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Abstract—In the setting of the two-user (M,N) multiple-
input multiple-output (MIMO) broadcast channel (BC), recent
work by Maddah-Ali and Tse, and Vaze and Varanasi have
revealed the usefulness of delayed channel state information at
the transmitter (perfect delayed CSIT). Our work studies the
general case of communicating with imperfect delayed CSIT,
and proceeds to present novel precoding schemes and degrees-of-
freedom (DoF) bounds that are often tight, and to constructively
reveal that even substantially imperfect delayed-CSIT, is in fact
sufficient to achieve the optimal DoF performance previously
associated to perfect delayed CSIT. Going one step further, we
also constructively show that, this same optimal performance can
in fact be achieved in the presence of additional imperfection of
the global CSIR - i.e., even with imperfect receiver estimates of
the channel of the other receiver.

Specifically, for feedback-quality exponent β describing the
high-SNR asymptotic rate-of-decay of the mean square error of
the delayed CSIT estimate, the derived DoF d(β) for a given
exponent β ∈ [0, 1], reveals that the optimal two-user MIMO-
BC DoF region previously associated to perfect delayed CSIT,
can in fact be achieved for any imperfect β ≥ N

min(M,2N)+N
.

Interestingly, for all the cases studied here, the derived quality
threshold β∗, argminβ{d(β) = d′} for any given symmetric
DoF d′, accepts the simple form of β∗ = (d′−d(0))/(d(1)−d(0)),
describing the fraction of the DoF gap - between the no-CSIT and
the full delayed CSIT case - that is covered to reach the target d′.
The potential of an up to 1

β∗ -fold reduction in feedback bits, can
be advantageous in the presence of feedback links with limited
reliability and limited capacity.

I. INTRODUCTION

We here consider the two-user (M,N) multiple-input
multiple-output (MIMO) broadcast channel (BC), where a
M -antenna transmitter communicates information to two N -
antenna receivers. In this setting, the channel model takes the
form

y(1) = Hx + z(1) (1a)

y(2) = Gx + z(2) (1b)

where vectors H,G ∈ CN×M represent the transmitter-to-
user 1 and transmitter-to-user 2 channels respectively, where
z(1), z(2) represent unit power AWGN noise at the two re-
ceivers, where x ∈ CM×1 is the input signal with power
constraint E[||x||2] ≤ P , and where in this case, P also takes
the role of the signal-to-noise ratio (SNR).
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With channel state information at the transmitter (CSIT) be-
ing a crucial ingredient that facilitates improved performance,
and with CSIT often being limited, imperfect and delayed,
we here explore the effects of the quality of delayed CSIT,
corresponding to how well the transmitter knows the same
H,G after this channel state has fully changed. Naturally,
reduced CSIT quality relates to limitations in the capacity
and reliability of the feedback links. Similar issues, which
additionally motivate this work, and which are addressed here,
pertain to the quality of delayed global CSIR, i.e., to the
quality of the estimates, at a given receiver, of the channel
of the other receiver (see for example the work of [1], [2] on
the challenge of obtaining such global CSIR).

A. Related Work

It is well known that in the two-user (M,N) MIMO BC
setting of interest, the presence of perfect CSIT allows for
the optimal sum degrees-of-freedom (DoF) min{M, 2N} (this
is with perfect global CSIR, cf. [3]), whereas the complete
absence of CSIT causes a substantial degradation to just
min{M,N} (cf. [4]) 1.

An interesting scheme that mitigates this degradation by
utilizing partial CSIT knowledge, was recently presented in [5]
by Maddah-Ali and Tse, which showed that in the absence of
current CSIT, delayed CSIT knowledge can still be useful in
improving the DoF region of the multiple-input single-output
(MISO) broadcast channel (N = 1). This result was later
generalized by Vaze and Varanasi in [6] to the MIMO case
(again, this is with perfect global CSIR). 2

Our work extends the work in [6], and studies the gen-
eral case of communicating with imperfect delayed CSIT.
Specifically this work reveals that even substantially imperfect
delayed-CSIT, is in fact sufficient to achieve the optimal DoF
performance previously associated to perfect delayed CSIT.
Going one step further, we also constructively show that, this
same optimal performance can in fact be achieved in the
presence of additional imperfection of the global CSIR - i.e.,
even with imperfect receiver estimates of the channel of the
other receiver.

1We remind the reader that for an achievable rate pair (R1, R2), the
corresponding DoF pair (d1, d2) is given by di = limP→∞

Ri
logP

, i = 1, 2.
The corresponding DoF region is then the set of all achievable DoF pairs.

2Other interesting works in the context of utilizing delayed and current
CSIT, can be found in [7]–[9] which explored the setting of combining perfect
delayed CSIT with immediately available imperfect CSIT, the work in [10]
which additionally considered the effects of the quality of delayed CSIT for
the MISO BC, the work in [11] which considered delayed and progressively
evolving (progressively improving) current CSIT, and the works in [12]–[14]
and many other publications.



B. Quantification of CSI Quality

In this work we will consider the case without any current
CSIT, but with imperfect delayed CSIT. In terms of delayed
CSIT, we consider the case where the transmitter’s delayed
estimates Ȟ, Ǧ come with estimation errors

Ḧ = H − Ȟ, G̈ = G− Ǧ (2)

having independent and identically distributed (i.i.d.) Gaussian
entries with power

E[||Ḧ||2F ]
.
= E[||G̈||2F ]

.
= P−β

for some CSI quality exponent β describing the general quality
of the delayed estimates.

In this setting, an increasing exponent β implies an im-
proved delayed CSIT quality, with β = 0 implying very little
delayed CSIT knowledge, and with β = ∞ implying perfect
delayed CSIT.

In addition to the challenge of communicating CSIT over
feedback channels with limited capacity and limited reliabil-
ity, another known bottleneck is the non-negligible cost of
distributing global CSIR across the different receiving nodes
(see [1], [2]). For this reason, we explore the case where,
in addition to limited and imperfect CSIT, we also have the
additional imperfection of the global CSIR, which means that
each user has imperfect estimates of the other user’s channel,
as well as, in this case, no access to the estimates of the
transmitter. In the spirit of communicating global CSIR across
feedback links ( [1]) we also focus on the associated case of
having imperfect delayed global CSIR corresponding to the
same quality exponent β, and additionally having no receiver
access to the CSIT estimates of the transmitter. With ˇ̌H
denoting the delayed estimate of H at user 2, and ˇ̌G denoting
the delayed estimate of G at user 1, we maintain as before
that the estimation errors

¨̈H = H − ˇ̌H, ¨̈G = G− ˇ̌G (3)

have i.i.d. Gaussian entries with power

E[|| ¨̈H||2F ]
.
= E[|| ¨̈G||2F ]

.
= P−β

again for the same β as before, now also describing the quality
of the global CSIR delayed estimates.

Remark 1: We here note that without loss of generality, we
can restrict our attention to the range 0 ≤ β ≤ 1 (cf. [15]),
where again β = 1 corresponds the case of perfect delayed
CSIT.

C. Notation, Conventions and Structure of Paper

In Section II, for the aforementioned two user MIMO BC,
and for the general case of imperfect delayed CSIT and imper-
fect global-CSIR, we derive a DoF region inner bound, which
turns out to be tight for any β ≥ N

min(M,2N)+N previously
associated to perfect delayed CSIT and perfect global-CSIR.
Section III then presents the novel multi-phase precoding
schemes associated to the aforementioned DoF regions.

In this work we assume that the elements of the channel
vectors H and G, are spatially and temporally i.i.d. Gaussian

random variables, with zero mean and unit variance. Finally
adhering to the common convention, we consider a unit
coherence period, as well as assume that each receiver knows
perfectly its own channel (perfect local CSIR).

In terms of the notation, throughout this paper, (•)T, (•)H

and || • ||F denote the transpose, conjugate transpose and
Frobenius norm of a matrix respectively, while || • || denotes
the Euclidean norm, and | • | denotes the magnitude of a
scalar. o(•) comes from the standard Landau notation, where
f(x) = o(g(x)) implies limx→∞ f(x)/g(x) = 0. We also use
.
= to denote exponential equality, i.e., we write f(P )

.
= PB

to denote lim
P→∞

log f(P )

logP
= B. Logarithms are of base 2.

II. DOF OF THE MIMO BC WITH IMPERFECT DELAYED
CSIT AND IMPERFECT GLOBAL-CSIR

It is noted that, for the case with M ≤ N , the DoF region is
characterized as d1 +d2 ≤M , which is achievable by TDMA
scheme without any CSIT and without any global-CSIR. Thus
in the following, we focus on the case with M > N .

Theorem 1: For the (M > N,N) MIMO BC with imper-
fect delayed CSIT and imperfect global-CSIR, the optimal
DoF region takes the form

d1

min{M,N}
+

d2

min{M, 2N}
≤ 1

d2

min{M,N}
+

d1

min{M, 2N}
≤ 1

when β ≥ N
min(M,2N)+N , while when β < N

min(M,2N)+N this
region is inner bounded by the achievable region

d1

min{M,N}
+

d2

min{M, 2N}
≤ 1

d2

min{M,N}
+

d1

min{M, 2N}
≤ 1

d1 + d2 ≤ min{M,N}+ β(min{M, 2N} −min{M,N})

which, for β
′
,min{β, N

min(M,2N)+N }, takes the
form of a polygon with corner points {(0, 0), (0, N),
(min{M, 2N}β′ , N(1 − β′)), (N(1 − β′),min{M, 2N}β′),
(N, 0)}.

At this point we can draw an interesting conclusion on the
amount of delayed CSIT needed to achieve a certain symmetric
DoF performance d′. For all the cases considered here, the
derived threshold value β∗, arg minβ{d(β) = d′}, accepts
the simple form of

β∗ = (d′ − d(0))/(d(1)− d(0)) (4)

describing the fraction of the DoF gap - between the no-CSIT
and the perfect delayed CSIT case - that is covered to reach
d′.

As an example of this derived threshold quality, we see
that for the MIMO case with N < M < 2N , the target
optimal d′ = d∗1 = MN/(M + N) (cf. [6]) corresponds to
the aforementioned

β∗ =
d′ − d(0)

d(1)− d(0)
=
MN/(M +N)−N/2

M/2−N/2
=

N

M +N
.
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Fig. 1. DoF region of MIMO BC with imperfect delayed CSIT and imperfect
global-CSIR (M > N ).

III. PRECODING SCHEMES FOR THE MIMO BC

We proceed to describe precoding schemes that achieve
the corresponding DoF corner points, by properly utiliz-
ing different combinations of superposition coding, succes-
sive cancellation, power allocation, and phase durations,
and do so with imperfect global CSIR. Specifically, for
β
′
,min{β, N

min(M,2N)+N }, scheme X1 will achieve DoF
corner point (2Nβ

′
, N(1−β′)) and point (N(1−β′), 2Nβ′)

for the case with M ≥ 2N , while scheme X2 will achieve DoF
corner point (Mβ

′
, N(1 − β′)) and point (N(1 − β′),Mβ

′
)

for the case with N < M < 2N . It is noted that, DoF
corner points (min{M,N}, 0) and (0,min{M,N}) are easily
achievable by single-user transmission scheme without any
CSIT and without any global CSIR.

The schemes are designed to have S phases, where the sth
phase (s = 1, 2, · · · , S) consists of Ts channel uses, which
will be designed later from scheme to scheme. At this point,
and to more clearly reflect the division of time into phases,
we will adopt a double time index where, for example, Hs,t

and Gs,t will denote the channel vectors during timeslot t of
phase s. Similarly, in terms of delayed CSIT (cf. (2)), Ȟs,t

and Ǧs,t will be the delayed estimates of Hs,t and Gs,t,
where these estimates become known to the transmitter with
unit delay (at time t + 1 of the same phase - recall that we
follow the unit-coherence period convention), and are stored
and recalled thereafter. Finally Ḧs,t = Hs,t − Ȟs,t, G̈s,t =
Gs,t − Ǧs,t will denote the estimation errors corresponding
to delayed CSIT.

In terms of general notation, the transmitted vector generally
takes the form

xs,t = cs,t + as,t + bs,t (5)

where as,t ∈ CM×1 will denote the independent information
symbol vector for user 1, while symbol vector bs,t ∈ CM×1

is meant for user 2, and where cs,t ∈ CM×1 denotes the
common information symbol vector. For any symbol •s,t, we
will use P (•)

s ,E|| •s,t ||2 to denote the power, and we will

use r
(•)
s to denote the prelog factor of the number of bits

r
(•)
s logP − o(logP ) carried by •s,t, for the phase s.

In addition, we will use

ι
(1)
s,t ,Hs,tbs,t, ι

(2)
s,t ,Gs,tas,t, (6)

to denote the interference experienced by user 1 and user 2
respectively, during timeslot t of phase s, and we will use

ι̌
(1)
s,t,Ȟs,tbs,t, ¯̌ι

(1)
s,t + ι̃

(1)
s,t , ι̌

(2)
s,t, Ǧs,tas,t, ¯̌ι

(2)
s,t + ι̃

(2)
s,t , (7)

to denote transmitter’s (delayed) estimates of ι(1)
s,t , ι

(2)
s,t , and will

use ¯̌ι
(1)
s,t , ¯̌ι

(2)
s,t to denote a quantized version of these estimates,

with ι̃(1)
s,t , ι̃

(2)
s,t denoting the corresponding quantization errors.

Furthermore, we will use e(m : n) to denote the (n−m+1)-
length subvector that consists of the mth-to-nth elements of
a vector e, and we will similarly use E(m : n) to denote the
submatrix that consists of the mth-to-nth rows of a matrix E.

A. Scheme X1 for the MIMO BC with M ≥ 2N

For scheme X1, the phase durations T1, T2, · · · , TS are
chosen to be integers from a geometric progression 3

Ts = Ts−1ξ = T1ξ
s−1, s = 2, 3, · · · , S − 1,

TS = TS−1ζ = T1ξ
S−2ζ (8)

for ξ = 2β
1−β and ζ = 2β.

We proceed to describe scheme X1 from phase to phase.
1) Phase 1: During phase 1 (T1 channel uses), the trans-

mitter sends

x1,t = c1,t + a1,t + b1,t, (9)

with power and rate set as

P
(c)
1

.
= P, r

(c)
1 = N(1− β)

P
(a)
1

.
= P

(b)
1

.
= P β , r

(a)
1 = r

(b)
1 = 2Nβ.

(10)

Then the received signal vectors take the form

y
(1)
1,t = H1,tc1,t︸ ︷︷ ︸

P

+H1,ta1,t︸ ︷︷ ︸
Pβ

+

ι̌
(1)
1,t︷ ︸︸ ︷

Ȟ1,tb1,t︸ ︷︷ ︸
Pβ

+

ι
(1)
1,t−ι̌

(1)
1,t︷ ︸︸ ︷

Ḧ1,tb1,t︸ ︷︷ ︸
P 0

+z
(1)
1,t︸︷︷︸
P 0

,

y
(2)
1,t = G1,tc1,t︸ ︷︷ ︸

P

+G1,tb1,t︸ ︷︷ ︸
Pβ

+

ι̌
(2)
1,t︷ ︸︸ ︷

Ǧ1,ta1,t︸ ︷︷ ︸
Pβ

+

ι
(2)
1,t−ι̌

(2)
1,t︷ ︸︸ ︷

G̈1,ta1,t︸ ︷︷ ︸
P 0

+ z
(2)
1,t︸︷︷︸
P 0

,

(11)

where under each term we noted the order of the summand’s
average power.

At this point, based on the received signal vectors in (11),
each user decodes c1,t by treating the other signals as noise,
with r

(c)
1 = N(1 − β). After decoding c1,t, user 1 removes

H1,tc1,t from y
(1)
1,t , while user 2 removes G1,tc1,t from

y
(2)
1,t . Then, at the end of the first phase, the transmitter uses

3The scheme description considers 0 < β < 1 and rational β, while the
rest of the cases (β = 1, 0, or where β is irrational) can be readily handled
with minor modifications. To accommodate the choice of phase durations, S
may be chosen to be large.



its knowledge of delayed CSIT to reconstruct {ι̌(1)
1,t , ι̌

(2)
1,t}

T1
t=1,

and quantizes them to ¯̌ι
(1)
1,t , ¯̌ι

(2)
1,t (cf. (7)), with each vector

corresponding to Nβ logP bits, thus allowing for E||ι̃(1)
1,t ||2

.
=

E||ι̃(1)
1,t ||2

.
= 1. At this point, the 2NT1β logP quantization

bits are distributed evenly across the set {c2,t}T2
t=1 of newly

constructed symbols which will be sequentially transmitted
during the next (second) phase.

2) Phase s, 2 ≤ s ≤ S−1: Phase s (Ts = Ts−1
2β

1−β chan-
nel uses) is similar to phase 1, with similar transmit signals,
rates, power values and received signals ((5),(9),(10),(11)).

After decoding cs,t and respectively removing Hs,tcs,t and
Gs,tcs,t, the users reconstruct {¯̌ι(2)

s−1,t, ¯̌ι
(1)
s−1,t, }

Ts−1

t=1 , allowing
user 1 to subtract ¯̌ι

(1)
s−1,t from y

(1)
s−1,t to remove, up to bounded

noise, the interference corresponding to ι̌(1)
s−1,t. The same user

also employs the estimate ¯̌ι
(2)
s−1,t as an extra observation which,

together with the observation y
(1)
s−1,t−Hs−1,tcs−1,t− ¯̌ι

(1)
s−1,t,

allow for decoding of as−1,t. Specifically user 1 is presented,
at this instance, with a 2N ×M equivalent MIMO channel of
the form[
y

(1)
s−1,t−Hs−1,tcs−1,t−¯̌ι

(1)
s−1,t

¯̌ι
(2)
s−1,t

]
=

[
Hs−1,t
ˇ̌Gs−1,t

]
as−1,t+

[
z̃

(1)
s−1,t

z̃
(2)
s−1,t

]
where z̃

(1)
s−1,t = Ḧs−1,tbs−1,t + z

(1)
s−1,t + ι̃

(1)
s−1,t and z̃

(2)
s−1,t =

( ¨̈GT

s−1,t − G̈
T

s−1,t)as−1,t − ι̃
(2)
s−1,t are the equivalent noise,

the powers of which are properly bounded, thus allowing
for decoding of as−1,t with r

(a)
1 = 2Nβ, and doing so

with imperfect global CSIR. Similar actions are performed
by user 2 which manages to decode bs−1,t .

As before, upon completion of phase s, the transmit-
ter reconstructs and quantizes {ι̌(2)

s,t , ι̌
(1)
s,t }

Ts
t=1, to a total of

2NTsβ logP quantization bits which are converted into
{cs+1,t}Ts+1

t=1 to be sequentially transmitted in the next phase
(phase s+ 1).

3) Phase S (TS = TS−12β): Here we have xS,t = cS,t
with power and rate set as P (c)

S
.
= P and r(c)

S = N . As before,
both receivers can decode cS,t with the mentioned rate.

Then after reconstructing {¯̌ι(2)
S−1,t, ¯̌ι

(1)
S−1,t}

TS−1

t=1 , with the
knowledge of imperfect global CSIR, the first user decodes
aS−1,t and the second user decoders bS−1,t.

Finally, one can show that, for β
′
,min{β, N

min(M,2N)+N },
X1 achieves DoF point (2Nβ

′
, N(1 − β′)) by allocating the

common information of the first phase {c1,t}T1
t=1 entirely for

user 2. The same scheme achieves the point (N(1−β′), 2Nβ′)
by assigning all the common information of phase 1 to user 1,
as well as achieves DoF point (N(1+β

′
)

2 , N(1+β
′
)

2 ) by evenly
splitting this information between the two users. The three DoF
points converge to the optimal DoF corner point ( 2N

3 , 2N
3 ) for

any β ≥ N
min(M,2N)+N .

B. Scheme X2 for the MIMO BC with N < M < 2N

For scheme X2, given φ = Mβ
N(1−β) , the phase durations are

integers such that

Ts = Ts−1φ = T1φ
s−1, s = 2, · · · , S − 1, TS = TS−1

Mβ

N
.

We proceed to describe the phases.

1) Phase 1: The transmitter sends

x1,t = c1,t + a1,t + b1,t (12)

with power and rates

P
(c)
1

.
= P, r

(c)
1 = N(1− β)

P
(a)
1

.
= P

(b)
1

.
= P β , r

(a)
1 = r

(b)
1 = Mβ

(13)

resulting in an output signal

y
(1)
1,t = H1,tc1,t︸ ︷︷ ︸

P

+H1,ta1,t︸ ︷︷ ︸
Pβ

+

ι̌
(1)
1,t︷ ︸︸ ︷

Ȟ1,tb1,t︸ ︷︷ ︸
Pβ

+

ι
(1)
1,t−ι̌

(1)
1,t︷ ︸︸ ︷

Ḧ1,tb1,t︸ ︷︷ ︸
P 0

+z
(1)
1,t︸︷︷︸
P 0

,

y
(2)
1,t = G1,tc1,t︸ ︷︷ ︸

P

+G1,tb1,t︸ ︷︷ ︸
Pβ

+

ι̌
(2)
1,t︷ ︸︸ ︷

Ǧ1,ta1,t︸ ︷︷ ︸
Pβ

+

ι
(2)
1,t−ι̌

(2)
1,t︷ ︸︸ ︷

G̈1,ta1,t︸ ︷︷ ︸
P 0

+ z
(2)
1,t︸︷︷︸
P 0

.

(14)

Each user decodes c1,t, allowing for user 1 to remove H1,tc1,t

and for user 2 to remove G1,tc1,t. Then, at the end of the first
phase, the transmitter reconstructs {ι̌(1)

1,t , ι̌
(2)
1,t}

T1
t=1 (cf. (7)) and

then proceeds to only quantize

ι̌
(1)
1,t (1 : M−N), ι̌

(2)
1,t (1 : M−N),

(
ι̌
(1)
1,t+ ι̌

(2)
1,t

)
(M−N+1 : N)

with (M −N)β logP bits, (M −N)β logP bits, and (2N −
M)β logP bits respectively. This variable rate quantization
allows for bounded quantization noise. At this point, the
MT1β logP bits representing{

¯̌ι
(1)
1,t (1 : M −N), ¯̌ι

(2)
1,t (1 : M −N)(

¯̌ι
(1)
1,t + ¯̌ι

(2)
1,t

)
(M −N + 1 : N)

}T1

t=1

(15)

are distributed evenly across the set {c2,t}T2
t=1 to be sent in

the next phase.
2) Phase s, 2 ≤ s ≤ S − 1: The transmitted and received

signals, as well as the rates and power values are as in
phase 1 ((12),(13),(14)). As before each user decodes cs,t
and Hs,tcs,t,Gs,tcs,t are removed. After reconstructing the
quantized delayed estimates accumulated during the previous
phase s − 1 (cf. (15)), user 1 subtracts ¯̌ι

(1)
s−1,t(1 : M − N)

from y
(1)
s−1,t(1 : M − N), removes up to bounded noise the

interference corresponding to ι̌(1)
s−1,t(1 : M−N), and subtracts

(¯̌ι
(1)
s−1,t+¯̌ι

(2)
s−1,t)(M−N+1 : N) from y

(1)
s−1,t(M−N+1 : N)

to remove interference corresponding to ι̌(1)
s−1,t(M −N + 1 :

N). The same user also employs the estimate ¯̌ι
(2)
s−1,t(1 :

M − N) as an extra observation which, together with the
observations (y

(1)
s−1,t−Hs−1,tcs−1,t−¯̌ι

(1)
s−1,t)(1 : M−N) and

(y
(1)
s−1,t −Hs−1,tcs−1,t − ¯̌ι

(1)
s−1,t − ¯̌ι

(2)
s−1,t)(M −N + 1 : N),

allow for decoding of as−1,t. Specifically user 1 is presented,
at this instance, with an M ×M equivalent MIMO channel
of the form in (16) (where we ignore the time index (s− 1, t)
for simplicity), where the power of equivalent noise term
is properly bounded, thus allowing for successful decoding
as−1,t, doing so with imperfect global CSIR. Similar actions
apply for the second user, which can decode bs−1,t.



 (
y(1) −Hc− ¯̌ι(1)

)
(1 : M −N)(

y(1) −Hc− ¯̌ι(1) − ¯̌ι(2)
)

(M −N + 1 : N)
¯̌ι(2)(1 : M −N)

=

 H(1 : M −N)(
H − ˇ̌G

)
(M −N + 1 : N)

ˇ̌G(1 : M −N)

a +

 z̃(1)(1 : M −N)

z̃(1)(M −N + 1 : N)(
−ι̃(2) + ( ¨̈G− G̈)a

)
(1 : M −N)


(16)

where z̃(1)(1 : M −N) =
(
Ḧb + z(1) + ι̃(1)

)
(1 : M −N) (17)

z̃(1)(M −N + 1 : N) =
(
Ḧb + z(1) + ι̃(1) + ι̃(2) + ( ¨̈G− G̈)a

)
(M −N + 1 : N). (18)

After being reconstructed at the transmitter, {ι̌(2)
s,t , ι̌

(1)
s,t }

Ts
t=1

are quantized into{
¯̌ι
(1)
s,t (1 : M −N), ¯̌ι

(2)
s,t (1 : M −N)(

¯̌ι
(1)
s,t + ¯̌ι

(2)
s,t

)
(M −N + 1 : N)

}Ts
t=1

(19)

corresponding to MTsβ logP quantization bits which are
distributed evenly across the set {cs+1,t}Ts+1

t=1 , to be sent in
the next phase.

3) Phase S: The transmitter sends xS,t = cS,t with P (c)
S

.
=

P , r(c)
S = N , resulting in received signals of the form

y
(1)
S,t=HS,tcS,t + z

(1)
S,t, y

(2)
S,t=GS,tcS,t + z

(2)
S,t.

As before, both receivers decode cS,t and, with the knowledge
of imperfect global CSIR, go back one phase to decode aS−1,t

at user 1, and bS−1,t at user 2, all as described in the previous
phase.

Finally, one can show that, for large S, and for
β
′
,min{β, N

min(M,2N)+N }, X2 achieves DoF points
(Mβ

′
, N − Nβ

′
) by allocating the common information

of the first phase {c1,t}T1
t=1 entirely for user 2. The same

scheme achieves the point (N − Nβ
′
,Mβ

′
) by assigning

all the common information of phase 1 to user 1, as well
as (N+(M−N)β

′

2 , N+(M−N)β
′

2 ) by evenly splitting this
information between the two users. The three DoF points
converge to the optimal DoF corner point ( MN

M+N ,
MN
M+N )

for any β ≥ N
min(M,2N)+N , for the MIMO BC with

N < M < 2N .
Remark 2: The specific quantization and transmission tech-

nique plays a key role in scheme X2. As in (15), instead of
sending quantized ¯̌ι

(1)
1,t (M −N + 1 : N) and ¯̌ι

(2)
1,t (M −N + 1 :

N) respectively, we choose to send quantized ¯̌ι
(1)
1,t (M−N+1 :

N) + ¯̌ι
(2)
1,t (M −N + 1 : N), a choice which on the one hand

reduces the number of quantization bits, and on the other hand
allows the receivers to decode (cf. (16)).

IV. CONCLUSIONS

This work provided analysis and novel communication
schemes for the setting of the two-user MIMO BC with im-
perfect delayed CSIT, as well as, in the presence of additional
imperfections in the global CSIR. The derived DoF region is
often optimal and, while corresponding to imperfect delayed
CSIT and imperfect global CSIR, often matches the region

previously associated to perfect delayed CSIT and perfect
global CSIR. In addition to the theoretical limits and practical
schemes, the work provided insight on how much delayed
feedback is necessary to achieve a certain target performance,
offering possible advantages in the presence of feedback links
with limited capacity and limited reliability.
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