storage location (simi-
larly to a forward buffer) to store user data, with the goal of improving data
transfers performance with respect to a purely P2P architecture. Ultimately,
data is deleted from the storage service when it is safely stored on remote
peers.

For the sake of brevity, this Chapter omits several other results we obtained when
studying the problem of non-cooperative data placement. This line of work, pre-
sented in [100–102], aims at finding equilibrium strategies when self-interested peers
modulate the quantity (storage space) and quality (peer availability and bandwidth)
of resources dedicated to the system with the aim of maximizing benefits (i.e., the
ability to store their data) and minimizing the costs (i.e., the amount of resources
they offer).

This Chapter also omits a measurement study we did on Wuala [78], a real-life
and widely adopted on-line storage and backup application. In short, the objective
of this recent work is to understand the architectural choices made by a real system,
and explain its evolution from a peer-assisted application to a client-server service.

Before proceeding any further, we now overview the necessary background
information and the application scenario that we use throughout the Chapter.

Background and Application scenario. Similarly to many on-line backup ap-
plications, we assume users (referred to as data owners) to specify one local folder
containing important data to backup. Note that backup data remains available
locally to data owners. This is an important trait that distinguishes backup from
many on-line storage applications, in which data is only stored remotely.
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We consider the problem of long-term storage of large, immutable, and opaque
pieces of data that we term backup objects. Backup objects may be stored on remote
peers, which are inherently unreliable. Peers may join and leave the system at any
time, as part of their short-term on-line behavior: in the literature, this is referred
to as churn. Moreover, peers may crash and possibly abandon the P2P application:
this behavior is generally referred to as peer death. As such, the on-line behavior of
peers must be continuously tracked, since it cannot be determined a priori [18].

The problem of achieving data availability when using peers with an intermit-
tent on-line behavior has received ample attention in the past [17]. In our work,
peers store their data in (encrypted) backup objects of size o. Each object is encoded
in n fragments of a fixed size f which are ready to be placed on remote peers, or
eventually, a storage server. Any k out of n fragments are sufficient to recover the
original data backup. When using optimal erasure coding techniques, k = ⌈o/f⌉.
The redundancy management mechanism determines the redundancy level (or rate)
r = nf/o. In this Chapter, we allow peers to upload s encoded blocks to a storage
server (e.g., in a data-center with high availability), in addition to sending them to
remote peers. Thus, n = s+ p(s).

The number of encoded blocks to upload to remote peers can be derived as
follows. We consider the probability of each peer being on-line as an independent
event with probability a (termed peer availability), and we aim for a data availability
target value t. Therefore, we store on remote peers the number of fragments p(s)

defined as:

p(s) = min

{

x ∈ N

∣

∣

∣

∣

∣

(

x
∑

i=k−s

(

x

i

)

ai(1− a)x−i

)

≥ t

}

(4.1)

The redundancy rate r = (s+p(s))f
o represents the ratio between the quantity of

data stored in the system (remote peers and storage server) and the original size of
unencoded data. Now, suppose that a peer decides to store backup fragments on a
remote server only: in this case, p(s) = 0 and s = k, thus the redundancy factor
r = 1. Instead, assume a peer to store backup data on remote peers only: in this
case s = 0 and p can be derived by the normal approximation to the binomial in
Eq. 4.1 (see for example [17]). We note that, for Eq. 4.1 to hold, encoded fragments
must be stored on distinct remote peers, because otherwise the failure of a single
machine would imply the contemporary loss of many fragments, thereby resulting
in a higher probability of data loss. On the other hand, since the data-center is
considered to be highly available, any number of fragments can be stored on the
data center.

Similarly to data availability, data durability can be achieved by injecting a
sufficient level of redundancy in the system. One key issue to address is to determine
the redundancy level required to make sure data is not lost, despite peer churn. This
problem is called redundancy management. A closely related problem is to deal with
peer deaths, which cause the data redundancy level to drop.

For the sake of clarity, we now explain the operation of a baseline P2P backup
application. We gloss over the details of how data redundancy is achieved and
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discuss the salient phases of the life-time of backup data.
During the backup phase, data owners upload fragments to some selected

remote peers. We assume that any peer can collect a list of remote peers with
available storage space: this can be achieved with known techniques, e.g. a central
coordinator or a decentralized data structure such as a distributed hash table. The
backup phase completes when all n fragments are placed on remote peers.

Once the backup phase is completed, the maintenance phase begins. The
purpose of this phase is to reestablish the desired redundancy level in the system,
that may decrease due to peer deaths: new fragments must be re-injected in the
system. The crux of data maintenance is to determine when the redundancy of the
backup object is too low to allow data recovery and to generate other fragments to
re-balance it. In the event of a peer death, the system may trigger the maintenance
phase immediately (eager repairs) or may wait for a number of fragments to be
tagged as lost before proceeding with the repairs (lazy repairs) [18,45,47]. As such,
it is important to discern unambiguously permanent deaths from the normal on-line
behavior of peers: this is generally achieved by setting a time-out value, Θ, for
long-term peer unavailability.

Note that, as peers hold a local copy of their data, maintenance can be executed
solely by the data owner, or (as often done in storage systems) it can be delegated.
In both cases, it is important to consider the time-frame in which data cannot be
maintained. First, fragments may be lost before a host failure is detected using the
time-out mechanism outlined above. This problem is exacerbated by the availability
pattern of the entity (data owner or other peers) in charge of the maintenance oper-
ation: indeed, host failures cannot be detected during the off-line periods. Second,
data loss can occur during the restore process.

In the unfortunate case of a disk or host crash, the restore phase takes place.
Data owners contact the remote machines holding their fragments, download at least
k of them, and reconstruct the original backup data.

4.1 Scheduling Data Transfers

One of the most appealing characteristics of Peer-to-Peer storage and backup ap-
plications is that user data can be stored at low costs, using excess free capacity
in local hard drives and/or removable devices; these applications require moving
large amounts of data between end-hosts. The current state of technology implies
that amounts of data that can comfortably fit on today’s disk drives require a long
time to be transferred: for example, on an ADSL line having a standard 1Mbps
upload speed, 10 GB of data need almost a day of continuous upload. In addition,
the unreliability of peers require data to be sent with redundancy and the fact that
many nodes only spend a few hours on-line can further extend the amount of time
needed to complete data transfers. Time to transfer has a strong impact over data
durability: as long as data is not uploaded with redundancy to nodes, it risks being
lost in the case of a local disk crash: in realistic scenarios, the most likely cause for
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data loss can be the simple fact that nodes experience a disk crash before completing
the data upload.

The length of data transfers and their impact on data durability motivates the
study of strategies to shorten them. As such, in this Section, we overview a new
model of data transfers which we use to derive optimality results.

When nodes are homogeneous, in terms of bandwidth and connectivity behavior,
scheduling choices are not significant. Conversely, we show that the peer hetero-
geneity observed in real applications makes scheduling matter, since informed data
transfer policies can avoid a situation where uploads would stall. In related work,
peer connectivity patterns are usually taken into account using simple mathemati-
cal modeling, often using memory-less processes where the probability that a node
disconnects is the same for each node and at each time. In this case, the scheduling
problem becomes trivial: since all nodes have the same behavior, choosing one or
the other is indifferent. However, since it is guided by human behavior, churn is not
a completely random process: node availability exhibits regularities such as diurnal
and weekly patterns, and different behavior between users [71]. Trying to create
more complex churn models that attempt to describe all the particularities and reg-
ularities of user behavior would be prohibitive, given the inherent complexities of
human behavior. We instead take a different approach, using availability traces as

input of the scheduling problem.

Next, we formally define the scheduling problem and study optimal scheduling
based on a priori knowledge of peer behavior: this provides a baseline performance
figure against which we compare feasible on-line scheduling choices, which instead
are based on a posteriori knowledge. While the problem may appear difficult to
solve in polynomial time, we show that the optimal scheduling can be calculated
efficiently.

In our work, we also study the problem of scheduling with an experimental ap-
proach. We thus build a discrete, event-based simulator that features, in addition
to the components in charge of data transfers, an implementation of the peer selec-

tion process that is used to select a list of remote peers – which we label peer set

– eligible for storing data. Based on trace-driven simulation results (that we omit
for the sake of space), we conclude that the most important factor influencing the
time needed to complete uploads is the number of nodes present in peer sets: as this
value grows, the time to complete transfers decreases rapidly. This is an important
message to application designers: allowing a small degree of flexibility for the choice
of nodes to adopt in the overlay pays off significantly. In addition, we discover that
congestion has only a moderate impact on the amount of time needed to complete
data transfers, imposing small penalties with respect to cases where a single node is
sending data, mainly due to asymmetric up- and down-links. Finally, we show that
our on-line scheduling heuristics help significantly in reducing data transfer times,
with a decrease in the overhead due to non-optimal scheduling by a factor of around
40% in our experiments.
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Figure 4.1: Example availability traces.

Symbol Meaning in the upload scenario Meaning in the erasure-coded

download scenario

n peer set size number of remote data holders
T number of time-slots number of time-slots
o data object size data object size
di,t data peer i can download in time-

slot t (0 if i is off-line)
data peer i can upload in time-slot t
(0 if off-line)

ut data owner can upload in time-slot
t (0 if owner is off-line)

data owner can download in time-
slot t (0 if off-line)

mi maximum amount of data uploaded
to peer i

data stored on peer i

Table 4.1: A summary of notation used in the scheduling problem.

4.1.1 The Problem

The way scheduling is chosen can obviously impact the amount of time needed to
complete a data transfer. Consider the availability traces in Figure 4.1, where the
data owner has a unitary upload speed per time-slot, and has to upload one data
unit per remote peer – one each to p1, p2 and p3. With an optimal schedule the
owner would send a unit to p2 in the first time-slot, then one to p1 in time-slot t2,
then one to p3 concluding the transfer in time-slot t3. Conversely, if data is sent to
p3 during the first time-slot, in the second time-slot p1 is the only possible choice.
The transfer will have to stall until p2 comes back on-line in time-slot t7.

More generally, a data owner has a peer set of n nodes to which it needs to
upload a data object of size o. We take traces of peer up-times as an input of
our problem, encompassing T time-slots (starting from the beginning of the upload
process) in which peer availability and bandwidth can change; within a single time-
slot the network conditions remain stable. In our model, the time-slot duration is
not constrained to be constant.

We model network bottlenecks as imposed by the upload/download bandwidth
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of peer access links, and we assume that bandwidth can vary between time-slots: we
thus model ut as the amount of data that the owner can upload within time-slot t,
and di,t as the amount of data that peer i can download in the same time-slot t. We
express the fact that nodes are off-line in a time-slot by setting the corresponding
bandwidth to 0.

We impose an additional constraint mi on the maximum data that can be up-
loaded to each peer i. This restriction can be due to both storage capabilities of
nodes and to system design choices (for example, if the data owner is uploading the
result of an erasure coding process, having too much data on the same node could
degrade data availability or durability).

Next, we examine the problem of finding an optimal schedule that minimizes the
time to transfer of a single node. We refer the reader to [99] for a comprehensive
study of the scheduling problem in which we also present an extension to the basic
model presented here, which addresses the problem of “storage congestion” that
arises when multiple peers upload data concurrently. Furthermore, [99] also discusses
how to reformulate the problem for download operations.

The notation we use in the following is summarized in Table 4.1.

Definition 2 The ideal time to transfer (ξ̃) is the minimum number of time-slots

needed to upload the data object considering only the bandwidth of the data owner:

ξ̃ = min

{

t ∈ 1 . . . T :

t
∑

i=1

ui ≥ o

}

.

ξ̃ represents the time to transfer data when uploading to an ideal server, which
is supposed to be always on-line and to have enough bandwidth to saturate the
owner’s up-link. The differences between ξ̃ and time to transfer values observed for
P2P systems are entirely due to the limits of remote nodes and to the inefficiency
of scheduling policies.

Definition 3 A schedule S represents the amount of data sent to each node during

each time-slot. For each peer i and time-slot t, we will denote S(i, t) as the amount

of data sent to peer i during time-slot t. During a time-slot t, a node can send data

concurrently to several peers at once, reflecting the case where a node uploads data

in parallel to several destinations. A schedule has to satisfy the following conditions.

• Upload constraints: ∀t ∈ [1, T ] :
∑n

i=1 S(i, t) ≤ ut.

• Download constraints: ∀i ∈ [1, n] , t ∈ [1, T ] : S(i, t) ≤ di,t

• Storage constraints:∀i ∈ [1, n] :
∑T

t=1 S(i, t) ≤ mi

We denote the set of all schedules as S.
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Definition 4 A schedule S is complete if at least a total amount o of data has been

transmitted:
n
∑

i=1

T
∑

t=1

S(i, t) ≥ o. (4.2)

We denote the set of all complete schedules as CS.

Definition 5 The time to transfer (ξ) of a schedule S is its completion time, i.e.

the last time-slot in which the data owner uploads data:

ξ(S) = max

{

t ∈ [1, T ] :
n
∑

i=1

S(i, t) > 0

}

.

The goal of a scheduling policy is to obtain the shortest possible ξ.

4.1.1.1 Optimal Scheduling

We now assume peer availability traces to be known, and show how to compute
the minimum time it takes to upload data to remote peers. Despite the fact that
finding optimal scheduling may appear computationally very expensive at first sight,
we devise an efficient polynomial-time solution based on a max-flow formulation.

Definition 6 The optimal time to transfer (ξ̊) is the minimum ξ within the set of

all complete schedules CS:

ξ̊ = min {ξ(S) : S ∈ CS} . (4.3)

In the following, we use ξ̊ as a baseline to compute the overhead in time-to-transfer
for a given scheduling policy.

Definition 7 The scheduling overhead for a schedule S is the relative increase in

ξ due to a non-optimal scheduling:

ξ − ξ̊

ξ̊
.

Now, we compute optimal scheduling by solving several instances of the related
problem: “how much data can be transferred within the first t time-slots”? We will
use the following Proposition to relate the two problems.

Proposition 1 Let S be the set of all schedules, and F (t) be the maximum amount

of data that can be uploaded not later than t, that is:

F (t) = max







n
∑

i=1

t
∑

t=1

S(i, t) : S ∈ S ∧ ξ(S) ≤ t







; (4.4)

ξ̊ will be:

ξ̊ = min
{

t ∈ 1 . . . T : F (t) ≥ o
}

. (4.5)
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Figure 4.2: Flow network equivalent to the traces of Figure 4.1.

Proof: Let t1 = ξ̊ and t2 = min
{

t ∈ 1 . . . T : F (t) ≥ o
}

. We show that both
t1 ≥ t2 and t1 ≤ t2 hold.

1. t1 ≥ t2. By Equation 4.3, an S1 ∈ CS exists such that ξ (S1) = t1 and, since
S1 ∈ CS, by Equation 4.2

∑n
i=1

∑T
t=1 S(i, t) ≥ k. The existence of S1 implies

that F (t1) ≥ o (Equation 4.4) and therefore t2 ≤ t1.

2. t1 ≤ t2. By Equation 4.4, an S2 exists such that ξ (S2) = t2 and
∑n

i=1

∑T
t=1 S(i, t) ≥ o. This directly implies that t1 = ξ̊ ≤ t2.

The former Proposition allows us to find ξ̊ by computing different values of F (t)

and by finding the smallest value t such that F
(

t
)

≥ o.

4.1.1.2 Max-flow Formulation

Let us now focus on how to compute F (t). This problem can now be encoded as a
max-flow problem on a network built as follows. First, we create a complete bipartite
directed graph G′ = (V ′, E′) where V ′ = T ∪ P and E′ = T × P; the elements of
T = {ti : i ∈ 1 . . . T} represent time-slots, the elements of P = {pi : i ∈ 1 . . . n}
represent remote peers. Source s and sink t nodes are then added to the graph G′

to create a flow network G = (V,E). The source is connected to all the time-slots
during which the data owner is on-line; all peers are connected to the sink.

The capacities on the edges are defined as follows: each edge from the source s

to time-slot i has capacity ui; each edge between time-slot t and peer i has capacity
di,t; finally, each edge between peer i and the sink has capacity mi.

Since we are interested in maximal flow, we can safely ignore (and remove from
the graph) those edges with capacity 0 (corresponding to nodes that are off-line).
In Figure 4.2, we show the result of encoding the example of Figure 4.1.
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We show that each s→ t network flow represent a schedule, and a maximal flow
represents a schedule transferring the maximal data F (t). In the example of Figure
4.2, the bold edges represent a solution to the maximal flow problem on the first 3
time-slot nodes where an amount of data o = 3 is uploaded, with a flow of 1 per
edge.

A nonzero flow from a time-slot node to a peer node represents the data uploaded
towards that node in the specific time-slot; parallel transfers happen when multiple
outgoing edges from a single time-slot node have nonzero flow. The constraints that
guarantee that the schedule is valid according to Definition 3 are guaranteed by the
edge labels: upload constraints are guaranteed by edges from source to time-slot;
download constraints by edges from time-slots to peers ; storage constraints by edges
from peers to the sink.

4.1.1.3 Computational Complexity

Algorithm 1 Algorithm for finding ξ̊.
l← 1; r ← 1

% We look for a r value with D(r) ≥ o.
% In this cycle, maximum log2 t invocations to D.
while D(r) < o:

l← r; r← 2r

% Now l ≤ t ≤ r; we look for t via binary search.
% Again, maximum log2 t invocations to D.
while l 6= r:

t←
⌊

l+r
2

⌋

if D(t) < o:
l← t

else:
r ← t

return l

As guaranteed by Proposition1, optTTT can be obtained by finding the min-
imum value t such that F (t) ≥ o. The t value can be found by binary search,
requiring O

(

log t
)

calls to the routine computing F as in Algorithm 1; for a flow
network with V nodes and E edges, the max-flow can be computed with time com-

plexity O
(

V E log
(

V 2

E

))

[56]. In our case, when we have n nodes and an optimal

solution of t time-slots, V is O(n+ t) and E is O(nt). The complexity of an instance

of the max-flow algorithm is thus O
(

nt
(

n log n
t
+ t log t

n

))

. Multiplying this by

the O
(

log t
)

times that the max-flow algorithm will need to be called, we obtain a

computational complexity for the whole process of O
(

nt log n
(

n log n
t
+ t log t

n

))

.
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4.1.2 On-line Scheduling Policies

As opposed to the optimal scheduling considered until now, we now move on to
discuss strategies that can can actually be implemented, meaning that a scheduling
decision applied at time t is only dependent on information that is available at time
t. For convenience, we use ai,t as a binary value assuming value 1 if peer i is on-line
at time-slot t: ai,t = 1 if di,t 6= 0, 0 otherwise.

Each of the scheduling policies we introduce in this Section gives a priority value
vi(t) to each node i at time t. The scheduling policy chooses to upload data to the
available node in the peer set with the highest priority value. In case of ties, we
break them by selecting nodes randomly. If the highest-priority node is unavailable
or the upload speed of the data owner is not saturated, further nodes are selected
by descending order of priority.

• Random Scheduling: The simplest scheduling choice, which is most com-
monly used in existing systems, amounts to just choosing a node at random
within the peer set: vi(t) = 0. Since all nodes will be tied in term of priority,
scheduling will be chosen randomly. Random scheduling is extremely cheap
and easy to implement because it is stateless: no information has to be kept
about past node behavior.

• Least Available First: A data transfer can stall if nodes that should receive
the next pieces of data are not available. This strategy is based on assuming
that nodes that have been on-line often in the past will continue to do so in
the future; it thus makes sense to prioritize uploads towards nodes that have
been less available in the past: when only high-availability nodes are on-line,
data stored on them will be less likely to have already reached the maximum
value mi. This scheduling policy observes past availability within a “window
of past behavior” lasting for w time-slots: vi(t) = −

∑t
x=t−w ai,x.

• Slowest First: This is a variant of the least-available-first policy, also taking
into account the download speed of nodes, based on the idea that a node with
slower download speed will complete receiving its maximal amount of data mi

in longer time: vi(t) = −
∑t

x=t−w di,x.

• Last Connected First: If the amount of time that nodes spend on-line is
exponentially distributed, each node has the same probability of going off-line
independently of the amount of time spent on-line until the present. On the
contrary, different distributions are observed in practice. In particular, if nodes
that have been on-line for longer are more likely than others to remain on-
line, it makes sense to prioritize uploads towards nodes that connected most
recently, in order to capitalize on the capability of uploading to them before
they disconnect: vi(t) = max {x ∈ [1, t] : ai,t = 0}.

• Longest Connected First: If, as opposed to what has been discussed
before, the amount of time a node spends on-line tends to be more con-
centrated towards the mean than in an exponential distribution, it makes
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sense to prioritize uploads towards node that got connected least recently:
vi(t) = −max {x ∈ [1, t] : ai,t = 0}.

4.1.3 Results

In this work, we study the performance of various scheduling policies using real
application traces. Besides using realistic up-link/down-link capacities associated
to the peers of our experiments, we extract availability traces (i.e., logon/logoff
events) from the logs of an instant messaging (IM) server that last for a duration of
3 months. The reason why we believe such traces to be representative of the on-line
behavior of peers is that in both IM and on-line storage, users are generally signed
in for as long as their machine is connected to the Internet.

Via simulation, we obtained various insights: for a detailed overview of the com-
plete simulation setup, definition of performance metrics and experimental results
for a variety of parameters, we refer the reader to [99]. Here we discuss our main
findings:

• As the number of nodes in peer sets grows, the time to complete transfers
decreases rapidly. This is an important message to application designers: al-
lowing a small degree of flexibility with respect to the choice of nodes to adopt
in the overlay for storing data pays off significantly.

• A simple scheduling policy such as Least Available First manages to cut around
40% of the scheduling overhead, based on the assumption that nodes that have
been on-line often in the past will continue to do so in the future.

• The overhead with respect to optimal scheduling is very unevenly distributed:
many nodes will barely experience a difference between the optimal schedule
and the one they took in practice, but for a relevant percentage of them there
is the possibility that bad schedule choices will result in much longer data
transfer times.

• When many nodes are uploading data at the same moment, congestion only
has a small impact on transfer completion times.

• The impact of scheduling in the case of downloads is much less significant, due
to the asymmetry of peers’ bandwidth.

The performance obtained by a scheduling algorithm is a consequence of the
predictability of the connectivity patterns of users. If their connections and discon-
nections could be forecast with certainty, there would be a way to devise optimal
scheduling; our simple scheduling policies can be thought of as “guessing” future
node connectivity, and they manage to reduce the time needed to complete trans-
fers.

An important open avenue for research, that we are currently investigating, is
the study of sophisticated techniques to predict user availability, and apply such
knowledge to the scheduling problem.
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4.2 Redundancy Management

As hinted in the introduction to this Chapter, for backup applications, the focus
shifts from data availability to durability, which amounts to guaranteeing that data
is not lost. Furthermore, the requirements for a specialized backup application are
less stringent than those of generic storage in several aspects:

• data backup often involves the bulk transfer of potentially large quantities of
data, both during regular backups and, in the event of data loss, during restore
operations. Therefore, read and write latencies of hours have to be tolerated
by users;

• data owners have access to the original copy of their data (which is stored in
their local hard drives), making it easy to inject additional redundancy in case
data stored remotely is partially lost;

• since data is read only during restore operations, the application does not need
to guarantee that any piece of the original data should be promptly accessible
in any moment, as long as the time needed to restore the whole backup remains
under control.

In this Section, we overview the design of a new redundancy management mech-
anism tailored to backup applications. Simply stated, the problem of redundancy
management amounts to computing the necessary redundancy level to be applied to
backup data to achieve durability. The endeavor of this work is to design a mech-
anism that achieves data durability without requiring high redundancy levels nor
fast mechanisms to detect node failures. Our solution to the problem stems from
the particular data access workload of backup applications: data is written once
and read rarely. The gist of our redundancy management mechanism is that the
redundancy level applied to backup data is computed in an on-line manner. Given
a time window, that accounts for failure detection and data repair delays, and a
system-wide statistic on peer deaths, a peer determines the redundancy rate during
the backup phase. A byproduct of our approach is that, if the system state changes,
then peers can adapt to such dynamics and modify the redundancy level on the fly.

The ability to compute the redundancy level in an on-line manner requires solv-
ing several problems related to coding efficiency and data management: in this Sec-
tion we show how our scheme can be realized in practice, exploiting the properties
of Fountain Coding.

Finally – as we did for other works described in this Chapter – we evaluate
our redundancy management scheme using trace-driven simulations. In this Section
we discuss our main results, which indicate that our approach drastically decreases
strain on peer resources, reducing the storage and bandwidth requirements by a
factor between two and three, as compared to redundancy schemes that use a fixed,
system-wide redundancy factor. This result yields augmented storage capacity for
the system and decreased backup times, at the expense of increased restore times,
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which is a reasonable price to pay if the specific requirements of backup applications
are taken into account.

4.2.1 The problem

Before proceeding with a formal problem statement, we need to clarify the perfor-
mance metrics we are interested in for this work. Overall, we compute the per-
formance of a P2P backup application in terms of the amount of time required to
complete the backup and the restore phases, labeled time to backup (TTB) and time

to restore (TTR).1 Moreover, in the following, we use baseline values for backup and
restore operations which bound both TTB and TTR. We compute such bounds as
follows: let us assume an ideal storage system with unlimited capacity and unin-
terrupted on-line time that backs up user data. In this case, TTB and TTR only
depend on the size of a backup object and on up-link bandwidth and availability
of the data owner. We label these ideal values minTTB and minTTR.2 Formally,
we have that a peer i with upload and download bandwidth ui and di, starting the
backup of an object of size o at time t, completes its backup at time t′, after having
spent o

ui
time on-line. Analogously, i restores a backup object with the same size

at t′′ after having spent o
di

time on-line. Hence, we have that minTTB(i, t) = t′− t

and minTTR(i, t) = t′′ − t. We use these reference values throughout the paper
to compare the relative performance of our P2P application versus that of such an
ideal system.

To complement the problem definition, and with reference to the application
scenario discussed in the Introduction to this Section, we consider a redundancy
management scheme whose objective is to ensure data is not lost in a well-defined
time-window w = Θ + aoff , where aoff is the (largest) transient off-line period of
the entity in charge of data maintenance. For example, if the data owner executes
data maintenance: first, it needs to be on-line to generate new fragments and upload
them, and second, the timeout Θ has to be expired.

Our objective is to design a redundancy management mechanism to achieve data
durability: in practice, data can be considered as durable if the probability to lose
it, due to the permanent failure of hosts in the system, is negligible. Hence, the
problem of designing a system that guarantees data durability can be approached
under different angles.

As noted in previous works [46, 86], data availability implies data durability: a
system that injects sufficient redundancy for data to be available at any time, cou-
pled with maintenance mechanisms, automatically achieves data durability. These
solutions are, however, too expensive in our scenario: the amount of redundancy
needed to guarantee availability is much higher than what needed to obtain dura-
bility.

1TTB and TTR are clearly related to the time to transfer ξ, discussed in Section 4.1. Here we

change notation to explicitly take into account up-link and down-link data transfers.
2
minTTB and minTTR are clearly related to the ideal time to transfer ξ̂ presented in Section 4.1.

Here we change, again, to account for ideal up-link and down-link data transfers.
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Instead of using high redundancy, data durability can also be achieved with
efficient maintenance techniques. For example, in a data-center, each host is contin-
uously monitored: based on statistics such as the mean time to failure of machines
and their components, it is possible to store data with very little redundancy and
rely on system monitoring to detect and react immediately to host failures. Failed
machines are replaced and data is rapidly repaired due to the dedicated and over-
dimensioned nature of data-center networks. Unfortunately, this approach is not
feasible in a P2P setting. First, the interplay of transient and permanent failures
makes failure detection a difficult task. Since it is difficult to discern deaths from
the ordinary on-line behavior of peers, the detection of permanent failures requires
a delay during which data may be lost. Furthermore, data maintenance is not im-
mediate: in a P2P application deployed on the Internet, bandwidth scarceness and
peer churn make the repair operation slow.

In summary: on the one hand durability could be achieved with high data redun-
dancy, but the cost in terms of resources required by peers would be overwhelming.
On the other hand, with little redundancy, durability could be achieved with timely
detection of host failures and fast repairs, which are not realistic in a P2P setting.

The endeavor of this work is to design a redundancy management mechanism
that achieves data durability without requiring high redundancy levels nor fast fail-
ure detection and repair mechanisms. Our solution to the problem stems from the
particular data access workload of backup applications: data is written once, during
backup, and read (hopefully) rarely, during restores. Hence, we design a mechanism
that injects only the data redundancy level required to compensate failure detection
and data repair delays. That is, we define data durability as follows.

Definition 8 Data durability d is the probability to be able to access data after a

time window t, during which no maintenance operations can be executed.

Definition 9 The time window t is defined as t = w + TTR, where w accounts

for failure detection delays and TTR is the time required to download a number of

fragments sufficient to recover the original data.

Let’s recall that w depends on whether the maintenance is executed by the data
owner or is delegated, and can be thought of a parameter of our scheme.

The goal of our redundancy management mechanism is to determine the data
redundancy that achieves a target data durability: we proceed as follows. A peer
with n fragments placed on remote peers could lose its data if more than n − k of
them would get lost as well within the time window t. The data redundancy required
to avoid this event, is r = n/k. Now, let us assume peer deaths to be memoryless
events, with constant probability for any peer and at any time. Peer lifetimes are
exponentially distributed stochastic variables with a parametric average τ . Hence,
the probability for a peer to be alive after a time t is e−t/τ . Assuming death events
are independent, data durability writes as:
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d =

n
∑

i=k

(

n

i

)

(

e−t/τ
)i (

1− e−t/τ
)n−i

. (4.6)

Eq. 4.6 depends on t which, in turn, is a function of TTR. However, peers cannot
readily compute their TTR, as this quantity depends on the characteristics of remote
peers hosting their fragments. We thus propose to use the following heuristic as a
method to estimate the TTR. Suppose peer p0 is computing an estimate of its TTR.
In the event of a crash, we assume p0 to remain on-line during the whole restore
process. In such a case, assuming no network bottlenecks, its TTR can be bounded
for two reasons: i) the download bandwidth D0 of peer p0 is the bottleneck; ii) the
upload rate of remote peers holding p0’s data is the bottleneck. Let us focus on
the second case: we define the expected upload rate µi of a generic remote peer pi
holding a backup fragment of p0 as the product of the availability ai of peer pi and
its upload bandwidth, that is µi = uiai.

Peer p0 needs to download at least k fragments to fully recover a backup object.
Let us assume these k fragments are served by the k remote peers with the highest
expected upload rate µi. In this case, the “bottleneck” is the k-th peer with the
lowest expected upload rate µk. Then, an estimation of TTR, that we label eTTR,
can be obtained as follows:

eTTR = max

(

o

D0
,

o

kµk

)

. (4.7)

We now set off to describe how our redundancy management scheme works in
practice: the redundancy level applied to backup data is computed by the combina-
tion of Eq. 4.6 and Eq. 4.7. Let us assume, for the sake of simplicity, the presence of
a central coordinator that performs membership management of the P2P network:
the coordinator keeps track of users subscribed to the application, along with short-
term measurements of their availability, their (application-level) up-link capacity
and the average death rate τ in the system. While a decentralized approach to
membership management and system monitoring is an appealing research subject,
it is common practice (e.g., Wuala3) to rely on a centralized infrastructure and a
simple heartbeat mechanism.

During a backup operation, peers query the coordinator to obtain remote hosts
that can be used to store fragments, along with their availability. A peer constructs a
backup object, and subsequently uploads k fragments to distinct, randomly selected
available remote hosts. Then the peer continues to inject redundancy in the system,
by sending additional fragments to randomly selected available peers, until a stop
condition is met. Every time one (or more) new fragment is uploaded, the peer
computes d and eTTR: the stop condition is met if d ≥ σ1 and eTTR ≤ σ2.
While selecting an appropriate σ1 is trivial, in the following we define σ2 as σ2 =

α ·minTTR, where α is a parameter that specifies the degradation of TTR with
respect to an ideal system, tolerated by users.

3http://www.wuala.com
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We now discuss in details the influence of the two stop conditions on the behavior
of our mechanism. Given Eq. 4.6, we study the impact of the ratio w+eTTR

τ :

• τ ≫ w + eTTR: this case is representative of a “mature” P2P application in
which the dominant factor that characterizes peer deaths are permanent host
failures, rather than users abandoning the system. Hence, the exponential
in Eq. 4.6 is close to 1, which implies that the target durability σ1 can be
achieved with a small n.

As such, the condition on eTTR ≤ σ2 prevails on d ≥ σ1 in determining the
redundancy level to apply to backup data. This means that the accuracy of
the estimate eTTR plays an important role in guaranteeing acceptable restore
times; instead, errors on eTTR have no impact on data durability.

• τ ∼ w + eTTR: this case is representative of a P2P application in the early
stages of its deployment, where the abandon rate of users is crucial in determin-
ing the death rate. In this case, the exponential in Eq. 4.6 can be arbitrarily
small, which implies that n ≫ k, i.e., the target durability d requires higher
data redundancy.

In this case, the condition d ≥ σ1 prevails on eTTR ≤ σ2. Hence, estimation
errors on the restore times may have an impact on data durability: e.g., un-
derestimating the TTR may cause n to be too small to guarantee the target
σ1.

In summary, the key idea of our redundancy management mechanism is that the
redundancy level applied to backup data is computed in an on-line manner, during
the backup phase. This comes in sharp contrast to computing the redundancy
level in an off-line manner, solely based on system-wide statistics, that characterize
previous approaches to redundancy management.

A by-product of our approach is that our mechanism can adapt the redundancy
rate r each peer applies to its data based on system dynamics. Now, we must
prove that the system reaches a stable state: system dynamics must not bring the
redundancy mechanism to oscillate around r. Based on Eq. 4.6 and Eq. 4.7, we face a
retroactive system in which a feedback loop exists on the durability d. Given a target
durability d, a system-wide average death rate τ and a time window t = w+ eTTR,
we can derive r. The problem is that eTTR depends on the short-term behavior of
peers as well as the redundancy rate r.

First, we study how eTTR and d vary as a function of the redundancy rate r.

Proposition 2 eTTR is a non-increasing function in r.

Sketch of the proof: Recall that r = nf
o . Let us assume a peer p0 has the following

ranked list of remote peers: {µ1, µ2, µ3, ..., µk}, where, without loss of generality,
µi < µj ∀i < j. If r increases, then n increases: new fragments must be stored on
new remote peers. For simplicity, assume a single fragment is to be placed on peer
pq. Two cases can happen: (i) µq > µk; in this case, eTTR remains unvaried, since
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pq is “slower” than the k-th peer used to compute eTTR; (ii) µq < µk; in this case,
pq “ejects” the current k-th peer from the ranked list defined above. As such, eTTR
can only decrease. Note that eTTR may not reach the stop condition σ2 if the
parameter α is not appropriately chosen: simply stated, a plateau value of eTTR
exists when placing fragments on all peers in the network.

Proposition 3 d is an increasing function in r.

Sketch of the proof: Eq. 4.6 is a composite function of eTTR. Hence, by increasing
r, new fragments have to be placed on remote peers and it is not guaranteed, in
general, that this contributes to decrease d. However, thanks to Proposition 2,
eTTR is non-decreasing in r, hence t = w + eTTR is non decreasing in r. As a
consequence, d is an increasing function in r.

We can now state the following Proposition:

Proposition 4 The redundancy management mechanism presented in this section

is stable.

Sketch of the proof: By design, our redundancy mechanism shall only increase r.
Now, Proposition 2 states that increasing r yields lower values of eTTR, hence,
eventually, the system either arrives at the stop condition eTTR ≤ σ2, when α

is chosen appropriately, or it reaches the plateau defined above. Similarly, by
Proposition 3, increasing the redundancy in the system implies that d grows
asymptotically to 1, hence the system eventually reaches the stop condition d ≥ σ1.

It is natural to question why in Proposition 4 we omit the possibility of removing
fragments from remote peers if r is too high. Let us consider such an operation: one
possibility would be to drop a remote fragment at random. This operation would
be unstable: indeed, for example, deleting a fragment from the “fastest” peer in the
ranked list defined above would increase eTTR, decrease d, which as a consequence
might require to re-inject a fragment. Instead, we could delete fragments starting
from the “slowest” peer: in this case, the drop operation would be stable, but the
storage load in the system may eventually become concentrated on fast peers only.
Moreover, avoiding deletions can spare maintenance operations in the future should
one or more of the remaining fragments on remote peers be lost. Due to these
reasons, in this work we do not allow fragments to be dropped.

4.2.2 Coding and Data Management

With the redundancy management mechanism described above, the redundancy
level applied to backup data is computed in an on-line manner. Instead, the redun-
dancy rate used in most related work is usually computed off-line, given sufficiently
representative statistics on the system, including transient and non-transient fail-
ures. These system-wide statistics are used to compute a unique redundancy rate
that every peer will use. Instead, our approach requires each peer to compute an
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individual redundancy level: the time window t is a function of eTTR, which is
different for every peer. In this Section, we study the practical implications that
stem from adopting an on-line approach to redundancy management.

We argue that Fountain Codes [76] are a natural choice for our use case, be-
cause of their unique characteristics. With Fountain Codes, the generation of any
fragment is independent from other redundant fragments (on-the-fly property) and
the number of fragments that can be generated from the original data is potentially
infinite (rateless property). Fountain Codes can be readily applied to the our mech-
anism: as long as the conditions on eTTR and d are not met, the encoder continues
to generate new unique fragments on the fly. When the stop condition is reached,
the encoding process terminates. Moreover, in case system dynamics trigger the gen-
eration of new encoded fragments (e.g., because host availability decreases), these
can be simply generated as needed, with the same procedure described above.

Coding techniques, including Fountain Coding, split the original data in blocks

and encode each one separately. Blocks are seen as a sequence of symbols and
encoded in a set of codewords. It is important to note, here, that the data transfer
unit – in our terminology, a fragment – can contain one or more codewords. In
particular, with Fountain Coding it is advisable to use rather small codewords,
resulting in fragments containing a large number of them.

Note also that Fountain-encoded codewords are statistically “interchangeable”:
any codeword can be used to reconstruct the original data and any codeword can
be replaced by any newly generated codeword. As a consequence, Fountain Codes
also benefit the maintenance operation: indeed, peers need not track of the exact
set of codewords to replace, which results in simplified book-keeping operations.

In this context, we note that an appealing characteristic of Fountain Codes is that
the block size is not constrained : as opposed to alternative coding algorithms, the
block size is not imposed by the “mathematical” construction of the coding algorithm
itself, and can be defined to accommodate the characteristics of the backup data.
Indeed, in addition to efficiency and complexity considerations, we note that the
block size can be set as a function of the rate at which users generate backup data.

A shortcoming of Fountain Codes is that they are not optimal, in the sense that
the amount of encoded data necessary to perform a restore is slightly larger than
the size of the original backup object. There is a trade-off between this coding inef-
ficiency and the computational requirements of the coding scheme, which depends
on number of symbols per block. In recent years much effort has been spent in
improving the performance of Fountain Codes to this respect. A possibility is to use
a sliding-windowing approach [21, 28], which can increase coding efficiency whilst
maintaining smaller block size. This approach “virtually” increases the encoding
block by allowing the overlap of two or more subsequent coding blocks (referred as
“windows”). The block overlap is a design parameter that impacts the performance
of the code and its value can be decided a priori or according to customized coding
strategies. For example, a classic LT code block of 40,000 symbols requires a re-
dundancy factor of 1.07 to be correctly decoded with probability 0.9, whilst using a
sliding-window approach (with overlap of 87.5%) the redundancy drops to 1.01 [21].
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We remark that we have implemented a library in C (with Python wrappers)
implementing LT codes [76] and including the sliding-window approach described
above. This library is a core component of a prototype P2P backup application that
we built.

4.2.3 Results

We now discuss the main findings of our experiments, that we obtained with a
trace-driven system simulation. A comprehensive presentation of all our results is
available in [99]. Our focus is to study the time required to backup and restore user
data and perform a comparative analysis of the results achieved by a system using
our redundancy management scheme and the traditional approach used for storage
applications. For the latter case, we implement a technique in which the coding rate
is set once and for all based on a system-wide average of host availability.

Note that, for the purpose of our study, it is not necessary to implement in detail
a coding mechanisms: all we need to know for the evaluation of transfer times is the
number of fragments each peer has to upload during the backup operation.

As we did for the Scheduling problem, we use traces as input to our simula-
tor that cover both the on-line behavior of peers and their up-link and down-link
capacities. Instead, long-term failures and the events of peers abandoning the ap-
plications, which constitute the peer deaths, follow a simple model driven by the
parameter τ , as explained above. Due to the lack of traces that represent the real-
istic “data production rate” of Internet users, in this work we confine our attention
to a homogeneous setting: each user has an individual backup object of the same
size.

Overall, our experiments show that, in a realistic setting, a redundancy that
caters to data durability can be less than half of what is needed to guarantee avail-
ability. This results in a system with a storage capacity that is more than doubled,
and backup operations that are much faster (up to a factor of 4) than on a backup
system based on traditional redundancy management techniques. This latter prop-
erty is particularly desirable since, in most of the cases, peers suffering data loss
were those that could not complete the backup before crashing.

Our results also pinpoint that the price to pay for efficient backup operations is
a decreased (but controlled) performance of restore operations. We argue that this
is a reasonable penalty, considering that all peers in the system would benefit from
backup efficiency, while only those peers suffering from a failure would have to bear
longer restore times.

Finally, our results cover in detail data loss events. We find that such events
are practically negligible for a mature P2P application in which permanent host
failures dominate peer deaths. We also show the limitations of our technique for a
system characterized by a high application-level churn, which is typical of new P2P
applications that must conquer user trust.
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4.3 A Peer-Assisted Architecture

Currently, a widely used approach to the design of applications for on-line data
storage heavily relies on cloud storage systems (e.g., Dropbox [5]) which are used
to transparently synchronize, when machines are connected to the Internet, the
local copy of data with a remote one residing in a data-center. The success of
this approach is undeniable: Dropbox passed in 2012 the milestone of 20 million
registered users. However, even if they are undeniably useful, these applications are
not free from shortcomings. User data is outsourced to a single company, raising
issues about data confidentiality and risk of data loss (the case of Carbonite is
emblematic [104]); indeed, companies offering a storage service do not generally
offer formal guarantees about their data availability and reliability.

The most significant limitation of current on-line backup applications, though, is
cost: bandwidth and storage are expensive, resulting in companies not being able to
offer for free more than few gigabytes of storage space. This trend will reasonably
hold in the future since data-center costs are largely due to energy (power and
cooling) and personnel costs rather than hardware costs [12].4

In this scenario, it is tempting to think that a pure peer-to-peer architecture
would be an ideal solution to eliminate the costs of a cloud-based backup application.
However, our work reveals that there are frequent cases in which the resources that
peers contribute to the system are simply not sufficient to guarantee that all users
will be able to complete their backups in a reasonable amount of time, if ever.

In this Section, we make the case for an hybrid approach that we call peer-
assisted: storage resources contributed by peers and sold by data-centers coexist.
We focus on two key elements of such a system, data placement and bandwidth

allocation, and study their impact on performance measured by the time required
to complete a backup and a restore operation and the end-users’ costs.

The main contributions of this work are summarized in the following.

• We show that, by using adequate bandwidth allocation policies in which stor-
age space at a cloud provider is only used temporarily, a peer-assisted backup
application can achieve performance comparable to traditional client-server
architectures with substantial cost savings.

• We explore the impact of data placement policies on system performance and
fairness, and conclude that pure peer-to-peer systems may work only in partic-
ular settings and that fairness (in terms of resources obtained and contributed
to the system) has a price that we measure by the monetary cost supported
by end-users.

• We evaluate the effects of skewed storage demand and resource contribution,

4As we will see in the Summary, a recent measurement work we did on a well-known on-

line storage system indicates that such costs are instead rapidly sinking. This has important

consequences on the design of storage applications, which are now all shifting to a client-server

approach.
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and conclude that the system architecture we propose copes well with peer
heterogeneity.

• We evaluate the effects of the system scale and show that a peer-assisted
backup application imposes a limited load on storage servers even when the
number of peers in the system grows.

• We show that state-of-the art coding techniques used to ensure data avail-
ability at any point in a peer’s life-time impose high data redundancy factors,
which can be lowered without affecting in a sensible way the ability of peers
to restore their data in case of a failure.

4.3.1 System Overview

We now present the design of our peer-assisted backup application, and focus on
bandwidth allocation and data placement problems.

Assumptions: In this work we build upon the approach taken by Dropbox [5],
and assume users to specify one or more local folders containing important data
to backup. We also assume that data selected for backup is available locally to a
peer. This is an important trait that distinguishes backup from storage applications,
in which data is only stored remotely. As a consequence, data maintenance, i.e.,
making sure that a sufficient number of data fragments are available at any point
in time and reacting by generating new fragments when remote peers fail or leave,
is greatly simplified.

We assume peers to contribute with non-negligible storage capacity to the sys-
tem, with ADSL-like bandwidth capacity, and several hours of continuous uptime
per day. As we show in our results, nodes contributing with too little resources
either exact a high toll in terms of storage capacity of other peers or, when incen-
tive mechanisms are in place, they are not able to sustain by themselves a working
system and require the presence of server-based storage.

In this work, we assume the data-center hosting the storage service to offer ideal
reliability and availability guarantees and to charge end-users for bandwidth and
storage.

Furthermore, we assume the presence of a centralized component, similar in
nature to that of the “tracker” in the BitTorrent terminology. The Tracker5 is in
charge of membership management, i.e., it maintains a list of peers subscribed to
the backup application. Hence, the tracker can bootstrap a new peer with a list of
other peers susceptible to store her backup data. The Tracker also implements an
additional component used to monitor the on-line behavior of a peer: the list of
peers in the system is enriched by a measure of the fraction of time a given peer is
on-line.

5In practice, a tracker can be easily distributed using a DHT approach.
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4.3.1.1 Bandwidth Allocation

In this work, we target typical users that connect to the Internet through ADSL:
upload bandwidth is a scarce resource that calls for bandwidth allocation policies
to optimize its usage. Upload capacity is used to back up local data, for data
maintenance and for serving remote requests for data restore.

In our system, a bandwidth scheduler is triggered at regular intervals of time.
Restore slots are given the highest priority to ensure that crashed peers are able
to recover their data as soon as possible. Backup slots are treated as follows. By
default, we employ an opportunistic allocation that prioritizes uploads to on-line
peers rather to the storage server, with the goal of saving on storage cost. When
multiple slots that satisfy this constraint are available, we prioritize pending frag-
ment uploads that are closest to completion. As an alternative, we also study the
effects of a pessimistic allocation aiming at minimizing the time to backup data: in
this case, all the upload slots are devoted to send backup fragments to a storage
server.

Since remote peers exhibit an intermittent on-line behavior, our bandwidth al-
location aims at completing as soon as possible the transfer of data fragments to
remote peers (both in restore and backup operations). Hence, we dedicate the
whole6 capacity to a single upload slot; if a single data transfer does not saturate
the upload bandwidth and the backup operation is not finished, the surplus is used
to transfer backup fragments to the storage server.

A data backup operation is successful when s fragments have been uploaded to
the storage server and p(s) fragments, as defined in Eq. 4.1, have been uploaded to
remote peers, ensuring the required target data availability. For example, assume
k = 32 original blocks of which s = 15 are stored on the storage server, and x = 20

encoded blocks are currently stored on remote peers. If x ≥ p(s), the backup
operation is considered successful. Otherwise a new backup fragment is uploaded
to a remote peer or to the storage server: in the first case, the number of encoded
blocks becomes x = 21; in the second case, the number of original blocks stored on
the server becomes s = 16, resulting in a lower value for p(s). This process continues
until x reaches p(s).

Since long-term storage on a server is costly, we introduce an optimization phase

that begins after a successful backup: peers attempt to offload the storage server
by continuing to upload additional encoded blocks to remote peers. Storage servers
are used as a temporary storage to meet the availability target as soon as possible.
Once the number of additional encoded blocks stored on remote peers reaches the
p(s) value of Eq. 4.1, the used storage space on the server gets gradually reclaimed.
In practice, during the optimization phase a random backup fragment stored on the
server is flagged for deletion; subsequently, a peer uploads one encoded block to
a remote peer and checks if the number of remotely-stored fragments x is at least
p(s− 1). If this condition is satisfied, the original block marked for deletion can be

6In practice, to use the full nominal rate of the up-link, one must also consider some under-

utilization introduced by TCP’s congestion control mechanism.
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safely removed from the server, otherwise the upload of encoded blocks to remote
peers continues until x reaches p(s− 1).

Data maintenance operations work as follows: once the local peer detects a
remote peer failure, the number of remotely stored fragments x has become lower
than p(s). This is equivalent to a situation where the backup is not complete,
and handled according to the upload bandwidth allocation policy. When using
the opportunistic strategy, a new backup fragment is generated locally and is re-
scheduled to be uploaded to a (possibly different) remote peer, or to the remote
server if no remote peer is available. With the pessimistic strategy, a new fragment
gets transferred immediately to the storage center, and possibly reclaimed afterward
during the optimization phase.

Download bandwidth allocation depends on whether data fragments are down-
loaded from the storage server (i.e., during restore operations) or from remote peers.
In our work we assume that restoring one or more fragments from a storage server
saturates the down-link of a peer. When data fragments are downloaded from re-
mote peers we avoid over-partitioning the down-link of a peer by imposing a limit
on the number of parallel connections: as a consequence the risk of very slow data
transfers is mitigated.

4.3.1.2 The Data Placement Problem

Data placement amounts to the problem of selecting the remote location that will
store backup fragments. In many P2P storage systems, data fragments are randomly
placed on remote peers using a DHT-based mechanism. Since our focus is on backup
applications, a look-up infrastructure is not needed. Indeed, a restore operation
requires locating a sufficient number of fragments to obtain the original data, hence
the only information a peer needs is the list of remote peers currently storing backup
fragments. This information is provided by the Tracker.

In our work, we study the impact on system performance of two data placement
policies:

• Random: backup fragments are placed on random remote peers with enough
available space and that are not already storing another backup fragment for
the same peer.

• Symmetric Selective: peers adopt a “tit-for-tat”-like policy and accept to store
a (single) fragment for a remote peer only if reciprocity is satisfied. In addition,
peers are partitioned into “clusters” depending on their on-line behavior. Peers
upload backup fragments exclusively to remote peers within the same cluster.

When the Symmetric Selective policy is used, data availability is computed using
a modified Eq. 4.1: the average on-line availability of peers is computed for each
cluster. Clustering based on the on-line availability of a peer is performed by the
Tracker, which constantly monitors the intermittent behavior of the subscribers of
the backup application.
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4.3.2 Results
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Figure 4.3: General overview of the performance of three approaches to on-line
backup applications. A peer-assisted design approaches the performance of a server-
based solution and achieves small long-term storage costs.

Fig. 4.3 overviews the performance of three alternative approaches to on-line
backup applications. We compare a legacy client-server application where users store
their data solely on a storage server (labeled DC, which stands for data-center), a
P2P application in which the only storage resources available are those contributed
by the peers (labeled P2P), and the peer-assisted backup system we discuss in this
work (labeled PA). We include both the opportunistic and the pessimistic allocation
policy, and use random data placement.

Fig. 4.3(a) illustrates the cumulative distribution function (CDF) of TTB val-
ues. Clearly, the minimum TTB is achieved by the DC application. Indeed, the
redundancy factor is r = 1, hence only k backup fragments are uploaded to a cen-
tral server, which is always available and has infinite inbound bandwidth. Note
that also the peer-assisted application with pessimistic allocation (PA-pessimistic)
achieves a minimum TTB for the simple reason that, initially, all original backup
fragments are uploaded to the storage server (the line for the two cases coincide in
Fig. 4.3(a)).

The peer-assisted application with opportunistic allocation (PA-opportunistic)
achieves longer times to backup. Indeed, s+x(s) > k backup fragments are uploaded
to remote peers to cope with their on-line behavior. Recall that s is the number
of original blocks initially uploaded to the central server, before the optimization
phase begins.

The P2P application obtains the worst results in terms of TTB. More than 15%
of peers cannot complete the backup operation, within the simulation time. The
very large TTB values are due to two reasons. Firstly, the redundancy factor that
meets the target data availability is large and so is the amount of (redundant) backup
data to be uploaded to remote peers. Secondly, the intermittent on-line behavior of
peers may interrupt data uploads: the bandwidth scheduler enters a time-out phase
when no on-line remote peer is available to receive data.
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Fig. 4.3(b) depicts the storage costs expressed as a time-series of the aggregate
amount of data located in the storage server7. The area underlying the curves, mul-
tiplied by monetary costs, and normalized by the simulation time, is an indication
of the aggregate monetary costs end-users must support.

We observe that in the DC application, the amount of storage requested on the
data-center quickly reaches the maximum value. In the PA application, the cost
grows as peers upload their fragments to the storage server to complete their back-
ups, and gradually diminishes during the optimization phase. Lower TTB values in
the PA-pessimistic case are counterbalanced by higher aggregate costs on the data-
center. On the long run, however, the storage load on the server is very low and
settles to the same value for both opportunistic and pessimistic allocation. Storage
costs do not settle to zero because of the maintenance operations due to peer deaths.

Finally, Fig. 4.3(c) shows the CDF of the TTR metric. We observe that the
TTR is much lower than the TTB in all different backup applications. Again, the
minimum TTB is achieved in the DC case since the storage server is always on-line
and the down-link capacity of a peer is fully utilized. While retrieving data stored
on remote peers entails a longer TTR, this quantity remains well within a day in
the majority of cases.

Now, we can draw a first important conclusion: by using adequate allocation
policies in which a storage server is only used temporarily, a peer-assisted backup
application can achieve performance comparable to traditional client-server archi-
tectures at much lower costs. Our results also show that a P2P application, despite
being free of charge, can meet a reasonable performance only for a small fraction of
peers.
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(b) TTB with no peer deaths.
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Figure 4.4: System performance with random data placement, in terms of median
values of TTB and storage load on peers, grouped by availability classes. Note the
impact of maintenance traffic due to peer deaths and the uneven distribution of
storage load on peers.

Data Placement and Cost of Fairness: We now focus on the impact of the data
placement policy on performance, and compare the DC, PA and P2P backup appli-

7Storage costs for the P2P application are zero, hence we do not report them on the figure.
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cations. The DC case is shown for reference, since backup fragments are constrained
to be stored on the storage server.

First, we study the random data placement strategy. Although remote peers are
randomly selected, we show results by the availability class of a peer, i.e., peers are
grouped depending on their on-line behavior.

Fig. 4.4(a) and Fig. 4.4(b) represent the median TTB as a function of peer avail-
ability class, with and without peer deaths (because of disk crashes) respectively.
Clearly, TTB is correlated to the availability class: higher on-line times entail lower
TTB. Comparing the case with and without peer deaths reveals the sensitivity of
the P2P approach to data maintenance traffic. Instead, the PA application tolerates
well peer deaths because the storage server helps in speeding up repairs.

Fig. 4.4(c) shows the amount of data stored by peers: for each availability class,
the left box-plot is for the PA case and the right box-plot is for the P2P case.
Random data placement introduces unfairness: indeed, peers with a larger on-line
time are more likely to be selected as remote locations to store backup fragments
and their excess capacity is exploited by peers with low availability. This result
motivates the adoption of the symmetric selective data placement policy, whose
goal is to impose system fairness.

Fig. 4.5(a) shows the CDF of the TTB for PA and P2P applications. For the
PA application, the TTB achieved by highly available peers decreases, whereas
peers with low availability experience a slightly increased TTB. This trend is more
pronounced for P2P applications. Not only the TTB can be very large, but a
substantial fraction of peers cannot complete their backup operation: this happens
for more than 15% of the cases with a random data placement and for almost 80%
of the cases with the symmetric selective policy.
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Figure 4.5: Comparison between random and symmetric selective data placement.
Introducing fairness has a significant impact on the performance of a P2P design,
while it introduces additional costs for a PA application.

Imposing fairness in a PA application modifies the costs for end-users, as illus-
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trated in Fig. 4.5(b). When the symmetric data placement policy is used, peers with
low availability cannot exploit the excess capacity in the system and are compelled
to store their data on the storage server.

In summary, we justify the system-wide loss in performance with the notion of
cost of fairness. When peers are constrained to store backup fragments on remote
peers with similar on-line behavior and are compelled to offer an amount of local
storage space proportional to the amount of (redundant) data they inject in the sys-
tem, the excess capacity provided by highly available peers cannot be exploited. In
a P2P application, peers can suffer a severe loss in performance or eventually cannot
complete their backups. Instead, in a PA application system fairness translates into
higher storage costs for peers with low-availability, but system performance is only
slightly affected.

4.4 Summary

The work presented in this Chapter, and the contributions made to the area of
on-line data storage, can be summarized as follows:

• We study the general problem of scheduling data transfers in a P2P backup
application: essentially, given a series of capacity constraints on bandwidth
and storage resources, we seek at finding the right moment to schedule the
transfer of information to the right remote machine, given as input the amount
of data to be stored and the on-line behavior (that is the availability) of such
machines. In Section 4.1 we present our main theoretic result: the scheduling
problem can be solved in polynomial time by encoding it in a max-flow for-
mulation. The gist of our approach lays in the subtle construction of a flow
(bipartite) network which encode remote machines and the discrete time-slots
in which they are available.

We use the theoretic bounds computed with our model to perform a compar-
ative analysis of on-line heuristics, aiming at exploiting past on-line behavior
to produce scheduling decisions. Our experiments indicate that this approach
is substantially better than random scheduling, yet not more complex to im-
plement.

• We study the problem of redundancy management in the context of our
P2P backup application. Armed with the realization that backup applications
present a particular access pattern, namely “WRITE many, READ (nearly) never”,
we design a new on-line mechanism that achieves data durability while requir-
ing a surprisingly low data redundancy. Besides showing that our mechanism
is stable (in the “Control Theory” sense), we show that it can be realized in
practice by leveraging the properties of rate-less coding.

Our work is complemented by a series of trace-driven simulations in which
peer characteristics in terms of bandwidth and on-line behavior are obtained
from real deployed systems. Our results indicate that the price to pay for
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having lower data redundancy is longer restore operations. Due to the data
access patterns we hint at above, we believe such a trade-off to be reasonable:
all peers benefit from lower resource utilization and faster backup operations,
while only the unfortunate users experiencing a crash experience slightly longer
data retrieval operations.

• We present – for the first time – a peer-assisted architecture that exhibit
a subtle design. Since long term storage for data backup is costly, instead of
using Internet storage services as permanent locations where to store data,
we use them as temporary buffers that assist peers in the delicate backup
operation: data uploads complete as fast as possible; only once data is safe,
an optimization phase takes care of removing data from storage servers and
placing it on remote peers, for the sake of cost savings.

We evaluate our system using trace-driven simulations for a wide range of
parameters and settings. Our results show that the main mechanism we ad-
dress – namely bandwidth allocation and data placement – are successful in
exploiting server resources: we obtain a system performance that approaches
that of a client-server approach, at a small fraction of the costs.





Chapter 5

Data Intensive Scalable

Computing

Contents

5.1 Size-based Scheduling for DISC . . . . . . . . . . . . . . . . . 68

5.1.1 Hadoop Fair Sojourn Protocol . . . . . . . . . . . . . . . . . 70

5.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 High-level Languages for DISC . . . . . . . . . . . . . . . . . 76

5.2.1 Hierarchical data analysis . . . . . . . . . . . . . . . . . . . . 78

5.2.2 High-level language support for hierarchical data analysis . . 82

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Introduction

This Chapter is dedicated to on-going work, that represents a natural evolution of
the line of research presented in the previous Chapters.

The context of this work stems from the realization that the amount of data
in our world has been exploding. E-commerce, Internet security and financial ap-
plications, billing and customer services – to name a few examples – steadily fuel
an exponential growth of large pools of data that can be captured, communicated,
aggregated, stored, and analyzed. As companies and organizations go about their
business and interact with individuals, they are generating a tremendous amount
of digital footprints, i.e., raw, unstructured data –for example log files – that are
created as a by-product of other activities.

Nowadays, the ability to store, aggregate, and combine large volumes of data
and then use the results to perform deep analysis has become ever more accessible
as trends such as Moore’s Law in computing, its equivalent in digital storage, and
cloud computing continue to lower costs and other technology barriers. However,
the means to extract insights from data require remarkable improvements as soft-
ware and systems to apply increasingly sophisticated mining techniques are still in
their infancy. Large-data problems require a distinct approach that sometimes runs
counter to traditional models of computing.

In this line of work, that we dub data-intensive scalable computing (DISC), we
depart from high-performance computing (HPC) applications and we go beyond
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traditional techniques developed in the database community. In the sequel of this
Chapter we present our current effort devoted to the study and analysis of scalable
systems and the design of scalable algorithms to manage, store and process large
amounts of data.

For the sake of brevity, in this Chapter we present a small selection of our work.
The Chapter is organized as follows:

• In Sect. 5.1 we describe our work towards the design, implementation and per-
formance evaluation of a new scheduling component for the Hadoop MapRe-
duce framework. The aim of this work is to extend the well-known concept of
size-based scheduling, whereby the size of a request (or, in our context, a job)
is used to take scheduling decisions, such that it can be applied in a parallel
setting (hence a multi-server model) in which size information is not available
a-priori.

• In Sect. 5.2 we present our work on high-level abstractions of the MapReduce
programming model. Specifically, we start by focusing at lower layers of the
execution stack of a parallel framework and introduce a novel design pattern
to specify MapReduce jobs operating over hierarchical data. In doing so, we
focus on a specific application scenario, namely network trace analysis. Then,
we build upon the new design pattern and work on several modules of a well-
known high-level programming language for Hadoop, namely the Pig system.
Our ultimate goal is to perform hierarchical aggregates of data, which are
expressed using a compact high-level program, and that result (after compi-
lation) in a single MapReduce job, as opposed to the default behavior of Pig,
which generates multiple jobs, each processing data at a different granularity.

• Finally, in Sect. 5.3, we summarize our contributions and briefly mention re-
lated work that we omit from this Chapter for the sake of brevity.

5.1 Size-based Scheduling for DISC

The advent of large-scale data analytics, fostered by parallel processing frameworks
such as MapReduce [43], has created the need to organize and manage the resources
of clusters of computers that operate in a shared, multi-tenant environment. For
example, within the same company, many users share the same cluster because
this avoids redundancy (both in physical deployments and in data storage) and may
represent enormous cost savings. Initially designed for few and very large batch pro-
cessing jobs, data-intensive scalable computing frameworks such as MapReduce are
nowadays used by many companies for production, recurrent and even experimental
data analysis jobs. This is substantiated by recent studies [36, 90] that analyze a
variety of production-level workloads (both in the industry and in academia). A
first, important, characteristic that emerges from such works is that there exists a
stringent need for interactivity. Current workloads include a non-negligible number
of small jobs: these are preliminary data analysis tasks involving a human in the
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loop, which for example seeks at tuning algorithm parameters with a trial-and-error
process, or even small jobs that are part of orchestration frameworks whose goal is to
launch other jobs according to a work-flow schedule. Furthermore, the studies cited
above also unveil the raise of deployment best practices in which – to accommodate
both long-lasting and short jobs – Hadoop clusters tend to be over-dimensioned,
with an evident loss of efficiency because a large fraction of resources remain idle
for long periods of time.

In this work, we study the problem of job scheduling, that is how to allocate the
resources of a cluster to a number of concurrent jobs submitted by the users, and
focus on the open-source implementation of MapReduce, namely Hadoop [6]. In
addition to the default, first-in-first-out (FIFO) scheduler implemented in Hadoop,
recently, several alternatives [31, 55, 64, 92, 106,108] have been proposed to enhance
scheduling: in general, existing approaches aim at two key objectives, namely fair-

ness among jobs and performance. Our key observation is that fairness and perfor-
mance are non-conflicting goals, hence there is no reason to focus solely on one or the
other objective. In addition, current best practices also hint at complex engineering
constructs by defining separate scheduling queues for jobs with different character-
istics, whereby defining the number of queues, their priorities and the amount of
resources dedicated to each queue remains a tedious manual exercise.

Here, we revisit the notion of scheduling performance and propose to focus on
job sojourn time, which measures the time a job spends in the system waiting
to be served and its execution time. Short sojourn times cater to the interactivity
requirements discussed above. We thus proceed with the design and implementation
of a new scheduling protocol that caters both to a fair and efficient utilization of
the cluster resources. Our solution belongs to the category of size-based scheduling

disciplines, and implements a generic framework that accommodates a variety of
job aging primitives, which overcome the limitation of the well-known shortest-
remaining-processing-time (SRPT) discipline. In addition to addressing the problem
of scheduling jobs with a complex structure in a multi-processor system, we propose
an efficient method to implement size-based scheduling when job size is not known
a-priori. Essentially, HFSP allocates cluster resources such that job size information
is inferred while the job makes progress toward its completion. Furthermore, our
scheduling discipline supports a variety of preemption mechanisms, including the
standard approach of “killing” jobs, waiting for jobs to finish, and a new technique
that enables our scheduler to suspend and eventually resume running jobs.

The contribution of our work can be summarized as follows:

• We design and implement the system architecture of a new size-based sched-

uler for Hadoop, including a (pluggable) component to estimate job sizes, a
dynamic resource allocation mechanism that strives at efficient cluster utiliza-
tion and a new set of low-level primitives that complement existing preemption
mechanisms. We label our scheduler HFSP, and the complete source code is
available as an open-source project.

• We design and implement a new component that brings the well-known con-
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cept of “virtual time” for size-based scheduling in the context of a multi-
processor system. We call this component virtual cluster, and design and
implement a new job aging mechanism that account for the multi-processor
nature of our system.

• We perform an extensive experimental campaign, where we compare the HFSP
scheduler to the two main schedulers used in production-level Hadoop deploy-
ments, namely the FIFO and the Fair schedulers. For the experiments, we use
state-of-the-art workload suite generators that take as input realistic workload
traces. In our experiment, we use a large cluster deployed in Amazon EC2.

5.1.1 Hadoop Fair Sojourn Protocol

HFSP is a generic implementation of a size-based preemptive scheduler for Hadoop,
which can accommodate a variety of disciplines. Concretely, we embrace a simple
abstract1 idea: prioritize jobs according to the completion time they would have
using processor sharing, and use preemption to allocate resources to the highest-
priority job. The size of new jobs is at first estimated roughly based on their number
of tasks; by observing the running time of the first few tasks, that estimate is then
updated.

Although the abstract idea is reasonably simple, in the following we address a
variety of issues related to its materialization in a fully functional prototype.

5.1.1.1 The Job Scheduler

HFSP schedules MapReduce jobs, and is intended for the Hadoop implementation
of Mapreduce. In this manuscript, we gloss over a detailed description of Hadoop
Mapreduce. For background information on Hadoop, and in particular on the design
of Hadoop schedulers, the reader can refer to [87]. We note that MapReduce jobs
that may require a different number of Map and Reduce tasks: hence, a job might
need only a fraction of the resources of a cluster, and therefore two or more jobs
may be scheduled at the same time.

Job Dependencies. In MapReduce, a job is composed by a Map phase followed
optionally by a Reduce phase. We estimate job size by observing the time needed
to compute the first few “training” tasks of each phase; for this reason we cannot
estimate the length of the Reduce phase when scheduling Map tasks. Because of
this, for the purpose of scheduling choices we consider Map and Reduce phases
as two separate jobs. For ease of exposition, we will thus refer to both Map and
Reduce phases as “jobs” in the remainder of this Section. As we experimentally
show in Section 5.1.2, the good properties of size-based scheduling ensure shorter
mean response time for both the Map and the Reduce phase, resulting of course
in better response times overall.

1Friedman and Henderson [51] originally described a similar approach for a single-queue server

system, but never implemented it in practice.
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Scheduling Policy. HFSP works by estimating the size of each job using the
training module described in Section 5.1.1.2; this size is then used to compute the
completion time of each job in a simulated processor-sharing scheduler (see Sec-
tion 5.1.1.3). When jobs arrive, all cluster resources are assigned to fulfill demands
of jobs ranked by increasing simulated completion time. If a job ends up having more
running tasks than assigned, excess slots are released by using a preemption mech-
anism (Section 5.1.1.4 illustrates a novel approach to preemption that complements
existing techniques).

Training Phase. Initially, the training module provides a rough estimate for the
size of new jobs (Section ??). This estimate is then updated after the first s “sample”
tasks of a job are executed (Sections ?? and ??). To guarantee that job size estimates
quickly converge to more accurate values, the first s tasks of each jobs are prioritized,
and the above mechanism is amended so that a configurable number of Map and
Reduce “training” slots are always available, if needed, for the sample tasks. This
number is limited in order to avoid starvation for “regular” jobs in case of a bursty
arrival of a large number of jobs.

Data locality. In order to minimize data transfer latencies and network conges-
tion, it is important to make sure that Map tasks work on data available locally.
For this reason, HFSP uses the delay scheduling strategy [108], which postpones
scheduling tasks operating on non-local data for a fixed amount of attempts; in
those cases, tasks of jobs with lower priority are scheduled instead.

5.1.1.2 Job Size Estimation

Size-based scheduling strategies require knowing the size of jobs. In Hadoop, we do
not have a perfect knowledge of the size of a job until it is finished; however, we
can, at first, estimate job size based on characteristics known a priori such as the
number of tasks; after the first sample tasks have executed, the estimation can be
updated based on their running time.

This estimation component has been designed to result in minimized response
time rather than coming up with perfectly accurate estimates of job length; this is
the reason why sample jobs should not be too many (our default is s = 5), and they
are scheduled quickly. We stress that the computation performed by the sample
tasks is not thrown away: the results computed by sample tasks will be used in the
rest of the job exactly as the other regular tasks.

Further details on job size estimation are given in [87].

5.1.1.3 Virtual Cluster

The estimated job size is expressed in a “serialized form”, that is the sum of runtimes
of each of its tasks. This is useful because the physical configuration of the cluster
does not influence the estimated size; moreover, in case of failures, the number
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of available TaskTrackers varies, but the size of jobs does not change. The
job scheduler, though, requires an estimated completion time that depends on the
physical configuration of the real cluster. We obtain that by simulating a processor
sharing discipline applied on a virtual cluster having the same number of machines
and the same configuration of slots per machine as the real cluster. The projected
finish time obtained in the virtual cluster is then fed to the job scheduler, which will
use it to perform its scheduling choices.

Virtual cluster resources need to be allocated following the principle of a fair
queuing discipline. Since jobs may require less than their fair share, in HFSP,
resource allocation in the virtual cluster uses a max-min fairness discipline. Max-
min fairness is achieved using a round-robin mechanism that starts allocating virtual
cluster resources to small jobs (in terms of their number of tasks). As such, small
jobs are implicitly given priority in the virtual cluster, which reinforces the idea of
scheduling small jobs as soon as possible.

The HFSP algorithm keeps track of, in the virtual cluster, the amount of work
done by each job in the system. Each job arrival or task completion triggers a call
to the job aging function, which uses the time difference between two consecutive
events as a basis to distribute progress among each job currently scheduled in the
virtual cluster. In practice, each running task in the virtual cluster makes a progress
corresponding to the above time interval. Hence, the “serialized” representation of
the remaining amount of work for the job is updated by subtracting the sum of the
progress of all its running tasks in the virtual cluster.

5.1.1.4 Job Preemption

The HFSP scheduler uses preemption: a new job can suspend tasks of a running
job, which are then resumed when resources become available. However, traditional
preemption primitives are not readily available in Hadoop. The most commonly
used technique to implement preemption in Hadoop is “killing” tasks or entire jobs.
Clearly, this is not optimal, because it wastes work, including CPU and I/O. Alter-
natively, it is possible to Wait for a running task to complete, as done by Zaharia
et al. [108]. If the runtime of the task is small, then the waiting time is limited,
which makes Wait appealing. In fact, we suspend jobs using the Waitprimitive
for Maptasks which are generally small. However, for tasks with long runtime, the
delay introduced by this approach may be too high.

Since Reducetasks may be orders of magnitude longer than Maptasks, to pre-
empt Reducejobs we adopt a more traditional approach, which we name eager

preemption: tasks are suspended in favor of other jobs, and resumed only when
their job is later awarded resources. Eager preemption requires implementing Sus-

pend and Resume primitives: we delegate them to the operating system (OS).
Mapand Reducetasks are launched by the TaskTrackeras child Java Virtual
Machines (JVMs); child JVMs are effectively processes, which we suspend and re-
sume using standard POSIX signals: SIGSTOP and SIGCONT. When HFSP suspends
a task, the underlying OS proceeds with its materialization on the secondary stor-
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% of Jobs # Maps # Reduces Label

FB09 (Small jobs) 53 ≤ 2 0 select
(Medium jobs) 41 2 < x ≤ 500 ≤ 500 aggregate

(Big jobs) 6 ≥ 500 ≥ 500 transform
FB10 39 ≤ 1500 ≤ 10 expand

16 ≤ 1500 10 < x ≤ 100 expand and transform
11 ≤ 1500 x > 100 transform
10 1500 < x ≤ 2500 x ≤ 100 aggregate
7 1500 < x ≤ 2500 x > 100 transform

10 x > 2500 x > 100 transform

Table 5.1: Job types in each workload, as generated by SWIM. Jobs are labeled
according to the analysis tasks they perform. For the FB2009 dataset, jobs are
clustered in bins and labeled according to their size.

age (in the swap partition), if and when its memory is needed by another process.
We note that our implementation introduces a new set of states associated to an
Hadoop task, plus the related messages for the JobTracker and TaskTracker

to communicate state changes and their synchronization.

There are many more considerations that need to be discussed in detail for a
proper handling of eager preemption. For the sake of brevity, we gloss over such
details and refer the reader to [87].

5.1.2 Experiments

This Section focuses on a comparative analysis between FAIR and HFSP schedulers.
Next, we specify the experimental setup and present a series of results, that we call
macro benchmarks. Macro benchmarks illustrate the global performance of the
schedulers we study in this work, in terms of job sojourn times. Additional results
are available in a technical report [87].

5.1.2.1 Experimental Setup

In this work we use a cluster deployed on Amazon EC2 [1], which we label the
Amazon Cluster. The Amazon Cluster is configured as follows: we deploy 100
“m1.xlarge” EC2 instances, each with four 2 GHz cores (eight virtual cores), 4 disks
that provide roughly 1.6 TB of space, and 15 GB of RAM.2 In our experiments the
HDFS block size is set to 128 MB and a replication factor of 3, while the main
Hadoop configuration parameters are as follows: we set 4 Map slots and 2 Reduce

slots per node.

2This is the configuration used by Zaharia et. al. [108].
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Workloads. Generating realistic MapReduce workloads is a difficult task, that
has only recently received some attention. In this work, we use SWIM [?], a stan-
dard benchmarking suite that comprises workload and data generation tools, as
described in the literature [35–37]. A workload expresses in a concise manner i) job
inter-arrival times, ii) a number of Map and Reduce tasks per job, and iii) job
characteristics, including the ratio between output and input data for Map tasks.
For our experiments, we use two workloads synthesized from traces collected at
Facebook and publicly available [37] – that we label FB2009 and FB2010 – as done
in previous works [37,108]. Table 5.1.2 describes the workloads we use, as generated
by SWIM for a cluster of 100 nodes.

The FB2009 workload comprises 100 unique jobs, and is dominated by small jobs,
i.e., jobs that have a small number of Map tasks and no Reduce tasks. The job
inter-arrival time is a random variable with an exponential distribution and a mean
of 13 seconds, making the total submission schedule 22 minutes long. Experiments
with the FB2009 dataset illustrate scheduling performance when the system is not
heavily loaded, but has to cope with the demand for interactivity (small jobs).

The FB2010 workload comprises 93 unique jobs, which have been selected by
instructing SWIM to filter out small jobs. In particular, the number of Map tasks
is substantially larger than the number of available slots in the system: Map phases
require multiple “waves” to complete. The number of Reduce tasks varies between
10 and the number of available reduce slots in the cluster. The job inter-arrival time
is a random variable with an exponential distribution and a mean of 38 seconds,
making the total submission schedule roughly 1 hour long. The FB2010 dataset is
particularly demanding in terms of resources: as such, scheduling decisions play a
crucial role in terms of system response times.

Scheduler Configuration. Unless otherwise stated, HFSP operates with the de-
lay scheduling technique and eager preemption enabled. HFSP requires a handful of
parameters to be configured, which mainly govern the estimator component: we use
a uniform distribution to perform the fitting of the estimate job size; the sample set
size s for Map and Reduce tasks is set to 5; the parameter ∆ to estimate Reduce

task size, is set to 60 seconds; we set the parameter ξ = 1. For the workloads we
use in our experiments, the parameters described above give the best results.

The FAIR scheduler has been configured with a single job pool, using the pa-
rameters suggested in the Hadoop scheduler documentation.

5.1.2.2 Macro Benchmarks

Using the Amazon Cluster, we now report the empirical cumulative distribution
function (CDF) of sojourn times for FAIR and HFSP, when the cluster executes the
FB2009 and FB2010 workloads. Although we do not include results we obtain with
the FIFO scheduler, for reference, our experiments report a mean sojourn time 5 to
10 times bigger than that of HFSP, depending on the workload.

Figure 5.1 groups results according to job sizes: the FB2009 dataset contains
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Figure 5.1: ECDFs of sojourn times for the FB2009 dataset. Jobs are clustered in
classes, based on their sizes. HFSP improves the sojourn times in most cases. In
particular, for small jobs, HFSP is slightly better than FAIR, whereas for larger
jobs, sojourn times are significantly shorter for HFSP than for FAIR.
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Figure 5.2: ECDFs of sojourn times for the FB2010 dataset. The Map phase (left)
shows significant improvements of HFSP over FAIR. Shorter sojourn times in the
Map phase are reflected in the Reduce phase (middle), which shows that HFSP
outperforms FAIR in terms of sojourn times. The ECDF of aggregate job sojourn
times (right) indicates that both median and worst-case sojourn times are better
with HFSP. The vertical line at 60 minutes (the workload has been consumed)
indicates 20% of completed jobs with HFSP vs. 1% of completed jobs with FAIR.

three distinct clusters of job sizes (small, medium and large), with small jobs dom-
inating the workload. Our results indicate a general improvement of job sojourn
times in favor of HFSP. For small jobs, the fair share of cluster resources allocated
by both HFSP and FAIR is greater than their requirements in terms of number of
tasks. In addition, very small jobs (with 1-2 Map tasks only) are scheduled as soon
as a slot becomes free (both under the HFSP and FAIR), and therefore their sojourn
time depends mainly on the frequency at which slots free-up and on the cluster state
upon job arrival. Overall, we observe that HFSP performs slightly better than FAIR
for small jobs. For medium and large jobs, instead, an individual job may require a
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significant amount of cluster resources. Thus, the advantage of HFSP is mainly due
to its ability to “focus” cluster resources – as opposed to “splitting” them according
to FAIR – towards the completion of the smallest job waiting to be served.

Figure 5.2 shows the results for the FB2010 dataset. We show the sojourn times
of the Map and Reduce phases, and the total job sojourn times. In the Map

phase (Figure 5.2(a)), the sojourn times are smaller for HFSP than for FAIR: the
median sojourn time is more than halved. This is a consequence of the HFSP
discipline, which dedicates cluster resources to individual jobs rather than spreading
them on multiple “waves”. As such, with HFSP, Reduce tasks enter the Shuffle

phase earlier than what happens with FAIR, and have to wait less time for all their
input data to be available. Therefore, the Reduce phase is shorter with HFSP,
as shown in Figure 5.2(b). Clearly, the HFSP discipline in the Reduce phase also
contributes to short sojourn times, with a median difference of roughly 30 minutes.
Finally, the total job sojourn times indicate that the system response time with
HFSP substantially improves. For illustrative purposes, we show a vertical line
corresponding to 60 minutes, by which all jobs of the FB2010 workload arrived in
the system. By that time, only one job completes with FAIR, whereas more than
20% of the jobs, are served with HFSP. More to the point, when 80% of jobs are
served by HFSP, roughly 15% of jobs are served with FAIR.

In summary, HFSP caters both to workloads geared towards “interactive” small
jobs and to a more efficient allocation of cluster resources, which is beneficial to
large jobs.

The HFSP scheduler we proposed in this work brought up several challenges.
First, we came up with a general architecture to realize practical size-based schedul-
ing disciplines, where job size is not assumed to be known a priori. The HFSP
scheduling algorithm solved many problems related to the underlying discrete na-
ture of cluster resources, how to keep track of jobs making progress towards their
completion, and how to implement strict preemption primitives. Then, we used stan-
dard statistical tools to infer task time distributions and came up with an approach
aiming at avoiding wasting cluster resources while estimating job sizes. Finally,
we performed a comparative analysis of HFSP with two standard schedulers that
are mostly used today in production-level Hadoop deployments, and showed that
HFSP brings several benefits in terms of shorter sojourn-times, even in small, highly
utilized clusters.

5.2 High-level Languages for DISC

As evidence of the current trends in state-of-the-art methods to perform data analy-
sis at a very large scale, programmers have been flocking to the procedural MapRe-
duce programming model [43]. A MapReduce program essentially performs a group-
by-aggregation in parallel over a cluster of machines. The programmer provides a
map function that dictates how the grouping is performed, and a reduce function
that performs the aggregation. What is appealing to programmers about this model
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is that there are only two high-level declarative primitives (map and reduce) to en-
able parallel processing, but the rest of the code, i.e., the map and reduce functions,
can be written in any programming language of choice, and without worrying about
parallelism.

Unfortunately, the MapReduce model (and its physical open-source incarna-
tion, Hadoop) has its own set of limitations. Its one-input, two-stage data flow
is extremely rigid. To perform tasks having a different (or complex) data flow,
programmers have to, in addition to specify their algorithms, understand and mod-
ify internal modules of Hadoop and devise composite keys to “route" data across
parallel machines. This approach often relies on design patterns, that are adapted
individually to each analytic task. Also, custom code has to be written for even the
most common operations, e.g., projection and filtering. These factors lead to code
that is difficult to reuse and maintain, and in which the semantics of the analysis
task are obscured. Moreover, the opaque nature of the map and reduce functions
impedes the ability of the system to perform optimizations.

Apache Pig [85], Apache Hive [2] and Google Tenzing [32] are representative
examples of systems supporting an SQL-like abstraction on top of the MapReduce
layer. In general, these systems support basic operators and build upon the huge
literature on traditional database systems to optimize the execution plan of the
queries, as well as their translation into MapReduce programs. Apart from Tenzing,
which is the most complete yet closed-source solution, Pig and Hive have limited
optimization capabilities, that only cover the manner in which complex queries
are translated into multiple MapReduce jobs. Cascading [3], Stratosphere [10] and
others offer an alternative way – not based on SQL – to produce MapReduce pro-
grams. Cascading is an abstraction layer aiming at complex operations on data,
which require chained MapReduce jobs. It uses a model based on the “pipes and
filters" metaphor: an appropriate combination of such operators produces a parallel
program that is executed in Hadoop. Similarly, Stratosphere introduces the PACT
programming model [15] and a new execution framework called Nephele [103], which
replaces Hadoop. The PACT programming model augments MapReduce with new
operators to simplify the design of parallel algorithms. Finally, ScalOps builds upon
the Hyracks [23] parallel-database and offer a domain- specific language specialized
in machine learning.

In this Section we present our on-going work to introduce an important optimiza-
tion to the Pig system and its Pig Latin scripting language. We start by describing
an application scenario involving the analysis of network data, i.e., packet dumps
of traffic flowing in a computer network. In doing so, we present a number of data
analysis tasks (jobs) and express them as (a sequence of) MapReduce programs.
Such programs (which we also call jobs) have been optimized and the technique
to achieve efficient job running time has been generalized to come up with a new
design pattern, that we label “in-reducer grouping". In-reducer grouping essentially
implements a widely used SQL operator, namely the ROLL UP operator.

We conclude with an overview of our current work aiming at integrating our
design pattern in the Apache Pig internal engine.
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5.2.1 Hierarchical data analysis

The endeavor of this Section is to overview our work towards the design of scalable
and efficient algorithms for a specific application context, namely network data
analysis. In such application, the goal is to analyze a vast amount of data collected
from one or more vantage points in the network and stored in a centralized location.
Network data is historical in nature, which implies a simple write once, read many

workload: traces are timestamped and, once a dataset is produced, no updates are
required. Applications of network data analysis include anomaly detection, traffic
classification, botnet detection, quality of service monitoring and many more. In a
typical setting, network data are periodically accumulated in a storage system for
future processing and analysis. Therefore, data import operations are required to
complete in a time that is strictly less than the accumulation period. The subsequent
processing phase, especially when the volume of data to analyze is large, may not be
feasible with traditional network analysis tools [79]: in this work, we show how these
tasks can be achieved with the Hadoop system and the MapReduce programming
model.

We proceed by first defining a set of data analysis jobs, which are detailed in
Section 5.2.1.1. Our jobs are representatives of typical (from a Network Operator
perspective) network analysis tasks related to users’ and protocol behavior. They
are run on a large, publicly available network trace from a trans-Pacific Internet link.
The aim of our experiments is to describe and discuss the large number of “knobs”
that can be tuned to achieve reasonable system performance and to illustrate, using
our sample jobs, that the design and implementation of such jobs is far from being
trivial and requires great zeal.

Our main contribution is a novel technique for analyzing hierarchical data, and
in particular time-stamped logs. Our approach produces a compact MapReduce
execution plan for jobs that otherwise would require a complex and lengthy sequence
of intermediate jobs. A detailed discussion and a performance evaluation of an
alternative approach, based on a distributed database, to execute the jobs outlined
in this Section is available in [14].

5.2.1.1 Datasets, jobs, and their implementation

In this Section we briefly describe the analyzed datasets, and provide a high-level de-
scription of the four sample jobs. We then describe the design of such jobs following
the MapReduce programming model.

Network Data: The input to our Jobs is a textual CSV file of network traces from
the publicly available MAWI (Measurement and Analysis on the WIDE Internet)
archive, captured from a trans-Pacific link between the United Stated and Japan
[38]. In particular, we use traces from sample-point F collected from 2009/03/30
to 2009/04/02. Packet payload is omitted and IP addresses are anonymized in
the original trace. From it we extracted a CSV file consisting of one record per
packet. Each record has a size of approximately 64 B and includes information like
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time-stamp, source and destination IP addresses and ports, flags, used protocol and
packet length. The original trace consists of 432 GB raw data, resulting in a CSV
file of roughly 100 GB.

Sample Jobs: Hereafter we describe four sample jobs representative of typical
analysis tasks run by network operators. Each job compute statistics hourly, daily
and for the whole trace duration.

• User Ranking (J1). For every IP address, compute the number of uploaded,
downloaded and total exchanged (upload + download) bytes.

• Frequent IP/Port by Heavy Users (J2). Heavy users are defined as the
top-10 IP addresses from Job J1 in terms of total exchanged bytes. This Jobs
computes the top IP/Port pairs for all heavy users.

• Service Ranking (J3). For experimental purpose, the set of IP addresses
is split arbitrarily into two subsets, A (servers) and B (clients). For every IP
address in A, this Jobs computes the total number of connections established
by IP addresses in B.

• Unanswered TCP Flows (J4). For every IP address, this Job computes
the number of unanswered TCP flows. A TCP flow is considered answered if
the initial SYN packet is acknowledged by a SYN-ACK within 3 seconds.

Job Implementation in MapReduce. MapReduce jobs require to define a Map

and a Reduce function, the “routing” of data from mappers to reducers (called
Partitioning and Grouping), the order of data received by the reducers and
possibly, to further optimize the job, a Combiner. We remark that there are several
ways to implement our sample Jobs. Although we have tried many alternatives, in
the following we only present best-performing implementations.

Before proceeding any further, we discuss the key idea underlying the conceptual
design of our jobs. As an illustrative example, let’s consider the fact that our jobs
compute statistics at different time granularities, namely hours, days and weeks A
naive approach is to launch a Job for each time period and, if possible, use the
output of Jobs executed on fine grained periods as input for Jobs running on coarse
grained periods. However, this approach requires various cycles of data material-
ization and subsequent de-materialization (not to mention framework overhead),
that can be avoided by a careful design of the Reduce, Grouping, Sorting and
Partitioning phases.

In this work we present a new “design pattern” that we labeled in-reducer group-

ing, whose aim is to produce a compact execution plan instead of using a sequence
of jobs. To understand our technique, it is convenient to recall the purpose of the
standard Grouping phase in Hadoop. Grouping is used to prepare the input data
to the Reduce phase by grouping all intermediate key/value pairs in output from
the Map phase that refer to the same key. As such, the Reduce phase receives a
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(a) Map, Shuffle, Reduce (b) Pipelined computation

Figure 5.3: An illustration of the in-reducer grouping technique.

series of (key, list < values >) for further processing. By default, the Grouping

phase in Hadoop is implicit and executed at the framework level.

The gist of our approach is to make the Grouping phase explicit, by moving its
definition and execution at the user-code level. Fig. 5.3 gives an high-level overview
of the in-reducer grouping technique, applied to a simplified version of job J1, for
the sake of clarity. Figure 5.3(a) represents three machines executing the Map and
Reduce tasks. The input of each Map task is in the form of (key, value) pairs,
where the composite <key> is the concatenation of a (source) IP address and a time-
stamp, and the value refers to the amount of bytes uploaded by the IP address in the
key. The Shuffle phase implements a custom Partitioning that uses only the IP
address of the composite key defined above, which is also used for primary Sorting;
a secondary Sorting takes care of ordering the input to Reduce tasks based on
the second part of the key, namely the time-stamp. In summary, intermediate data
from Map tasks to Reduce tasks is “routed" based on the IP address, but carries
information based on the fine-grained time-stamp.

Now, Figure 5.3(b) illustrates what happens in Reduce tasks: input data (which
technically is an iterable) is fed to multiple Reduce methods that are called
based on a condition. The hierarchical nature of data drives how such conditional
processing takes place: note that here we assume the function applied to input data
to be algebraic, i.e., to be associative and distributive. In the example scenario
we use for the Figure, we define three conditions based on the time granularities we
perform for job J1, that is hours, days and week.

Next, we present (at a fairly low level) the design of each Job described in this
Section.

Job J1: For this Job, we need to compute the total bytes sent and received
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for each IP address per hour/day/whole trace. Therefore, we aggregate data by
time-range and IP. In the Map phase, for each record, we emit two records with a
composed key <time-stamp, IP>. The value accounts for the packet size and the
direction (sender or receiver). The Reduce phase receives all the data for each IP
ordered by time-stamp, uses a counter for each time-range, and immediately emits
the output per time-range.

This Job requires a Partitioning function based on the IP that assigns all the
records with the same IP to the same reducer, and a Sorting function that sorts
the data based on the IP as the primary key, and the time-stamp as the secondary
key.3 As opposed to a naive approach, this Job reduces scheduling overhead of the
framework, disk and network I/O, but is more complex to write.

Job J2: This Job requires two phases: (J2.1) find heavy users, and (J2.2) find
top ports of heavy users.

The input data of Job J2.1 is the output of Job J1. We use an hash table of
fixed-size priority queues in the Map phase, that stores only the top 10 users for
each input data block. In the Reduce phase, we compute the heavy users over all
intermediate data from mappers.

In Job J2.2 we need to read the input CSV file, and emit a record only for heavy
users. Hence, we use a distributed cache to save the list of heavy users, so that it
is locally available to each Map function. During the setup phase of each mapper,
we read the contents of the distributed cache and load them in a hash map. It is
important to note that the top-10 ports per day cannot be calculated from the top
ports per hour: the “top” operation is not distributive. Job J2.2 is a single Job,
where for each record containing an IP from a heavy user, the Map emits three
records, using the composite key <time-range, IP> and the port and the size as
value. The Reduce receives all the records belonging to the same composite key:
a fixed size priority queue is used to emit top ports per distinct key. We tested
four alternative approaches to implement Job J2.2. In general, we noticed problems
related to memory requirements in the Reduce phase and volume of intermediate
data transmitted in the Shuffle phase. The approach described above is the one
that, in our experiments, performed better.

Job J3: Given two subsets A,B, we find the total number of unique IPs in A
contacted by IPs in B, as follows. For each record in the input file whose source IP
is in B and whose destination IP is in A, we emit a record containing the IP address
in A, the IP address in B and the time-range which the record falls into.

In the Map phase, we emit one record with a composite key <IP ∈ A , IP

∈ B, time-stamp> for each input record from the CSV file. This choice of com-
posite key simplifies the Reduce function: instead of (naively) using a simple key
<IP ∈ A>, we exploit the sorting capabilities of the framework to achieve our goal.

3An additional detail: we use a hour-based Grouping comparator that simplifies the Reduce

function.
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The Reduce function receives all packets belonging to the same composite key and
counts the number of unique IP in B. This approach requires a custom Partition-

ing function that operates on IP address in ∈ A and a custom Sorting function
on the whole composite key.

Among all alternative implementations of this Job we experimented with, this
approach is the hardest to code, but uses only a single scan of the input data,
and produces a small quantity of intermediate data for the Shuffle phase, which
also lowers sorting effort. However, it requires more computational resources in the
Reduce phase.

Job J4: To find the unanswered SYNs for each IP address we need to examine
the whole dataset, filtering the records with SYN and SYN-ACK flags. This can
be easily done in the Map phase. In order to find if a SYN is unanswered, the
Reduce function receives all the SYNs and all the SYN-ACKs having respectively
the same source and destination IP address in the same time-range. The Map

phase behaves as follows. For each SYN packet it emits a record with a composite
key <SrcIP, DstIP, SrcPort, DstPort, time-stamp>, and SYN as value. For
each SYN-ACK packet, it emits an “inverted” record with a composite key <DstIP,

SrcIP, DstPort, SrcPort, time-stamp>, and SYN-ACK as value. The Reduce

function receives the SYN and all the possible subsequent SYN-ACK in order, so
that it can easily check if the SYN-ACK is present.

Using a custom Partitioning based on the IPs and ports only, all the packets
belonging to the same, bidirectional, flow are sent to the same reducer. Using a
custom Sorting function based on the whole key, the Reduce function receives
all the packets belonging to the same bidirectional flow ordered by time-stamp, so
that it is easy to check if a SYN is followed by a SYN-ACK.

5.2.2 High-level language support for hierarchical data analysis

The endeavor of this Section is to overview our on-going work to extend and gen-
eralize the “in-reducer grouping" design pattern described above. With reference to
the application scenario we used previously (and the relative jobs discussed above),
computation of aggregates over multi-dimensional data falls into the broader context
of On-line Analytical Processing (OLAP).

Thus, if we consider the network data analysis examples defined above, a tradi-
tional approach to organize information in a data warehouse system is to use the star
schema [33], which splits “dimensions” from “fact” data. Dimension and fact data
are stored into separate tables which are referenced via a unique identifier: for every
entry in the dimension table there might be one or more entries in the fact table.
For network data, which records the traffic flowing on a given link, dimensions can
be the IPs addresses, ports, protocols used while fact data can be time-stamp, flags,
packet/byte counters. In the following, we shall use a simplified example scenario for
the sake of clarity. We thus consider a data warehouse maintaining sales information
as: <city, state, country, day, month, year, sales>, where (city, state,
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Table 5.2: Example sales table.

City State Country Day Month Year Sales

Manhattan NY USA 12 12 2010 1000
Los Angeles CA USA 02 09 2011 500
Manhattan NY USA 1 12 2010 100
Sacramento CA USA 14 2 2011 9000
Manhattan NY USA 1 1 2011 1000

country) are attributes of the location dimension and (day, month, year) are
attributes of the temporal dimension. Table 5.2 illustrates a sample schema and
the corresponding table (in de-normalized form) for the simple example discussed
above.

OLAP consists of three basic analytical operations: consolidation (namely CUBE

and ROLL-UP), drill-down, and slicing and dicing. In this work we focus on consolida-
tion operations, which involve the aggregation of data that can be accumulated and
computed in one or more dimensions. Cube analysis provides a convenient way to
compute aggregate measures over all possible groups defined by the two dimensions
defined in the simple example above. Note that many of the established cube com-
putation techniques – used in traditional database systems – take advantage of the
measure being algebraic, a property that allows measures of a super-group to be
computed from its sub-groups (e.g. SUM(a+b) = SUM(a) + SUM(b)). In traditional
database systems, algebraic measures also allow parallel aggregation of data subsets
whose results are then post-processed to derive the final result. In the sequel of this
section, we will focus solely on algebraic measures.

The focus of our work is to extend CUBE computation techniques to the MapRe-
duce paradigm, by leveraging the “in-reducer grouping" design pattern introduced
in the previous section. More to the point, we focus on a high-level language (similar
in spirit to traditional SQL) to design data analysis tasks, and extend the recently
introduced CUBE and ROLL-UP operators. Next, we briefly overview PigLatin and
Pig, which are respectively the language and the system supporting the language
that we use in our work.

Pig and PigLatin. The Pig system (which is an open-source project part of
the Hadoop ecosystem, detailed in [53, 85]) takes a Pig Latin program as input,
complies it into one or more MapReduce jobs, and then executes those jobs on
a given Hadoop cluster. Some of the salient features of the Pig Latin high-level
language include: a step-by-step data-flow paradigm to express data analysis, where
computation steps are chained together through the use of variables; the use of
high-level transformation and operators (e.g. FILTER, GROUP BY, etc.); the ability to
specify an optional schema to annotate the data being processed; and the possibility
for the user to define custom functions (UDF) to operate on data.
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Figure 5.4: Pig compilation and execution stages

A Pig Latin program goes through a series of transformation steps before being
executed, as illustrated in Figure 5.4. The first step is parsing : the parser verifies
that the Pig Latin program is syntactically correct and that all referenced variables
are properly defined. The output of the parser is a canonical logical plan, that
defines a one-to-one correspondence between the Pig Latin statements and the log-
ical operators, which are arranged in a directed acyclic graph (DAG). The logical
plan is passed through a logical optimizer, which implements many of the traditional
optimization techniques developed by the database community, such as projection
push-down, early filtering and so on. The logical plan is then transformed into a
physical plan, which maps logical to physical operators: the physical plan follows
the same structure as the logical plan (DAG) but its operators – and their imple-
mentation – is close to the MapReduce programming model. Finally, the physical
plan is transformed into a MapReduce plan, which is compiled and optimized
before it is launched for execution. Optimization at the MapReduce plan include,
for example, multi-query execution, which avoid reading input files multiple times.4

Figure 5.5, illustrates a simple Pig Latin program, and its translation in a Logi-
cal, Physical and MapReduce plan. With reference to Table 5.2, let’s assume to have
a comma separated value file representing the materialization of such table on disk.
The simple Pig Latin program we illustrate next computes the total amount of sales
per year: first, the code in Algorithm 2, illustrates the source code of the Pig Latin
script in charge of performing the computation; then, Figure 5.5 illustrates how the
simple program is translated into a logical plan, and what are the corresponding

4Recall that MapReduce is generally used for I/O intensive data analysis tasks, hence moving

data should be avoided at all costs.
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Figure 5.5: Pig program example: logical, physical and MapRedyce plans.

physical and MapReduce plans.

Algorithm 2 A simple Pig Latin program
1: A = LOAD ’./input/data.csv’ USING PigStorage(’,’) AS (city: chararray, state:

chararray, country: chararray, day: int, month: int, year: int, sales: longint)
2: B = FOREACH A GENERATE year AS y, sales AS s;
3: C = GROUP B BY y;
4: D = FOREACH C GENERATE group, SUM(B.s);
5: STORE D INTO ’./output/’;

Using the reference example in Figure 5.5, the most important point to em-
phasize is that corresponding to the GROUP BY operator, which is essentially the
operation performed by the Shuffle and Sorting mechanism implemented by the
MapReduce framework. Indeed, as shown in the figure, the simple Pig Latin pro-
gram we discuss translates into a single MapReduce job with a Map and a Reduce

phase.
Next, we glance over the ROLL-UP operator that have been recently added to

the Pig Latin language and explain how the “in-reducer grouping" design patterns
can be adopted in Pig.

ROLL-UP optimization. We now focus on a widely used consolidation data
analysis, namely the ROLL-UP aggregate operator. Let’s consider the simple example
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of a sales table, which is depicted in Table 5.2. Note that the example table is
written in a de-normalized form: in a data warehouse system, instead, it would be
stored as dimensions and fact tables, where dimensions correspond to location and
temporal information. We use the de-normalized form here because this is how data
is presented and ingested by Pig and the underlying MapReduce system.

Essentially, a typical consolidation analysis would consider the computation of
partial aggregates over the location and temporal dimensions, by expressing group-

ing sets over which the ROLL-UP would operate. For example, a grouping set of
the form <City, State, County> generates the following groups for the ROLL-
UP operator: (City, State, County), (*, State, County), (*, *, County),

(*, *, *). Such groups correspond to computing the aggregate sales at different
levels of granularity: per city, state, country and finally totals.

Recent versions of Pig Latin5 allow the programmer to express the above aggre-
gate computation using a traditional ROLL-UP operator. In practice, the Pig parser
detects the new operator, and generates a logical plan (that is later transformed into
a series of MapReduce jobs) in which a single ROLL-UP statement is expanded into
a multitude of GROUP-BY operators, one for each group in the grouping set defined
above. The logical plan is subsequently translated into a physical plan and finally
a MapReduce plan, consisting of one job per group, plus a final aggregation step
(that cannot be parallelized) to generate the totals.

The contribution of our work is to extend the ability of the Pig system of recog-
nizing optimization opportunities that arise in contexts exemplified by the running
example described above. Clearly, the “vanilla" version of Pig is sub-optimal when
generating the MapReduce plan for ROLL-UP aggregates with algebraic measures:
instead of having a number of jobs corresponding to the number of groups, we show
next that it is possible to have a much more compact representation of the aggre-
gation operation which translates into a single MapReduce job. Before proceeding
any further, we note that (for the purpose of the applications we study in our work),
the last aggregation step (computing the total sales) is not required.

Our work consists in modifying the logical plan optimizer component, detect a
ROLL-UP aggregate, and instruct Pig to generate a physical plan that uses a new op-
erator to perform hierarchical (and algebraic) aggregates on data. The new operator,
that we label H-FOREACH, implements the “in-reducer grouping" strategy discussed
in this section. In practice, the new physical operator works as follows:

• It groups data using as a key6 a coarse-grained group (country, in the example
above)

• It applies the aggregate computation on fine-grained group (the city, in the
example above)

• It produces a single MapReduce job implementing a pipelined version of the

5At the time of the writing of this manuscript, CUBE and ROLL-UP aggregates are not yet included

in the stable version of Pig.
6Recall that the underlying MapReduce programming model operates on key,value pairs
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algebraic function. In the example above, it is easy to see that partial aggre-
gates of total sales per City can be used to compute those per State, which in
turn can be used to compute those per Country.

In conclusion, our approach allows the computation of algebraic ROLL-UP ag-
gregates on multiple groups in a single pass over the whole data, which represent
enormous cost savings in terms of I/O operations. Our current research agenda
includes an experimental validation and performance evaluation of the benefits of
our approach when compared to the “vanilla" Pig system.

5.3 Summary

The work presented in this Chapter, and the contributions made to the area of
data-intensive scalable computing, can be summarized as follows:

• We study the fundamental problem of scheduling data processing jobs in multi-
tenant, shared Hadoop cluster. Despite the large amount of work that has been
dedicated to scheduling (in general, and in particular for Hadoop and MapRe-
duce) only few attempts reached the level of maturity required for adoption
in production-level deployments: the most widely used schedulers for Hadoop
are the simple First Come First Served (FIFO) approach, and the Hadoop Fair
Scheduler, which requires complex (and manual) configuration and achieves
system fairness comparable to that of processor sharing. More elaborate tech-
niques have remained an academic exercise due to the inherent difficulty in
translating abstract ideas into a practical scheduler. Our approach to the
problem is to notice, first, that there is no reason to focus solely on (job)
performance or, orthogonally, to system fairness across jobs. To this end,
we revisit the well-known (but hardly used in practice, due to stringent re-
quirements on a-priori knowledge of job characteristics) size-based scheduling
approach. Specifically we focus on a scheduling discipline that guarantees at
the same time system fairness and near-optimal job sojourn times. Using job
sojourn time (which includes processing and waiting times) as a performance
metric caters system responsiveness, a quality that is highly desirable in pro-
duction environments where even short (or experimental) jobs are generally
executed.

In our work we proceed with the complete design of the scheduler architecture,
which attempts at solving several problems: i) job size estimation, which is a
required information for (any) size-based scheduling to work; ii) lack of pre-
emption primitives, which we address by leveraging the underlying operating
system and its support for context switching; and iii) a parallel version of
the Fair Sojourn Protocol, which is the original scheduling discipline our work
builds upon.

Extensive experiments aiming at assessing the performance of our scheduler
under a variety of realistic workloads indicate that the size-based scheduling
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discipline we implemented considerably lowers the sojourn time for the major-
ity of jobs we executed in our clusters. Our contribution, labeled the Hadoop
Fair Sojourn Protocol (HFSP), has been fully implemented and released under
the Apache v.2 software license.

• We focus on high-level languages to abstract the complexity of handling both
algorithm design and framework tuning while producing data analysis jobs
for Hadoop. Specifically, we focused on OLAP systems aiming at computing
aggregate measures over de-normalized data. Our work begin with the real-
ization that many aggregate computations operate on hierarchical data, where
for example it is important to obtain partial aggregates at different granular-
ities (e.g. compute aggregates on a hourly, monthly and yearly basis). As
such, we first focused on the programming model that underlies most (if not
all) high-level languages for Hadoop, that is MapReduce. Our contribution
consists in a novel design pattern that allows hierarchical data analysis to be
translated into a compact MapReduce job, as opposed as several jobs each
responsible of a different granularity. The design pattern we define consists
in a simple, yet effective, way to route information among worker machines of
an Hadoop cluster, and a “pipelined" approach to multi-level computation: in
short, our method simply relies on the fact that for some aggregate measures
(those that are algebraic) it is possible to amortize the computational cost
done at lower layers of the data hierarchy (e.g. hours) and reuse it at higher
layers (e.g. days).

Our on-going work aims at bringing the new design pattern described above
to the Pig execution engine, which is a popular high-level abstraction on top
of MapReduce. Essentially, we automate the production of jobs that work
according to our design pattern (and that thus benefit from the performance
enhancements we demonstrate on the legacy MapReduce programming model)
by compiling a high-level program (written in Pig Latin) into a single MapRe-
duce job. Currently, we are defining a benchmarking suite to analyze the
performance achieved by our compiled jobs with respect to those generated
by the “vanilla" distribution of Pig.

In this Chapter we omit several works that have been done in the domain of
large-scale data analysis, for the sake of brevity. It is worth to mention that our
effort in the domain of data-intensive scalable computing is not only focused on the
internals of parallel systems and their performance, but also on the study of data
mining techniques to analyze large datasets. In particular, we focused on location-
based, social applications to understand user behavior, based on large datasets of
user activity. In doing so, we worked on the role played by a “special few" set of users
that can be considered as influentials. Our work [94, 95] nicely fit the traditional
use case for a parallel approach to data analysis, and it is part of our on-going work
to extend the single threaded imperative programming model we used to perform
our initial analysis to a parallel and functional programming model.
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Introduction

In this Chapter I briefly outline the teaching activity that I carried out since my
appointment as an Assistant Prof. at Eurecom. All courses described below are at
the Masters level, and the typical audience includes Eurecom’s students, Masters
students, Ph.D. students and external students coming from Industrial partners of
Eurecom’s consortium.

Before delving into the details of each course, it is important to emphasize the
relation between my teaching and research activities. In my teaching methodol-
ogy, there exists a feedback loop between research and teaching: in my work as a
researcher, I often have the opportunity to relate the problems I tackle to funda-
mental topics in computer science, which I then develop and include in my courses
both as theoretic concepts and as exercises, homeworks or laboratory sessions. It
is also the case that – and this is especially true for the most recent course I have
created, related to scalable systems for data-intensive processing – some of the lab-
oratory sessions I prepare raise practical problems that I generalize and consider in
my research agenda, which thus represent an important source of new problems to
tackle.

Exercises, homeworks and, to a large extent, laboratory sessions have played
a crucial role in the development of my activities. From the practical standpoint,
it is often the case that my group and I have to design, develop and deploy from
scratch complex hardware and software systems to setup each laboratory. The
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complex nature of the software we use and develop also calls for a thorough software
development methodology, which benefit both my teaching and research activity: all
software sources, but also the lecture notes and slides, are handled through cloud-
based software revision control systems that allow to branch, tag, clone and manage
complex systems in an easy manner, which is complemented by a documentation
taking the form of a Wiki. In addition, the recent developments of my research
and teaching activity cover topics that are likely to be relevant for the industry:
this is beneficial both to my students, that work on topics likely to offer challenging
job opportunities, and to my group. Ph.D. students have the luxury of being able
to study relevant problems in the domain of data-intensive computing, and see the
impact of their contributions readily adopted by the industry.

To conclude this introductory part to the Chapter, it is important to state what
is the evaluation methodology that I use to grade students attending my courses.
Due to the applied nature of the majority of the classes I teach, the final grade a
student obtains assembles both the understanding of theoretical principles and their
application to solve real problems (homework assignments, and laboratory sessions).
Ultimately, my goal is to diversify the way I teach to compensate the skew in the
distribution of background knowledge my students have: albeit this is a challenging
and largely discussed problem, my approach is to level-out the initial heterogeneity
of students, and make sure that everyone benefit from my courses.

6.1 Web Technologies

• Role: Professor

• Course Type: Long, 42 hours

• Period, Years: Spring, 2005–2011

The goal of this course is to cover a number of technologies that make up the
World Wide Web, ranging from client-side to server-side technologies. The course
covers also current best-practices in the deployment of Web applications, including
caching layers, load balancing and traditional relational database management sys-
tems. Besides covering the basics, the course also surveys major distributed systems
and architectures that support today’s Web Services and Applications, including
distributed data stores (e.g. NoSQL systems).

Class sessions are complemented by external lecturers, working in international
and start-up companies where Web Technologies represent a core business. Such
lectures include works done at CISCO, PlayAdz (a local startup company in the
domain of on-line advertisement), SliceFactory (a local startup company in the
domain of Web-based mash-ups and browser extensions).

This course was mandatory for a number of teaching “Tracks” at Eurecom and
attracted a lot of students: each year I had roughly 50 students attending the course,
and the global ranking from students was excellent.
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In 2011, the course has evolved to cover more specific aspects of data-intensive
computing, and scalable systems for data storage, thus moving the focus to the back-
end rather than to the front-end of Web Technologies. As such, Web Technologies
is no longer available in the curriculum, in favor of the last course discussed in this
Chapter. This choice also corresponds to an evolution of my research activities, as
explained in the introduction.

6.1.1 Term Projects

The Web Technology course requires students to work for a Term Project (performed
during the semester and during the laboratory sessions). The goal of the Term
Project is for students to familiarize with the technologies illustrated during the
lectures but also requires students to be pro-active and come up with original ideas,
stemming from using new technologies that have not necessarily been discussed in
class. Example of Term Projects are listed below:

• Crawling and Indexing the Web to build a Web Search engine

• Design of a Web Interface for the deployment of Cloud Services

• Implementation of a distributed framework for the Redis key/value store

• Implementation of a simple Recommender Engine for a on-line Movie Broad-
cast Web Application

• Implementation of a simple Chrome Extension for price comparators

6.2 Algorithm Design

• Role: Professor

• Course Type: Short, 21 hours

• Period, Years: Spring, 2007–

The goals of this course are: i) to survey the foundations of the design and
analysis of algorithms; ii) to provide a practical understanding of complexity theory
and algorithms; iii) to provide an in-depth understanding of selected problems at
the forefront of research explorations in the design and analysis of algorithms. As a
prerequisite for this course, basic knowledge of elementary data structures, sorting,
and basic terminology involving graphs (including the concepts of depth-first search
and breadth-first search) is required, albeit some of these concepts are reviewed in
the course. In details, the topics covered in this course are as follows:

• Algorithm design and the notion of Algorithmic Complexity

• Graph Theory: basics notions and advanced concepts related to Network Anal-
ysis
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• Greedy Algorithms in depth, overview of Divide and Conquer and Dynamic
Programming

• Flow Networks and Max-Flow Problems

• Local Search Algorithm and applications to Facility Location Problems

• Randomized Algorithms

This course was not mandatory at Eurecom, but nevertheless attracted roughly
20 students each year. The global ranking from students was excellent, although
the preference for a long version of the course, covering more advanced topics has
been largely suggested. This point is addressed in Section 6.5, where I elaborate a
plan for the evolution of the contents to cover the design and analysis of algorithms
to mine massive amount of data.

6.2.1 Exercises

The lectures are complemented by a series of homeworks which may involve the
analysis of algorithms at a fairly mathematical level: as such, students are expected
to be comfortable reading and writing proofs. Most of the exercises and examples
are drawn from problems related to networking and distributed systems, e.g. peer-
to-peer systems. Given the small amount of lectures available for this course, the
correction and, in general, feedback on exercises and homeworks was mainly done
via email.

6.3 Game Theory

• Role: Professor

• Course Type: Short, 21 hours

• Period, Years: Fall, 20010–2012

The goal of this course is for student to get acquainted to basic concepts in Game
Theory, together with its algorithmic aspects. Ideas such as dominance, backward
induction, Nash equilibrium, evolutionary stability, commitment, credibility, asym-
metric information, adverse selection, and signaling are discussed and applied to
games played in class and to examples drawn from economics, politics and com-
puter science in general.

This course (and its contents) was highly inspired by one of the first (very pop-
ular) on-line courses distributed by the Yale university, department of Economics.
Prof. Benjamin Polak was an inspiration to me especially with respect to getting
students involved during class.

This course was not mandatory at Eurecom, but nevertheless attracted roughly
30/40 students each year. Recent developments in terms of the research topics



6.4. Large-scale Distributed Systems and Cloud Computing 93

covered by my colleagues at Eurecom, made me arrive at the conclusion that – for
the sake of coherency – this introductory course to Game Theory had to be merged
into a long course that perfectly fit the Teaching Tracks of my Department. Hence,
starting from Fall 2013, the course will be part of the Network Economics course,
in which I will not be involved due to my different research objectives.

6.3.1 Exercises

The lectures are complemented by a series of homeworks stemming from research
papers in the field of computer networks, where game theory is applied to model,
analyze and evaluate the operating point of a variety of systems. Such problems
are related to the research activity I pursued in the context of peer-to-peer systems,
content replication and wireless ad-hoc networks.

6.4 Large-scale Distributed Systems and Cloud Comput-

ing

• Role: Professor

• Course Type: Long, 42 hours

• Period, Years: Spring, 2011–

The goal of this course is to provide a comprehensive view on recent topics and
trends in distributed systems and cloud computing. The lectures cover software
techniques employed to construct and program reliable, highly-scalable systems.
This course also covers architecture design of modern data-centers and virtualization
techniques that constitute a central topic of the cloud computing paradigm. The
main topics treated in the course cover:

• Theory and practice of MapReduce and Hadoop

• Theory and practice of Hadoop Distributed File System

• Design and analysis of parallel algorithms with MapReduce

• Relational Algebra and MapReduce

• Hadoop Pig, Hadoop Hive, Cascading and Scalding

• Theory and practice of BigTable and HBase

• The CAP Theorem

• Amazon Dynamo and Cassandra

• Paxos and Hadoop ZooKeeper

This course is done in collaboration with Prof. Marko Vukolic, who takes care
of some of the theoretical aspects developed in the course.
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6.4.1 Laboratory Sessions

The course is complemented by a number of laboratory sessions to get hands-on
experience with Hadoop and the design of scalable algorithms with MapReduce. In
addition, I have prepared exercises to work with high-level languages, with emphasis
on Hadoop Pig and Twitter Scalding. Such exercises cover basic statistical analysis
of data, as well as complex analytics applied to use-cases including: social network
data, telecommunication traffic data, airline traffic data, a large (more than 100
TB) dataset on Web crawls provided commoncrawl.com.

The exercises, laboratory set-up, sample input data, and output results have
been submitted as open-source projects on the github.com website. Students can
simply download each laboratory archive, or can contribute to extend and improve
exercises and their solutions. This is done via the git version control utility, or
through a Web interface available on github.com.

The infrastructure to carry out each laboratory is conceived as a private cloud

service: with the help of my research group, we have built from scratch a cluster
of powerful servers that run an open-source hyper-visor to achieve virtualization,
which are then orchestrated through the OpenStack cloud management open-source
software.

6.5 Perspectives

Recently I started to consolidate my teaching and research activity to revolve around
data-intensive scalable computing, both at the algorithmic and system level. As
such, the courses that I coordinate should be centered on these subjects: this is
already the case for the “Clouds” course, but there is still some work to be done
concerning the Algorithm Design course.

My teaching agenda is currently focused in promoting a long version of the
Algorithm Design class, spanning 14 lectures. The contents of the current version
of the course will be compressed to fit the first 4-5 lectures, providing the necessary
background to students to understand advanced concepts in the design of scalable
algorithms for mining massive amounts of data. The main reference I would like to
use in this context is a book from A. Rajaraman and Prof. J. Ullman from Stanford:
“Mining of Massive Datasets”. The 9-10 new lectures of the Algorithm Design class
should cover the following topics:

• Data mining, and its statistical limits (e.g. Bonferroni’s Principle)

• Design of parallel algorithms and fundamentals of Functional Programming

• Algorithms for finding similar items

• Mining data streams

• Frequent Itemsets
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• Clustering algorithms

Such lectures will be complemented by laboratory sessions with practical appli-
cations to recommender systems, advertisement, and data mining.





Chapter 7

Conclusion and perspectives

In this Chapter, I discuss what are the main conclusions to be drawn from the work
presented in this manuscript. First, I will focus on the variety of topics covered
throughout the past few years: despite the apparent unrelated nature of application
domains discussed in this work, I will make the exercise of trying to extract and
motivate the underlying research methodology used to address the various prob-
lems we tackled, and reposition the contributions in the context of large scale data

management. I will then conclude with a Section on my research agenda.
Chapter 3 focused on massive-scale content distribution, with application to

mobile, wireless networks.1 In this domain, scalability problems arise due to the
inherent “synchronization” that affect human behavior: when consuming content,
and because of social-ties and the abundance of communication channels to “spread
the word”, users flock to a particular information item roughly at the same time, a
phenomenon called flash-crowd. Hence, systems face a largely unpredictable spike in
resource utilization, which calls for a new, decentralized, approach to content distri-
bution, which I discussed in Chapter3. Chapter 4 dealt with massive-scale content
storage, that materializes as an Internet application executed by edge devices. Scal-
ability problems developed in two main directions: data size, and number of users.
The design of new storage mechanism favoring redundancy instead of replication
(specifically because of data size), and new systems whose capacity and perfor-
mance scale with the number of concurrent users in the system lied at the heart
of the work in Chapter 4. Finally, Chapter 5 covered data-intensive applications:
machine-learning, statistical modeling, and in general data mining applied to better
understand users and the systems or applications they use, constituted the bulk of
the use cases for this last chapter. Scalability problems arose because of the scale of
data: in this context, moving data (from disk, in the network, across data-centers)
is a heavy weight operation that should be avoided as much as possible. Such prob-
lems call for a “divide and conquer” approach to computation and new systems to
support it.

In summary, scalability problems were a concern for all the applications discussed
in the manuscript, and the main objectives of my research were to understand and

improve the way we move, store and process data. Chapters 3, 4 and 5 dealt with the
intricacies in achieving these goals: the solutions I presented had a strong algorithmic

flavor, in the sense that they all related to well-known and fundamental problems
in computer science, ranging from Location Theory and Game Theory to Flow

1My work also covered content distribution in the Internet, which I omit from this manuscript

for the sake of brevity.
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Networks, Scheduling and Resource allocation. Besides the modeling effort required
to formulate and study the problems I tackled in this work, it is important to
notice that I used a measurement approach to come up with the main motivations
to consider such problems and to understand their consequences. As such, the
work presented in this manuscript blended theoretic modeling, measurements on
real systems, and experimentation, both using synthetic simulations and real-life
prototypes.

The main contributions I presented in this manuscript are the following:

• A new view on distributed replication algorithms. The work on content
dissemination in mobile, wireless networks established a new way of model-
ing information spreading that is akin to placement problems (in Location
Theory) rather than casting it as an epidemic diffusion process or a general
caching problem. Essentially, I proposed to use a variant of facility location
problems and designed a distributed algorithm capable of coping with sev-
eral types of dynamics: network fragility due to user mobility and content
popularity. Chapter 3 illustrated the properties and performance of the dis-
tributed algorithm that I used to find approximate solutions to the problem,
which turned out to be very simple to implement, lightweight, and particularly
resilient to network and content dynamics;

• A new approach to data placement and scheduling problems in wide-
area, decentralized storage systems. Due to the inherent need for large
amounts of resources, applications such as peer-to-peer on-line storage and
backup require sophisticated mechanisms to incite users’ altruism: in this con-
text, I proposed a new model in which I viewed data placement as a variant
of the stable matching problem.2 Such model was studied through the lenses
of Game Theory and I showed, given a set of constraints on user resources,
that it was possible to provide incentives to users to increase the “quantity”
and “quality” of such resources dedicated to the system, in return for improved
performance, with a simple mechanism.

In addition, I proposed a new method to study the problem of scheduling data
transfers among remote machines, when they exhibit an intermittent on-line
behavior. This was one of the main problem to address and solve to make
on-line backup and storage applications viable and fast. The main idea was to
model node availability and data transfer opportunities as a directed bipartite
graph, which was then extended to become a flow network. Then, I showed the
correspondence between the original problem (of finding the optimal schedule
that minimizes data transfer times) and that of the well-known MaxFlow
problem, and came up with a polynomial-time algorithm (that builds upon
the Ford-Fulkerson algorithm) to find the optimal schedule.

• Size-based scheduling – albeit promoted with vigor by the theoretical commu-
nity – reached very few instances of real (single-server) systems, not to men-

2In this manuscript we glossed over the details of this work, for the sake of brevity.



99

tion multi-processor environments. One of the main contribution of this line of
work, was to show that size-based scheduling works in practice, despite
size information, which constitutes the input to any size-based protocols, being
generally not available. Precisely, I showed that, in a multi-processor system,
the hardest problem is not that of computing an accurate estimate of job sizes,
but to decide how to allocate resources while estimating job sizes, such that
the system can make progress even when size-based scheduling cannot be ap-
plied. Furthermore, I showed that multi-processor systems require special care
in designing a scheduling algorithm, especially when jobs are complex entities
such as MapReduce programs.

• One last contribution of this manuscript was to recognize the need for a the-

oretic approach to the design of algorithms based on the MapReduce
(and related) programming model. As I will discuss next, several other re-
searchers have shown that the design of parallel algorithms requires an effort
that goes beyond the programming model itself, which means that algorithmic
problems and their solutions are rooted in the very nature of the underlying
execution framework used to run them. In particular, for the MapReduce pro-
gramming model, I have shown that well-known operators that are widely used
in traditional database management systems required special care when imple-
mented on top of MapReduce, for otherwise a naive implementation (that is
agnostic to the underlying execution engine) would suffer severe performance
degradation.

Perspectives

In this Section I discuss the main directions that I will take in the next 3 to 5 years.
Before delving into the technical details, I first describe the high-level objectives
and the “strategy” required to achieve these goals.

Data intensive scalable computing (DISC) constitutes the main domain in which
I will focus my research effort. In particular, my goal is to promote a systems ap-
proach to research in which, building on solid theoretical foundations, the ultimate
goal is to design and implement system prototypes and launch large scale, repeat-
able experiments to address real problems. An additional trait of my current and
forthcoming activity is the definition of and contribution to open-source projects.
This approach serves two purposes: first to gain visibility and obtain feedback from
the community that will use the “products” of my research; second, and equally
important, to overcome current limitations of the scientific community that work
on system research: my peers should be able to delve into the internals of how each
idea I present is actually implemented (the devil is in the details) and how to repeat
the experiments that validate it and assess its performance.

The discussion above requires some additional details on how it can be imple-
mented in practice: in synthesis, there is i) a stringent need for hardware material to
build clusters of computers to run experiments; ii) the requirement to have a team
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large enough such that the development effort can be well balanced and results can
be achieved in a finite amount of time; iii) and a proper interaction with the indus-
try. The first two points require substantial funding, which originate mainly from
writing and submitting grant proposals. Interaction with the industry, at least in
my experience, can be obtained “for free” if the research results that I produce can
be of immediate use and applicable to solve engineering problems. In particular, I
found that teaching – which in my case is heavily based on research – played a cru-
cial role in attracting industrials: especially the laboratory sessions that I prepared
in the past, which have been published as open-source projects accessible to anyone,
attracted a large number of industrials, which used them first, and then contacted
me to go beyond the basics.

We are now ready to discuss the research directions I plan to pursue next: in
this document I will focus on three, inter-related topics.

Scheduling and resource allocation problems

The ideas discussed in Sect. 5.1 of Chapter 5 nicely fit in a more general domain,
which deals with scheduling and resource allocation problems in multi-processor
systems. This line of work blends theoretical research that strives to model multi-
processor systems in general [49, 65, 72, 96] and MapReduce in particular [50, 83],
and the intricacies in the design and implementation of scheduling protocols. In
particular, I will focus on the problem of scheduling complex jobs in shared-nothing

multi-processor systems, where the complexity is due to the job structure. When a
parallel program is used to go beyond counting, jobs may be composed of multiple
sub-jobs, or they may be iterative, which complicate task and job scheduling, espe-
cially in a multi-tenant environment whereby concurrent jobs share the same cluster
resources.

High-level languages and Work Sharing

As motivated in Sect. 5.2 of Chapter 5, high-level languages represent the natural
evolution for (shared-nothing) parallel processing systems such as MapReduce. In
this line of work, an important aspect to address is that of “translating”, or compiling,
a program expressed with a high-level, abstract language to a low-level executable
code [54]. High-level abstractions bring, among others, enormous optimization op-
portunities that are hard (if not impossible) to detect at low-level. For example,
by expressing a program as a directed acyclic graph in which each node is an op-
erator and each arc is a data flow (essentially, a logical plan, using the traditional
database systems notation), it is possible to significantly improve its performance
when executed, by moving operators such that the amount of data flowing in the
plan is minimized. In addition to apply well known techniques from the database
systems domain, the delay-tolerant nature of MapReduce jobs allow a new type of
optimization, which I label concurrent work-sharing : the goal is not only to improve
performance, but to drastically improve efficiency. In particular, this line of work is
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related to that of scheduling and aim at minimizing the amount of redundant work
done by a compute cluster when multiple jobs are waiting to be served and end up
enqueued at the same time in the system.

Parallel algorithm design, with applications to machine learning

Despite it’s ubiquitous presence in many recent works on parallel data processing,
MapReduce is not a silver bullet, and there has been much work probing its lim-
itations, both from a theoretical perspective [11, 63] and empirically by exploring
classes of algorithms that cannot be efficiently implemented with it [19,25,48,109].
Many of these empirical studies take the following form: they present a class of
algorithms for which a naively designed algorithm performs poorly, expose it as a
fundamental limitation of the MapReduce programming model, and propose an ex-
tension or alternative that addresses the limitation. While it is true that a large
class of algorithms are not simply amenable to MapReduce implementations, there
exist alternative solutions to the same underlying problems that can be easily im-
plemented in MapReduce.

For example, the work in [74] shows that iterative graph algorithms (e.g., PageR-
ank), gradient descent (e.g., for training logistic regression classifiers), and expec-
tation maximization (e.g., for training hidden Markov models, k-means) can all be
adapted to the MapReduce programming model. Other works [11] focus on theo-
retical limits of the programming model and discuss how to design a MapReduce
algorithm while taking into account the trade-off that exists between parallelism
and communication cost, which are two conflicting aspects in the execution frame-
work that runs MapReduce programs. Yet other works [70, 98] suggest alternative
approaches to the design of fundamental graph algorithms (e.g., counting triangles
in a graph, minimum spanning trees, etc...) that would otherwise lead to poor per-
formance when implemented in MapReduce. Finally, the work in [63] is the first to
propose a computational model for MapReduce problems.

As stated in recent works [74], “when all you have is a hammer, throw everything

that is not a nail”: I am convinced that we are at the early stages of a proper under-
standing of the MapReduce programming model, in terms of fundamental research.
As such, I will dedicate a considerable amount of work to the consolidation of such
computational models, and the definition of a structured methodology toward the
design of parallel algorithms for shared-nothing multi-processor systems. In similar
terms to what we teach to students in courses such as “Algorithm Design”, there
should be a solid foundation to the design and analysis of parallel programs written
using the functional-style underlying MapReduce. To this end, I will take some note-
worthy examples stemming from the machine learning literature, with applications
to time-series data analysis, and contribute to the theory alleged above.
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