
T-MATCH: Privacy-Preserving Item Matching for Storage-Only RFID
Tags

Kaoutar Elkhiyaoui1, Erik-Oliver Blass2, and Refik Molva1

1 Eurecom, Sophia-Antipolis, France
{kaoutar.elkhiyaoui,refik.molva}@eurecom.fr

2 College of Computer and Information Science,
Northeastern University, Boston, MA 02115

blass@ccs.neu.edu

Abstract. RFID-based tag matching allows a reader Rk to determine whether two tags Ti and Tj store
some attributes that jointly fulfill a boolean constraint. The challenge in designing a matching mech-
anism is tag privacy. While cheap tags are unable to perform any computation, matching has to be
achieved without revealing the tags’ attributes. In this paper, we present T-MATCH, a protocol for se-
cure and privacy preserving RFID tag matching. T-MATCH involves a pair of tags Ti and Tj , a reader
Rk, and a backend server S. To ensure tag privacy against Rk and S, T-MATCH employs a new tech-
nique based on secure two-party computation that prevents Rk and S from disclosing tag attributes. For
tag privacy against eavesdroppers, each tag Ti in T-MATCH stores an IND-CPA encryption of its at-
tribute. Such an encryption allows Rk to update the state of Ti by merely re-encrypting Ti’s ciphertext.
T-MATCH targets cheap tags that cannot perform any computation, but are only required to store 150
bytes.

Keywords: RFID, tag matching, privacy

1 Introduction

One prominent application of RFID technology is the automation of safety inspections when transporting
hazardous goods such as highly reactive chemicals in supply chains. Here, it is dangerous to place specific,
reactive chemicals close to each other, because small leaks can already result in a threat to the life of workers
managing these chemicals.

Some recent solutions to enforce safety regulations when storing or transporting chemicals in supply
chains rely on equipping each chemical container with an RFID tag that stores information for identifying
the chemical in the container as highlighted by EU project CoBIs [5]. Before two tags are placed next to each
other, their tags are wirelessly “scanned” using an RFID reader. Each tag sends its content in cleartext to a
server. The server performs chemicals’ matching based on a set REF of matching references that it knows
beforehand. Each matching reference identifies a pair of chemicals that react. Now, when two reactive
chemicals are detected, the server triggers an alarm.

However, the above solution suffers from several shortcomings that may lead to security and privacy
threats. The fact that tags transmit their contents in cleartext allows any malicious entity with proper wireless
equipment to learn the content of a container, to infer information about reactive chemicals, and finally to
track their location.

Consequently, RFID-based protocols for tag matching require a careful design taking into account both
the security and the privacy threats to RFID tags and the consequences thereof on the security and safety of
users managing matched items.

A privacy preserving RFID-based tag matching must fulfill two requirements: content privacy and lo-
cation privacy. Content privacy assures that tag matching is performed without disclosing the content of
tags, that is, the only information revealed after executing the protocol is a bit b indicating whether the tags
involved in the protocol execution “match” or not. Location privacy aims at preventing tracking attacks.
Ideally, an adversary must not be able to distinguish between tags based on the traces of the matching
protocol.

With respect to security, it is mandatory to ensure that a matching protocol is correct (almost) all the
time. Namely, it is required to detect all incompatible items (reactive chemicals). This corresponds to a

completeness property: the protocol must always trigger an alarm when two reactive chemicals are put next
to each other. Moreover, the protocol has to be efficient: an alarm is triggered only when necessary. When
a match is detected by the protocol, one can safely derive that the tags involved in the protocol are attached
to reactive chemicals. This second requirement corresponds to the soundness property of the protocol.

Note that solutions to answer the above security and privacy problems are strongly constrained by the
limitations of RFID environment. While location privacy of tags can be ensured by using re-encryption
techniques, content privacy against readers is more difficult to address especially when using cheap RFID
read/write only tags unable to perform any computation. Traditional security and privacy solutions based
on heavyweight secret matching protocols between two parties , cf., Ateniese et al. [2], Balfanz et al. [3],
cannot be implemented in an RFID setting.

Accordingly, we design T-MATCH, a new tag matching protocol that involves tags Ti attached to “con-
tainers” (barrels) of chemicals traveling in a supply chain, multiple readers Rk and a back-end server S.
T-MATCH targets read/write only tags only featuring storage and no computational capabilities. These tags
are the cheapest type of tags and therefore can allow for the deployment of such an application with reason-
able cost.

Overview: In T-MATCH, a reader Rk in the supply chain reads out the content of a pair of tags Ti and Tj ,
cooperates with back-end server S to perform tag matching, and finally outputs the outcome of matching
while assuring various privacy properties in the face of curious readers Rk and curious backend server S.

Reader Rk and backend server S are required to evaluate securely a boolean function CHECK for any
pair of tags Ti and Tj , such that CHECK outputs b = 1, if Ti and Tj match. To this effect, each tag Ti in
T-MATCH stores a homomorphic IND-CPA encryption Enc of its attribute aTi . When two tags Ti and Tj are
in the range of reader Rk, reader Rk reads both tags and retrieves the encryptions Enc(aTi) and Enc(aTj) of
the attributes of Ti and Tj respectively. To protect the privacy of tags, reader Rk re-encrypts the ciphertexts
stored into tags Ti and Tj . Now, to evaluate the CHECK function, reader Rk uses the homomorphic property
of Enc to compute an encryption Enc(f(aTi , aTj)) of a function f of Ti and Tj’s attributes. Then, readerRk
and backend server S engage in two party protocol for a modified privacy preserving plaintext equality test
[9] to check whether f(aTi , aTj) ∈ REF, where REF is the backend server S’s set of matching references. If
so, CHECK outputs b = 1; otherwise, CHECK outputs b = 0.

To summarize, T-MATCH’s major contributions are:

– T-MATCH proposes a novel solution for item matching that targets read/write only tags. A tag Ti in
T-MATCH does not perform any computation, it is only required to store a state that is updated at every
protocol execution by reader Rk.

– T-MATCH is provably privacy preserving: neither reader Rk nor backend server S can disclose the con-
tent of a tag or learn its attribute. Also, T-MATCH relies on techniques of secure two-party computation
to ensure the privacy of both reader Rk and backend server S.

– T-MATCH is provably secure: readers Rk raise an alarm only when they interact with a pair of matching
tags.

2 Preliminaries

In this section, we introduce T-MATCH’s problem statement and T-MATCH’s entities.

2.1 Problem statement

A read/write only tag Ti in T-MATCH stores a state that encodes its attribute aTi . By solely relying on the
states of any pair of tags Ti and Tj , a reader Rk has to decide whether tags Ti and Tj match or not.

A first solution to tackle this problem could be encrypting the state of tags. When two tags Ti and Tj
are in the range of an authorized reader Rk, reader Rk decrypts the content of tags Ti and Tj . Finally, based
on a set of matching references REF, reader Rk decides whether Ti and Tj match or not.

However, the solution above has two limitations: first, if the underlying encryption is not probabilistic,
tags will be sending the same ciphertexts whenever queried. This enables any eavesdropper to track tags
and, consequently, enables eavesdroppers to violate tags’ location privacy. Second, it does not ensure
content privacy against reader Rk. The solution relies on disclosing the tags’ attributes to reader Rk in order
to perform tag matching.

Although, the first limitation can be tackled by using probabilistic encryption, the second limitation is
difficult to address, as tags cannot perform any computation.

We recall that our main goal is to enable reader Rk to perform tag matching for any pair of tags Ti and
Tj while preserving the privacy of tags. That is, at the end of the matching protocol, a reader Rk only gets
the outcome of a boolean function CHECK which outputs a bit b = 1 if tags Ti and Tj match, and b = 0
otherwise.

A straightforward solution to address the problem above is to use homomorphic encryption. Homo-
morphic encryption enables readers Rk to compute the encrypted value Enc(CHECK(Ti, Tj)) using the
encrypted value Enc(aTi) of attribute aTi stored in tag Ti and the encrypted value Enc(aTj) of attribute aTj
stored in tag Tj .

However, a limitation of this approach arises when we allow readers to decrypt Enc(CHECK(Ti, Tj)):
if a reader Rk is allowed to decrypt Enc(CHECK(Ti, Tj)), then by the same means, it can decrypt Enc(aTi)
and Enc(aTj), leading to the potential disclosure of the attributes of tags to readers and thus, violating the
requirement of content privacy.

An idea to overcome this limitation, consists of preventing readers from decrypting ciphertexts by them-
selves. This calls for the use of secret sharing techniques [16]. We identify two methods to implement secret
sharing: the first method relies on distributing secret shares to readers and tags. The idea would be to allow
a reader Rk to decrypt only when it reads a pair of tags Ti and Tj that match. However, such a solution
requires that tags Ti in the system are either active and able to perform cryptographic operations, or syn-
chronized by readers. The second method relies on an additional third-party component that is a backend
server S. S possesses the set REF of matching references. Readers and backend server S hold secret shares
of some secret key sk that allows backend server S and any reader Rk to evaluate securely CHECK(Ti, Tj).

T-MATCH relies on the second method to implement item matching. That is, in addition to readers Rk
which read and re-encrypt the content of tags, T-MATCH involves a backend server S that stores the set REF
of matching references for any pair of attributes that match. Although, this approach requires backend server
S to be always online with readers Rk, it remains realistic. We stress that, today, even handheld RFID readers
can establish continuous connection with backend server S using wireless technologies such as Bluetooth,
ZigBee, WiFi or even GSM. Furthermore, having a backend server S allows for using techniques of secure
multi-party computation to ensure that at the end of an execution of T-MATCH, readers Rk and backend
server S learn at most the output of CHECK.

Now, to check whether a pair of tags Ti and Tj match, a reader Rk reads first the encrypted states stored
into Ti and Tj , then Rk contacts backend server S in order to securely evaluate the CHECK function for Ti
and Tj . The CHECK function has as input the encrypted states of tags Ti and Tj along with the backend
server S’s matching references REF. At the end of a T-MATCH’s execution, reader Rk gets the output of the
CHECK function. If CHECK outputs b = 1, then this implies that Ti and Tj match; otherwise, they do not.

2.2 T-MATCH’s Setup

T-MATCH involves the following entities:

– Tags Ti: Each tag is attached to an item (container, barrel, . . .). A tag Ti is equipped with a re-writable
memory storing Ti’s current “state” denoted sjTi . The state sjTi encodes an attribute aTi ∈ A, where A is
the set of valid attributes in T-MATCH. We denote T the set of tags in T-MATCH, |A| = l and |T | = n.

– Issuer I: The issuer I initializes tags. It chooses an attribute aTi ∈ A, then computes an initial state
s0
Ti

, and finally writes the state s0
Ti

into Ti.
– Readers Rk: A reader Rk interacts with tags Ti in its vicinity. Rk reads the states skiTi and skjTj stored

into tags Ti and Tj respectively by calling the function READ, and updates the states skiTi and skjTj
accordingly. Next, Rk writes the new states ski+1

Ti
and skj+1

Tj
into Ti and Tj by calling the function

WRITE. Finally, Rk engages in a two party protocol with backend server S to compute securely a
boolean function CHECK. Rk’s input to CHECK is the states skiTi and skjTj . If CHECK outputs b = 1, then
reader Rk raises an alarm meaning that Ti and Tj match. Otherwise, Ti and Tj do not match and reader
Rk does nothing. Without loss of generality, we assume that T-MATCH comprises η readers Rk.

– Backend server S: Backend server S stores a set of ν matching references REF = {Ref1, Ref2, ..., Refν}.
Backend server S is required to compute a boolean function CHECK jointly with reader Rk. Backend
server S’s input to the CHECK function is its set of matching references REF.

3 Adversary models

In this paper, we only focus on semi-honest adversaries. That is, readers Rk and backend server S are as-
sumed to act according to the protocol with the exception that each party keeps a record of all its computa-
tions. Note that in the real world, it is hard for readers Rk and backend server S to deviate from the protocol
arbitrarily without being detected. In effect, it is always feasible to verify whether a reader Rk raises an
alarm when it should or not. Whereas, it is hard to prevent readers Rk and backend server S from keeping
records of their previous protocol executions or from eavesdropping on tags in the system.

In line with previous work on secure multiparty computation [6], we define security and privacy of T-
MATCH by considering a computation of CHECK in the ideal model with a trusted third party (TTP) and an
execution of T-MATCH in the real model without a TTP. In the ideal model, a TTP gets the private input of
backend server S and the input of a reader Rk which is composed of the states of a pair of tags Ti and Tj
participating in tag matching and that were read by reader Rk, together with Rk’s private input. Then, the
TTP outputs the outcome of CHECK(Ti, Tj).

In brief, T-MATCH is said to be secure and privacy preserving, if the malfunctioning which may occur
when executing T-MATCH in the real model cannot be avoided when a trusted third party computes the
output of CHECK.

In the rest of the paper we assume that:
i.) readers Rk and backend server S are semi-honest;
ii.) issuer I is honest;
iii.) multiple readers Rk can collude against tags. However, readers Rk and backend server S do not

collude against tags. Otherwise, tag privacy cannot be achieved.
Now, to formally capture the capabilities of an adversary A against T-MATCH, we allow A to access

the following oracles:

– OTag(param): When queried with a parameter param ∈ T ∪ A, the oracle OTag(param) returns a tag
based on the value of the parameter chosen by A. If param = Ti ∈ T , then OTag(param) returns tag
Ti. If param = ai ∈ A, then OTag(param) returns a tag that encodes attribute ai.

– OCheck(Ti, Tj): When queried with a pair of tags Ti and Tj , the oracle OCheck returns a bit b =
CHECK(Ti, Tj). If b = 1, then this entails that Ti and Tj store a pair of attributes that match; oth-
erwise, they do not.

– OCorruptR(Rk): When queried with a reader Rk, the oracle OCorruptR returns Rk’s secret information
denoted Seck. We say that reader Rk is controlled by A.

– OCorruptS: When queried, the oracleOCorruptS returns S’s secret information denoted SecS. We say that
server S is controlled by A.

– OFlip(T0, T1): When queried with two tags T0 and T1,OFlip flips a fair coin b ∈ {0, 1}. If b = 1,OFlip

returns tag T1; otherwise, it returns tag T0.

3.1 Security

In the following, we introduce the security requirements of T-MATCH against an adversary A.

Completeness Completeness ensures that if two tags Ti and Tj store a pair of matching attributes, then
CHECK(Ti, Tj) outputs b = 1.

Definition 1. T-MATCH is complete⇔ For any pair of tags (Ti, Tj) that store a pair of matching attributes,
CHECK(Ti, Tj)
= 1.

Soundness Soundness assures that if the CHECK function outputs b = 1, then this entails that the tags
Ti and Tj presented to reader Rk encode a pair of attributes aTi and aTj that match with an overwhelming
probability.

We formalize soundness using an experiment-based definition as depicted in Algorithm 1 and Algo-
rithm 2. Adversary A has access to T-MATCH in two phases. In the learning phase, T-MATCH calls the
oracle OTag that supplies A with r tags Ti. A is allowed to read and write into tags Ti. He can also query
the oracle OCheck with any tag from the set of r tags Ti for a maximum of s times.

for i := 1 to r do
Ti ← OTag(parami);
for j := 1 to s do

sj
i = READ(Ti);

WRITE(Ti, s
′j
i);

T(i,j) ← OTag(param(i,j));
s(i,j) = READ(T(i,j));
WRITE(T(i,j), s

′
(i,j));

b(i,j) ← OCheck(Ti, T(i,j));
end

end
Algorithm 1: A’s security learning phase

(T0, T1)←A;
b← OCheck(T0, T1);
Algorithm 2: A’s security challenge phase

In the challenge phase, A generates two tags T0 and T1. Then, A queries the oracle OCheck with tags T0

and T1. Finally, OCheck outputs a bit b.
A is said to be successful, if i.) b = 1 and if ii.) T0 and T1 encode two attributes aT0 and aT1 that do not

match.
The experiment above captures the capabilities of an active adversary A, who in addition to being able

to read tags, can re-write their internal states. The adversarial goal of A is to provide a pair of tags T0 and
T1 which do not store matching attributes, yet CHECK(T0, T1) outputs 1.

Definition 2. T-MATCH is sound⇔ For any adversaryA, Pr(A is successful) ≤ ε, such that ε is negligible.

3.2 Privacy

In general, T-MATCH is said to be privacy preserving, if the only information learned by an adversary A
after executing T-MATCH with a pair of tags Ti and Tj is the output of CHECK(Ti, Tj). That is, an adversary
A only learns whether tags Ti and Tj match or not.

Privacy of readers Rk and backend server S In accordance with previous work on secure two-party
computation [6], we define reader Rk and backend server S privacy in the semi-honest model by considering,
first, an ideal model in which both parties communicate their inputs to a TTP that computes the output of the
CHECK function for reader Rk and backend server S. Then, we consider an execution of T-MATCH which
evaluates the CHECK function in the real model without a TTP.

T-MATCH is said to be privacy preserving in the semi-honest model, if for every semi-honest behavior
of one of the parties (reader Rk or backend server S), the joint view of both parties can be simulated by a
computation of the CHECK function in the ideal model, where also one party is semi-honest and the other
is honest. That is, T-MATCH does not leak information about the private inputs of readers Rk and backend
server S.

Definition 3 (Privacy of reader Rk and backend server S [6]).

– Let Ā = (A1,A2) be an admissible pair representing adversarial behavior by reader Rk and backend
server S in the real model. Such a pair is admissible if at least one party Ai is honest.
• On input pair (X,Y) (X is Rk’s input and Y is S’s input), let View1 = (X, r,M1, ...,Mp,

CHECK(X,Y)) denote the view of reader Rk, where r is the outcome of Rk’s internal random-
ness, and Mi is the ith message that Rk has received.

• Let View2 = (Y, r′,M ′1, ...,M
′
q,⊥) denote the view of backend server S, where r′ is the outcome

of S’s internal randomness, and M ′i is the ith message that S has received.
We denote the joint execution under Ā in the real model on input pair (X,Y) RealĀ(X,Y), and it is
defined as (A1(View1),A2(View2)).

– Let B̄ = (B1,B2) be an admissible pair representing adversarial behavior by reader Rk and backend
server S in the ideal model.
We denote the joint execution under B̄ in the ideal model on input pair (X,Y) IdealB̄(X,Y), and it
is defined as (B1(X,CHECK(X,Y)),B2(Y,⊥)).

T-MATCH is said to be privacy preserving with respect to reader Rk and backend server S in the semi-
honest model, if there is a transformation of pairs of admissible adversaries Ā = (A1,A2) in the real
model, into pairs of admissible adversaries B̄ = (B1,B2) in the ideal model, so that the distributions
{RealB̄(X,Y)}X,Y and {IdealB̄(X,Y)}X,Y are computationally indistinguishable.

Tag privacy Ideally, a privacy preserving protocol for tag matching against an adversary A (readers Rk or
backend sever S) should ensure the following:

– It must be computationally infeasible for adversary A to tell whether two tags Ti and Tj store the same
attribute, i.e., aTi = aTj . This property is called hereafter attribute unlinkability. This requirement is
related to the content privacy of tags.

– It must be computationally infeasible for adversary A to tell two tags Ti and Tj apart. We call this
requirement tag unlinkability in accordance with related work on RFID tag privacy, see Ateniese et al.
[1], Juels and Weis [10]. This property ensures location privacy of tags participating in T-MATCH.

However, any adversary A who has access to the output of the CHECK function can mount a trivial attack
against attribute unlinkability and tag unlinkability in both the ideal model and the real model.

To break attribute unlinkability for a pair of tags (Ti, Tj), all A has to do is to run T-MATCH, first with
pair of tags (Ti, Tk) and then with pair of tag (Tj , Tk). Next, if CHECK(Ti, Tk) 6= CHECK(Tj , Tk), then A
concludes that Ti and Tj encode different attributes and thus, A breaks attribute unlinkability. By the same
token, adversary A concludes that Ti and Tj are different tags which breaks tag unlinkability.

Furthermore, it is impossible to ensure tag unlinkability against an adversary who monitors all of Ti’s
interactions. We note that a tag Ti in T-MATCH relies on readers Rk to update its state, and therefore,
Ti’s state does not change between two protocol executions either in the ideal model or the real model.
Accordingly, we relax the definition of tag unlinkability, by assuming that there is at least one unobserved
interaction between tag Ti and an honest reader Rk outside the range of adversary A. This is in compliance
with previous work on read/write only tags, cf., Ateniese et al. [1], Sadeghi et al. [14].

Now, we define tag privacy with respect to an adversary A who does not always access the CHECK
function (i.e., an adversary A who has access to tags, however, no reader Rk is closeby) and who does not
monitor all of the tags’ interactions with readers Rk.

Attribute unlinkability. It is noteworthy that if an adversary A breaks attribute unlinkability, then this
adversary A can break tag unlinkability. Such an adversary can always tell two tags Ti and Tj apart as long
as Ti and Tj encode different attributes, i.e., aTi 6= aTj . Therefore, if T-MATCH ensures tag unlinkability,
it ensures as well attribute unlinkability. However, in the case where all tags in T-MATCH encode the same
attribute, tag unlinkability does not imply attribute unlinkability. There might be an adversaryAwho cannot
break tag unlinkability, yet adversary A knows that all tags encode the same attribute, and breaking thus,
attribute unlinkability. Nonetheless, if all tags in the system encode the same attribute, then a tag matching
application becomes obsolete. As a result, in the sequel of this paper, we assume that T-MATCH comprises
at least two different attributes ai and aj , i.e., A ≥ 2, and we only focus on tag unlinkability.

Tag unlinkability. Roughly speaking, tag unlinkability against an adversary A ensures that if 1.) tags
Ti and Tj interact with an honest reader outside the range of adversary A at least once, and if 2.) A does
not have access to the output of the CHECK function, then it is computationally infeasible for adversary A
to distinguish between tags Ti and Tj .

In accordance with previous work [1, 14], we use an experiment based definition to formalize tag un-
linkability.

In the learning phase as depicted in Algorithm 3, A can call the oracle OCorruptR up to r times which
supplies A with the secret information of readers Rk denoted Seck.
A can also call the oracle OCorruptS which supplies A with backend server S’s secret information SecS.

A is as well allowed to query the oracleOTag which provides T-MATCH with s tags Ti that he can read from
and write into. A can query the oracle OCheck with any tag from the set of the s tags Ti for a maximum of t
times.

In the challenge phase, cf. Algorithm 4, A generates two challenge tags T0 and T1. These two tags are
read outside the range of adversary A, then they are submitted to the oracle OFlip. Next, the oracle OFlip

supplies A with tag Tb, b ∈ {0, 1}. Finally, A outputs his guess b′ of the value of b.
A is said to be successful if i.) b = b′, ii.) A did not call both oracles OCorruptR and OCorruptS.
We note that if A is allowed to corrupt both readers Rk and backend server S, then any tag matching

protocol based on storage only tags cannot ensure tag privacy against such an adversary. A can use Rk and
S’s secrets to get always the output of the CHECK function for any pair of tags and then uses the output of
CHECK to break tag unlinkability.

Definition 4. T-MATCH provides tag unlinkability⇔ For any adversaryA, Pr(A is successful)− 1
2 ≤ +ε,

such that ε is negligible.

for i := 1 to r do
Seck ← OCorruptR(Rk) ;

end
SecS ← OCorruptS ;
for i := 1 to s do

Ti ← OTag(parami);
for j := 1 to t do

sj
i = READ(Ti);

WRITE(Ti, s
′j
i);

T(i,j) ← OTag(param(i,j));
s(i,j) = READ(T(i,j));
WRITE(T(i,j), s

′
(i,j));

CHECK(Ti, T(i,j));
end

end
Algorithm 3: A’s tag unlinkability learning phase

(T0, T1)← A;
// T0 and T1 are read outside the the range of
A by an honest reader;
Tb ← OFlip(T0, T1);
READ(Tb);
OUTPUT b′;

Algorithm 4: A’s tag unlinkability challenge phase

4 Protocol

To perform tag matching in T-MATCH, we store into each tag Ti an IND-CPA homomorphic encryption
Enc(aTi). When reader Rk reads a pair of tags Ti and Tj , it uses the homomorphic property of Enc to
compute an encryption C(i,j) of a function f of Ti and Tj’s attribute, i.e., C(i,j) = Enc(f(aTi , aTj)).

Now, the matching reference of any pair of attributes (ai, aj) is computed as Ref(i,j) = f(ai, aj).
To evaluate the CHECK function, reader Rk and backend server S rely on a two party privacy preserving
plaintext equality test (PET for short) to decide whether C(i,j) encrypts one of S’s matching references or
not.

Although, it may seem that any IND-CPA homomorphic encryption such as Elgamal or Paillier could
suit the privacy and the security requirements of T-MATCH when both reader R and backend server S are
semi-honest, not all of them prevent backend server S from forging new matching references from its initial
set REF. We recall that Elgamal is multiplicatively homomorphic and thus the function f is going to be
expressed as f(ai, aj) = ψ(ai)ψ(aj) = Ref(i,j), where ψ is an encoding of attributes. We note also that
Paillier is additively homomorphic, and as a consequence: f(ai, aj) = ψ(ai) + ψ(aj) = Ref(i,j).

Therefore, neither the use of Elgamal nor Paillier as the underlying encryption technique of T-MATCH
can prevent backend sever S from forging a new matching reference ref from its set REF.

To prevent forgery of matching references, we use Boneh-Goh-Nissim (BGN) encryption. In addition to
being multiplicatively homomorphic, BGN encryption allows computing an encryption of a bilinear pairing
of two plaintexts from their ciphertexts. Consequently, a matching reference of two attributes ai and aj in
T-MATCH is computed as: Ref(i,j) = f(ai, aj) = f(aj , ai) = e(ψ(ai), ψ(aj)), where ψ is the attribute
encoding in T-MATCH. Note that in this case, forging a new matching reference ref from REF is as hard as
the Computational Diffie-Hellman problem.

Now, we introduce the definitions and the assumptions that will be used throughout the paper.

4.1 Tools

T-MATCH makes use of subgroups of finite composite order that support bilinear pairings as in previous
work of Boneh et al. [4], Katz et al. [11].

Bilinear pairings Let G and GT be groups, such that G and GT are two cyclic groups of the same finite
order N . A pairing e: G×G→ GT is a bilinear pairing if:

1. e is bilinear: ∀x, y ∈ ZN , g, h ∈ G, e(gx, hy) = e(g, h)xy;
2. e is computable: there is an efficient algorithm to compute e(g, h) for any (g, h) ∈ G2;
3. e is non-degenerate: if g is a generator of G, then e(g, g) is a generator of GT .

Boneh-Goh-Nissim (BGN) cryptosystem We now describe Boneh-Goh-Nissim (BGN) cryptosystem that
will be used to encrypt the tags’ attributes in T-MATCH.

– Key generation: On input of a security parameter τ , the system obtains a tuple (q1, q2,G,GT , e) such
that:

1. q1 and q2 are two random primes. Typically, |q1| = |q2| = 512 bits.
2. G is a bilinear group of composite order N = q1q2.
3. e : G×G→ GT is a bilinear pairing.

The system then picks up two random generators g, u ∈ G and sets h1 = uq2 . Finally, the system
outputs the public key pk = (N,G,GT , e, g, h1) and the secret key sk = q1.

– Encryption: The encryption algorithm is defined in both groups G and GT .
• Encryption in G: On input of a message m ∈ G, the encryption algorithm selects a random number
r ∈ ZN and computes c = EncG(m) = mhr1.

• Encryption in GT : On input of a message M ∈ GT , the encryption algorithm picks a random
number r ∈ ZN and computes C = EncGT (M) = M · e(g, h1)r ∈ GT .

– Decryption: Decryption in BGN relies on computing discrete logarithm in a finite group of order N .
Thus, decryption takes sublinear time O(

√
N) and, consequently, BGN is only suitable for the encryp-

tion of short messages. However, in T-MATCH we do not decrypt any ciphertext C. Only for sake of
completeness, we detail below the decryption algorithm of BGN.
• Decryption in G: On input of a ciphertext c ∈ G and secret key sk = q1, the decryption algorithm

computes: C = cq1 = mq1 · hrq11 . Note that the order of h1 is q1, hence C = mq1 .
Since g is a generator of G, then there exists xm ∈ ZN such that: m = gxm . Thus, C = (gq1)xm
and xm is computed as loggq1 (C). Hence, DecG(c) = gxm = m.

• Decryption in GT : On input of a ciphertext C ∈ GT and secret key sk = q1, the decryption
algorithm computes: C = Cq1 = Mq1 · e(g, h1)rq1 = Mq1 , as the order of e(g, h1) is q1.
As e(g, g) is a generator of GT , then there exists xM ∈ ZN such that: M = e(g, g)xM . Therefore,
C = (e(g, g)q1)xM and xM is computed as loge(g,g)q1 (C). Finally, DecGT (C) = e(g, g)xM = M .

The BGN cryptosystem is semantically secure under the subgroup decision assumption. Moreover, the
following homomorphic properties hold:

∀m1,m2 ∈ G, EncG(m1)EncG(m2) = EncG(m1m2)

e(EncG(m1), EncG(m2)) = EncGT (e(m1,m2))

Definition 5 (The subgroup decision assumption [4, 12]). Let G be a group of order N where N = q1q2

is the product of two primes q1 and q2. The subgroup decision assumption is said to hold in G, if given a
random element u in G, it is computationally hard to decide whether u is in the subgroup of G of order q1

or not.

Attribute encoding Let G be a bilinear group of composite order N = q1q2 and e : G × G → GT is a
bilinear pairing.

We denote G1 and G2 the subgroups of G of order q1 and q2 respectively.
We also denote GT1 and GT2 the subgroups of GT of order q1 and q2 respectively.
Let g, u be two random generators of G. By construction, h1 = uq2 is a generator of G1 and h2 = gq1

is a generator of G2.
Let xI = q1x

′
I be the issuer’s secret key, where x′I is randomly selected in Z∗N .

An attribute ai in T-MATCH is encoded as ψ(ai) = H(ai)xI , where H : ZN → G is a cryptographic
hash function.

To evaluate H , issuer I is provided with g generator of G and with a cryptographic hash function
h : ZN → ZN . For all ai ∈ ZN , issuer I computes h(ai) = xi and then outputs H(ai) = gxi ∈ G.

We note that, for all ai ∈ A, ψ(ai) ∈ G2:

ψ(ai) = H(ai)xI = (gxi)xI = gxixI

= gxiq1x
′
I = (gq1)xix

′
I = h

xix
′
I

2 ∈ G2,

and ∀(ai, aj) ∈ A2, e(ψ(ai), ψ(aj)) ∈ GT2

4.2 T-MATCH Overview

Protocol overview Before presenting detailed description of T-MATCH, we provide an overview of T-
MATCH that summarizes how the matching protocol works.

Each tag Ti in T-MATCH stores a state skiTi that consists of a BGN encryption ckiTi = EncG(ψ(aTi)) =
EncG(H(aTi)

xI) of Ti’s attribute aTi (where H : ZN → GT is a cryptographic hash function, and xI is
the issuer I’s secret key), together with a keyed HMAC σkiTi = HMACK(ckiTi), i.e., skiTi = (ckiTi , σ

ki
Ti

). On the
other hand, backend server S stores a set REF of ν matching references. Each matching reference Ref(i,j)

corresponds to two attributes ai and aj in A that match and it is computed as:

Ref(i,j) = f(ai, aj) = f(aj , ai) = e(ψ(ai), ψ(aj)) = e(H(ai)xI , H(aj)xI)

When two tags Ti and Tj come together in the range of a reader Rk, reader Rk reads the current states skiTi
and skjTj of tags Ti and Tj’s respectively. Reader Rk checks first, whether the keyed HMAC stored into tags Ti
and Tj are valid or not. If they are, reader Rk computes the bilinear pairing e(ckiTi , c

kj
Tj

).

C(i,j) = e(ckiTi , c
kj
Tj

) = e(EncG(ψ(aTi)), EncG(ψ(aTj)))

= EncGT (e(ψ(aTi), ψ(aTj)))

Next, reader Rk and backend server S engage in a secure two party protocol for plaintext equality test (PET)
[9] to check whether the underlying plaintext of ciphertext C(i,j) belongs to the set of matching references
REF of backend server S or not. That is, reader Rk and backend server S check whether:

∃ Refp ∈ REF, C(i,j) = EncGT (Refp)

Now, a reader Rk outputs b = 1 (i.e., CHECK(Ti, Tj) = 1), if the plaintext equality test outputs 1; otherwise,
it outputs b = 0.

Privacy and security overview To protect the privacy of tags, a tag Ti in T-MATCH stores a BGN encryp-
tion of its attribute aTi and a keyed HMAC of the encryption. In each protocol execution, the BGN encryption
is re-encrypted by readers Rk and the HMAC is computed accordingly. Also, neither readers Rk nor backend
server S can decrypt the BGN ciphertext stored into Ti, unless readers Rk and backend server S collude to
perform a threshold BGN decryption.

Now, to protect the privacy of tags that participate in the matching protocol against readers Rk and
backend server S, we rely on a modified privacy preserving plaintext equality test that is run jointly by
reader Rk and backend server S. Moreover, T-MATCH uses shuffling techniques to ensure that the only
information leaked at the end of the matching protocol is a bit b that indicates whether the pair of tags
participating in the current execution of T-MATCH match or not.

Furthermore, to prevent backend server S from forging new matching references from the set REF, a
matching reference in T-MATCH is computed as a bilinear pairing.

Finally, T-MATCH encodes attributes as a signature of issuer I to prevent readers Rk from creating new
tags, and it relies on a keyed HMAC to impede adversaries from tampering with tags’ content without being
detected.

4.3 Protocol description

We now describe in more details how T-MATCH performs tag matching.

System setup A trusted third party (TTP) outputs a matching pair of BGN public key pk = (N,G,GT , e, g, h1)
and secret key sk = q1, a cryptographic hash function H : ZN → GT , a secret key xI = q1x

′
I where x′I is

selected randomly in Z∗N , and an HMAC key K. The TTP selects randomly a secret share α1 ∈ ZN . Then,
the TTP sets the second secret share to α2 = sk− α1 = q1 − α1 mod N .

Next, the TTP computes the set REF of matching references. On input of attribute ai ∈ A, TTP computes
ψ(ai) = H(ai)xI ∈ G2. If two attributes ai and aj match, then the TTP computes the corresponding
matching reference Ref(i,j) = e(ψ(ai), ψ(aj)) = e(ψ(aj), ψ(ai)) ∈ GT2 .

Finally, the TTP supplies

– each reader Rk with its share α1 of secret key sk and with the HMAC key K;
– backend server S with its share α2 of secret key sk and with the set of matching references REF;
– issuer I with hash function H , secret key xI = q1x

′
I and the HMAC key K.

Tag initialization (Issuer I → Tag Ti) For each new tag Ti, issuer I computes ψ(aTi) = H(aTi)
xI , such

that aTi is the attribute associated with the chemical in the container that Ti will label. Then, using the
BGN public key pk, issuer I picks a random number r0

i and computes a ciphertext c0Ti = EncG(ψ(aTi)) =

ψ(aTi)h
r0i
1 . Finally, issuer I computes σ0

i = HMACK(c0i) and stores into tag Ti the state s0
Ti

= (c0i , σ
0
i).

Tag matching We break down the tag matching protocol into three operations that describe, first, the
interaction between tags Ti, Tj and reader Rk, second, the interaction between reader Rk and backend
server S, and third the computation of the output of the CHECK function by reader Rk:

– Tag Ti↔ Reader Rk ↔ Tag Tj: Assume there are two tags Ti and Tj in the range of reader R. Tags Ti
and Tj store states skiTi = (ckiTi , σ

ki
Ti

) and skjTj = (ckjTj , σ
kj
Tj

) respectively.

Reader Rk first reads out the tags Ti and Tj and checks whether σkiTi = HMACK(ckiTi) and σ
kj
Tj

=

HMACK(ckjTj) or not. If not, reader Rk updates the states of tags Ti and Tj and aborts the protocol.
Otherwise, it updates the states of tags Ti and Tj and continues the execution of the protocol.
Now to update the state of tag Ti participating in the protocol, reader Rk proceeds as follows.
• If σkiTi = HMACK(ckiTi), then reader Rk picks a random numbers r′i and re-encrypts the ciphertexts

ckiTi to obtain new BGN ciphertext cki+1
Ti

= ckiTih
r′i
1 . Then, it computes σki+1

Ti
= HMACK(cki+1

Ti
).

Finally, reader Rk writes the new state ski+1
Ti

= (cki+1
Ti

, σki+1
Ti

) into tag Ti.
• If σkiTi 6= HMACK(ckiTi), then reader Rk picks two random strings (st1, st2) and stores them into tag
Ti.

– Reader Rk → Backend server S: Reader Rk then computes the BGN ciphertext C(i,j) = e(ckiTi , c
kj
Tj

) ∈
GT . Without loss of generality, we assume that ckiTi = EncG(ψ(aTi)) = ψ(aTi)h

ri
1 and ckjTj = EncG(ψ(aTj)) =

ψ(aTj)h
rj
1 . By bilinearity of e:

C(i,j) = e(ckiTi , c
kj
Tj

) = e(ψ(aTi)h
ri
1 , ψ(aTj)h

rj
1)

= e(ψ(aTi), ψ(aTj)h
rj
1) · e(hri1 , ψ(aTj)h

rj
1)

= e(ψ(aTi), ψ(aTj)) · e(ψ(aTi), h
rj
1) · e(hri1 , ψ(aTj)) · e(h

ri
1 , h

rj
1)

We recall that:
• h1 = uq2 where u is a generator of G, and that there exist x ∈ ZN such that h1 = gx;
• ψ(aTi) and ψ(aTj) are elements of G2 and that h2 = gq1 is generator of G2. As a result, there exist
xi, xj ∈ ZN such that ψ(aTi) = hxi2 = gq1xi and ψ(aTj) = h

xj
2 = gq1xj .

C(i,j) = e(ψ(aTi), ψ(aTj)) · e(gq1xi , uq2rj) · e(uq2ri , gq1xj) · e(gxri , h
rj
1)

= e(ψ(aTi), ψ(aTj)) · e(gxi , urj)q1q2 · e(uri , gxj)q1q2 · e(g, h1)xrirj

= e(ψ(aTi), ψ(aTj)) · e(gxi , urj)N︸ ︷︷ ︸
1

· e(uri , gxj)N︸ ︷︷ ︸
1

·e(g, h1)xrirj

= e(ψ(aTi), ψ(aTj)) · e(g, h1)R

where R = xrirj is uniformly distributed in ZN , thus:

C(i,j) = EncGT (e(ψ(aTi), ψ(aTj)))

This directly follows from the homomorphic property of BGN as illustrated in Section 4.1.
Reader Rk then sends ciphertext C(i,j) to backend server S.

– Backend server S→Reader Rk: Without loss of generality, we assume that REF = {Ref1, Ref2, ..., Refν},
and that for all Refp ∈ REF, there exist ai and aj in A, such that Refp = e(ψ(ai), ψ(aj)).
Upon receiving ciphertext C(i,j) from reader Rk, backend server S proceeds as follows:

• It picks ν random numbers Rp ∈ Z∗N , and computes ν ciphertexts Cp =
(
C(i,j)

Refp

)Rp
, for all p in

{1, 2, ..., ν}.
• On input of its secret shareα2 and ciphertextsCp, backend server S computesM ′p = (M1,p,M2,p) =

(Cp, Cα2
p). Next, backend server S shuffles M ′p.

We note that by shuffling messages M ′p, T-MATCH prevents semi-honest readers Rk from telling
whether two pairs of matching tags satisfy the same matching reference or not.
• Finally, backend server S sends M ′p to reader Rk.

– The output of the CHECK function: When receiving M ′p from backend server S, reader Rk uses its
secret share α1 and computes:

Mp = M1,p
α1 ·M2,p = Cα1

p · Cα2
p = Cα1+α2

p = Cq1p =

((
C(i,j)

Refp

)Rp)q1

=

((
e(ψ(aTi), ψ(aTj)) · e(g, h1)R

Refp

)Rp)q1

=
(
e(ψ(aTi), ψ(aTj))

Refp

)q1Rp
· e(g, h1)q1RRp

=
(
e(ψ(aTi), ψ(aTj))

Refp

)q1Rp
Note that if Ti and Tj match then there exists a matching reference Refp ∈ REF such that: e(ψ(aTi), ψ(aTj)) =
Refp and thus,

Mp =
(
e(ψ(aTi), ψ(aTj))

Refp

)q1Rp
= 1

Consequently, if there exists p ∈ {1, 2, ..., ν} such that Mp = 1, then reader Rk outputs b = 1 meaning
that Ti and Tj match. Otherwise, Rk outputs b = 0, i.e., Ti and Tj do not match.

5 Security and privacy analysis

6 Security analysis

In the following section, we state the security theorems of T-MATCH.
We recall that backend server S and reader Rk are semi-honest, and that issuer I is honest.

6.1 Completeness

Theorem 1. T-MATCH is complete.

Proof (Sketch). If two tags Ti and Tj store attributes aTi and aTj that match, then there is ref ∈ REF, such
that ref = e(ψ(aTi), ψ(aTj)). Therefore, one of the ν messages Mp computed by reader Rk will be equal
to 1. Consequently, reader Rk will output b = 1, i.e., the output of CHECK(Ti, Tj) is 1. ut

6.2 Soundness

To prove the soundness of T-MATCH, we use the following lemma

Lemma 1. If Rp ∈ Z∗N , then Mp = 1⇔ e(ψ(aTi), ψ(aTj)) = Refp

Proof. We recall that for all ai ∈ A, ψ(ai) ∈ G2. By construction, h2 = gq1 is a generator of G2. As a
result, for all ai ∈ A,∃ xi ∈ Zq2 such that ψ(ai) = hxi2 = gq1xi . Consequently, there exist xi, xj , xp ∈ Zq2
such that: e(ψ(aTi), ψ(aTj)) = e(g, g)q

2
1xixj and Refp = e(g, g)q

2
1xp . Thus,

Mp =
(
e(ψ(aTi), ψ(aTj))

Refp

)q1Rp
= e(g, g)q

3
1xRp

Where x = xixj − xp mod N .
If e(g, g)q

3
1xRp = 1, then this implies that q3

1xRp = 0 mod N . Since Rp ∈ Z∗N , then q3
1x = 0 mod N

and therewith x = xixj − xp = 0 mod q2.
We conclude that xixj = xp mod q2 and q2

1xixj = q2
1xp mod N . Consequently, e(ψ(aTi), ψ(aTj)) =

Refp.

Theorem 2. T-MATCH is sound under the security of HMAC and the security of the hash function H .

Proof (Sketch). If there is an adversaryAwho breaks the soundness property of T-MATCH, then this implies
that adversary A is able to provide reader R with a pair of tags T0 and T1 such that:

i.) Tag T0 (respectively T1) stores a state sT0 = (cT0 , HMACK(cT0)) (respectively sT1 = (cT1 , HMACK(cT1)));
ii.) CHECK(T0, T1) = 1, i.e., there exists a matching reference Ref(p,q) = e(ψ(ap), ψ(aq)) that matches

the pair of tags T0 and T1.
iii.) and finally, {DecG(cT0), DecG(cT1)} 6= {ψ(ap), ψ(aq)}.

There are two cases to consider, depending on whether T0 and T1 encode valid attributes or not.

– Case 1: T0 and T1 encode valid attributes, i.e., there exist ai, aj ∈ A such that DecG(cT0) = ψ(ai) and
DecG(cT1) = ψ(aj). Breaking the soundness property of T-MATCH implies that there exist {ai, aj} 6=
{ap, aq} ⊂ A such that ref(p,q) = e(ψ(ap), ψ(aq)) = e(ψ(ai), ψ(aj)) using Lemma 1.
• Let E denote the event that for all {ai, aj} 6= {ap, aq} ⊂ A, e(ψ(ai), ψ(aj)) 6= e(ψ(ap), ψ(aq)).
• Let Ē denote the event that there exists {ai, aj} 6= {ap, aq} ⊂ A, such that e(ψ(ai), ψ(aj)) =
e(ψ(ap), ψ(aq)).

Assuming that H : ZN → G is a cryptographic hash function implies that for all ai ∈ A, ψ(ai) =
H(ai)xI = H(ai)q1x

′
I is uniformly distributed in G2. That is, for all ai ∈ A there exists xi uniformly

distributed in Zq2 such that ψ(ai) = hxi2 (we recall that h2 is a random generator of G2 and that
the order of G2 is q2). Along these lines, for any pair of attributes (ai, aj) ∈ A, e(ψ(ai), ψ(aj)) =
e(h2, h2)xixj is distributed uniformly in the subgroup GT2 .
• Let PA denote the set of all possible pairs in A and L denote the number of these pairs, i.e., L =
|PA| = l(l−1)

2 . Without loss of generality, PA = {p1, p2, ..., pL}.
• Let Ei denote the event that pair pi in PA does not have the same matching reference as pairs
{p1, p2, ..., pi−1}.

We recall that |q2| = 512 bits where q2 is the order of GT2 , and that typically |l| ≤ 10 bits. Now, the
probability of event E is:

Pr(E) =
L∏
i=1

Pr (Ei) = 1
(

1− 1
q2

)(
1− 2

q2

)
...

(
1− L− 1

q2

)

≥
(

1− L− 1
q2

)L
'
(

1− 22|l|

2|q2|

)L
'
(

1− L 22|l|

2|q2|

)
'
(

1− 24|l|

2|q2|

)
Consequently, Pr(Ē) = 1−Pr(E) ' 24|l|−|q2|. Thus, the probability that event Ē occurs is negligible.
We conclude that given the security of the hash function H , the probability that an adversary A breaks
the soundness property when tags T0 and T1 encode valid attributes is negligible.

– Case 2: T0 or T1 does not encode valid attributes, i.e., for all ap ∈ A, DecG(cT0) 6= ψ(ap) or
DecG(cT1) 6= ψ(ap).
Without loss of generality, we assume that for all ap ∈ A, DecG(cT0) 6= ψ(ap).
Now, if for all ap ∈ A DecG(cT0) 6= ψ(ap), then this implies that tag T0 was not issued by issuer
I. Consequently, T0’s state skT0 = (ckT0 , σ

k
T0

) was necessarily computed by adversary A. As a result,
adversary A is able to compute the HMAC of cT0 without the secret key K. This leads to a contradiction
under the security of HMAC.
We conclude that given the security of HMAC, an adversary A cannot break the soundness of T-MATCH
when tag T0 or tag T1 does not encode valid attributes. ut

7 Privacy

In the this section, we present T-MATCH’s privacy theorems.

7.1 Privacy of readers Rk and backend server S

Theorem 3. T-MATCH preserves the privacy of readers Rk and backend server S in the semi-honest model
under the subgroup decision assumption in GT .

Proof (sketch). We need to show how to transform any admissible pair (A1,A2) of adversaries against T-
MATCH in the real model, into an admissible pair (B1,B2) of adversaries in the ideal model.
– Backend server S is honest. First, we start with the case of an honest backend server S. In this case, B2

is the honest backend server S in the ideal model, and we transform the adversary A1 (semi-honest reader
Rk) against S in the real model into an adversary B1 (semi-honest reader Rk) against S in the ideal model.

Adversary B1 will execute A1 locally, obtaining therefore the messages that A1 would have sent in a
real execution of T-MATCH, and providing A1 with the messages that he expects to receive from backend
server S.

– A1 reads the states skiTi and skjTj stored into tags Ti and Tj respectively, and computes the bilinear pairing
C(i,j) of the ciphertexts stored into Ti and Tj . Then,A1 sendsC(i,j) toB1 who simulates backend server
S.

– B1 sends the ciphertexts stored into tags Ti and Tj and the secret share α1 to the trusted third party.
– B1 receives a bit b from the TTP which is the output of the CHECK function.
– To simulate backend server S to adversary A1, B1 computes ν messages M ′p such that:

1. If b = 1: B1 picks ν − 1 pairs of random numbers (xp, Rp) in Z∗N , and computes: M ′p =
(M1,p,M2,p) = (e(h1, g)Rp , e(g, g)xpe(h1, g)−α1Rp), where α1 is the secret share of A1 (note
that Mp = Mα

1,pM2,p = e(g, g)xp is randomly distributed in GT). Next, B1 selects a random
number Rν ∈ ZN and computes: M ′ν = (M1,ν ,M2,ν) = (e(h1, g)Rν , e(h1, g)−α1Rν).

2. If b = 0:B1 picks ν pairs of random numbers (xp, Rp) in Z∗N , and computes:M ′p = (M1,p,M2,p) =
(e(h1, g)Rp , e(g, g)xpe(h1, g)−α1Rp).

– Finally, B1 shuffles M ′p and sends them to adversary A1.

We show that the distribution of messages M ′p sent to A1 when B1 is simulating backend server S
is computationally indistinguishable from the distribution of messages M ′p that A1 actually receives from
backend server S.

In fact, when adversary A1 runs T-MATCH in the real model, he expects to receive ν messages M ′p
distributed as described below:

– Tags Ti and Tj match: there exists a messageM ′q = (M1,q,M2,q) such thatMq = (M1,q)α1 ·M2,q = 1,
and for all M ′q 6= M ′p, the product Mp = (M1,p)α1 ·M2,p is randomly distributed in GT2 .

– Tags Ti and Tj do not match: for all M ′p = (M1,p,M2,p), the product Mp = (M1,p)α1 · M2,p is
randomly distributed in GT2 .

Note that the resulting product Mp = (M1,p)α1 · M2,p from the message M ′p = (M1,p,M2,p) sent by
adversary B1 during his simulation of backend server S is distributed in GT and not in GT2 . However,
this cannot be detected by A1. Otherwise, this implies that A1 is able to tell whether an element of GT

is an element of the subgroup GT2 or not, and this leads to a contradiction under the subgroup decision
assumption.

Thus, B1 successfully simulates backend server S to adversary A1, and the distribution RealĀ is com-
putationally indistinguishable from the distribution IdealB̄ when backend server S is honest.
– Reader Rk is honest: In this case, B1 is determined and he is the honest reader Rk. We transform next
an adversary A2 (semi-honest backend server S) against reader Rk in the real model into an adversary B2

(semi-honest backend server S) against reader Rk in the ideal model as follows.

– B2 first eavesdrops on reader Rk to get the states of tags Ti and Tj participating in the matching protocol.
Notice that such an attack cannot be prevented as the channel between tags and reader Rk is not secure
in the ideal model.

– B2 simulates reader Rk for adversary A2 in the real model, computes the bilinear pairing C(i,j) of
ciphertexts stored into tags Ti and Tj . Then, B2 sends C(i,j) to adversary A2.

– B2 sends the set of matching references REF, together with the secret share α2 to the TTP.
– The TTP returns a bit b to reader Rk in the ideal model. If b = 1, then reader Rk raises an alarm in the

ideal model, and so does B2 in the real model when simulating reader Rk. Otherwise, B2 does nothing.

Note that when provided with the states of tags Ti and Tj , and the output of the CHECK function, adversary
B2 can successfully simulate reader Rk to adversary A2 in the real model. Hence, the distributions RealĀ
and IdealB̄ are indistinguishable when reader Rk is honest.

Accordingly, T-MATCH ensures the privacy of readers Rk and backend server S in the semi-honest
model. ut

7.2 Tag privacy

Theorem 4. T-MATCH ensures tag unlinkability under the subgroup decision assumption in G and GT ,
and the security of HMAC.

Proof. Assume there is an adversaryA who breaks the tag unlinkability of T-MATCH with a non-negligible
advantage ε. We show that we can build an adversary B who usesA as a subroutine and breaks the semantic
security of BGN under re-encryption with a non-negligible advantage ε′.

Let Ore−encryption be the oracle that when queried with two ciphertexts c0 and c1 in G, flips a random
coin b ∈ {0, 1}, re-encrypts cb using BGN and public key pk, and returns the resulting ciphertext c′b.

As this re-encryption is based on BGN, the semantic security property of the BGN encryption can be
extended to semantic security under re-encryption [7]. Let B be an adversary that selects two ciphertexts
c0, c1 and provides oracle Ore−encryption with c0 and c1 encrypted under public key pk. Ore−encryption
randomly chooses b, re-encrypts cb to c′b with public key pk, and returns c′b to B.

The semantic security of BGN under re-encryption implies that guessing the value of b is as difficult for
B as the subgroup decision problem.

To break the semantic security of BGN under re-encryption, B proceeds as follows:

– Adversary B creates a T-MATCH system with l attributes A = {a1, a2, ..., al}, issuer I, η readers Rk
and backend server S.
B selects a random HMAC key K, random secret key xI, random shares α1 and (−α1), and a hash
function H : ZN → G. Next, he computes the matching references REF that he is going to use to
compute the output of the CHECK function.
Then, he provides issuer I with secret keys K, xI and the hash function H , readers Rk with secret key
K and secret share α1, and backend server S with secret share (−α1) and the set of matching references
REF.
Finally, he simulates issuer I and initializes n tags using as input A, public key pk from the re-
encryption oracle Ore−encryption, hash function H , HMAC key K and secret key xI.
At the end of tag initialization phase, each tag Ti stores a state s0

Ti
= (c0Ti , σ

0
Ti

) = (EncG(ψ(aTi)), HMACK(c0Ti))
such that aTi ∈ A.

– B initializes a database DB where he keeps an entryETi for each tag Ti such that:ETi = (aTi , c
0
Ti
, c1Ti , ..., c

j
Ti
,

...), where c0Ti is the ciphertext stored into Ti at initialization, and cjTi is the ciphertext stored into tag
Ti after the jth interaction of tag Ti with readers Rk.

– Learning phase: B simulates oracle OCorruptR to adversary A.
− IfA calls the oracleOCorruptS without making any call toOCorruptR, thenB simulates oracleOCorruptS

for adversary A. Note that if A corrupts both readers Rk and backend server S, his attack becomes
trivial.
− B simulates oracle OTags and provides A with tags of his choice.
− We now show how B simulates the output of the CHECK function to adversary A. Without loss of
generality, we assume that adversary A submits two tags Ti and Tj for which he wants to obtain the
output of the CHECK function.
There are two cases to consider, depending on whether A corrupted readers Rk or backend server S.
– Case 1. [A corrupts readers Rk]: To successfully simulate backend server S for adversary A, B is
required to eavesdrop on all of the tags’ interactions with readers in T-MATCH, including the corrupted
ones.
To start T-MATCH for a pair of tags Ti and Tj ,A reads the states skiTi = (ckiTi , σ

ki
Ti

) and skjTj = (ckjTj , σ
kj
Tj

)
of tags Ti and Tj respectively, and writes into tags Ti and Tj the new states ski+1

Ti
= (cki+1

Ti
, σki+1
Ti

)
and skj+1

Tj
= (ckj+1

Tj
, σ
kj+1
Tj

) respectively. Then, adversary A sends a ciphertext C(i,j) = e(ckiTi , c
kj
Tj

) to
adversary B who is simulating backend server S.

B gets the states skiTi , s
kj
Tj
, ski+1
Ti

and skj+1
Ti

by eavesdropping on adversary A. Then, B looks up the

ciphertexts ckiTi and ckjTj in his database and retrieves the corresponding attributes aTi and aTj . Then, B
updates his database by adding the new ciphertexts cki+1

Ti
and ckj+1

Tj
to DB accordingly. That is,

ETi = (aTi , c
0
Ti , c

1
Ti , ..., c

ki
Ti
, cki+1
Ti

) , ETj = (aTj , c
0
Tj , c

1
Tj , ..., c

kj
Tj
, c
kj+1
Tj

)

Thanks to the security of HMAC, only readers Rk and adversary B are able to compute valid states. As a
consequence, if B keeps track of all the ciphertexts written into tags by readers Rk including the ones
corrupted by A, then B can always evaluate the CHECK function when given a pair of tags Ti and Tj
that store valid states skiTi = (ckiTi , σ

ki
Ti

) and skjTi = (ckjTi , σ
kj
Ti

) respectively. B is only required to look up

ckiTi and ckjTj in his DB and to retrieve the corresponding attributes aTi and aTj .
Note. The simulation of decryption presented above only works because corrupted readers Rk in T-
MATCH are assumed to be semi-honest, see Section 3.
Next, B prepares S’s answer as follows:
• aTi and aTj match: B picks ν − 1 pairs of random numbers (xp, Rp) in Z∗N , and computes:
M ′p = (M1,p,M2,p)
= (e(g, h1)Rp , e(g, g)xpe(g, h1)−α1Rp). Then, B selects a random number Rν ∈ ZN and com-
putes: M ′ν = (M1,ν ,M2,ν) = (e(g, h1)Rν , e(g, h1)−α1Rν).
• aTi and aTj do not match: B picks ν pairs of random numbers (xp, Rp) in Z∗N , and computes:
M ′p = (M1,p,M2,p) = (e(g, h1)Rp , e(g, g)xpe(g, h1)−α1Rp).
• Finally, B shuffles the messages M ′p and sends them to adversary A.

As in the proof of theorem 3, we note that when message M ′p = (M1,p,M2,p) is sent by adversary B
during B’s simulation of backend server S, the resulting productMp = (M1,p)α1 ·M2,p is distributed in
GT and not in GT2 . However, under the subgroup decision assumption in GT , the distribution of mes-
sages M ′p sent by B and the distribution of messages M ′p sent by backend server S are computationally
indistinguishable.
– Case 2. [A corrupts backend server S]: To simulate reader Rk, adversary B does the following.
− First, when B wants to perform the matching protocols for a pair of tags Ti and Tj , he reads the states
skiTi = (ckiTi , σ

ki
Ti

) and skjTj = (ckjTj , σ
kj
Tj

) of tags Ti and Tj respectively, and writes into tags Ti and Tj
the new states ski+1

Ti
= (cki+1

Ti
, σki+1
Ti

) and skj+1
Tj

= (ckj+1
Tj

, σ
kj+1
Tj

) respectively. Next, he looks up the

ciphertexts ckiTi and ckjTi in his database and retrieves the corresponding attributes aTi and aTj . Then, B
updates his database. Finally, he computes C(i,j) = e(ckiTi , c

kj
Tj

) and sends C(i,j) to adversary A.
− Then, upon receiving the messages M ′p from adversary A, B checks whether aTi and aTj match or
not. If so, B simulates reader Rk and outputs 1. Otherwise, he outputs 0.

– Challenge phase: A submits two challenge tags T0 and T1.
B reads the states stored into T0 and T1, and retrieves the corresponding ciphertexts c0 and c1 respec-
tively. To simulateOFlip, B queries the oracleOre−encryption with ciphertexts c0 and c1.Ore−encryption
returns a re-encryption c′b of ciphertext cb, b ∈ {0, 1}. Next, B computes σ′b = HMACK(c′b) and stores
the state sTb = (c′b, σ

′
b) into tag Tb. Finally, B returns tag Tb to A.

A outputs his guess b′ for the bit b. Now, to break the semantic security of BGN under re-encryption, B
outputs b′.

Notice that if A outputs b′ = 1, then tag Tb corresponds to tag T1 and therewith, c′b is a re-encryption of
c1. Otherwise, tag Tb corresponds to tag T0 and as a result, c′b is a re-encryption of c0.

If A has a non-negligible advantage ε in breaking T-MATCH, then B will have a non-negligible advan-
tage ε′ = ε in breaking the semantic security of BGN under re-encryption. This leads to a contradiction
under the subgroup assumption in G. ut

8 Discussion

Due to limited space, we have moved the formal proofs of security and privacy to the appendix. Here, we
present only their main ideas and rationale.

Security To prove that T-MATCH is secure against semi-honest adversaries, we rely on the security of
HMAC and the security of the hash function H . The security of HMAC ensures that an adversary A who
does not have the secret key K cannot create a new tag Ti that does not encode a valid attribute, and that
can be accepted by readers Rk. Thus, to break the security of T-MATCH, adversary A has to use tags that
encode valid attributes (i.e., tags that were issued by issuer I and updated by readers Rk). Now, the security
of the hash function H ensures that for any pair of attributes {ai, aj} 6= {ap, aq}, e(ψ(ai), ψ(aj)) 6=
e(ψ(ap), ψ(aq)). Consequently, if the CHECK function outputs b = 1 for a pair of tags Ti and Tj , then this
implies that tags Ti and Tj store attributes that match.

We have moved the formal security proof to Appendix 6.

Privacy T-MATCH ensures the privacy of tags Ti, readers Rk and backend server S. First, a tag Ti in
T-MATCH stores a state sTi = (cTi , σTi), where cTi is a BGN encryption of Ti’s attribute, while σTi =
HMACK(cTi). The state sTi is updated after each read by readers Rk. As a result, an adversary A who does
not monitor all of Ti’s interactions nor does he always observe the output of CHECK cannot link tag Ti to
its interactions.

Second, by using secret sharing techniques, neither readers Rk nor backend server S can disclose the
encoded attribute stored into Ti unless they collude and perform a threshold decryption. Moreover, backend
server S randomizes the ciphertexts Cp = C(i,j)

Refp
, for all Refp ∈ REF, then shuffles the messages M ′p =

(Cp, Cα2
p). This leads that at the end of an execution of T-MATCH, the only information that a reader Rk

learns is the output of the CHECK function.
We refer to Appendix 7 for the formal privacy proofs.

From semi-honest adversaries to malicious adversaries A malicious adversaryA ∈ {Rk, S} is an adver-
sary who may act arbitrarily. Adversary A may i.) refuse to participate in the protocol when the protocol
is first invoked. A may as well ii.) substitute its local input: this corresponds for instance to a reader Rk
providing an input that does not match the states of tags it has just read, or to backend server S submitting
a set of bogus matching references as its local input. A may also iii.) abort the protocol before sending its
last message.

As established by [6], a semi-honest behavior can be enforced as long as trapdoor permutations exist.
The idea is to 1.) use commitment schemes to force each party to commit to their local inputs and to
generate random numbers that are uniformly distributed. In the case of T-MATCH, each reader Rk commits
to its secret share α1 and the states of tags it has read, while backend server S commits to its secret share
α2, its set of matching references REF and the randomness it uses to compute the messages M ′p. Then, 2.)
to ensure that the messages exchanged between reader Rk and backend server S are protocol compliant,
T-MATCH can rely on zero knowledge proofs.

Whereas the above techniques enforce semi-honest behavior and ensure readers Rk and backend server S
privacy in the malicious model, they do not enforce semi-honest behavior with respect to tags participating
in the protocol, as these tags are storage only and do not feature any computation capabilities. To this effect,
readers Rk may not update the state of tags according to the protocol or they may tamper with the state
of tags. However, as discussed earlier, such attacks can be detected with human inspection. Moreover, we
conjecture that as long as readers Rk and backend server S do not collude against tags, even in the malicious
model, readers Rk and backend server S will only learn the outcome of the CHECK function at the end of
the execution of T-MATCH.

Furthermore, we note that observing the output of the CHECK function over multiple sessions allows
any adversary to infer information about tags. However, this cannot be circumvented as it is inherent to the
nature of tag matching protocols.

9 Evaluation

T-MATCH targets read/write only tags that do no feature any computational capabilities. A tag in T-MATCH
is required to store a BGN ciphertext in G (|G| = 1024 bits) and an HMAC of size 160 bits, totaling a storage
of 1184 bits.

We believe that T-MATCH can be deployed using current ISO 18000-3 HF tags, such as UPM RFID HF
RaceTrack tags [17] that feature up to 8 kbits of memory.

Table 1. Evaluation of memory and computation in T-MATCH

Tag Reader Rk Backend server S
Memory 1184 bits pk,K, α1 pk, α2, REF

Exponentiation in GT − ν 2ν
|GT | = 2048 bits

Exponentiation in G − 2 −
|G| = 1024 bits

HMAC − 2 −
Bilinear pairing − 1 −

Shuffle − − 1

In each execution of T-MATCH, reader Rk reads two tags Ti and Tj and update their states as follows.
Reader Rk re-encrypts the BGN ciphertexts cTi and cTj of tags Ti and Tj respectively. Then, reader Rk
computes the HMAC of the re-encrypted ciphertexts. This amounts to computing two exponentiations in G
and two keyed hash functions.

To evaluate the CHECK function, reader Rk computes a ciphertext C(i,j) = e(cTi , cTj) ∈ GT such that
|GT | = 2048 bits. Then, reader Rk initiates a two round protocol with backend server S by sending the
ciphertext C(i,j).

Upon receiving ciphertext C(i,j), backend server S performs 2ν exponentiations in GT (where ν is the
number of matching references in REF) and obtains ν messages M ′p. Next, backend server S shuffles the
messages M ′p and sends them to reader Rk.

Finally, when reader Rk receives the messages M ′p, it performs ν exponentiations in GT and outputs the
outcome of the CHECK function.

10 Related work

T-MATCH shows similarities to secret handshake and secret matching protocols. Nevertheless, traditional
solutions for secure and privacy preserving secret matching between two parties as proposed by Ateniese
et al. [2], Balfanz et al. [3] cannot be implemented in cheap RFID tags. These solutions require the compu-
tation of bilinear pairings which cannot be performed by current RFID tags.

Boneh et al. [4] propose a protocol that allows the public evaluation of 2-DNF formula on boolean
variables by relying on the BGN encryption. The protocol proposed in [4] can be slightly modified to
implement tag matching. However in this case, tags are required to store O(l) ciphertexts of size 1024 bits
where l is the number of attributes in the system – rendering such an approach unrealistic.

Another approach to evaluate the CHECK function is attribute based encryption see Goyal et al. [8], Pirretti
et al. [13], Sahai and Waters [15]. The idea is to associate each attribute ai in the system with some secret
component of some private key sk. When two tags Ti and Tj that match come together, the secret key sk can
be reconstructed. The reconstruction of a correct secret key sk enables reader Rk to decrypt some cipher-
text C for which it knows the underlying plaintext M . The tag matching is verified by checking whether
Dec(C) = M or not. Though, the use of attribute based encryption can allow reader Rk to evaluate the
CHECK function by itself without a backend server S, it requires either cryptographic operations on tags or
their synchronization.

11 Conclusion

RFID tag based matching is required by many real-world supply-chain application. Matching, however,
raises new security and privacy concerns. T-MATCH tackles these challenges and provides secure and
privacy preserving item matching suited for resource restricted tags unable to perform computations. T-
MATCH evaluates, in a privacy preserving manner, a function CHECK that on the input of two tags Ti and
Tj outputs a bit b indicating whether Ti and Tj match or not. T-MATCH is provably secure and privacy
preserving under standard assumptions, i.e., HMAC security and the subgroup decision assumption. Finally,
designed for read/write only tags, T-MATCH requires tags to store only 150 bytes.

Bibliography

[1] G. Ateniese, J. Camenisch, and B. de Medeiros. Untraceable RFID tags via insubvertible encryption. In CCS ’05:
Proceedings of the 12th ACM conference on Computer and communications security, pages 92–101, New York,
NY, USA, 2005. ACM. ISBN 1-59593-226-7.

[2] G. Ateniese, J. Kirsch, and M. Blanton. Secret Handshakes with Dynamic and Fuzzy Matching. In Proceedings
of the Network and Distributed System Security Symposium, NDSS. The Internet Society, 2007.

[3] D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H. C. Wong. Secret Handshakes from Pairing-
Based Key Agreements. In Proceedings of the 2003 IEEE Symposium on Security and Privacy, SP ’03, page 180,
Los Alamitos, CA, USA, 2003. IEEE Computer Society. ISBN 0-7695-1940-7.

[4] D. Boneh, E-J. Goh, and K. Nissim. Evaluating 2-DNF Formulas on Ciphertexts. In TCC, pages 325–341,
Cambridge, MA, USA, 2005.

[5] Cobis Consortium. Collaborative business items: Chemical drums use-case, 2007. http://www.cobis-
online.de/files/live.stream.wvx.

[6] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New
York, NY, USA, 2004. ISBN 0521830842.

[7] P. Golle, M. Jakobsson, A. Juels, and P. Syverson. Universal Re-encryption for Mixnets. In In Proceedings of the
2004 RSA Conference, Cryptographer’s track, pages 163–178. Springer-Verlag, 2002.

[8] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control of
encrypted data. In Proceedings of the 13th ACM conference on Computer and communications security, CCS ’06,
pages 89–98, New York, NY, USA, 2006. ACM. ISBN 1-59593-518-5.

[9] M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via ciphertexts. In Tatsuaki Okamoto,
editor, Advances in Cryptology ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages
162–177. Springer Berlin / Heidelberg, 2000. ISBN 978-3-540-41404-9.

[10] A. Juels and S.A. Weis. Defining Strong Privacy for RFID. In PerCom Workshops, pages 342–347, White Plains,
USA, 2007. ISBN 978-0-7695-2788-8.

[11] J. Katz, A. Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial equations, and inner
products. In Proceedings of the theory and applications of cryptographic techniques 27th annual international
conference on Advances in cryptology, EUROCRYPT’08, pages 146–162, Berlin, Heidelberg, 2008. Springer-
Verlag.

[12] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factoring. In Eurocrypt ’98, LNCS
1403, pages 308–318. Springer-Verlag, 1998.

[13] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure attribute-based systems. In Proceedings of the 13th
ACM conference on Computer and communications security, CCS ’06, pages 99–112, New York, NY, USA, 2006.
ACM. ISBN 1-59593-518-5.

[14] A.R. Sadeghi, I. Visconti, and C. Wachsmann. Anonymizer-Enabled Security and Privacy for RFID. In 8th In-
ternational Conference on Cryptology And Network Security – CANS’09, Kanazawa, Ishikawa, Japan, December
2009. Springer. ISBN 978-3-642-10432-9.

[15] A. Sahai and B. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, Advances in Cryptology
– EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 557–557. Springer Berlin /
Heidelberg, 2005.

[16] A. Shamir. How to share a secret. Commun. ACM, 22:612–613, November 1979. ISSN 0001-0782.
[17] UPM RFID Technology. UPM RFID HF RaceTrack RFID Tag, 2011.

http://www.rfidtags.com/upm-rfid-racetrack-rfid-tag.

