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Abstract

RFID can be used for a variety of applications, e.g., to conveniently pay for
public transportation. However, achieving security and privacy of payment is
challenging due to the extreme resource restrictions of RFID tags. In this paper,
we propose PSP – a secure, RFID-based protocol for privacy-preserving payment
that supports multiple different payees. Similar to traditional electronic cash,
the user of a tag can pay for a service using his tag and so called coins of a
virtual currency. With PSP, tags do not need to store valid coins, but generate
them on the fly. Using Bloom filters, readers can verify the validity of generated
coins offline. PSP guarantees privacy such that neither payees nor an adversary
can reveal the identity of a user or link subsequent payments. PSP is secure
against invention and overspending of coins, and can reveal the identity of users
trying to double spend coins. Still, PSP is lightweight: it requires only a hash
function and few bytes of non-volatile memory on the tag.
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1. Introduction

Radio Frequency Identification (RFID) systems that were originally target-
ing simple object identification are used more and more for sophisticated appli-
cations such as access control and payment. The idea of having several small
and cheap devices wirelessly communicate with a reader is appealing for various
scenarios. The Oyster Card [1] is a prominent example of a large scale deploy-
ment of contactless smartcards, i.e., powerful RFID tags, enabling convenient
payment for public transportation services. In such a scenario, people entering
a metro or a bus just quickly hold their tags close to a reader device in front of

∗Corresponding author. Full address: College for Computer and Information Science,
Northeastern University, 360 Huntington Ave., 202 West Village H, 02115 Boston, USA, Tel:
+1-617-383-4072, Fax: +1-617-373-3768

Email addresses: blass@ccs.neu.edu (Erik-Oliver Blass1,), zrlkur@ch.ibm.com (Anil
Kurmus), molva@eurecom.fr (Refik Molva), strufe@cs.tu-darmstadt.de (Thorsten Strufe)

1Work done while at EURECOM.

Preprint submitted to Elsevier October 22, 2012



a gate to issue the payment for the transport fee. Similar payment and access
control schemes are already in widespread use for many other kinds of appli-
cations, like payments in a cafeteria, for vending machines or for road toll. In
general, a payee is represented by one or more readers, and “payers” pay for
“services” through their prepaid card or tag by means of some non-interactive,
wireless payment protocol.

Such payment scenarios, however, raise challenging security and privacy is-
sues. First, an intruder or a malicious user trying to issue bogus payments
or impersonate legitimate users should be prevented from access to services.
Also, malicious payees impersonating legitimate payees should not be able to
fake payments for services they do not provide. The second concern is privacy
that is often emphasized both as a user requirement and as a regulatory matter.
Privacy requires that neither external adversaries nor payees are able to identify
or trace users by exploiting the payment system.

To make matters worse, future applications will, for increased convenience,
require usage of one single tag to pay multiple different payees. For example, one
should be able to pay metro services and toll roads and the cafeteria with one
single tag, instead of using multiple tags. Finally, readers, as in a metro station
or in a bus, are often embedded devices that are not permanently connected to
a backend system such as a server. So readers must be able to verify offline and
within a very short period of time, whether a payment is valid or not.

This payment scenario typically calls for an offline, anonymous electronic
payment solution such as the ones targeted by myriads of ecash, payment and
micro-payment schemes extensively covered in the literature – e.g., see first
seminal papers by [2–4], for micropayment see [5, 6], or see [7] for an overview.
Yet, due to the inherent requirement for blind signatures, existing solutions for
anonymous, offline payment are based on complex asymmetric cryptography.
Customizing these solutions for RFID systems therefore implies prohibitive com-
plexity that exceeds the capacity of existing RFID devices. Due to the strong
cost and size constraints, RFID tags neither feature complex asymmetric cryp-
tographic primitives nor large amounts of memory, cf., [8–13]. Typically, hash
functions are the only cryptographic primitive feasible on the hardware of RFID
tags. Alternative approaches based on time-memory trade-offs, i.e., storing a
number of precomputed values on the tag like MilliCent [14] or MicroMint [15],
are not suitable either, since tags also have very little non-volatile memory. In
conclusion, traditional ecash solutions cannot be applied to RFID.

Related work: The Oyster Card has several drawbacks: its security has
been broken [16], it uses a physically large, contactless smartcard being more
expensive than today’s tiny RFID EPC Gen 2 tags [17], and bank and metro
are combined, so there cannot be any privacy for users. Finally, Oyster Card
does not support multiple different payees, but only the metro. Similar to
Oyster Card, large and expensive contactless smartcards are also used in, e.g.,
Visa’s payWave [18] program or MasterCard’s PayPass [19]. Besides their high
price, problems with these smartcards’ security and privacy have already been
reported, cf., [20].

Other RFID payment systems depend on using an additional mobile phone
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to confirm payment or read out a barcode on the phone’s display [21–24] – which
is inconvenient.

To the best of our knowledge, there is no privacy-preserving, secure, and
offline payment solution distinguishing between bank and multiple different
payees solely using RFID tags for payment.

This paper presents PSP, a protocol for secure, private, and offline payment
suited for RFID tags. Following notions of ecash, the tag serves as a rechargeable
electronic wallet, it is responsible for repeated “storage” of pre-paid coins of a
virtual currency, and manages all communication with the reader. The main
idea of PSP is that the tag does not physically store coins, but it receives some
information from the bank to generate a limited number of valid coins on the
fly. Using Bloom filters, readers can verify the validity of coins received from
tags.

PSP meets the security and privacy requirements raised by RFID based
payment as follows:

• An adversary cannot arbitrarily invent new coins, i.e., introduce coins into
the system for which he did not legitimately pay for through the bank.
Along the same lines, malicious payees cannot eavesdrop or steal coins
originally targeted to pay other payees.

• Overspending coins is impossible: an adversary cannot replay coins from
his own payments or stolen coins from other people’s payments he eaves-
dropped.

• Readers are offline and only synchronize periodically, e.g., once a day, with
the bank. Yet, an adversary still cannot double spend coins: he cannot pay
with the same coin twice at different readers. If he does, his identity will
be revealed at the bank. Revealing the identity of adversaries trying to
double spend money has O(1) complexity for the bank, but is impossible
for readers.

• Users of RFID tags remain anonymous and are untraceable: the true iden-
tity of a user is hidden to all adversaries and payees. Also, neither payees
nor any adversary can trace tags or their users on subsequent payments,
i.e., link different payments to the same tag.

• PSP is lightweight: besides evaluating a hash function, tags require only
a few bytes of non-volatile memory.

• PSP copes with resource-limited readers. Readers are often embedded
devices. Their storage and computational resources are, although orders
of magnitude higher compared to tags, still restricted. Regarding the
number of tags and coins, complexity for verifying a coin is in O(1).

The sequel of the paper is structured as follows: first, an overview of the
main idea behind PSP is given in Section 2; Section 3 presents the adversary
model assumed in this paper; Section 4 introduces the general setup of the
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system, the bank, tags, readers, notion of time etc; Section 5 then presents PSP
in detail: the process of preparing the whole system by the bank, the act of
(re-)charging a tag, and the actual payment protocol; Section 6 discusses why
PSP is secure, i.e., analyzes its security and privacy properties.

2. Overview

PSP supports payment of multiple different payees, e.g., the metro, cafeterias
or toll road systems. Each payee offers a service and is represented by its own
set of RFID readers. For the sake of clarity, most of PSP’s protocol description
will focus on the single payee scenario. Still, PSP supports security and privacy
with multiple different payees, and we will carefully discuss multiple payee issues
when appropriate in the next sections.

Before starting with the precise description of the system setup and all pro-
tocol details in sections 4 and 5, the following paragraphs give an informal
overview of PSP’s basic concepts.

Payment in PSP. The idea of payment with PSP is that each user Alice
carries an RFID tag TAlice. Before Alice gets access to a service, she swipes
TAlice close to a reader associated to this particular service. Reader and TAlice

exchange data, using the PSP protocol. In general, the data exchanged is pay-
ment information – in PSP, this is some kind of “digital coins” of money. PSP
basically achieves reader authentication and the actual payment by means of
interleaving a challenge-response scheme with a commitment scheme.

First, TAlice sends a coin which is a commitment to some value to the reader.
Then, TAlice performs a challenge-response protocol for reader authentication.
As tags and readers do not share keys in PSP, TAlice knows a set of precomputed
challenges and matching response pairs provided by the bank. Once the reader is
successfully authenticated by TAlice, TAlice completes the payment by revealing
the committed value to the reader. Before giving access to a service, the reader
verifies whether the coin received from Alice is valid and whether it has been
spent before. To protect against an adversary trying to eavesdrop and steal a
coin, TAlice sends not only a valid coin during payment, but an additional “fake”
coin. Only readers, but not an adversary, can distinguish valid from fake coins.
Coins are reader dependent, such that a malicious reader (of a malicious payee)
cannot impersonate as another payee’s reader to steal coins.

It is quite important to point out that PSP aims at non-interactive payments.
Here, the user does not have to actively acknowledge a payment. For increased
convenience, the user is not required to push a button or enter a PIN, but just
hold his tag close to the reader to conduct the actual payment.

Charging: Storing Money on Tags. As other ecash (micro-) payment
schemes, PSP provides a prepaid payment service: before any payment, Alice
has to “charge” her tag with digital coins. Therefore, Alice goes to a bank
and gives “real” money to the bank. In return, the bank sends back some
information to the tag which is stored on the tag’s non-volatile memory. Using
this information, the tag can later generate digital coins used for payments.
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Eventually, a tag is “exhausted”, i.e., all the coins Alice has paid for are spent.
Alice can go to the bank and (re-)charge her tag or discard the old tag and
buy a new one. During charging, the bank also gives the tag a set of so called
verification bits that will be used during above mentioned challenge-response
authentication.

Reader Preparation. The bank also prepares each payee’s readers. During
an initial phase, before any charging of tags, before any payment, and only once,
the bank prepares a Bloom filter for each reader of each payee. This Bloom filter
represents all possible valid coins in the system. Consequently, later during
payment, a reader can therewith verify, whether a coin received from a tag is
valid or not.

Maintenance. Readers are considered to generally be offline during nor-
mal, daily operation. Only periodically, e.g., once a day during the night, the
readers of all payees conduct maintenance: readers connect to the bank, send
in the coins collected over the day, and receive from the bank information to
update their Bloom filters. The bank also verifies coins sent by readers. If a
coin sent by a reader is successfully verified, the respective payee is reimbursed
with “real” money.

Time. To cope with new tags entering the payment system over time, old
ones being discarded, and new coins, time is divided into “epochs” with PSP.
The typical duration of an epoch is in the order of several days or one month.
At the beginning of a new epoch, the bank carries out the abovementioned
initial preparation of readers once. Also, the bank and all readers discard all
information, i.e., the Bloom filters, predating the last epoch. As a result, Alice
might not be able to pay with coins which are older than 2 epochs anymore –
coins eventually expire.

PSP’s Security and Privacy Properties. The information received from
the bank allows Alice’s tag to only generate as many coins as she has paid for.
Any other generated coin is, with high probability, rejected by readers. If Alice
tries to spend one valid coin, i.e., a coin she really paid for, twice at the same
reader, this is immediately detected and rejected by this reader. If Alice tries to
spend a valid coin on the same day at two different readers, this is detected by
the bank during maintenance, and the bank identifies Alice as the origin of such
malicious behavior. An adversary looking for a “free ride” cannot impersonate
a reader and thereby steal coins from tags, as he would have to authenticate
himself to a tag. Readers of malicious payees cannot impersonate as readers of
legitimate payees and steal coins blaming others. Finally, no one can establish
any correlation among coins even when they originate from the same tag. So,
neither an eavesdropping adversary nor payees or even the bank can track Alice.

Bloom Filters. The following is a quick introduction to Bloom filters lim-
ited to what is necessary for understanding this paper. For more information,
refer to [25]. We use Bloom filters, as they are a space efficient data struc-
ture representing a set of elements. The following operations are supported.
1.) addBF(x, y) adds a new element y to Bloom filter x. 2.) isElement(x, y)
outputs true, if y has been added to Bloom filter x, false otherwise. Here,
isElement(x, y) is prone to false positives: it might output true with probabil-
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ity P , even if y has not been added to x before. False negatives are impossible.
For convenience, isNotElement(x, y) outputs the opposite of isElement(x, y).
Finally, 3.) GenerateEmptyBloomFilter(s) returns a new empty Bloom filter of
a specified size s.

3. Adversary Model

Within the domain of payment scenarios, we identify two categories of ad-
versaries that differ in their capabilities and goals: free riders and malicious
payees.

3.1. Free Riders
The goal of a free rider adversary is to get access to a service for free. More

precisely, a free rider tries to get a service with coins he did not pay for or to
spend the same coin more than once. A typical example for a free rider is a
malicious tag holder. We assume an active adversary with total control over
communication: the free rider can not only listen to wireless communication
between tags and readers, but also initiate communication with arbitrary tags
and readers. The free rider might act like a man-in-the-middle and rush, i.e., he
can intercept messages, modify or even selectively block them before forwarding
them to their destination. The free rider also sees the “outcome” of a payment,
i.e., if a payee provides his service after tag and reader have exchanged some
messages. A free rider might also compromise tags. He can read-out all the
memory of the tag and tamper with the data and logic stored on a tag. As a
result, the tag’s behavior might not comply with the protocol any more. If he
compromises a tag, there is, of course, no way to prevent him from spending all
coins of the tag the original owner paid for. In conclusion, the above free rider
adversary is equivalent to the one of [26] or the STRONG adversary of [27].

3.2. Malicious Payees
The second kind of adversary PSP protects against are malicious payees.

In addition to full control over the network and some compromised tags like
free riders, a malicious payee adversary also controls his readers. These readers
can therefore be seen as “compromised”, thus they might also not behave in a
protocol compliant manner. All information stored on these readers is known
to the malicious payee. As mentioned above, PSP is non-interactive, so it is
not requiring any kind of acknowledgment from Alice to carry out the payment.
All non-interactive payment scenarios are obviously prone to malicious payees
requesting more coins from TAlice than Alice “expects” them to do. There is
no way to protect against this kind of fraudulent behavior by malicious payees,
as non-interactiveness is required for increased user convenience and user ac-
ceptance. We conjecture that a malicious payee adversary will not try to cheat
Alice in the above way: if Alice loses coins, she might, e.g., check a monthly
bill provided by the bank similar to credit card bills. If Alice notices bogus
payments on her bill with a certain reader/payee, she will become suspicious
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and draw attention to this payee. In this paper, to not draw any unwanted
attention, the goal of a malicious payee is to use his readers to steal money from
Alice by impersonating as other payees’ readers, i.e., to receive payments in the
name of others or to get more money from the bank than he received coins from
legitimate users during legitimate payments.

Note that, without special physical assumptions such as time or distance
bounding, Mafia Fraud [28] is generally possible in ecash systems. Preventing
Mafia Fraud is out of scope of this paper, but PSP can be extended, e.g., using
RFID time bounding protocols, cf., [29, 30].

Free riders and malicious payees are computationally, timewise, and memory-
wise bounded to typical “security margins”. For example, they cannot invert a
hash function.

3.3. Privacy
Typically, users do not want anyone, be it other users, adversaries or even

a curious bank, to know anything about payments carried out. More precisely,
Alice’s true identity should not be revealed during payment, she must remain
anonymous. Alice also does not want to be traced by anyone. Subsequent
payments done either with the same payee or with different payees should look
as if coming from different users to protect against profiling her by linking
payments.

In conclusion, users require privacy, unlinkability, and untraceability as for-
mally defined by, e.g., [26] or [31]. We will come back to these definitions in
Section 6.3. Note that with Oyster Card, there is no privacy of users [32].

Bank. Preserving users’ privacy against a curious bank turns out to be
difficult in an RFID-based setup. In classical ecash protocols, users’ privacy
is protected by blind signature techniques, cf., [2]. However, blind signature
techniques involve computationally complex asymmetric cryptography, which
is prohibitive on tiny, cheap RFID tags. To still preserve privacy against a
curious bank, we therefore assume a threefold bank setup in PSP, where the
bank itself is split into three entities, bank0 (“payer accounting office”), bank1
(“payee accounting office”), and bank2 (“escrow office”). It is assumed that there
is no cooperation between these entities. Bank0, bank1, and bank2 do obviously
not cooperate with free riders or malicious payees.

The complex setup with three bank entities is required, as no entity must
be able to link payments to a certain payer and payee, but payees still get
reimbursed with real money for valid coins. This results in a property similar
to ecash’s blind signatures. More details will follow in the next sections. Note
that, in the case of a single bank entity, it is still possible to achieve privacy of
users at least against readers (see [33]).

For completeness sake, we assume all communication between readers and
bank as trusted using traditional security mechanisms. Also, the communication
between Alice and the bank, e.g., for charging her tag, uses a secure channel.
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4. System Assumptions and Setup

Due to their limited capacity, the most complex operation tags can afford
is a cryptographic hash function [8–10, 12, 13, 26, 34, 35]. For convenience,
we assume communication between tags and readers to be error-free. As wire-
less communication is typically prone to static noise, we assume appropriate
mechanisms, like CRC and ARQ techniques, to be implemented on lower com-
munication layers. As mentioned in Section 3, the adversary might, however,
selectively drop messages. In this case, underlying ARQ mechanisms will give
a timeout to PSP.

In sequel to this section, we introduce PSP’s components.

4.1. Bank
Besides users and payees, the third stakeholder in a payment system is the

bank. If Alice goes to the bank and pays real money, the bank will in return
“charge” Alice’s tag with coins. Also, the bank will prepare Bloom filters, so
enabling readers can verify coin validity. During maintenance, payees’ readers
will send their coins received during payments to the bank to get real money
back. Also during maintenance, the bank will be able to identify adversaries
double spending coins.

As discussed in the previous section, the stakeholder bank is split into three
entities, a “payer accounting office” (bank0), “payee accounting office” (bank1),
and “escrow office” (bank2). While bank1 will deal with readers and payments
during maintenance to reimburse coins, it does not have direct access to the
name of tag holders. Along these lines, bank0 has access to tag holders’ names,
but it does not have access to payments. The “escrow office”/bank2 has access to
neither readers, nor holders’ names. As bank0, bank1, and bank2 are segregated
entities, “the bank” cannot reveal which tag performed which payment. This
ensures privacy of tags and tag holders even in the absence of expensive blind
signatures.

4.2. Money
PSP uses a virtual currency called coins. Although we use, by a stretch of

language, the notion of storing coins on a tag, tags do not directly “store” coins
in their non-volatile memory: instead, bank0 will provide tags with information
that allows them to create valid coins in real-time.

Alice can charge a tag with money, i.e., trade in real money ($, £, €, . . .)
into coins. Alice can buy and (re-)charge her tag only at bank0.

For convenience, we make the following simplifications regarding handling
coins, charging, and payment in PSP:

1.) The exchange rate is $1 for one coin. All services Alice can buy will
always cost integer multiples of coins, there is no notion of fractions of a coin.

2.) A tag can only be (re-)charged, if all its coins have been spent. Also,
a tag can only be charged with γmax coins at a time. Every time Alice wants
to charge her tag with γmax coins, bank0 provides Alice’s tag with a so called
“ID”. This ID will be used to generate coins during payments.
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As PSP with the above simplifications for better understanding is rather
limited, we will extend it and add more flexibility in Section 5.5.

4.3. Per Epoch System Parameters
In PSP, time is divided into consecutive epochs ε1, . . . , ε256. For example,

one epoch is one month. Using statistics available over the last recent years with
traditional payments, the following averages or expectation values are known.
On average and per epoch εi:

There are τ different tags T1, . . . , Tτ in the system.
On average, a tag will spend a total of γavg coins with all payees during one

epoch.
Unused coins will expire after 2 epochs, e.g., after two months, but can later

be reimbursed, cf., Section 6.2.
In total, there are η = τ ·γavg coins in the system. Consequently, the number

of IDs to generate η coins on average is #ID = η
γmax

.

4.4. Payees and Readers
The system consists of a total of ρ readers. Each reader has a unique Reader

ID, RID = 1, . . . , ρ. For simplicity, we assume exactly one reader per, so there
is no meaningful difference between a reader and the payee it represents. Mul-
tiple readers belonging to the same payee can be supported by giving different
physical readers the same RID.

Readers are not assumed to be permanently online connected to the bank
(bank0, bank1 or bank2) and also cannot exchange data with each other. In-
stead, readers are offline most of the time and connect to the bank, more pre-
cisely bank1, using a certain schedule, e.g., once a day during the night. In
conclusion, readers are not synchronized most of the time.

Finally, for cost and reliability reasons, readers are also assumed to be re-
source restricted, embedded devices. We assume their available storage to be
similar to what is available on today’s embedded memory technologies, e.g., ≤ 1
GByte.

4.5. Security Parameters
PSP assumes a cryptographic hash function h that can be executed on a tag.

Output size of h is 128 bit; we use, e.g., a SHA-1 implementation for RFID tags
and truncate the output to 128 bit, cf., [11]. More lightweight hash functions,
such as SQUASH for RFID, cf., [35], may alternatively be used. Truncation to
128 bit helps to reduce storage amount on the tag, as we will see in Section 5.7.

PSP uses optimized Bloom filters [25] to store information about all η valid
coins during one epoch. We now present the major security properties and
parameters required for PSP.

1.) Parameter κ defines the number of different hash functions used for
Bloom filters. As h is a cryptographic hash function, we can, instead of using
κ different hash functions h1, . . . , hκ, simply define hi(x) = h(i, x), 1 ≤ i ≤ κ,
where “,” denotes an unambiguous pairing of inputs.
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2.) Parameter µ defines the storage size of each Bloom filter, i.e., its number
of bits. For given κ and η, it is possible to define the size µ of the Bloom filter
with µ

η = κ
ln 2 such that the probability of any bit in the Bloom filter being set

to 1 is p = 1
2 . As a result, the probability of finding a single false positive in

the Bloom filter is P = 1
2κ . A false positive in our context is the case where

an adversary computes or guesses by chance one single coin which is accidently
accepted by the Bloom filter – as described later in higher detail.

3.) Parameter ω is the number of verification bits used for reader-to-tag
authentication. An adversary is able to impersonate a reader with 2−ω proba-
bility to receive one single valid coin from a valid tag. Note: If an adversary
fails to compute the correct verification bits for one coin from a valid tag, the
tag will send him “fake” payments – as described in the following sections in
higher detail.

5. Protocol Description

Reader 

Bank0 Bank1 

Bank2 

4.4 

Tag 

4.3 4.2 

4.1 2.1 

2.2 

4. Maintenance,  
see Section 5.4 

1. Epoch preparation,  
see Section 5.1 

2. Tag recharge,  
see Section 5.2 

3. Payment,  
see Section 5.3 1.1 

3.1 

Figure 1: Interactions between tag, reader, and the bank

Before going into PSP details, Figure 1 summarizes party interactions during
“epoch preparation”, “tag recharge”, “payment”, and “maintenance” operations.
For each operation, Figure 1 depicts the data flow between parties and the
sequence of interactions. For example, “2.2” denotes the second interaction of
the “tag recharge” operation, and data flows from bank0 to bank2. The following
sections will now give details.

5.1. Preparation of new epoch εi+1

For the first epoch, as well as periodically at the end of each epoch (e.g.,
once a month), bank0 prepares the system for the subsequent epoch εi+1 as
follows.

1.) Bank0 creates a new 128 bit symmetric epoch key Kεi+1
and sends it

to all payees/readers (Note that this does not impose a security problem, see
Section 6). Also, bank0 creates two new, empty hash tables called ∆εi+1 and
Σεi+1 .

2.) The so called IDs are prepared. In epoch εi+1, ∀k : 1 ≤ k ≤ #ID, ID
εi+1

k

can be computed as: ID
εi+1

k = h(KB , k, εi+1), where KB is a 128 bit key only
known to bank0 (but neither bank1 nor bank2).
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3.) Bank0 generates Bloom filters for all readers as shown in Algorithm 1.
All readers discard the information stored on the second-to-last epoch εi−1 (i.e.,
BF

εi−1

RID and spentBF
εi−1

RID), before receiving the filters for the following epoch.
In summary, a valid coin in PSP is a hash commitment to a precoin, and

ALGORITHM 1: Preparing Bloom filters

for RID := 1 to ρ do
BF

εi+1

RID :=GenerateEmptyBloomFilter(µ);
for k := 1 to #ID do

ID
εi+1

k = h(KB , k, εi+1);
for c := 1 to γmax do

precoin := h(1,RID, ID
εi+1

k , c);
coin := h(precoin);
addBF(BF

εi+1

RID , coin);
end

end
spentBF

εi+1

RID := GenerateEmptyBloomFilter(µ);
bank0 −→ Reader RID : {BF

εi+1

RID , spentBF
εi+1

RID };
end

both can be created simply by knowing a valid RID, a valid ID, and a simple
counter c. Value “1” is a publicly known constant, and construction h(1, . . . )
(and h(2, . . . ), h(3, . . . ), . . . used later) only serves to avoid ambiguity of hash
computations. Section 6.1.1 presents a detailed sample implementation of these
constructions.

A valid ID can be generated using key KB , the epoch εi+1, and a counter
k. As KB is only known to bank0, only bank0 can compute valid IDs. The
BF

εi+1

RID Bloom filter is filled with all possible coins that will exist during epoch
εi+1. Based on BF

εi+1

RID, reader RID will be in a position to verify whether coins
are valid. The spentBF

εi+1

RID Bloom filter, while empty at the beginning, will
later store all coins spent during epoch εi+1. It will enable reader RID to check
whether a coin has already been spent, cf., Section 5.3. Note that with one valid
ID, up to γmax valid coins for reader RID can be created.

5.2. (Re-)Charging a Tag
In epoch ε, Alice wants to buy a new tag or “recharge” an old one. Alice’s tag

is TAlice. The idea behind charging TAlice is that bank0 gives IDs to TAlice which
will enable TAlice to later generate valid coins. To that effect, bank0 maintains
a counter ξε to store the information about which IDs have already been sold
to tags. So, 1 ≤ ξε ≤ #ID.

1.) Alice gives bank0 the equivalent amount of money to buy γmax coins.
2.) Bank0 computes the yet unused IDε

ξε = h(KB , ξ
ε, ε) and sends the tuple

(IDε
ξε , ε) to TAlice which stores it in non-volatile memory.
3.) For each coin sold to Alice, bank0 computes so called verification bits

νi, |νi| = ω bit, and sends them to Alice using Algorithm 2. TAlice stores νi. Kε
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is the current epoch key (as described in Section 5.1).
Here, bh(x)c

ω
is a truncated hash value, the first ω bits of output of h(x).

ALGORITHM 2: Computation of verification bits

IDε
ξε := h(KB , ξ

ε, ε);
for i := 1 to γmax do

chall := h(2, IDε
ξε , i); // Challenge

νi := bh(Kε, chall)cω ; // Response
Bank −→ TAlice: {νi} ;

end

As only the readers and the bank know Kε, Alice can later use chall as a
challenge to any reader and verify a reader’s response using the verification bits
νi – therewith providing reader authentication. Together with tuple (IDε

ξε , ε),
TAlice stores a local counter c in its non-volatile memory. c keeps track of how
many coins have already been spent by TAlice. Also, a maximum value max is
stored, representing the maximum number of coins that can be spent with IDε

ξε ,
max = γmax.

4.) The bank adds information to hash tables ∆ε and Σε to protect against
double spending as described in Algorithm 3. Finally, bank0 sends ∆ε to bank2.

ALGORITHM 3: Bank0 prepares against double spending

for RID := 1 to ρ do
for c := 1 to γmax do

prechall := {ξε, ε, c};
trace := {IDε

k, c};
precoin := h(1,RID, trace);
coin := h(precoin);
addHash(∆ε, coin, prechall);
spent := 0;
identity := {name, spent};
addHash(Σε, trace, identity);

end
end
bank0 −→ bank2: {∆ε};
ξε := ξε + 1;

In Algorithm 3, addHash(x, y, z) stores value z in hash table x at key y. In
name, bank0 stores an (unique) identifier of Alice, e.g., her name or her account
number. With name, the bank should be able to identify Alice at a later point
in time. spent is one bit storing the information, whether the user identified by
name has already spent a coin based on prechall at any reader.

So, what basically happens is that bank0 creates the hash table Σε to bind
each coin in the epoch to a different name. This will later allow a reverse lookup
of which coin was spent by which name. More precisely, with ∆ε each coin
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is bound to the information that this coin is generated from, i.e., a prechall
consisting of {ξ, ε, c}. With Σε, this information, represented as hash value
trace, is then bound to the name.

In conclusion, after Algorithm 3, the escrow office (bank2) knows the map-
ping between coins and prechalls, and the payer accounting office (bank1) knows
the mapping between prechalls and names. This will be the basis for periodic
maintenance later in Section 5.4.

5.3. Payment

TAlice 
Reader  

RID 

1. RID  
2. coins, chall, ! 

3. v 

4. precoin or prefake 

Figure 2: Message flow in PSP

For the sake of simplicity, the price for any service offered by any payee is
fixed at 1 coin. This section describes the payment protocol (Figure 2) through
which TAlice pays 1 coin to the payee running reader RID. Let the current epoch
be ε, the current ID used by TAlice to generate coins be IDε

ξ, the verification bits
be νi.

Payment Overview: Reader RID initiates the protocol by sending RID to
tag TAlice. TAlice responds by sending two coins, a valid coin and a fake one.
Sending these coins serves both the purpose of confusing a potential adversary
and achieving TAlice’s commitment for the payment. TAlice also sends a challenge
chall and the epoch ε of the valid coin. Upon receipt of message 2 and successful
verification of the valid coin, the reader replies by sending verification bits v.
Finally, if v matches chall, the reader is authenticated and TAlice reveals the
preimage of the committed valid coin, otherwise the authentication of the reader
has failed, and TAlice replies with the preimage of the committed fake coin.

Payment Details: Algorithm 4 presents a more detailed sketch of the pay-
ment protocol. In 1©, reader RID periodically broadcasts its ID. Using IDε

ξε ,
c, and RID, TAlice computes a challenge chall, a valid coin out of precoin, and
a (pseudo-)random invalid fake coin out of prefake. In 2©, TAlice sends coin,
fake, chall, and ε to the reader. Here, the order of sending coin and fake swaps
depending on a random bit b: flip(b, y, z) is {y, z} iff b = 0, and {z, y} otherwise.
So, TAlice randomly chooses the order of sending valid coin and fake coin to mis-
lead the adversary. The adversary cannot distinguish between the valid and the
fake coin. Sending coin and fake serves as a commitment, where the preimages
will be revealed later. The reader verifies, whether one of the two received coins,
coin1, coin2, is valid, i.e., is in its Bloom filter BFεRID. Thereby, the reader iden-
tifies which coin is the valid coin (called vcoin thereafter), see 3©. Also, the
reader verifies whether this coin has not been spent on any reader before the
last scheduled maintenance (check spentBFεRID), and whether the coin has not
been spent on this reader since the last maintenance. For the latter, the reader
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ALGORITHM 4: Payment procedure

TAlice Reader RID

// Receive: RID TAlice ←− RID : {RID} 1©
chall := h(2, IDε

ξε , c);
precoin := h(1,RID, IDε

ξε , c);
coin := h(precoin);
prefake := h(3, IDε

ξε , c);
fake := h(prefake);
b := bh(4, IDε

ξε , c)c1 ;
coins := flip(b, {coin, fake});
c := c+ 1;

2© TAlice −→ RID : {coins, chall, ε} // Receive: {coin1, coin2}
if isElement(BFεRID, coin1) then 3©
vcoin := coin1;

elseif isElement(BFεRID, coin2) then
vcoin := coin2;

else sleep; exit;
if isNotElement(spentBFεRID, vcoin) and
isNotElement(spentListεRID, vcoin) then
4©

addList(spentListεRID, vcoin);
v := bh(Kε, chall)cω ;

// Receive: v TAlice ←− RID : {v}
// Authenticate reader 5©
if v = νc then // Finish payment

TAlice −→ RID : {precoin} //received is precoin or prefake

else TAlice −→ RID : {prefake} if h(received) = vcoin 6© then open-
Barrier;
else

addList(reimburseListεRID, vcoin);
sleep; exit;

end
end
else sleep; exit;

maintains a simple list, spentListεRID. If vcoin passes the above tests, see 4©,
vcoin is added to spentListεRID, the reader computes the truncated hash-value
of chall using Kε, and sends the result back to TAlice. TAlice verifies received
verification bits to authenticate the reader. In 5©, if the verification bits match,
TAlice sends precoin, the preimage of the coin to the reader. Otherwise, TAlice

assumes malicious behavior and sends prefake, the preimage of fake. This
exchange of precoin or prefake after the two coins achieves the commitment
of TAlice without allowing an adversary (impersonating a legitimate reader) to
determine if the coin it receives is a fake. In 6©, the reader verifies if the hash of
the received preimage (precoin or prefake) matches coin. In case the hash does
not match, vcoin is included in another simple list, reimburseListεRID. Also,
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if the protocol gets somehow interrupted, and the reader does not receive the
last message, the reader will include vcoin in reimburseListεRID. Although the
requested services will not be provided by the payee in the last two cases, and
the coin is “spent”, coins on reimburseListεRID can be later reimbursed to Alice
by the bank as described in Section 6.2. In general, if the reader suspects any
misbehavior or cheating during PSP, it sleeps (sleep) for a reasonable amount
of time, e.g., 10 seconds, and exits protocol execution (exit). Also, an alarm
might go off, security personnel arrives etc.

5.4. Periodic Maintenance
Each reader connects to the “payee accounting office”, i.e., bank1. Readers

might connect simultaneously, they may select to connect at arbitrary times or
using some kind of load balancing mechanism. The current epoch is εi.

1.) All readers send their {spentList
εi−1

RID , spentListεiRID, reimburseList
εi−1

RID ,
reimburseListεiRID}, with 1 ≤ RID ≤ ρ, to bank1. All readers remove all entries
from their spentLists and reimburseLists.

2.) Jointly, bank0, bank1, and bank2 check the lists, whether the included
entries, coins of the form h(h(1,RID, IDε

ξε , c)), have already been spent. Algo-
rithm 5 shows this maintenance operation for bank0, bank1, and bank2 sepa-
rately.

Bank1 starts by forwarding a spentList entry to bank2. Upon receipt, bank2
uses ∆ε to do a reverse lookup to get prechall = {ξε, ε, c}, i.e., the information
necessary to compute the trace (corresponding to an ID and counter pair). As
the trace can only be computed by bank0, bank2 sends prechall to bank0.

Upon receipt, bank0 computes the trace and can therewith check whether a
coin based on this trace has been spent already – using Σε. If such a coin has
already been spent, bank0 can take appropriate countermeasures against that
particular double spending user with identity name. Finally, bank0 computes
all possible coins based on trace for each reader and stores {RID, coin} pairs in
a set C. This set C is sent to bank1.

Upon receipt of C, bank1 first checks whether the original entry is on a
reimburseList of reader RID and not on any other reader’s spentList. If so,
bank1 will ask reimburse this coin. Details have been omitted from Algorithm 5,
as this again requires sending entry to bank2 and bank2 sending prechall to
bank0. Bank0 can then reimburse name. Finally, bank1 checks whether the
original entry was indeed paid for reader RID. If so, bank1 sends real money
to reader RID, otherwise it reports this reader as malicious. Finally, bank1
forwards coins in C to each individual reader. Each reader adds such a coin to
its spentBF Bloom filters: addBF(spentBFεRID, coin

′). So in conclusion, after
maintenance, all readers are synchronized: each reader has all coins spent so far
stored in its spentBF filter.

Therewith, also the segregation of bank0, bank1, and bank2 becomes clear:
bank2 removes the RID information of the coin, so neither bank0 nor bank1 can
link a specific payment of a payer to a payee.
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ALGORITHM 5: Periodic maintenance
//bank1
for ε ∈ {εi−1, εi} do

for RID := 1 to ρ do
foreach entry ∈ spentListεRID do

bank1→ bank2 : {entry};
//upon receipt of set C of
//pairs {RID′, coin′} from bank0
if entry ∈ reimburseListεRID and entry 6∈ spentList

{εi−1,εi}
6=RID then

reimburseCoin(entry);
end
if {RID, entry} ∈ C then sendMoney(RID);
else reportReader(RID);
foreach {RID′, coin′} ∈ C do

bank1−→ Reader RID′: {coin′};
end

end
end

end

//bank2,
//upon receipt of entry from bank1
{ξε, ε, c} := getValue(∆ε, entry); // prechall
bank2→ bank0 : {ξε, ε, c};

//bank0
//upon receipt of {ξε, ε, c} from bank2
trace := {h(KB , ξ

ε, ε), c};
{name, spent} := getValue(Σε, trace);
if spent=1 then reportIdentity(name);
else

modifyHashValue(Σε, trace, {name, 1});
C := ∅;
for j := 1 to ρ do

precoin := h(1, j, trace);
coin := h(precoin);
C := C ∪ {RID, coin};

end
bank0→ bank1 : {C};

end

With getValue(x, y), hash table x is queried with key y, and the correspond-
ing value is returned. ModifyHashValue(x, y, z) sets the value belonging to key
y in hash table x to z.
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5.5. Adding Flexibility
In this section, we extend PSP with respect to more flexibility of charging

tags and payment as well as distributing the bank0/1/2’s workload to “proxies”.
Money. Instead of charging tags only with γmax coins all at once, tags can

be charged with sets of coins called packs π. Possible packs are, for example,
π ∈ {10, 20, 50} coins. So, Alice can buy packs of 10 coins, 20 coins, 50 coins, as
well as combinations thereof. For every pack of coins that Alice buys at bank0,
bank0 will handout one ID to Alice. Still, a tag can never be charged with
more than a total of γmax coins on a tag simultaneously. Also, Alice cannot
buy more than, say, up to 3 packs per charge. If a tag stores coins from more
than one pack, it will always completely deplete one pack for payment before
using coins generated out of another pack. (Re-)Charging is only allowed, as
soon as the total number of coins on the tag is less or equal than 9 coins. (This
could be mitigated by forcing bank0 to “buy back” the remaining 9 coins, i.e.,
reimbursing Alice using the technique of Section 6.2.) If a tag is recharged, it
will first deplete the remaining old (≤ 9) coins before using the new ones. In
conclusion, simultaneously, a tag has up to γmax coins stored in a total of ≤ 4
packs.

Again utilizing statistics, it is known on average how many packs πi ∈
{10, 20, 50} of coins will be bought by users (including a safety margin) dur-
ing one epoch. The expected number of packs of size 10, πi = 10, is η10, η20 for
packs πi = 20, and η50 for πi = 50. In conclusion, 10 ·η10 +20 ·η20 +50 ·η50 = η.

Now, IDs can be computed as: 1 ≤ i ≤ 3, πi ∈ {10, 20, 50}, ∀k : 1 ≤
k ≤ ηπi , IDπi,ε

k = h(KB , i, k, ε). Note that prechall now has to include i, i.e.,
prechall := {ξε, ε, c, i}. Bank0 maintains 3 counters (ξε10, ξ

ε
20, ξ

ε
50) to store the

information about which IDs have already been sold to tags. So, 1 ≤ ξε10 ≤ η10,
1 ≤ ξε20 ≤ η20, 1 ≤ ξε50 ≤ η50. During charging, Alice gives the equivalent
amount of money to buy i ≤ 3 packs of coins, πi ∈ {10, 20, 50}. In return,
Alice’s tag TAlice receives and stores i tuples consisting of IDπi,ε

ξεπi
, counter ci := 1,

maxi := πi, and verification bits νi,j , 1 ≤ j ≤ πi.
If a payee’s service costs a total of α coins instead of 1 coin, reader RID

broadcasts α together with RID. As soon as TAlice receives this broadcast, it
executes the payment protocol of Algorithm 4 α times.

Proxies. To decrease the workload of bank0/1/2, we introduce proxies.
Readers are not directly, i.e., physically, connected to bank1, but multiple read-
ers are grouped together and physically connected to one of bank1’s proxy de-
vices, more powerful computers. For example, readers of metro stations in close
physical distance are physically connected to one proxy, multiple readers at
one toll station connect to one proxy in the evening. A proxy is connected
physically to bank1 and will carry out all communication between bank1 and
readers. Readers, even the ones connected to the same proxy, are not assumed
to be permanently connected to their proxies. This would be impossible in many
situations, e.g., for readers in public buses. Readers cannot exchange data with
each other and are offline most of the time. Readers connect to their proxies
once a day for maintenance. Proxies could collect all readers’ spentLists and
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reimburseLists and relay them to bank1. Proxies do not need to be perma-
nently connected to bank1, but only once a day. As with bank0, bank1, and
bank2, we assume the proxies, but not the readers, are trusted based on the
features of some tamper-proof hardware. During maintenance, bank1 does not
compute and send spent coins to all readers, but only sends trace := {IDε

ξε , c},
as in Algorithm 5, to all proxies. Proxies then compute and send coins for all
their attached readers, coin := h(h(1,RID, IDε

ξε , c)). For analytical purposes,
we subsequently consider σ proxies in the system.

5.6. Real World Parameters
To get an idea about its general feasiblity, we evaluate PSP using “real world”

parameters from an ecash-like scheme currently in use: the Oyster Card. Due
to the lack of availability of real world figures for a multi-payee payment system,
we have to assume system parameters similar to the single payee Oyster Card.
We claim this to be a fair assumption, as the number of payees does not have
any impact on neither tags’ or readers’ computational effort, nor on the storage
requirements. As PSP is a prepaid scheme, only the total number of coins (γmax)
that can be spent in between two charging operations influences PSP’s storage
costs. We will discuss multi-payee complexity implications for bank0, bank1,
and bank2, though.

Between 2003 and 2007, 107 Oyster Cards have been issued [36] from which
τ = 5 ·106 are in use at the same time [32] (some Oyster Cards are not recharge-
able and dropped after use). In 2007, the total revenue of public transport with
buses and metro in London was 2.420 billion GBP [37]. If all transport would
have been paid with Oyster Cards (still traditional methods of payment, such as
cash, are used), then η ≈ 108 for each epoch of a month. Adopting the Oyster
Card setting, we assume γmax = 80.

In London, there are 270 metro stations and 6,800 buses [38, 39]. We assume
that there are on average 50 readers per metro station and one reader per bus.
As a total, we assume ρ = 20, 000 readers. By assuming σ = 20 proxies in the
system, each proxy is on average associated to 1,000 readers.

We choose κ = 22, resulting in 2−22 probability of a single false positive.
With ω = 1, the adversary can impersonate a reader with 50%, but as discussed
in Section 6, this is acceptable in the overall scenario.

Finally, |name| = 32 bit should be sufficient to uniquely identify a single
account or user of the payment system.

5.7. Space Analysis
Based on the more flexible extension of PSP and the real world parameters,

we can do the following evaluation:
Tag. TAlice stores 4 IDs, 4 ci, 4 εi, 4 maxi to be able to generate coins.

|ID| = 128 bit, |maxi| = |ci| = 6 bit, |εi| = 8 bit. This sums up to 592 bit. Also,
TAlice stores (γmax · ω) verification bits ν, i.e., 80 · 1 = 80 bit. Hence, each tag
needs to store 672 bit = 84 byte in its non-volatile memory. This is feasible, e.g.,
with Alien Technology’s prominent Higgs-3 RFID-tag [17], featuring 800 bit of

18



non-volatile storage. Compared to the Oyster Card, featuring 1 KByte (=8192
bit) storage [40], this is much less and thus leads to cheaper tags in terms of
production costs.

Generally for tags, computational complexity is important. However, com-
putational complexity is low with PSP: for payment, the tag has to do only
hash evaluations, simple arithmetic, and to wirelessly send 3 · 128 + 8 = 392 bit
to the reader. Based on related work [8–10, 12, 13, 26], we consider that these
operations are feasible on tags.

Reader. A standard Bloom filter with false-positive probability P and η

elements of a set to represent requires µ =
log2 ( 1

P )·η
ln 2 bit of storage [25]. So

with η = 108, each reader needs µ ≈ 378 MByte of storage for the BF Bloom
filter and the same for the spentBF Bloom filter. As BF and spentBF are
required for the current and second-to-last epoch, this would amount to a total
of 4 ·378 ≈ 1.5 GByte per reader. However, standard Bloom filters are not space
optimal. Optimizations of Bloom filters can achieve lower storage requirements,
such as log2 ( 1

P ) bit per element represented in the filter. For example, [41]
suggest to build the Bloom filter with a single hash function instead of κ � 1
hash functions. In that optimized version, the hash outputs h1(x) of all coins
are Golomb encoded and partitioned into blocks. The isElement function that
looks for coin is implemented by selectively decoding one block and looking
for the hash output h1(coin). The data structure of [41] maintains exactly the
same properties as a standard Bloom filter, i.e., false-positive probability P , but
requires only log2 ( 1

P ) bit storage per element. In our case, this optimization
would results in ≈ 262 MByte total storage for each BF filter. Similar to
Counting Bloom Filters, [41] allows furthermore for deleting coins out of the
data structure, superseding the spentBF Bloom filters on readers. The latter
helps in avoiding false positives while checking whether a coin has been spent.
Algorithm 4 can therefore be changed such that a reader accepts a coin if it is in
its BF Bloom filter and at the same time not on its current spentList. Instead
of 4 · 378 ≈ 1.5 GByte, this would keep storage close to a total of 2 · 262 = 524
MByte for both epochs. Finally, per day, each reader needs on average to
store 108

30·20,000 ≈ 170 coins, i.e., ≈ 3 KByte on both spentLists for the two
epochs. Readers at frequently used metro stations will require more memory
for spentLists, but this will still be in the order of magnitude of KBytes per
day. Also, a small amount of memory is required for the two reimburseLists.
In conclusion, the total amount of memory is considerably less than 1 GByte
which should be feasible even on restricted reader hardware.

Computational complexity for the reader is also low. The isElement function
required for validating a coin is cheap: it consists of performing an efficient, low
complexity (O(1)) Golomb-decoding of a fixed length block and searching for
h1(coin) therein [41].

Bank. The bank, i.e., bank0, bank1, and bank2, needs to store ∆ and Σ
for the current and last epoch. In ∆, for all 108 coins and all 20, 000 readers a
prechall has to be stored. With |prechall| = |ξ|+|ε|+|c|+|i|, |i| = log2 3 ≈ 2 bit,
|c| = log2 50 ≈ 6 bit, |ε = 8 bit, and ξ = log2

108

10 ≈ 24 bit (worst case: all packs
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bought are 10 coin packs), |prechall| = 40 bit worst case. So in conclusion, the
two ∆ for the two epochs require a total of 2 · 20, 000 · 108 · 40 bit ≈ 18 TByte.
For hash table Σ, there are a total of η = 108 different trace = {IDε

ξε , c} keys,
and Σ stores for each key name (|name| = 32 bit) and spent (|spent| = 1 bit).
For the two epochs, this requires 2 · 108 · 33 bit ≈ 787 MByte storage. While
the total resulting ≈ 18 TByte for the two epochs is certainly a huge amount of
storage, this is still affordable for a bank: using Amazon’s S3 pricing [42], we
can roughly estimate storage and access costs per month. Storing on average
9 TByte per month, transferring on average 9 TByte in and out, respectively, as
well as η = 108 read and write requests, respectively, sums up to ≈ 4, 000 US$
per month. Compared to the 2.420 billion GBP≈ 3.9 billion US$ of total revenue
per year [37] for this single payee, we claim this cost to be acceptable. Note
that outsourcing data to Amazon introduces new security and privacy problems
which we cannot address. The above computation is only to get an idea of and
to justify the storage costs.

Assuming multiple-payees instead of only one, linearly influences the stor-
age requirement for the bank. For example, supporting twice as many coins due
to twice as much total revenue implies twice as much storage – but probably
less than twice as much storage and access costs. In any way, we conjecture
that linear complexity and scalability with respect to in storage costs will be
acceptable for the bank. Note that the tag’s storage requirements do not change
with respect to the number of payees.

Computational complexity for the bank is low, too: preparation of a new
epoch has to be done only once a month. The workload consisting of generating
hash outputs for all coins and their Golomb encoding can be distributed among
the σ = 20 proxy devices.

6. Security and Privacy Analysis

The challenge of having secure and private payment with RFID tags is due to
the lack of asymmetric cryptography and blind signatures. Authentication and
encryption based on symmetric keys shared by tags and readers are not suitable
either, since a globally shared key would allow the adversary to jeopardize the
whole system through the compromise of a single tag. Sharing a different key per
tag would affect privacy. As a result, PSP’s mechanism of reader authentication
uses precomputed challenge-response pairs. Another challenge is due to the lack
of storage space on a tag, requiring generation of coins on the fly. To detect
generation of invalid coins, PSP uses Bloom filters. Finally, offline readers
complicate detection of double spending. As with classical ecash protocols,
PSP utilizes periodic maintenance operations and identification of users in case
of double spending.

6.1. Protection against fraudulent payment
After giving a brief summary about PSP’s main security concept, we formally

show that, for a free rider, the best attack to invent a new coin is to exploit
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the Bloom filter’s false positive rate. For a malicious payee, inventing new coins
is as difficult as breaking HMAC. Also, we argue why any adversary cannot or
will not successfully complete reader/payee impersonation, replay of coin, and
double spending attacks.

The basic idea behind PSP’s two staged payment procedure is that a valid
coin without an according precoin is worthless for the adversary. A simpler
version of the protocol solely based on the exchange of coin would allow the
adversary to intercept message 2 of Figure 2 and deny its delivery to the reader.
The adversary would then have successfully stolen one coin he could later use
for his own payment. Consequently, TAlice will only send precoin in message 4
after it authenticated the reader in message 3. If the adversary denies delivery
of message 4, he might get a valid coin, precoin pair, but he still cannot use
it, as the reader has already added coin on its spentList after message 2. Also,
the adversary cannot use this coin with another reader, as coins are reader
dependent by using RID.

6.1.1. Inventing coins
With h being a cryptographic hash function, no adversary can “invent”

coins. More precisely, it is impossible for an adversary to compute a new,
valid {precoin, coin := h(precoin)} pair that he can use to pay a reader RID.
Here, “new” means that precoin/coin has not yet been used at RID and is
therewith based on an unused c value.

For ease of understanding and sake of clarity, operator “,” as in any hash
evaluation h(a, b, c, . . .) on multiple inputs (a, b, c, . . . ) has been denoted as just
some unambiguous pairing of inputs, cf., Section 4.5. Now, by proposing an
implementation for the “,” pairing and rewriting the hash evaluations, we show
that PSP becomes a special case of HMAC and its security against inventing of
coins provable.

An HMAC using key k on messages m of variable length and based on an
iterated hash function h is defined as HMACk(m) := h(k⊕opad||h(k⊕ipad||m)),
with || being concatenation of inputs, and ⊕ is XOR. See details on message
padding, ipad, and opad in [43].

Given h and a secret key k being indistinguishable from random data for an
adversary, HMACk(m) has been proven to hold the following two properties [44,
45].

1. The adversary can choose q messages m1, . . . ,mq, and query an oracle
(“oracle”) with them to get q HMACs back, i.e., HMACk(mi). Still, it is
impossible for the adversary to find another pair (m,HMACk(m)), where
m 6= mi, 1 ≤ i ≤ q. This directly implies that the adversary cannot
compute k.

2. HMACk(m) is a pseudorandom function.

Now for PSP, we re-define the notation used in the algorithms above, thereby
providing a sample implementation for the “,” pairing of inputs.

(Pseudo-)Random secret key k is defined as k := IDε
ξε , only known to TAlice

(and bank0). We define precoin := HMACk(1||RID||c), chall := HMACk(2||c),
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prefake := HMACk(3||c), with {1, 2, 3, 4} publicly known constants, and b :=
bHMACk(4||c)c

1
. As c is a small value between 1 and γmax, an adversary can

easily guess it. So, we also assume c to be known. Note that RID, {1, 2, 3, 4},
and c have a fixed length. Finally, the reader’s response v is defined as v :=
bHMACKε(chall)cω .

The proof that PSP is as secure against inventing coins as HMAC’s security
now becomes straightforward:

Theorem 1. Using the above data observed during q PSP payments, no adver-
sary can compute a new valid precoin that is based on a valid (RID, ID, c, ε)
tuple, where precoin has not yet been used for a payment at RID in epoch ε.

Proof (Proof (Sketch)). If an adversary APSP can compute a new valid
precoin to pay at a reader RID in epoch ε, another adversary AH, with a set of
(mi,HMACk(mi)) pairs, would be able to compute a new pair (m,HMACk(m))
violating HMAC property 1. That is, if APSP outputs a new valid precoin′

after observing q payments, AH outputs a new (m′,HMACk(m′)) pair.
We construct AH using APSP as a subroutine in a straightforward man-

ner, cf., Algorithm 6. (Note that for sake of simplicity, we omitted the usual
probability computations of non-negligible adversarial advantages in this proof
sketch.)

ALGORITHM 6: Adversary AH

Choose Kε;
for i:=1 to q do

Choose {RIDi, ci, εi};
AH → APSP : {RIDi, ci, εi};

AH → oracle :{(1||RIDi||ci), (2||ci), (3||ci), (4||ci)};
oracle→ AH :{HMACk(1||RIDi||ci), HMACk(2||ci),

HMACk(3||ci), HMACk(4||ci);
AH → APSP :{HMACk(1||RIDi||ci), HMACk(2||ci),

HMACk(3||ci), bHMACk(4||ci)c
1
,

bHMACKε(HMACk(2||ci))cω };

end

APSP → AH :{RID′, c′, ε′,
precoin′ = HMACk(1||RID′||c′)};

output {(1||RID′||c′), precoin′};

In Algorithm 6, AH chooses q pairs (RID, c) and asks the oracle to compute
HMACs. This results in q valid PSP payment observations, i.e., precoins, challs,
prefakes, bs, and verification bits as described before. Then these HMACs are
simply forwarded to APSP, emulating q proper PSP payments. Assumed APSP

finally outputs a new valid precoin′ that he can use at reader RID′ in epoch
ε′, then AH outputs a new valid (m′,HMACk(m′)) pair. AH knows that, if
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precoin is valid, he only has to concatenate 1 with (RID′||c′) to construct a new
m′ matching precoin = HMACk(m′).

In conclusion, although any adversary might observe different RIDs during
payments and might even guess c, it is impossible to compute another valid
precoin := HMACk(1||RID||c) as of HMAC property 1.

A rational free rider adversary will therefore focus on exploiting the false-
positive property of readers’ Bloom filters: any invalid coin can be accepted
by a Bloom filter with probability P = 2−κ = 2−22. However, the free rider
has to carry out such an attack online, by being physically close to the reader.
Here, every time the free rider guesses a coin incorrectly, the reader sleeps for
a reasonable amount of time (and possibly raises an alarm) such that this kind
of attack quickly becomes too time consuming for the free rider. We claim that
2−22 probability to get one single coin accepted by a reader is secure enough in
this scenario.

Note that in this case, getting a coin accepted at a reader does not automat-
ically imply that this coin is really a valid coin, based on a (RID, ID, c) tuple,
but it can be a false-positive. If the reader presents such a false-positive during
periodic maintenance, then bank0 can detect that this coin is in fact not a valid
coin – using ∆.

Along these lines, a malicious payee adversary cannot exploit possession
of a Bloom filter: while he can query his own Bloom filter offline with arbitrary
coins, the result of the isElement does not reveal any information whether a coin
is a valid coin or just a false-positive. Knowing false-positives for his own Bloom
filter does not help to get real coins from the bank, neither to get services from
other payees. A malicious payee cannot invent coins to pay at another payee’s
reader.

6.1.2. Reader impersonation
One way to cheat in PSP would be to try stealing money from a (legitimate)

tag. While a free rider adversary will try to impersonate as any legitimate
reader, a malicious payee adversary will try to impersonate as a different payee,
see Section 3.

The free rider initiates communication with TAlice, and guesses the ω veri-
fication bits ν for chall. If his guess is wrong, TAlice sends prefake to him. If he
is right, he receives precoin and has successfully stolen a valid {coin, precoin}
pair. However, he does not know whether he guessed correctly as he cannot dis-
tinguish whether the data he receives is for the valid coin or the fake coin. He
just knows that h(received) matches either coin or fake. The pair he can com-
pute is therefore either {fake, prefake} or {coin, precoin}. If he tries to pay
with this pair, he always succeeds with probability Psteal = 2−ω + (1− 2−ω) ·P ,
triggering an alarm etc. With ω = 1, the adversary can steal successfully with
Psteal ≈ 50%. This probability can be decreased by increasing ω at the cost
of additional storage requirements on the tag. With ω = 1, ω · γmax=10 byte
are required. If the adversary should be able to steal a coin with only 2−10

probability, 100 byte of storage are required, and a probability of 2−32 requires
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320 byte. Generally, security can be adjusted depending on the physical prop-
erties of the tag. Stealing a coin from a tag requires much more effort from the
adversary than just randomly generating coins and sending them to a reader:
the adversary has to be physically close to the tag to send and receive messages.
Recent practical results [46] for such “skimming” attacks state distances up to
30cm between adversary and tag as realistic while using transmission powers
of 4W (four times the transmission power of a GSM phone). This renders an
unnoticed stealing of coins possible in only very crowded areas. Furthermore,
simple countermeasures can make these attacks more difficult: as proposed by
[47], [48], and implemented by tag manufacturer Alien Technologies, a simple,
self-discharging capacitor on the tag can be used as a timeout mechanism. Af-
ter an unsuccessful PSP protocol execution, the tag refuses another protocol
execution until the capacitor is discharged. To steal more than one coin, the
adversary would be required to follow the tag for an extended amount of time.

Finally, we conjecture a 50% probability of stealing one single valid coin to
be reasonable, because the adversary does never know whether each single coin
is a fake or not. We conjecture that triggering an alarm with 50% probability
per coin and the difficulty of mounting such an attack will prevent the adversary
from stealing coins in practice.

On the other hand, a malicious payee adversary can easily impersonate as
another payee’s reader, as he knows Kε, i.e., the current epoch key. However, as
coins are bound to RIDs in PSP, the resulting coin is useless for the malicious
payee. During periodic maintenance, i.e., Algorithm 5, bank1 checks whether
the reader asking for reimbursement is the same as the reader this coin was
intended for.

Finally, a successful Mafia Fraud in PSP would be that a malicious payee
successfully impersonates as another payee’s reader RID to steal a valid coin
from TAlice. The malicious payee might now use this stolen coin to use and pay
for a service provided by RID. On a side note, we again point out that Mafia
Fraud is generally possible in ecash systems, but PSP can be extended, e.g.,
using RFID time or distance bounding protocols, see [29, 30].

6.1.3. Replay of coins
Any adversary eavesdropping payments cannot replay a coin at the same

reader, because the reader stores all spent coins either in its spentList (same
day), or the reader stores spent coins in its spentBF Bloom filter (after main-
tenance, if spentBF is still used – see Section 5.7). In any case, the reader will
reject this coin. If the adversary eavesdropped a payment at a reader, he can-
not replay and pay with this coin at a different reader, because coins are reader
dependent. If a malicious user spends a valid coin, i.e., using an (ID, c) pair, on
one reader today and re-uses this pair with another reader on another day after
maintenance, this reader will reject the coin as it is already on its spentBF.
Only if an adversary spends a valid coin on the same day with two different
readers, readers cannot immediately detect cheating and will accept this coin.
However, during the periodic maintenance at night, bank1 will spot this kind
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of double spending, identify the malicious user using Algorithm 5, and ask for
compensation.

6.2. DoS-Attacks and Reimbursement
PSP is clearly vulnerable against Denial-of-Service attacks: if any adversary

repeatedly initiates communication with TAlice and stops the protocol after the
first message, the tag will increase counter ci until, eventually, it cannot create
new coins anymore. The tag is “exhausted” and refuses to operate until charged
with money again. It is important to point out that the tag must increase ci
every time, because otherwise it will re-send the same coin on two subsequent
protocol runs, therewith making it traceable. Again, we would like to point
out the difficulty to mount such an attack in practice. As mentioned before,
the adversary has to be physically close the tag and, using self-discharging
capacitors, would need to follow the tag for an extended amount of time. This
renders DoS attacks as extremely difficult. One way to furthermore mitigate
DoS attacks is to increase c in Algorithm 4 after reader authentication, but this
results in weaker privacy guarantees and will be discussed in Section 6.3.2.

Also, a free rider adversary is never able to steal money, but only to render all
coins on the tag useless, i.e., a denial-of-service attack against all coins on TAlice.
As TAlice’s coins are not spent, Alice can get reimbursed by the bank: the bank
can verify that Alice’s coins have never been added to spentBF Bloom filters. If
the adversary replays {coin, fake} pairs received from initiating communication
with TAlice to a reader, the reader will then add coin to its spentList, therewith
marking this coin as “spent” in the whole system. To cope with this, each reader
maintains reimburseLists. If a coin is spent, but the protocol is not successfully
finished, the reader adds coin to its reimburseList. This allows the bank to easily
reimburse Alice her money during periodic maintenance, cf., Algorithm 5. So
in conclusion, Alice never loses her money.

As PSP must be non-interactive, a malicious payee might ask for more coins
than Alice expects, but this has already been discussed in Section 3.2.

6.3. Privacy
As in any payment scenario, users demand their privacy. Informally, privacy

subsumes anonymity and unlinkability. In PSP, anonymity denotes that no ad-
versary, neither free riders nor malicious payees, can reveal the true identity
(name) of a tag holder based on all the payments, information, and data the
adversary observes. It must remain unclear which payer paid which payee. Un-
linkability denotes that the adversary cannot link any two observed payments,
so it is not possible to decide whether any two different payments originate
from the same tag or not. Please refer to, e.g., [26] or [27] for formal defini-
tions of privacy, unlinkability etc. Also note that unlinkability is stronger than
untraceability, see [31]. Any protocol that provides unlinkability also provides
untraceability, so we only focus on unlinkability.
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6.3.1. Anonymity
First, note that bank0, bank1, and bank2 are three entities that must not

collude as of Section 4.1. The only single entity knowing the identity of tag
holders is bank0. However, the only information that bank0 receives about
payments is prechall = {ξ, ε, c} provided from bank2. Bank0 does not have any
access to RIDs so cannot associate any tag holder’s identity to a payment made
at a certain payee. Bank0 can only tell that a certain payer actually conducted
some payment. All other entities, i.e., bank1 and bank2 as well as free riders
and malicious payees only see payments and possibly the readers’ RIDs. They
cannot associate a payment at a reader to a certain tag holder, as they do not
know anything about tag holders. In conclusion, PSP provides anonymity. As
mentioned before, the lack of computationally expensive techniques equivalent
to blind signatures implies splitting the bank into three entities as in PSP.
Anonymity protection in case of a single bank entity is left as an open problem.

6.3.2. Unlinkability
Strictly according to the definition of the strong privacy model by [26] or

[27], PSP does not guarantee unlinkability, but provides unlinkability only in
the slightly weaker model by [13].

For example, according to the privacy game defined by [26], the following
adversary breaks unlinkability: in the Learning phase, the adversary calls the
SetKey oracle to compromise (τ − 2) tags, so two tags, T0 and T1, remain
uncompromised. He now initiates communication with T0 a total of γmax times,
but stops protocol execution after receiving T0’s first message each time. Even-
tually, T0 is “exhausted”, cannot produce additional coins, and, for example,
refuses to operate until recharge. Now, in the Challenge phase, the adversary
is presented with one of the two tags. If this tag is replying to his communica-
tion, he knows with 100% probability that it is T1, otherwise it is T0.

However, we claim DoS-attacks like the above exhaustion of coins in the
strong privacy model to be unrealistic: using self-discharging capacitors together
with the required physical proximity will render these attacks difficult in the
real-world.

Free riders and malicious payees. In the absence of such DoS-attacks,
PSP benefits from its relation to HMAC given in Section 6.1.1. Property two
of HMAC directly yields that all the information sent from tags to readers, e.g.,
coins, challs, precoins, looks completely random to any adversary as well as to
all payees in each protocol run. More formally, as only TAlice and bank0 know the
HMAC’s secret key k := IDε

ξε , all subsequent protocol data is indistinguishable
from random data for free riders and malicious payees, so linking is impossible.
In the absence of DoS-attacks, PSP provides unlinkability in the model by [26].

One possibility to cope with DoS-based attacks would be to assume slightly
weaker models of unlinkability, similar to the notions of “backward-security” by
[13] and “narrow-strong-privacy” by [49]. We increase c in Algorithm 4 after a
successful reader authentication – and not before. Therewith, above DoS-based
attacks are rendered infeasible. With the [26] model, tags now would become
linkable, as they will send the same coin and fake on two subsequent, but
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unfinished payments. The adversary can therefore link two payments if he sees
twice the same coin, fake pair. This attack requires that a tag does not have any
successful protocol execution in between the two interactions of the adversary.
As this might be unrealistic in many real world situations, along the lines of
[13] and [49], one successful protocol interaction between two single adversarial
interactions is allowed. As PSP’s payment data looks (pseudo-)random to free
riders and malicious payees, PSP then provides unlinkability according to the
models of [13, 49].

It is worthwile noting that unlinkability is achieved solely within tags of the
same epoch, and not among all tags in the system. The reason for that are the
ε values that are disclosed at each tag communication. If an adversary sees two
successful payments with different ε, e.g., once with εi and once with εi−1, he
can decide that these two payments were from different tags. However, we argue
that the set of tags within an epoch is large enough, as it is about half the total
number (2η = 107) of tags, such that this does not cause significant linkability
issues.

The bank. First, note that bank0, bank1, and bank2 do not have any
temporal link between coins received during maintenance and the payments
conducted, because readers only connect during certain periods. While bank0
and bank2, using ξ as part of prechall, are able to determine that some payer
did some payments, there is no way for them to link any real coins or payments.
Finally, bank1 sees coins, but it cannot distinguish them from random data. In
conclusion, PSP provides unlinkability.

7. Conclusion

Secure, privacy-preserving, offline electronic payments only using tiny RFID
tags is a new and challenging problem. In this paper, we presented PSP, a
solution minimizing computational requirements for the tag, but still offering
protection against overspending and privacy against payees and the bank. Ad-
versaries cannot invent new coins, replay, or steal coins from legitimate users
of the system. Multiple different, untrusted payees, e.g., a metro, a toll road
system or just vending machines, cannot trace or link subsequent transactions
of users to the same tag. Privacy is assured. With PSP, tags are only supposed
to evaluate a hash function and store 84 byte in non-volatile memory. Finally,
readers can be offline most of the time and connect only rarely for synchroniza-
tion.
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