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Abstract—An unprecedented increase in the mobile data traffic
volume has been recently reported due to the extensive use of
smartphones, tablets and laptops. Moreover, predictions say that
this increase is going to be yet more pronounced in the next 3-4
years. This is a major concern for mobile network operators,
who are forced to often operate very close to (or even beyond)
their capacity limits. Recently, different solutions have been
proposed to overcome this problem. The deployment of additional
infrastructure, the use of more advanced technologies (LTE), or
offloading some traffic through Femtocells and WiFi are some of
the solutions. Out of these, WiFi presents some key advantages
such as its already widespread deployment and low cost. While
the benefits to operators have already been documented, with
considerable amounts of traffic already switched over to WiFi,
it is less clear how much and under what conditions the user
gains as well. To this end, in this paper we propose a queueing
analytic model that can be used to understand the performance
improvements achievable by WiFi-based data offloading, as a
function of WiFi availability and performance, and user mobility
and traffic load. We validate our theory against simulations for
realistic data and scenarios, and provide some initial insights as
to the offloading gains expected in practice.
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I. INTRODUCTION

Lately, an enormous growth in the mobile data traffic has
been reported. This increase in traffic demand is due to a sig-

nificant penetration of smartphones and tablets in the market,
as well as Web 2.0 and streaming applications which have

high-bandwidth requirements. Furthermore, Cisco [1] reports

that by 2017 the mobile data traffic will increase by 13 times,
and will climb to 13.2 exabytes per month, with approximately

5.2 billion users. Mobile video traffic will comprise 66 % of

the total traffic, compared to 51% in 2012 [1].

This increase in traffic demand is overloading the cellular
networks (especially in metro areas) forcing them to operate

close to (and often beyond) their capacity limits causing a

significant degradation to 3G services. Possible solutions to
this problem could be the upgrade to LTE or LTE-advanced,

as well as the deployment of additional network infrastructure

[2]. However, these solutions may not be cost-effective from
the operators’ perspective: they imply an increased cost (for

power, location rents, deployment and maintenance), without
similar revenue increases, due to flat rate plans, and the fact

that a small number of users consume a large amount of traffic

(3% of users consume 40% of the traffic [3]).

A more cost-effective way of alleviating the problem of
highly congested mobile networks is by offloading some of

the traffic through Femtocells (SIPTO, LIPA [4]), and the

use of WiFi. In 2012, 33% of total mobile data traffic was

offloaded [1]. Projections say that this will increase to 46%
by 2017 [1]. Out of these, data offloading through WiFi has

become a popular solution. Some of the advantages often cited

compared to Femtocells are: lower cost, higher data rates,
lower ownership cost [2], etc. Also, wireless operators have

already deployed or bought a large number of WiFi access

points (AP) [2]. As a result, WiFi offloading has attracted a
lot of attention recently.

There exist two types of offloading: on-the-spot and delayed

[5]. The usual way of offloading is on-the-spot offloading,
where traffic is transmitted over the cellular network only

when there is no WiFi availability. More recently, delayed

offloading has been proposed: if there is currently no WiFi
availability, (some) traffic can be delayed up to some chosen

time threshold, instead of being sent immediately over the

cellular interface. If up to that point, no AP is detected, the data
are transmitted through the cellular network. At the moment,

smart phones can only switch between interfaces. Using both

interfaces in parallel, as well as per flow offloading (IFOP)
are currently also being considered in 3GPP [4].

In this paper, our attention will be focused to on-the-

spot offloading, since delayed offloading is still a matter

of debate, as it is not known to what extent users would
be willing to delay a packet transmission. It also requires

disruptive changes in higher layer protocols (e.g. TCP) [6].
Although on-the-spot offloading is already used and it does

relieve the network, it is still a matter of debate if it offers

any benefits to the user as well (in terms of performance,
battery consumption, etc.) These benefits might depend on the

availability and performance of WiFi networks and the cellular

network, environment and type of user mobility [5], [7], etc.
To this end, in this paper we propose a queueing analytic

model for performance analysis of on-the-spot mobile data

offloading, that can be used to answer questions like the ones

above. Our contributions can be summarized as following:

• We derive the expected delay of on-the-spot offloading as

a function of WiFi availability, traffic intensity, and other

key parameters (Section II-B).
• We propose simpler closed-form approximations for some

interesting utilization regimes (Sections II-C, II-D, II-E).
• We validate our model using both synthetic, but also

real data for most parameters of interest and demonstrate

significant accuracy (Section III-A).
• We use our model to provide some preliminary answers to

the questions of offloading efficiency and delay improve-
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Fig. 1. The WiFi network availability model

ments through WiFi-based offloading (Section III-C).

II. PERFORMANCE MODELING

A. Problem setup

Consider a mobile user that enters and leaves zones with

WiFi coverage (with a rate that depends on the user’s mobility,
e.g. pedestrian, vehicular, the environment in hand, e.g. rural,

urban, etc.). Without loss of generality, we assume that there is

always cellular network coverage. Whenever there is coverage
by some WiFi AP, all traffic will be switched over to WiFi.

As soon as the WiFi connectivity is lost, the traffic will

be transmitted through the cellular network. This switch in
connectivity might sometimes occur while some session/flow

is running. Although it depends on the actual technology

whether and how a vertical handover will occur in this case,
we will assume that network transitions do not cause any

interruptions to the traffic flow.
We will model the WiFi network availability as an ON-

OFF alternating renewal process [8]
(

T
(i)
ON

, T
(i)
OFF

)

, i ≥ 1, as

shown in Fig. 1. ON periods represent the presence of the WiFi
connectivity, while during the OFF periods data are transmitted

only through the cellular network. i denotes the number of

ON-OFF cycles elapsed until time t. The duration of any ON

period T
(i)
ON is assumed to be an exponentially distributed

random variable with rate ηw, and is independent of the

duration of any other ON or OFF period. The data transmission
rate during WiFi connectivity periods is denoted with µw.

Similarly, all OFF periods are assumed to be independent
and exponentially distributed with rate ηc, and with data rate

µc < µw. Finally, to simplify analysis, we assume that traffic

arrives as a Poisson process with rate λ and file (or flow) sizes
are random and exponentially distributed.

We also assume queueing occurs when a message (e.g. file,
packet) arrives to find another message currently being queued

or in transmission, and consider First Come First Served

(FCFS) as the queuing discipline. The total time a file spends
in the system (service+queueing) is referred to as the system

time. We use also the term transmission delay interchangeably

with system time.
We stress here that the above assumptions are only made

for analytical tractability, and we do not claim the actual
availability periods or packet sizes to be exponentially dis-

tributed. For this reason, we will further test our model and

its predictions against real ON/OFF distributions in Section III.
Furthermore, we could extend our framework to arbitrary ON

and OFF distributions that can be approximated by Coxian
distributions [9], fitting the first three moments to the real

duration of the ON (OFF) period. In this case, there would

just be more states along one dimension in the Markov chain,
and we could use matrix-analytic methods [10]. But, closed-

form approximations could also be pursued. Finally, we show

TABLE I
VARIABLES AND SHORTHAND NOTATION

Variable Definition/Description

TON Duration of ON (WiFi) periods

TOFF Duration of periods (OFF) without WiFi connectivity

λ Average packet (file) arrival rate at the mobile user

πi,c Stationary probability of finding i files in cellular state

πi,w Stationary probability of finding i files in WiFi state

πc Probability of finding the system under cellular coverage only

πw Probability of finding the system under WiFi coverage

ηw The rate of leaving the WiFi state

ηc The rate of leaving the cellular state

µw The service rate while in WiFi state

µc The service rate while in cellular state

E[S] The average service time

E[T ] The average system (transmission) time

ρ = λE[S] Average user utilization ratio

in Section II-F how to extend our model to generic file

size distributions. Before proceeding further, we summarize
in Table I some useful notation that will be used throughout

the rest of the paper.

B. Delay analysis of on-the-spot offloading

We will first use queueing analysis to derive a formula for
the average transmission delay of a file in an on-the-spot data

offloading scenario. Given the previously stated assumptions,

our system can be modeled with a 2D Markov chain, as shown
in Fig. 2. Our approach in this first step is similar to [11] with

the difference that we have the same arrival rate during both

periods. πi,c denotes the stationary probability of finding i files
when there is only cellular network coverage, and πi,w is the

stationary probability of finding i files during WiFi coverage.
Writing the balance equations for this chain gives

π0,c(λ+ ηc) = π1,cµc + π0,wηw (1)

π0,w(λ+ ηw) = π1,wµw + π0,cηc (2)

πi,c(λ+ ηc + µc) = πi−1,cλ+ πi+1,cµc + πi,wηw, (i > 0) (3)

πi,w(λ+ ηw + µw)=πi−1,wλ+ πi+1,wµw + πi,cηc, (i > 0) (4)

The steady-state probability of finding the system in some

region with WiFi availability is (from Renewal theory [8])
πw = ηc

ηc+ηw
. Similarly, for the periods with only cellular access

we have πc = ηw
ηc+ηw

.
We define the probability generating functions for both the

cellular and WiFi

Gc(z) =
∞
∑

i=0

πi,cz
i, and Gw(z) =

∞
∑

i=0

πi,wzi, |z| ≤ 1.

We can rewrite Eq.(1) and (3) as

π0,c(λ+ ηc + µc) = π0,wηw + π1,cµc + π0,cµc

πi,c(λ+ ηc + µc) = πi−1,cλ+ πi,wηw + πi+1,cµc, (i > 0) (5)

We multiply each of the equations from Eq.(5) by zi and

sum over all i’s. After some calculus this yields

(λ+ ηc + µc)Gc(z) = λzGc(z) + ηwGw(z)

+
µc

z
(Gc(z)− π0,c) + π0,cµc (6)

By repeating the same process with Eq.(2) and (4), we get

(λ+ ηw + µw)Gw(z) = λzGw(z) + ηcGc(z)

+
µw

z
(Gw(z) − π0,w) + π0,wµw (7)

After solving the system of equations (6) and (7), we have
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Fig. 2. The 2D Markov chain for on-the-spot Mobile data offloading model

f(z)Gc(z) = π0,wηwµwz + π0,cµc [ηwz + (λ− zµw)(1− z)] , (8)

where

f(z) = λ2z3 − λ(ηc + ηw + λ+ µw + µc)z
2

+ (ηcµw + ηwµc + µcµw + λµw + λµc)z − µcµw (9)

It can be proven that the polynom in Eq.(9) has only one
root in the open interval (0, 1) [11]. This root is denoted as

z0. We omit this proof here due to space limitations. Setting

z = z0 into Eq.(8) gives

π0,wηwµwz0 + π0,cµc [ηwz0 + λz0(1− z0)− µ2(1− z0)] = 0.

After some algebraic manipulations with the last equation

and Eq.(4), we obtain for π0,c and π0,w

π0,c =
ηw(µ − λ)z0

µc(1− z0)(µw − λz0)
(10)

π0,w =
ηc(µ − λ)z0

µw(1− z0)(µc − λz0)
, (11)

where µ = πcµc + πwµw.

Finally, for Gc(z) and Gc(z) we have

Gc(z) =
[ηw(µ − λ)z + π0,cµc(1− z)(λz − µw)]

f(z)
, (12)

Gw(z) =
[ηc(µ − λ)z + π0,wµw(1− z)(λz − µc)]

f(z)
. (13)

We define two new quantities E[Nc] =
∑

∞

i=0 iπi,c and E[Nw] =
∑

∞

i=0 iπi,w. Hence, we have E[Nc] = G
′

c(1)and E[Nw] = G
′

w(1).

It is easy to see then that the average number of files in the

system is E[N ] = E[Nc] + E[Nw]. Replacing z = 1 in Eq.(12)-

(13), we get for the average number of files in the system

E[N ] =
λ

µ− λ
+

µc(µw − λ)π0,c + (µc − λ)(µw(π0,w − 1) + λ)

(ηc + ηw)(µ − λ)
.

(14)

Finally, using the Little’s law E[N ] = λE[T ] [8] , we obtain
the average packet delay in on-the-spot mobile data offloading:

Result 1. The average file transmission delay in the on-

the-spot mobile data offloading is

E[T ] =
1

µ− λ
+
µc(µw − λ)π0,c + (µc − λ)(µw(π0,w − 1) + λ)

λ(ηc + ηw)(µ − λ)
(15)

C. Low utilization approximations

In the previous subsection we derived a generic expression

for the average delay for on-the-spot-offloading. However, the

formula in Eq.(15) contains a root of a third order (cubic)
equation, and as such its solution is cumbersome, even if

obtainable in closed-form. For this reason, in the remainder

of this section we will consider simpler closed-form approxi-
mations for specific operation regimes. One such scenario of

interest is when resources are underloaded (e.g. nighttime,

rural areas, or mostly low traffic users, etc) and/or traffic
is relatively sparse (some examples are, background traffic

from social and mailing applications, messaging, Machine-

to-Machine communication, etc.). We thus derive first a low
utilization approximation for the average delay when ρ → 0.

Under these assumptions the polynomial in Eq.(9) becomes
a linear function with a zero at

z0 =
µcµw

ηcµw + ηwµc + µcµw

. (16)

Now, Eq.(10)-(11) reduce to π0,c = ηw
ηc+ηw

, and π0,w = ηc
ηc+ηw

,
and Eq.(15) can be simplified as suggested in the following:

Low utilization approximation 1. The average file trans-

mission delay in the on-the-spot mobile data offloading for

sparse traffic can be approximated by

E[T ] =
ηc + ηw

ηwµc + ηcµw
. (17)

Another approach for finding an approximation for the case

of sparse traffic is by only considering the service time. For

very low utilization, there is no queueing and the service time
corresponds in most cases to the total system time. To find the

average service time, we use a fraction of the Markov chain
from Fig. 2 with only 4 states, as shown in Fig. 3. This chain

contains only 4 states, since we do not consider queueing. The

system empties at either state (0, c) or state (0, w), since the
packet transmission can be finished either during a cellular or

a WiFi period.
The goal here is to find the average time until a packet

arriving in a WiFi or cellular period finishes its service, i.e.

the time until the system, starting from the state (1, c) or (1, w)
first enters any of the states (0, c) or (0, w). Hence, the average
service time is

E[S] =
ηw

ηc + ηw
E[Tc] +

ηc

ηc + ηw
E[Tw], (18)

where E[Tc] (E[Tw]) is the average time until a packet that enters
service during a cellular (WiFi) network period finishes its

transmission. This can occur during a different period.
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Fig. 3. The reduced Markov chain for ρ → 0

The expression for E[Tc] is equal to

E[Tc] = P [Ic = 1]E[Tc|Ic = 1] + P [Ic = 0]E[Tc|Ic = 0], (19)

where Ic is an indicator random variable having value 1 if the

first transition from state (1, c) is to state (0, c). This means

that the packet is transmitted during the same cellular period.
Otherwise, its value is 0. The probabilities of this random vari-

ables are P [Ic = 1] = µc

µc+ηc
, and P [Ic = 0] = ηc

µc+ηc
,respectively.

For the conditional expectations from Eq.(19), we have

E[Tc|Ic = 1] =
1

µc + ηc
, (20)

E[Tc|Ic = 0] =
1

µc + ηc
+E[Tw]. (21)

Eq.(20) is actually the expected value of the minimum of two

exponentially distributed random varibles with rates µc and

ηc. Replacing Eq.(20) and (21) into Eq.(19), we get

E[Tc]−
ηc

µc + ηc
E[Tw] =

1

µc + ηc
. (22)

Following a similar procedure for E[Tw] we obtain

E[Tw]−
η2

µw + ηw
E[Tc] =

1

µw + ηw
. (23)

After solving the system of equations Eq.(22)-(23), we have

E[Tw] =
µc + ηc + ηw

µcµw + µcηw + µwηc
, (24)

E[Tc] =
µw + ηc + ηw

µcµw + µcηw + µwηc
. (25)

Now, replacing Eq.(24)-(25) into Eq.(18), we have the aver-
age service time, and the second low utilization approximation

is (E[T ] ≈ E[S]):
Low utilization approximation 2. The average file trans-

mission delay in the on-the-spot mobile data offloading for

sparse traffic can be approximated by

E[T ] =
(ηw + ηc)2 + ηcµc + ηwµw

(µcµw + µcηw + µwηc)(ηc + ηw)
. (26)

D. High utilization approximation

Another interesting regime is that of high utilization. As

explained earlier, wireless resources are often heavily loaded,

especially in urban centers, due to the increasing use of smart
phones, tablets, and media-rich applications. Hence, it is of

special interest to understand the average user performance in

such scenarios. We provide an approximation that corresponds
to the region of high utilization (ρ → 1), i.e. for which it holds

λ ≈
ηw

ηc + ηw
µc +

ηc

ηc + ηw
µw.

Under this condition the polynomial of Eq.(9) becomes

f(z) = (z − 1)[λ2z2 − λ(µc + µw + ηc + ηw)z + µcµw ]. (27)

The root in the interval (0, 1) of the function (27) is

z0 =
(µc + µw + ηc + ηw) −

√

(µc + µw + ηc + ηw)2 − 4µcµw

2λ
,

(28)

since one other root is 1 and the third one is larger than 1.

Hence, we get the following result:

High utilization approximation: The average file trans-

mission delay in the on-the-spot mobile data offloading for a

user with heavy traffic can be approximated by

E[T ] =
1

µ− λ

(

1−
(µc − λ)(µw − λ)

λ(ηc + ηw)

)

+
z0

λ(ηc + ηw)(1 − z0)

(

µw − λ

µw − λz0
ηw +

µc − λ

µc − λz0
ηc

)

(29)

E. Moderate utilization approximation

So far, we have proposed two approximations for the light

and heavy traffic scenarios. These approximations are exact

in the limits as ρ → 0 and ρ → 1, respectively. Finally, we
provide a heuristic approximation for the average packet delay

for intermediate utilization values in the range 0.2 − 0.8. To

do so, we perform linear interpolation of the function f(z)
in the range (0, 1), and find the point zint which is the root

of the linear interpolated function. The values of the linear
function at the end of the interval are f(0) = −µcµw < 0, and

f(1) = ηcµw + ηwµc − λ(ηc + ηw) > 0. The interpolation function

is thus f(z) = f(0) +
f(1)−f(0)

1−0
(z − 0), with the zero at point

zint =
µcµw

ηcµw + ηwµc − λ(ηc + ηw) + µcµw

. (30)

The function f(z) is concave on the interval (0, 1) if the
packet arrival rate satisfies the condition

λ < ηc + ηw. (31)

In that case, we know that the root of the function f(z) is

lower than the zero of the interpolated function. Hence, for
the moderate utilization region we propose the approximation

z0 = zint

ε
, with ε being in the range 1.4-1.6.

Moderate utilization approximation. The average file

transmission delay in the on-the-spot mobile data offloading

for moderate traffic can be approximated by

E[T ] =
1

µ− λ
+

µc(µw − λ)π0,c + (µc − λ)(µw(π0,w − 1) + λ)

λ(ηc + ηw)(µ − λ)
,

(32)

where π0,c and π0,w are given by Eq.(10)-(11), z0 = zint

ǫ
, and

zint is given by Eq.(30).

F. Generic file size distribution approximation

Our analysis so far considers exponentially distributed file

sizes. Yet, for some traffic types, heavy-tailed file sizes were
reported [12]. Unfortunately, generalizing the above 2D chain

analysis for generic files is rather hard, if not impossible.

Nevertheless, we can use the M/G/1 P-K formula [8] as a
guideline to introduce a similar “correction factor” related

to smaller/higher file size variability1. Let cv denote the

coefficient of variation for the file size distribution, and E[T ]
and E[S] denote the system and service time, respectively,

1Due to space limitations, we state this here without further discussion.
However, the equivalence with the M/G/1 vs. M/M/1 difference is easily
evident, and the interested reader is referred to any standard queueing theory
textbook.



for exponentially distributed packet sizes (as derived before).
Then, the following approximation applies to generic file sizes.

Result 2. The average file transmission delay in the on-the-

spot mobile data offloading for generic file size distributions

can be approximated by

E[Tg] =
1− c2v

2
E[S] +

1 + c2v

2
E[T ]. (33)

III. SIMULATION RESULTS

A. Model validation

In this section we will validate our theory against simu-

lations for a wide range of traffic patterns, different values

of file sizes and different average WiFi availability periods
and availability ratios. We define the WiFi availability ratio as

AR = E[TON ]
E[TON ]+E[TOFF ]

= ηc
ηw+ηc

. Unless otherwise stated the

durations of WiFi availability and unavailability periods will

be drawn from independent exponential distributions with rates
ηw and ηc, respectively. We mainly focus on two scenarios,

related to the user’s mobility. The first one considers pedestrian

users with data taken from [5]. Measurements in [5] report
that the average duration of WiFi availability period is 122

min, while the average duration with only cellular network

coverage is 41 min (we use these values to tune ηw and ηc).
The availability ratio reported is 75 %. The second scenario

corresponds to vehicular users, related to the measurement

study of [7]. An availability ratio of 11 % has been reported
in [7]. For more details about the measurements we refer

the interested reader to [5] and [7]. Finally, unless otherwise

stated, file/flow sizes are exponentially distributed, and file
arrivals at the mobile user is a Poisson process with rate λ.

A1. Validation of the main delay result

We first validate here our model and main result (Eq.(15))
against simulations for the two mobility scenarios mentioned

(pedestrian and vehicular). The data rate for WiFi is assumed

to be 2 Mbps (this is close to the average data rate obtained
from measurements with real traces in [13]), and we assume

that the cellullar network is 3G, with rate 500 kbps. The mean

packet size is assumed to be 125 kB2.

Fig. 4 shows the average file transmission delay (i.e. queue-
ing + transmission) for the pedestrian scenario, for different

arrival rates. The range of arrival rates shown correspond to a

server utilization of 0-0.9. We can observe, in Fig. 4, that there
is a good match between theory and simulations. Furthermore,

the average file transmission delay is increased by increasing
the arrival rate, as expected, due to queueing effects. Fig. 5

further illustrates the average file transmission delay for the

vehicular scenario. We can observe there that the average
transmission time is larger than in Fig. 4. This is reasonable,

due to the lower WiFi availability, resulting in most of the

traffic being transmitted through the slower cellular network
interface. Once more, we can observe a good match between

the theory and simulations.

In the previous scenarios, we have used realistic values for

the transmission rates and WiFi availabilities, but we have
so far assumed exponential distributions for ON and OFF

2This value is normalized for the arrival rates considered, to correspond to
the traffic intensities reported in [7]. We have also considered other values
with similar conclusions drawn.

periods, according to our model. While the actual distributions
are subject to the user mobility pattern, a topic of intense

research recently, initial measurement studies ([5], [7]) suggest

these distributions to be ”heavy-tailed”. It is thus interesting
to consider how our model’s predictions fare in this (usually

difficult) case. To this end, we consider a scenario with ”heavy-
tailed” ON/OFF distributions (Bounded Pareto). Due to space

limitations, we focus on the vehicular scenario. The shape

parameters for the Bounded Pareto ON and OFF periods
are α = 0.59 and α = 0.64, respectively and we now

consider a cellular rate of 800 kbps. Figure 6 compares the

average file delay for this scenario against our theoretical
prediction. Interestingly, our theory still offers a reasonable

prediction accuracy, despite the considerably higher variability

of ON/OFF periods in this scenario3. While we cannot claim
this to be a generic conclusion for any distribution and values,

the results underline the utility of our model in practice.

A2. Validation of approximations

Having validated the main result of Eq.(15) we now pro-
ceed to validate the various simpler approximations we have

proposed in Section II. We start with the low utilization

approximations of Section II-B and consider the availability
ratio to be 0.75 (similar accuracy levels have been obtained

with other values). Fig. 7 shows the packet delay for low

arrival rates in the range 0.01 − 0.1, which correspond to
a maximum utilization of around 0.1. We can observe that

both approximations show a good match with the generic

result and with simulations, but the second approximation
shows better performance than the first one. As λ increases,

the difference between the approximated result and the actual
value increases. For a utilization of 0.1, the first approximation

error is around 5%. This is reasonable, as we have strictly

assumed that λ = 0 for this approximation.

We next consider the high utilization regime and respective

approximation (Eq.(29)). We consider utilization values of 0.8-
0.95. Fig. 8 shows the delay for high values of λ, and an

availability ratio of 0.5 (we have again tried different values).

We can see there that our approximation is very close to the
actual delay and should become exact as ρ goes to 1.

Finally, we consider approximation result (Eq.(32)) for

moderate utilization values, in the range 0.3 − 0.7. The

availability ratio is again 0.5. The ON and OFF periods are
exponentially distributed with mean 1 (to satisfy the condition

of Eq.(31)). Fig. 9 compares theory and simulations for the

delay in this intermediate utilization regime. The value of the
coefficient ε is 1.5. Although this approximation is heuristic,

and does not become exact for any utilization value (unlike the

cases of the low/high utilization approximations), we can see
that the accuracy is still satisfactory and improves for higher

utilization values.

B. Variable WiFi rates and non-exponential file sizes

In all of the above scenarios, we have been assuming
constant data rate in the regions with WiFi connectivity. This

assumption is unrealistic, since the actual rate experienced

3This has been the case with additional distributions and values we have
tried. We have also observed that the error generally increases (decreases)
when the difference between WiFi and cellular rates increases (decreases).
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Fig. 4. Pedestrian user
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Fig. 5. Vehicular user
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Fig. 7. The low utilization approx.
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Fig. 8. The high utilization approx.
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Fig. 9. The approx. for AR=0.5
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Fig. 11. Generic packet sizes

in different APs will depend on AP load, distance, backhaul
technology, etc. Therefore, it is particularly interesting to

consider scenarios where the WiFi rate might be different at

each connected AP. Specifically, we simulate a scenario where
the average data rate over all APs is again 2Mbps, but the

actual rate for each ON (WiFi) period is selected uniformly

in the interval 1-3 Mbps. In Fig. 10 we compare simulation
results for this scenario against our theory (which assumes a

constant WiFi rate of 2 Mbps when connected). It is evident

that rate variability does not affect performance significantly,
making our results applicable in this case as well.

To conclude our validation, we finally drop the exponential
packet assumption as well, and test our generic file size results

of Eq.(33). Fig. 11 compares analytical and simulation results

for deterministic, and Bounded Pareto distributed files sizes
(shape parameter α = 1.2 and cv = 3). Mean file size is in

both cases 125KB, and the rest of the parameters correspond to

the vehicular scenario (exp. ON and OFF periods). We observe
that higher size variability further increases delay, as expected.

Somewhat more surprisingly, the observed accuracy in both

cases is still significant, despite the heuristic nature of the
approximation and the complexity of the queueing system.

C. Offloading Gains

We have so far established that our analytical model offers
considerable accuracy for scenarios commonly encountered

in practice. In this last part, we will thus use our model to

acquire some initial insight as to the actual offloading gains
expected in different scenarios. The operator’s main gain is

some relief from heavy traffic loads leading to congestion.

The gains for the users are the lower prices usually offered
for traffic migrated to WiFi, as well as the potential higher

data rates of WiFi connectivity. There are also reported energy
benefits associated [14], but we do not consider them here.

Specifically, we will investigate the actual gains from data

offloading, in terms of average transmission delay (related to
user performance) and offloading efficiency (% of total traffic

actually send over WiFi - of interest to both the operator and

the user). We consider two key parameters of interest that can
affect these metrics: WiFi availability ratio, and WiFi/cellular

rate difference.

We first consider how transmission delay changes as a

function of the availability ratio, for different traffic intensities.
We have selected three traffic intensities: very sparse, relatively

sparse (ρ = 0.15) and medium (≈ 40%). Fig. 12 shows the de-

pendence of the average delay to the availability ratio for those
traffic intensities. We can observe that the delay decreases as

WiFi availability increases. More data are transmitted through
the WiFi network, and hence the delay is lower since we

have assumed that, on average, WiFi delivers better rates. A

more interesting observation is that the delay improvement for
higher WiFi availability values, is considerably more sharp,

when the average traffic load is higher. While for the arrival

rate of λ = 0.01 the delay difference between the highest
and the lowest availability ratios is less than 40%, this value

exceeds 2× for medium arrival rates. This seems to imply that

denser WiFi deployments don’t offer significant performance
gains to users in low loaded regions, despite the higher rates

offered, but could have a major impact on user experience, in

heavily loaded areas.

Another parameter that can quantitatively characterize data

offloading is the offloading efficiency defined as the ratio of

the amount of transmitted data through WiFi against the total
amount of transmitted data. Higher offloading efficiency means

better performance for both client and operator. Also, one

might expect offloading efficiency to simply increase linearly
with the availability ratio (i.e. % of data offloaded = % of

time with WiFi connectivity). As it turns out, this is not the

case. To better understand what affects this metric, we consider
the impact of different cellular rates as well as different WiFi

availability ratios. We consider the impact of different rates of
the cellular network on the offloading efficiency. For the WiFi

network we take the data rate to be 2 Mbps, and for the cellular

we consider rates of 0.3 Mbps, 0.5 Mbps and 1 Mbps. Fig.13
illustrates the offloading efficiency vs. availability ratio for a

moderate arrival rate of λ = 0.3. For comparison purposes we
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Fig. 13. Offloading efficiencies

also depict the line x = y (Offloading efficiency = availability

ratio). First, as expected, we can observe that offloading

efficiency increases with AR, in all scenarios. However, this
increase is not linear. More interestingly, the actual offloading

efficiencies are always higher than the respective availability

ratio, and increase as the difference between the WiFi and the
cellular rate increases. For an availability ratio of 0.4, 75% of

the data are offloaded to WiFi when the ratio is 6.67 compared

to 50% for a ratio of 2. The reason for this is that, due to the
lower cellular rates, traffic arriving during the cellular (only)

availability period ends up being transmitted during the next
WiFi period due to queueing delays. This effect becomes more

pronounced as the rate difference increases. Also, although

not shown here, the respective offloading efficiency increases
even further as traffic loads increase. Summarizing, these

findings are particularly interesting to operators (and users),

as they imply that high offloading efficiencies can be achieved
for loaded regions, without necessarily providing almost full

coverage with WiFi APs.

IV. RELATED WORK

In addition to the two measurement-based studies [5][7],
already discussed in Section III, there exists some additional

interesting work in the area of offloading. Nevertheless, most
related work does not deal with performance modeling and

analysis of mobile data offloading. In [15], an integrated archi-

tecture has been proposed based on opportunistic networking
to switch the data traffic from the cellular to WiFi networks.

The results were obtained from real data traces.

In [16], the authors define a utility function related to

delayed offloading to quantitatively describe the trade-offs
between the user satisfaction in terms of the price that she

has to pay and the experienced delay by waiting for WiFi

connectivity. The authors use a semi-Markov process to de-
termine the optimal handing-back point (deadline) for three

scenarios. However, this analysis does not consider on-the-spot

offloading, nor queueing effects. In our paper, we do take into
account the queueing process of the packets at the user. The

work in [17] considers the traffic flow characteristics when

deciding when to offload some data to the WiFi. However,
there is no delay-related performance analysis. A cost based

analysis is provided in [18].

To our best knowledge, the closest work in spirit to ours
is [13]. The results in [13] are the extension of the results

in [5] containing the analysis for delayed offloading. Authors

there also use 2D Markov chains to model the state of the
system and use matrix-analytic methods to get a numerical

solution for the offloading efficiency. However, their model

does not apply directly to on-the-spot offloading. Also, they
only provide numerical solutions.

Summarizing, the novelty of our work is along the follow-

ing dimensions: (i) we deal with on-the-spot offloading, (ii)
we provide closed-form results and approximations, (iii) we

provide an extension for generic packet size distributions, (iv)
we validate out theory against realistic parameter values and

distributions, (v) we provide some insight about the offloading

gains that are of interest to both users and operators.

V. CONCLUSION

In this paper, we have proposed a queueing analytic model
for the performance of on-the-spot mobile data offloading,

and we validated it against realistic WiFi network availabil-

ity statistics. We have provided approximations for different
utilization regions (low, moderate, and high utilization) and

have validated their accuracy compared to simulations and the

exact theoretical results. We also showed that our model can
be applied to a broader class of distributions for the durations

of the periods between and with WiFi availability. Our model

can provide insight on the offloading gains by using on-the-
spot mobile data offloading in terms of both the offloading

efficiency and delay. We have shown that the availability ratio

of WiFi connectivity, in conjuction with the arrival rate play a
crucial role for the performance of offloading, as experienced

by the user. In future work, we intend to extend our model to
analyse delayed offloading.
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