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Abstract—Crowd density analysis is a crucial component in
visual surveillance mainly for security monitoring. This paper
proposes a novel approach for crowd density measure, in which
local information at pixel level substitutes a global crowd level or
a number of people per-frame. The proposed approach consists
of generating fully automatic and crowd density maps using local
features as an observation of a probabilistic crowd function.
It also involves a feature tracking step which allows excluding
feature points belonging to the background. This process is
favorable for the later density function estimation since the
influence of features irrelevant to the underlying crowd density
is removed. Our proposed approach is evaluated on videos from
different datasets, and the results demonstrate the effectiveness
of feature tracks for crowd estimation. Furthermore, we include
a comparative study between different local features in order to
investigate their discriminative power to the crowd.

I. INTRODUCTION

There is currently significant interest in visual surveillance
systems for crowd density analysis. In particular, the estima-
tion of crowd density is receiving much attention in security
community. Its automatic monitoring could be used to detect
potential risk and to prevent overcrowd (e.g. in religious or
sport events). Many stadium tragedies could illustrate this
problem, as well as the Love Parade stampede in Germany
and the Water Festival stampede in Colombia. To prevent such
mortal accidents and for safety control, crowd density estima-
tion could be used. It is an extremely important information
for early detection of unusual situations in large scale crowd
to ensure assistance and emergency contingency plan.

In the simplest form, the used crowd density measures could
be the number of persons or the level of the crowd. Starting
by people counting problem, recently significant progress has
been made to handle that using features regression methods
[1], [2], [3]. This paradigm is proposed as an alternative
solution to detection-based methods because of the partial
occlusions that occur in the crowd, which make delineating
people a difficult task. Therefore, recent methods typically
bypass the task of detecting people and instead focus on
learning a mapping between the number of persons and a set
of low level features.

Apart from people counting, level of the crowd is another

measure in density analysis. In this context, the classification
introduced by Polus [4] is commonly adopted. Based on that,
the crowd density is categorized into 5 levels: free, restricted,
dense, very dense, and jammed flow. Early attempts to handle
this problem generally made use of texture features. In this
perspective, Marana et al. assume [5] that high density crowd
has fine patterns of texture, whereas, images of low density
have coarse patterns of texture. Based on this assumption,
many texture features have been proposed such as: Gray Level
Co-occurrence Matrix (GLCM) [5], [6], Gradient Orientation
Co-occurrence Matrix (GOCM) [7], and wavelet [8]. And
recently, the use of local texture features, especially some
variants of Local Binary Pattern (LBP) [9], has been an
active topic of research to handle the problem of crowd level
classification [10], [11], [12], [13].

These forms of crowd density analysis (i.e. people counting
or crowd level classification) have the limitation of giving a
global information for the entire image and discarding local
information about the crowd. We therefore resort to crowd
information at local level by computing crowd density maps.
This alternative solution is indeed more appropriate as it
enables both the detection and the location of potentially
crowded areas.

The proposed crowd density map is typically based on
using local features as an observation of a probabilistic crowd
function. Also, a feature tracking step is involved in the crowd
density process. In fact, considering all extracted local features
brings an inconvenience to the density function estimation
as a substantial amount of components are irrelevant to the
underlying crowd density. Therefore, we propose using motion
information to alleviate this effect.

The remainder of the paper is organized as follows: In the
next Section II, we present our proposed approach for crowd
density map estimation. An evaluation methodology of the
proposed density map is introduced in Section III. A detailed
experimental results follows in Section IV. Finally, we briefly
conclude and give an outlook to possible future work.

II. CROWD DENSITY MAP ESTIMATION

Crowd density analysis has been studied as a major com-
ponent for crowd monitoring and management in visual
surveillance systems. From this perspective, generating locally
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Fig. 1. Illustration of the proposed crowd density map estimation using local features extraction: (a) Exemplary frame, (b) FAST Local features (c) Feature
tracks, (d) Distinction between moving (green) and static (red) features - red features at the lower left corner are due to text overlay in the video, (e) Estimated
crowd density map

accurate crowd density maps is more helpful than computing
only an overall density or a number of people in a whole
frame. Using our approach, local information at pixel level
substitutes global, per-frame information.

In the following, our proposed approach for crowd density
estimation is presented. First, local features are extracted to
infer the contents of each frame under analysis. Then, we
perform local features tracking using the Robust Local Optical
Flow algorithm from [14] and a point rejection step using
forward-background projection. The generated feature tracks
are thereby used to remove static features. Finally, crowd
density maps are estimated using Gaussian symmetric kernel
function.

An illustration of the density map modules is shown in
Figure 1. The remainder of this section describes each of these
system components.

A. Extraction of local features

One of the key aspects of crowd density measurements is
crowd feature extraction. Under the assumption that regions
of low density crowd tend to present less dense local features
compared to a high-density crowd, we propose to use local
feature points as a description of the crowd by relating dense
or sparse local features to the crowd size. For this purpose,
first, local features are extracted. Then, the crowd density map
is estimating by measuring how close local features are.

In our work, we extract Features from Accelerated Segment
Test (FAST) [15]. FAST is proposed for corner detection in
a fast and a reliable way. It depends on a wedge model style
corner detection. Also, it uses machine learning techniques
to find automatically optimal segment test heuristics. The
segment test criterion considers 16 surrounding pixels of each
corner candidate P . Then, P is labeled as corner if there exist
n contiguous pixels that are all brighter or darker than the
candidate pixel intensity.

The reason behind applying FAST as local features for
crowd measurement is its ability to find small regions which
are outstandingly different from their surrounding pixels. The
selection of this feature is also motivated by the work in [16],
where FAST is used to detect dense crowds from aerial images.
The derived results in [16] demonstrate a reliable detection of
crowded regions using FAST.

The extracted features will be further used as observations
of the probability density function. But since the probability
density function should correspond to the density of crowds, a
feature selection process is required to remove features which
are not relevant to the crowd.

B. Local features tracking

Using the extracted features directly to estimate the crowd
density map without a feature selection process might incur at
least two problems: firstly the high number of local features
increases the computation time of the crowd density. As a
second and more important effect, the local features contain
components irrelevant to the crowd density. Thus, we need
to add in our system a separation step between foreground
and background entities. It is done by assigning motion infor-
mation to the detected local features in order to distinguish
between moving and static ones. Based on the assumption
that only persons are moving in the scene, these can then
be differentiated from background by their non-zero motion
vectors.

Motion estimation is performed using the Robust Local
Optical Flow (RLOF) [14], which computes very accurate
sparse motion fields by means of a robust norm1.

However, a common problem in local optical flow estima-
tion is the choice of feature points to be tracked. Depending
on texture and local gradient information, these points often
do not lie on the center of an object but rather at its borders
and can thus be easily affected by other motion patterns or
by occlusion. While RLOF handles these noise effects better
than the standard Kanade-Lucas-Tomasi (KLT) feature tracker
from [17], it still is not prone against all errors. This is why,
we establish a forward-backward verification scheme where
the resulting position of a point is used as input to the same
motion estimation step from the second frame into the first
one. Points for which this “reverse motion” does not result
in their respective initial position are discarded. For all other
points, motion information is aggregated to form longterm
trajectories.

In every time step, the overall mean motion mt of a
trajectory t is compared to a certain threshold β which is set
according to image resolution and camera perspective. Moving

1download at www.nue.tu-berlin.de/menue/forschung/projekte/rlof



features are then identified by the relation mt > β while the
others are considered static background.

The advantage of using trajectories in this system instead of
computing the motion vectors only between two consecutive
frames is that outliers are filtered out and the overall motion
information is less affected by noise. As a result the separation
between foreground and background entities is improved and
the number and position of the tracked features undergo an
implicit temporal filtering step which makes them smoother.

C. Kernel density estimation

After generating trajectories to filter out static features, we
define the crowd density map as a kernel density estimate
based on the positions of local features. Starting from the
assumption of a similar distribution of feature points on the
objects, the observation can be made that the more local
features come towards each other, the higher crowd density
is perceived. For this purpose, a probability density function
(pdf) is estimated using a Gaussian kernel density. For a given
video sequence of N frames {I1, I2, ..., IN}, if we consider
a set of K local features extracted from a frame In at their
respective locations {(xi, yi), i ∈ {1..K}}, the corresponding
density map Cn is defined as follows:

Cn(x, y) =
1√
2πσ

K∑
i=1

exp−( (x− xi)
2 + (y − yi)2

2σ2
) (1)

where σ is the bandwidth of the 2D Gaussian kernel. The
resulting density function is our proposed crowd density map
which gives valuable information about the local distribution
of people in the scene.

III. EVALUATION METHODOLOGY

After generating crowd density maps using feature tracks,
we aim at evaluating these maps. Here, we consider that
an accurate estimation of the density map could adequately
represent the spatial distribution of people in the scene. For
this purpose, a ground truth density function is defined as a
kernel density estimate based on annotated person detections.
And, we consider an optimal feature representation could
be produced by simple linear weighting of the ground truth
density. So, for an input frame In from a video sequence V ,
given a set of annotated detections Dn = {d1, d2, ..., dM},
di = {xi, yi, hi, wi}, where (xi, yi), hi, wi denote, respec-
tively, the center coordinates, the height, and the width of the
annotated bounding box di. The corresponding ground truth
density Tn is defined as:

Tn(x, y) =

M∑
i=1

1√
2πσi

exp−( (x− xi)
2 + (y − yi)2

2σ2
i

) (2)

where σi corresponds to the size of the bounding box di, i.e.
σi = hi.wi.

At this stage, our objective is to find a way to automatically
evaluate the estimated crowd density map. The idea is inspired
from [18], where the goal is to learn a linear transformation

Input Frame Annotated Detections 

Estimated Density Map Ground-Truth Density Map 

Fig. 2. Flowchart of the evaluation methodology

that minimizes the error between a feature representation and
the ground truth from a set training samples. However, in
our work, we intend to approximate this linear transformation
rather from the testing samples.

Given the estimated density maps {C1, C2, ..., CN}
and their corresponding ground truth density maps
{T1, T2, ..., TN} for a video sequence V , we aim at
estimating the linear transformation mapping Ci to Ti,
i ∈ {1..N} with the least mismatches between them. Similar
to [18], the parameter vector W of this linear transformation
is defined as:

W = argmin
w

(wTw + λ
∑N

i=1Dist(Ti(.), C
′
i(.|w)),

C ′i(.|w) = wTCi(.)

(3)

where λ is a scalar hyperparameter controlling the regular-
ization strength. And Dist is the distance measuring the loss
i.e. the mismatch between the estimated and the ground truth
densities. Dist is chosen in [18] to be the regularized MESA
distance since their goal is an overall count. This choice does
not match our goal of evaluating the local distribution of
density values. Thus, more appropriate choice of Dist could
be an Lp metric, which turns (3) to a typical linear regression
problem, where each sample corresponds to a pixel rather
than the whole image. And the distortions from the fitting
regression line could be used to find the mismatches between
the ground truth and the estimated density values, see Figure
2.

IV. EXPERIMENTAL RESULTS

A. Datasets and Experiments

The proposed approach for crowd density map estimation
is evaluated within challenging crowd scenes from multiple
video datasets. In particular, we selected some videos from



PETS 2009 2, UCF [19], and data driven crowd analysis [20]
public datasets.

As described in section II, FAST local features are extracted
and tracked in each frame under analysis. The moving local
features are further used for estimating the crowd density map.
The effectiveness of our proposed approach is demonstrated
in two steps. First, we compare FAST to other local fea-
tures, namely, Scale-Invariant Feature Transform (SIFT) [21],
and Good Features to Track (GFT) [22]. SIFT is a well-
known texture descriptor that defines interest point locations
as maxima/minima of the difference of Gaussians in scale-
space. Under this respect, SIFT is rather independent on
the perceived scale of the considered object which makes it
somehow appropriate to crowd measurements. Also, FAST
local features are compared to the classic GFT which is
based on the detection of corners containing high frequency
information in two dimensions and typically persist in an
image despite variations in object.

Furthermore, we compare the results using feature tracks to
the results using foreground segmentation [23] to demonstrate
the advantages of building trajectories in our system.

For evaluation, we adapt the methodology described in
Section III. Once the linear transformation is applied, the
evaluation is made by comparing the projected estimated
densities to the ground truth densities. Two quality metrics
are used to compute error statics with respect to the ground
truth data:

• MAE (mean-absolute-error) between the ground truth
densities Tn and the estimated densities C ′n after applying
linear transformation:

E =
1

P

∑
(x,y)

|C ′n(x, y)− Tn(x, y)| (4)

where P is the total number of pixels.
• Percentage of bad density pixels:

B =
1

P

∑
(x,y)

(|C ′n(x, y)− Tn(x, y)| > τd) (5)

where τd is a density error tolerance.

In addition to these quality metrics computed over the whole
image, more evaluations are conducted to assess the discrim-
inative power of the local features to the crowd. For this
purpose, we split the image regions to only Crowd/No Crowd
regions using the reference image and the ground truth density
map. That consists of the following binary segmentation: if
the ground truth density value is below a given threshold, the
pixel belongs to no crowded regions C, otherwise it belongs
to crowded regions C. As a result, the two metrics described
above are additionally computed for each of the two regions.
For experiments, we use the evaluation metrics listed in Table
I.

2http://www.cvg.rdg.ac.uk/pets2009/

Symb. Name Description

E mae− error − all MAE density error
EC mae− error − crowd MAE density error in crowd
EC mae−error−noncrowd MAE density error in no crowd

B bad− pixels− all bad pixel percentage
BC bad− pixels− crowd bad pixel percentage in crowd
BC bad−pixels−noncrowd bad pixel percentage in no crowd

TABLE I
QUALITY METRICS

B. Results and Analysis

We first report the results of our proposed approach in
terms of mean-absolute error in Table II. In this table, the
normalized MAE to the range of data is used to make it
scale independent. And the three evaluations metrics (E, EC
and EC) are computed. Also, the results using B, BC and
BC quality metrics are shown in Figure 3, where the x-axis
corresponds to the density error tolerance (i.e. τd defined in
(5) which varies from zero to 255).

In Table II and in Figure 3, our proposed FAST local
feature is compared to SIFT and GFT. Also, we include a
comparison of the results using our proposed feature tracks to
the foreground segmentation results using GMM.

These comparisons clearly show that the feature tracking
step achieves substantial improvement over using foreground
segmentation. And that highlights the advantage of using
trajectories in our system instead of computing the motion
vectors only between two consecutive frames or by foreground
segmentation. Our estimate is more robust to noise and the
overall motion information is more accurate. As a result,
the number and position of the tracked features undergo an
implicit temporal filtering step which improves consistency
compared to the separation between foreground and back-
ground entities.

For local features comparisons, in overall the combination
FAST + Feature Tracks gives the best results in terms of mean-
absolute-error E (VAL1 in Table II) and in terms of bad pixels
percentage (the first column in Figure 3). By considering all
image regions (i.e Crowd/No Crowd), the evaluations in terms
E, and B show that the choice of local features in general
does not have much impact on the performance. However,
more significant margin between FAST performance and the
two other features is shown in crowded regions (using EC and
BC quality metrics). That demonstrates the good performance
of FAST for density estimation in crowded scenes.

V. CONCLUSION

Crowd density estimation has emerged as a major compo-
nent for crowd monitoring and management in visual surveil-
lance domain. In this paper, we present our proposed approach
on crowd density estimation which is typically based on
extracting local features. Our approach is extended to feature
tracking which enables us to identify objects in the scene



Sequence name Feature E EC EC

PETS S1.L1 13.57 FAST 0.0670 / 0.2002 0.0480 / 0.1774 0.2977 / 0.4368
SIFT 0.0729 / 0.1520 0.0520 / 0.1301 0.3218 / 0.3844
GFT 0.0767 / 0.1661 0.0553 / 0.1436 0.3365 / 0.4041

PETS S1.L1 13.59 FAST 0.0391 / 0.1199 0.0367 / 0.1147 0.1342 / 0.2959
SIFT 0.0387 / 0.0911 0.0352 / 0.0857 0.1796 / 0.2723
GFT 0.0398 / 0.1059 0.0364 / 0.1000 0.1802 / 0.3059

PETS S1.L2 14.31 FAST 0.0857 / 0.2428 0.0682 / 0.2149 0.2093 / 0.4105
SIFT 0.0918 / 0.2018 0.0715 / 0.1679 0.2417 / 0.4101
GFT 0.1010 / 0.2162 0.0784 / 0.1845 0.2736 / 0.4069

UCF 879 FAST 0.0997 / 0.2755 0.1040 / 0.2815 0.0891 / 0.2253
SIFT 0.2601 / 0.3653 0.2517 / 0.3601 0.3272 / 0.3844
GFT 0.1393 / 0.3118 0.1359 / 0.3071 0.1707 / 0.3281

INRIA 879-42 I FAST 0.1230 / 0.4469 0.1005 / 0.4945 0.1697 / 0.3060
SIFT 0.1605 / 0.4301 0.1407 / 0.4762 0.2266 / 0.3026
GFT 0.1368 / 0.4339 0.0997 / 0.4797 0.1925 / 0.3045

TABLE II
RESULTS OF CROWD DENSITY ESTIMATION FOR THREE DIFFERENT LOCAL FEATURE TYPES (FAST, SIFT, AND GFT) AND FOR DIFFERENT TEST VIDEOS
IN TERMS OF NORMALIZED MAE (E , EC AND EC ). VAL1/ VAL2 ARE THE RESULTS OF OUR PROPOSED APPROACH USING FEATURE TRACKS, AND THE

RESULTS USING GMM FOREGROUND SEGMENTATION)

that have undergone a sufficient motion to be considered as a
person. Consequently, the effort of computation is reduced to
the features relevant for crowd density. In the experimental
results, an extensive evaluation on several datasets shows
the effectiveness of our approach. Furthermore, we include
a comparative study to investigate the discriminative power
of different local features to the crowd. These comparisons
prove that FAST-based method is robust enough to perform
well in both Crowd/No Crowd situations. In addition, the
results highlight the relevance of the feature tracking process
compared to the foreground segmentation. In future works, we
are planning to use the estimated density maps to study crowd
behaviors, mainly for early detection of blocking situations in
large scale crowd.
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Fig. 3. Results of crowd density estimation for three different local feature types (FAST, SIFT, and GFT) and for different test videos in terms of bad pixels
percentage. The results of our proposed approach using feature tracks are compared to GMM foreground segmentation
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