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Abstract

This thesis presents new solutions to non-linear echo cancellation using loud-

speaker pre-processing. A theoretical and experimental analysis of linear echo can-

cellation behaviour in non-linear environments is first introduced and shows that

performance is typically degraded in the presence of non-linearities. This supports

the need for dedicated non-linear solutions.

Two new approaches to non-linear acoustic echo cancellation are proposed. They

involve a common approach to loudspeaker modelling which is based on measure-

ments from a real mobile phone and simulations. Results are used to characterise and

model the loudspeaker which is proven to be the dominant cause of non-linearities.

The loudspeaker model is used in one of two different pre-processing structures both

with the aim of improving acoustic echo cancellation performance in non-linear en-

vironments. The pre-processor is placed either before the linear acoustic echo can-

cellation module or before the loudspeaker in an otherwise conventional approach

to acoustic echo cancellation.

The first arrangement aims to emulate loudspeaker behaviour so that non-

linearities are taken into account by the linear acoustic echo cancellation mod-

ule. Performance remains affected by clipping and subject to increased compu-

tational burden. An improved approach, combining clipping compensation in the

pre-processor and decorrelation filtering in the linear acoustic echo cancellation mod-

ule is subsequently introduced and demonstrates improved convergence and tracking

capability compared to the existing state of the art.

When placed before the loudspeaker the pre-processor aims to linearise the loud-

speaker output in a form of pre-compensation. This approach naturally improves the

performance of otherwise standard approaches to linear acoustic echo cancellation.

Compared to current state-of-the-art solutions, where the pre-processor is static, the

new algorithm can dynamically adapt to the changes in loudspeaker characteristics

over time. However, the pre-processor adaptation can be paused without significant

losses in performance so that re-initialisation of parameters is not required for each

new call.

Finally, we report a comparative analysis of the different non-linear acoustic

echo cancellers which shows that the classical approach using loudspeaker emula-

tion has a good reactivity to echo path changes, however convergence can be slow

in highly non-linear conditions. Hence, by incorporating clipping compensation and

decorrelation filtering, the system is more robust to clipping distortion, has better

convergence and echo reduction performance. When the pre-processor is used to

pre-compensate the loudspeaker, the robustness of linear acoustic echo cancellation

to echo path changes and echo reduction performance are both improved. The anal-

ysis demonstrate that the combination of clipping compensation and decorrelation

filtering represent a good practical solution to non-linear acoustic echo cancellation

for mobile communication systems. The new algorithms are shown to outperform

existing, well-known solutions with real signals.
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Symbols

n : Time indice.

x(n): Far end speech signal.

s(n): Near end speech signal.

d(n): Echo signal.

d̂(n): Estimate of the echo signal.

y(n): Microphone signal.

h(n): Impulse response of the Loudspeaker Enclosure Microphone System (LEMS)

system (target impulse response).

ĥ(n)(n): Impulse response of the Acoustic Echo Cancellation (AEC) filter.

e(n): Estimation error.

n(n): Ambient noise at the microphone.

λ : Eigenvalue.

M : Matrix or vector dimension.

x(n) = [x(n), x(n− 1), ..., x(n−M + 1)]T : Input vector of the filter.

h(n) = [h0(n), h1(n), ..., hM−1(n)]: Filter taps vector.

h
0
(n): Optimal filter in MMSE sense.

hp(n): Sub-filter of a non-linear filter system.

hQ(n): Second order Volterra kernel.

R : Auto-correlation matrix of the input vector.

P : Cross-correlation matrix of the input vector and the reference signal.

Q : Eigenvector matrix. vs : sound velocity.

fs : sampling frequency.
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ADC Analog-to-Digital Converter

AEC Acoustic Echo Cancellation

APA Adaptive Projection Algorithm

AR Auto Regressive

ASPM Adaptive Sub-gradient Projected Method

AIR Aachen Impulse Responses

BLMS Block LMS

CC Clipping Compensation

CD Cepstral Distance

CS Cascaded Structure

CS1 CS 1

CS + CC Cascaded Structure with Clipping Compensation

CS + CC + DF Cascaded Structure with Clipping Compensation and Decorre-

lation Filtering

CS + DF Cascaded Structure with Decorrelation Filtering

DAC Digital-to-Analog Converter

DL Down-Link

DCL Dynamic Compression and Limitation

DCT Discrete Cosine Transform

DF Decorrelation Filtering

DFT Discrete Fourier Transform
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email Electronic mail

EP Echo Path

EPC Echo Path Change

ERLE Echo Return Loss Enhancement

FAPA Fast Adaptive Projection Algorithm

FBLMS Frequency Block LMS

FFT Fast Fourier Transform

FIR Finite Impulse Response

FRLS Fast RLS

FTF Fast Transversal Filter

ICASSP International Conference on Acoustics, Speech, and Signal Processing

ICSP International Conference on Signal Processing

IDFT Inverse Discrete Fourier Transform
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IMC Intel Mobile Communications

IPNLMS Improved PNLMS

ITU International Telecommunication Union

ITU-T ITU Telecommunication Standardization Sector
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LP Loudspeaker Pre-processing

LP1 Loudspeaker Pre-processing 1
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Chapter 1

Introduction

Communications has become very important in our daily life and since the develop-

ment of mobile phones the communications systems market has grown rapidly. Most

recently the demand relates to smart-phones which have the capability to support

mobile communications and Internet applications. These smart-phones provide the

possibility of voice communication via switched-circuits but also applications such

as Voice-over-IP (VoIP). The latter provides low cost options for some long distance

communications.

The growth of business-related sectors implies people from different countries

working together on the same project. This has lead to an increasing demand for

teleconferencing applications. Even if teleconferencing requires the use of image

and speech components the latter is the most important. This shows that even with

the growth of text messaging and email other communication mediums, speech still

remains the most important. The advantage of speech communication is mainly

due to the fact that it is a traditional medium of communication and presents

the additional advantage to provide the mood sentiment and other non-linguistic

information which is difficult to transcribe through text messages.

Figure 1.1 presents statistics data extract from ITU information and commu-

nications technologies (ICT) database. It shows the development of different com-

munications systems from to 2001 to 2011 and the growth of the world population

that have access to the mobile phone network between 2003 and 2010. We observe

on Figure 1.1 (a) the increase in demand for all communication systems, except for

the fixed phone which is more-less constant. We observe that demand for broad-

band fixed phones is increasing and, in particular, that demand for mobile phones

is increasing rapidly. The increase in mobile broadband subscriptions will increase

the use of mobile VoIP. In Figure 1.1 (b) we observe that mobile phone deployment

covers about 90% of the world population as the channel is not dedicated to the

user, which is not the case for fixed phones. This shows the growth of the mobile

market and the interest of the operator to cover more and more people. This also

requires the provision of accessible mobile terminals meaning low cost devices.

All these progresses rely on some improvements in different research domains

which aims to provide a better quality of service. In communications systems such

as mobile the speech quality is very important. The enhancement of speech quality

has lead to the development of many research areas. One of the most important is

that related to this thesis, namely that of acoustic echo cancellation.



2 Chapter 1. Introduction

(a)

(b)

Figure 1.1: ITU statistic on information and communications technologies.

(a) Global ICT developments, (b) Percentage of world population covered of mobile

(Source ITU world Telecommunication/ICT indicators database).
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1.1 Acoustic echo cancellation

Speech quality is important for acceptable communications and a large amount of

the processing capacity of a typical mobile telephone is dedicated to general speech

enhancement. A significant contribution to degradation in speech quality can be

attributed to echo, i.e. when we hear a delayed version of our own voice. In mobile

communications there are two sources of echo: the line echo due to mismatched

impedances and that attributed to the acoustical coupling between the loudspeaker

and the microphone. Even if there are many similarities in the way in which they

are treated, the work described in this thesis relates to the latter, namely Acoustic

Echo Cancellation (AEC).

The requirement for long distance calls with the possibility of full-duplex com-

munication has mainly introduced the problem of acoustic echo. Acoustic echo arises

when the signal of the loudspeaker is coupled to the microphone and sent to the

far-end user who will hear his/her own voice. However, the delay is an important

characteristics of the echo problem. When the delay is small the signal is perceived

by the far-end listener as a reverberation whereas when it exceeds 30 − 50 ms it

is an echo signal and becomes disturbing [Burnett et al. 1988]. Nowadays com-

munications delay is greater than 100 ms, and sometimes up to 700 ms. There

is thus a need to reduce echo in communications and there is accordingly a large

amount of research in the literature which is dedicated to the topic of echo can-

cellation [Hänsler & Schmidt 2004, Vary & Martin 2006]. Switching systems were

originally used to prevent such problems but these systems do not allow full-duplex

communication. The principal solution for full-duplex communication which reduces

acoustic echo is based on the assumption of linearity of some components such as

loudspeakers and microphones.

AEC is based on a system identification approach. It generally uses an adaptive

filter to estimate the echo signal which is then subtracted from the microphone

signal. AEC is a challenging problem which has been investigated first with the

linearity assumption before being investigated in the non-linear domain. Linear

AEC approaches often provide acceptable performance in linear condition, however,

in presence of non-linearity such as loudspeaker distortion or amplifier saturation

their performance degrades. Non-linear AEC is the topic of this thesis and our

goal is to propose new solutions to improve the performance of non-linear AEC

approaches.

1.2 Non-linear acoustic echo cancellation

With the growth of the mobile market the demand for cheaper and small terminals

can lead to increased speech distortion which can be non-linear in nature. Non-

linearity can degrade speech quality by introducing some other components in the

original signal. It also reduces the performance of algorithms which are based on

assumption of linearity. One of the most affected algorithms is the echo canceller.
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Non-linearity sources

One of the factors which increases this non-linearity in mobile communications is the

use of hands-free mode. Hands-free mode entails amplification using a small battery

to provide a loud signal. As the battery is limited in size and power the amplifier is

not always sufficient to reach certain amounts of amplification which lead to clipping

distortion. The loudspeaker also generates some non-linearities. When the loudness

of the signal increases these non-linearities become perceptible and disturbing. Dis-

tortions generated by the amplifier and loudspeaker are the most studied in the lit-

erature, even if they are not the only source of non-linearity. There are also those in-

troduced by the casing vibration, the microphone and the different Analog-to-Digital

Converter (ADC) or Digital-to-Analog Converter (DAC). The casing vibration non-

linearities are less investigated due to the complexity and also the fact that they have

shown to be independent from the original signal [Birkett & Goubran 1995b]. The

converter non-linearities are generally considered as additive noise and are mostly

ignored in non-linear AEC.

Non-linearity effects

In general non-linear distortions affect speech quality during communication. A col-

lateral effect arises when non-linearities disturb algorithms which rely on linearity,

such as linear AEC. Whereas linear AEC has proved to enhance speech quality in

communication systems, the presence of non-linearities degrades linear AEC perfor-

mance. This degradation leads to a more audible echo signal at the far-end, and

thus perturbs communication. To solve this problem a solution proposed is the

use of non-linear echo cancellation. This solution generally relies on linear AEC

approaches but takes into account the non-linearities generated by the devices to

improve performance. Many solutions have been proposed to solve this problem

which are exposed further in this thesis.

The work presented in this thesis is dedicated to the problem of acoustic echo

cancellation in non-linear environments. This work principally focuses on different

strategies to increase linear AEC performance in non-linear environments based on

linear AEC or loudspeaker analysis and pre-processing. Two different approaches

are used here: first an approach based on loudspeaker emulation and the second on

the linearisation of the loudspeaker.

1.3 Context of the thesis

This work was supported by Intel Mobile Communications (IMC) group. IMC is

a leader in the mobile communications field. The work was overseen by the DSP

group of Infineon Technologies at Sophia-Antipolis which become part of IMC in

2011.

The challenge is to provide solutions to the non-linear acoustic echo problem.

Indeed some solutions have already been proposed in this area. They are mainly
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AEC

Linear AEC Non-linear AEC

Time domain Frequency domain Sub-band domain
Loudspeaker

pre-processing

Cascaded

structure

Parallel

structure

analysis of linear AEC
linear AEC behaviour

comparative assessment

path variability

non-linearity compensation
loudspeaker modelling

cascaded AEC

combine power filter and clipping

combine decorrelation filtering
loudspeaker pre-processing

Volterra filter of cascaded model

Figure 1.2: AEC applications and our contributions in the blue boxes

based on the Volterra approach, which is generally complex. Other solutions with

different structures have been proposed, i.e. cascaded structures or non-linear post-

processing which uses the noise suppression approach to non-linear residual echo

suppression.

In this thesis our approach started with an analysis of linear AEC solutions

in non-linear environments to well understand the effects of non-linearity on linear

AEC and mainly focuses on their robustness to non-linearities. We have identified

the non-linear sources in the Loudspeaker Enclosure Microphone System (LEMS)

and propose a model for these non-linearities. Then we propose the use of this

model to the compensation of non-linearity in different approaches. We first use

an improved cascaded approach then a new solution based on on-line loudspeaker

linearisation.

1.4 Contributions

The main contributions of this work are three-fold. They are (i) an investigation of

non-linear distortion and noise effects on linear AEC performance, (ii) two different,

novel approaches to loudspeaker modelling, and (iii) new solutions to non-linear

AEC with loudspeaker non-linearity pre-processing. The three contributions are

described in more detail below.

• Analysis of non-linear distortion and noise effects on linear AEC

performance

Most current approaches to non-linear AEC are based upon, or have their

roots in standard linear algorithms. Initial work aims to highlight the nature

of non-linear artefacts and how they degrade AEC performance. First, the
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contribution relates to a thorough comparative performance analysis of various

linear AEC algorithms in the presence of non-linear distortion. Since the

performance of linear AEC in the presence of acoustic noise has received a

great deal of attention, and thus many diverse noise compensation algorithms

have been developed, the contribution also relates to a comparison of system

behaviour in the face of acoustic noise and non-linear echo. This latter work

aims to determine whether or not approaches to noise compensation have

potential utility in attenuating the effects of non-linear distortion. Second,

the contribution relates to a new theoretical analysis of linear AEC in non-

linear environments. The analysis is based on the derivation of the Wiener

solution under the assumption that the linear and non-linear components are

correlated.

– Comparative performance analysis of linear AEC with non-linear distor-

tion: in general, most approaches to linear AEC assume that the input

signal is independent and identically distributed (i.i.d). This assumption

is unrealistic in the face of non-linear distortion which can be depen-

dent on signal characteristics. The thesis reports a new comparative

assessment of different linear AEC algorithms and their performance in

non-linear environments. Reported are experiments which measure the

difference in Echo Return Loss Enhancement (ERLE) between linear and

non-linear environments, convergence time and system distance (linear

component only). Frequency block-filtering approaches are shown to be

the most disturbed in non-linear environments. An Adaptive Projection

Algorithm (APA) approach is furthermore shown not to perform any bet-

ter than a standard Normalized-LMS (NLMS) algorithm. A comparative

assessment of non-linear echo and acoustic noise effects is also presented

according to the same experimental approach. Results highlight better

robustness to non-linear distortion than to noise and clearly show that

non-linear distortion cannot be considered as additive thus necessitating

specific approaches to AEC in non-linear environments.

– New theoretical analysis of linear AEC in non-linear environments : in

order to better explain behaviours and results observed in the compar-

ative study a new theoretical analysis of non-linear effects is presented.

According to the proposed analysis non-linear echo is divided into cor-

related and uncorrelated components, where correlation relates to the

far-end signal. Using this decomposition we show that non-linear envi-

ronments can be characterised according to a pseudo-variable echo path

which depends on the far-end signal characteristics. The new theoreti-

cal analysis better accounts for observed experimental results than any

existing theory and shows why NLMS algorithms often perform better

than APA algorithms in the presence of non-linear distortion; their use

of less memory affords increased robustness to non-linear distortion. The

analysis furthermore shows that post-processing to attenuate non-linear
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artefacts is likely to be more complex than that for noise since, under

such conditions, the linear AEC filter is not guaranteed to converge to

the linear Wiener solution.

The assessment of linear AEC in non-linear environments was presented

at the International Conference on Acoustics, Speech, and Signal Process-

ing (ICASSP) in 2010 [Mossi et al. 2010a]. The comparison of non-linear and

noise effects was presented at the International Conference on Signal Pro-

cessing (ICSP) also in 2010 [Mossi et al. 2010b]. The same is presented in

a technical report [Mossi et al. 2010c] which extends the work to include the

new theoretical analysis.

• Novel approaches to loudspeaker modelling

The analysis of linear AEC shows that the performance of linear algorithms

can degrade significantly in the presence of non-linear distortion. The sec-

ond contribution thus relates to an analysis of non-linear distortion typically

introduced by system components and their modelling as a precursor to the

design of suitable compensation algorithms. The objective here is to model

non-linearities introduced by loudspeakers, which have been identified as the

main source of non-linearity in the literature and as confirmed in our own

experimental tests.

– Loudspeaker modelling based on harmonic summation: this approach con-

sists in harmonic estimation according to the frequency and the amplitude

of each signal component in the discrete-frequency domain. Harmonic

components arising from normalised test signals are measured and stored

in a two-dimensional matrix according to the base and harmonic frequen-

cies. The matrix thus represents a model of non-linear distortions intro-

duced by the loudspeaker and hence the non-linear distortion stemming

from any discrete-frequency signal component can be estimated based on

the matrix of harmonics. The approach can be used to generate effective

estimates of the loudspeaker output and does not assume a predefined

model of the loudspeaker but relies instead on empirical measurements

of the loudspeaker response to a certain frequency and amplitude. Being

based on simple harmonic estimation however, this approach does not

take into account inter-modulation effects.

Loudspeaker modelling based on polynomial expansion: with this alterna-

tive approach harmonics are generated according to a cosine power ex-

pansion and appropriately attenuated to form the output signal. This

approach is less complex than harmonic summation and takes inter-

modulation effects into account. It is difficult to control, however, since

the loudspeaker model is difficult to properly parameterise in the pres-

ence of inter-modulation. Nevertheless the approach is shown to provide

a reliable estimate of the loudspeaker output and is less complex than

existing approaches based on Volterra models.
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This work was presented at the International Workshop on Acoustic Echo and

Noise Control (IWAENC) in 2010 [Mossi et al. 2010d].

• Loudspeaker non-linearity pre-processing

The third contribution relates to the use of loudspeaker models to implement

non-linearity pre-processing algorithms, and hence to improve AEC perfor-

mance in the presence of non-linear distortions. Due to their lower complexity,

time domain approaches are preferred to frequency domain implementations.

Two new algorithms have been developed.

– Cascaded structure: The first approach is based on an adaptive pre-

processing of the linear AEC input. The pre-processor aims to mimic the

behaviour of the loudspeaker so that the pre-processor output is linear

compared to that of the loudspeaker, thus the linear AEC module will

reliably estimate the echo signal. While parallel implementations are pos-

sible, a cascaded structure is preferred since it requires fewer parameters

to optimise and is more efficient in terms of tracking. Two extensions to

the original approach have also been investigated:

∗ Combined hard-clipping compensation: it was observed that varia-

tions in amplification can affect pre-processing performance and thus

a combined loudspeaker pre-processing and hard-clipping compensa-

tion algorithm was also investigated. Given the added computational

burden, a computationally efficient approach is proposed to reduce

complexity.

∗ Reduced-complexity implementation: this work aims to reduce the

complexity of cascaded structures to loudspeaker pre-processing.

Since pre-processing generally increases signal correlation, the work

also considered the application of decorrelation filtering applied at

the input of the linear AEC. While being based on well-known, exist-

ing algorithms, improved convergence requires efficient control of the

different algorithms such that they function coherently in a cascaded

structure.

– Loudspeaker pre-processing : the second approach involves a combination

of loudspeaker pre-processing (linearisation) and linear AEC. Using suit-

able loudspeaker models, linearisation pre-processing is applied at the

input of the loudspeaker to reduce non-linear distortion at the output.

This approach places no constraints on the use of any particular AEC

algorithm and avoids the introduction of distortion in the error signal

which can occur with alternative approaches to non-linear AEC. The

proposed approach can thus give better near-end speech quality than

existing solutions.

This work was presented at the ICASSP in 2011 and 2012 [Mossi et al. 2011a,

Mossi et al. 2012]. The loudspeaker pre-processing was presented at the
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IEEE Workshop on Applications of Signal Processing to Audio and Acous-

tics (WASPAA) in 2011 [Mossi et al. 2011b].

1.5 Organization

In Chapter 2 we describe the general approach to AEC based on adaptive filtering.

We first introduce the Least Mean Square (LMS) algorithm which forms the basis of

most Minimum Mean Square Error (MMSE) approaches and describe the different

constraints involved in the use of adaptive filtering in AEC applications. They relate

to characteristics of the input speech signal, the Echo Path (EP) and on the possible

presence of noise or near-end speech. We then present several existing solutions to

AEC. The weaknesses of each approach are described along with proposed solutions.

In general they focus on the characteristics of the system such as speech signal

eigenvalues spread or EP sparsity to improve the adaptive filter or processing in

other domain such as frequency or sub-band.

The emphasis in Chapter 3 switches to non-linear environments which are now

typical on account of device miniaturization and imperfections of low-cost devices.

We describe existing solutions to non-linear AEC and include those relating to

non-linear adaptive filtering and non-linear post-processing. The non-linear adap-

tive filtering approach, with which this thesis is concerned, generally extends linear

adaptive filtering solutions to a non-linear LEMS model. Two main structures are

presented: the parallel structure, where the LEMS is globally model by a non-linear

system, and the cascaded structure where the LEMS is assumed to be a cascade

of two different systems. In the cascaded structure two solutions are presented: a

non-linear pre-processor followed by a linear AEC, and the loudspeaker linearisa-

tion approach. Finally we present the non-linear post-processing approach which

uses similar procedure developed in residual echo reduction. We present the solu-

tions proposed in this domain which are mainly based on frequency domain echo

suppression.

Chapter 4 presents an analysis of the effects of non-linearities on the performance

of linear AEC. This analysis is based on two experimental works based on a widely

used non-linear model. In the first part we assess linear AEC in non-linear environ-

ments and then we compare the effects of non-linearities to the effects of noise. In

the second part we present a new mathematical analysis of linear AEC behaviour

in the presence of non-linearities. It is based on the assumption that non-linearities

can be considered as correlated noise (correlated with the far-end signal). Based on

this assumption we derive a Wiener solution of the echo path estimate and show

that the presence of non-linearities degrades estimation of the linear echo path. We

show that, due to the instability of the correlation between the non-linear echo com-

ponent and the far-end speech signal, the estimate echo path effectively fluctuates

around the optimal solution. We then show that the non-linear environment can be

considered as a noise environment with a time variant EP by dividing the non-linear

component into a correlated (far-end) component, which introduces fluctuation and
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time variability, and a non-correlated (far-end) component, which is considered as

noise.

Since our analysis shows that linear AEC performances are degraded in non-

linear environments, we propose in Chapter 5 new approaches to model non-linearity.

We first present an analysis of the distortion introduced by the non-linear compo-

nent using real device measurements. Since the loudspeaker is the main source of

non-linearity, we present an electro-acoustic model of the loudspeaker. Based on a

literature review of loudspeaker modelling and non-linear AEC we then introduce

two new loudspeaker models: a time domain model based on cosine power expansion,

and a frequency domain model based on harmonic estimation.

Chapter 6 reports non-linear adaptive filtering based on Volterra solution, cas-

caded structure and loudspeaker pre-processing where the two later solutions pro-

pose the use of a pre-processor based on the new loudspeaker model. The Volterra

solution is presented here as the most widely used approach in non-linear AEC appli-

cation and forms a baseline for reported experiments. Here we propose an analysis

of the Volterra solution based on our conclusions on the LEMS in Chapter 5. This

means that we assume a non-linear model of the loudspeaker and a linear model

for the rest of the LEMS. We show that the Volterra quadratic kernel of the equiv-

alent LEMS has a memory equal in length to that of the three paths (down-link

path, acoustic channel and up-link path) but that the non-linearity memory does

not change from that of the loudspeaker. This shows that the kernel contains a num-

ber of negligible taps which increase unnecessarily the complexity of the standard

approach.

We propose in the second section a cascaded solution to non-linear AEC based

on the time domain model of the loudspeaker developed in Chapter 5. The loud-

speaker model is used as a pre-processor to emulate non-linearities introduced by

the loudspeaker so that the following AEC is entirely linear. In this section we also

discuss about local minima that affect cascaded structure.

In the third section we propose to improve the cascaded structure into two

directions; an extension of the pre-processor model and the use of a decorrelation

filter. The pre-processor model is extended to global loudspeaker and amplifier non-

linearity compensation by incorporating a clipping compensator in the previous

pre-processor. This allows the system to efficiently model clipping distortion that

may arise in loudspeaker amplifier. We then use a decorrelation filter to reduce

correlation in the speech signal in order to improve the convergence of the linear

AEC.

The model developed in Chapter 5 is also used to linearise the loudspeaker in

section four. This approach combines an on-line loudspeaker pre-processing and a

linear AEC based on NLMS. It avoids introducing distortions in the microphone

signal compared to parallel and cascaded non-linear AEC approaches and permits

the use of conventional linear AEC.

In Chapter 7 we present an assessment of a linear AEC, a parallel structure, a

cascaded structure and an improved cascaded structure. We first present an analysis

based on a synthetized environment results then an analysis based on real recorded
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signals. In the synthetized environment analysis, all the algorithms parameters are

chosen to fit with the model which is already known. A linear AEC, a parallel

structure and a cascaded structure are used for a first assessment. The objective

is mainly to show the behaviour of the different systems and their performance in

terms of echo reduction and robustness to echo path changes. In the next step of the

synthetized analysis, the decorrelation filtering procedure and clipping compensation

combined to the cascaded structure are assessed and compared to the basic cascaded

structure and parallel structure.

The loudspeaker pre-processing is then assessed with the linear AEC. Here the

analysis of the system is based on echo reduction and linearisation performance.

The objectives are to show that, with the loudspeaker pre-processing, a better echo

reduction is achieved by conventional linear AEC and the output of the loudspeaker

can also be efficiently linearised by the pre-processor.

In the second section, a smart-phone is used to record the data signals. The

objective is to assess the tracking performance of the algorithms by changing the

position of the mobile and generate non-linearities by applying a loud signal to

the loudspeaker. These data are then used to assess the algorithms presented in the

synthetized environment except the loudspeaker pre-processing which uses an online

procedure. However, in this assessment as no a priori was made on the loudspeaker

model we additionally analyse the behaviour of the Volterra filter.

Finally in Chapter 8 we present the conclusions and the perspectives. We

explain the different steps of this work and provide some recommendations on the

choice of a non-linear AEC structure regarding the environment characteristics. We

have then make some propositions to improve non-linear acoustic echo cancellation.



Chapter 2

Linear AEC

This chapter presents different approaches developed in linear Acoustic Echo Cancel-

lation (AEC) research field. We first present the general approach to acoustic echo

cancellation in linear environment. We then introduce the Least Mean Square (LMS)

algorithm which serves as basis for many adaptive filters used in AEC. Adaptive

filtering algorithms which are developed to improve the LMS algorithm against the

communication environment constraints are presented for the linear AEC applica-

tions. We decided to present the linear AEC in this work since they still widely use

for AEC application due to stability and complexity reasons and above all many

non-linear AEC approaches rely on algorithms developed for linear systems.

2.1 General approach

In this section we introduce the general approach to AEC. We first explain how the

loudspeaker and the microphone environment (this environment is referred to as

the Loudspeaker Enclosure Microphone System (LEMS)) can be approximated as a

linear, time variant filter. We then introduce linear system identification approach

used in AEC.

2.1.1 Linear modelling approach

In the linear approach the acoustical coupling between the loudspeaker and the

microphone is assumed to constitute many acoustic reflections. The echo signal is

simply the summation over all reflected paths. With this simplified approach we

ignore any non-linearities that may be introduced by the amplifiers, the loudspeaker

and the mobile terminal casing which corresponds to the perfect linear system. This

model is illustrated in Figure 2.1 where the LEMS is assumed to be linear and

represented by a linear system S
e

with an impulse response h(n). Hence, each

reflected path is characterized by its delay τ and its attenuation h(τ). This can be

modelled mathematically as:

d(t) =

∫ ∞

0
h(τ)x(t− τ)dτ (2.1)

where t indicates continuous time. Given that highly delayed paths incur high

attenuation, and thus contribute relatively little in terms of echo, we may obtain a

reasonably accurate model by performing the summation over a small, finite number
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x(n)

d(n)

x(n)

d(n)

S
e

linear
h(n)

Figure 2.1: Linear LEMS model. The summed reflections (left) are modelled by the

system S
e

which has a linear impulse response, h(n), (right) and the echo, d(n), is

equivalently the result of the convolution between the far end signal, x(n), and the

filter, h(n).

of paths. As we work with discrete signals we can also discretize Equation 2.1 and,

supposing only M (hi ≈ 0 for i ≥ M) echo paths, we can write:

d(n) =
M−1∑

i=0

hix(n− i) (2.2)

where i is a path index according to the delay which is a time discrete represen-

tation of τ in Equation 2.1. Hence i = 0 represents the first tap of h and h0 the

respective attenuation. In reality, though, when the speaker moves or a change

arises in the LEMS (e.g. when a door in the room is opened) the coefficients hi
become time varying, so Equation 2.2 can be rewritten as [Hänsler & Schmidt 2004]:

d(n) =
M∑

i=0

hi(n)x(n− i) (2.3)

The LEMS is now modelled as a time varying filter, h(n), so it becomes more

important to have an idea of its characteristics which depend on many aspects of the

environment, e.g. the materials coefficient of absorption. One important character-

istic is the filter impulse response length which depends on the system sampling rate

and the amount of time that the sound persists in the LEMS especially the acous-

tic channel. This is referred to as the reverberation time, which is defined as the
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Figure 2.2: An example of LEMS impulse response. Illustrated are: the initial direct

path delay, the first two dominant reflections and subsequent reverberation over a

period of 0.1 s.

amount of time it takes for a sound to decay by 60 dB [Addington & Schodek 2005].

Figure 2.2 illustrates an example of LEMS impulse response, which can be di-

vided into three parts as illustrated. The first part, where the level is close to zero,

represents the direct-path delay between the loudspeaker and the microphone and is

here in the order of 0.01 s. The second part is the most dominant and is composed of

a high level coefficient that represents the first reflection at approximately 0.01 s and

other smaller components for the second and the third reflections etc. The last part,

with the smallest level, represents the most delayed reflections which are collectively

referred to as reverberation. With a suitable LEMS model, the solution can be well

formulated. This approach consists in identifying the filter impulse response, and is

discussed in the identification section.

2.1.2 System identification

To mitigate the problem of echo, Acoustic Echo Cancellation (AEC) is often used.

There is a wealth of relevant material in the literature and the general approach is

illustrated in Figure 2.3. The AEC problem is viewed as one of system identification.

The goal is to estimate the echo path h(n) via an adaptive filter ĥ(n) in order to

synthesize an estimate of the echo signal, d̂(n). The estimate may then be subtracted
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Figure 2.3: Concept of system identification in linear case

from the transmitted signal y(n) which is the addition of the near-end speech signal

s(n), the echo component d(n), and the noise n(n). In so doing the echo in the

Up-Link (UL) path is suppressed.

In the approach of system identification, the acoustic echo canceller tracks the

time varying LEMS impulse response with the aim of creating a replica of the echo.

In the ideal case the acoustic echo canceller maintains the same filter coefficients as

the LEMS impulse response (if they were to have the same number of taps). Since

the input of the AEC is the same as the output of the loudspeaker, the output

of the acoustic echo canceller will thus be a perfect replica of the echo. Hence by

subtracting the AEC output from y(n), the echo component can be removed. To

track the LEMS impulse response h(n), system identification procedure generally

relies on adaptive filtering approaches.

Adaptive filtering is an extremely important field of signal processing and there is

a wealth of relevant material in the open literature. Figure 2.3 shows the procedure

of the AEC using an adaptive filter. As new data x(n) arrives the adaptive filter

computes the error e(n) between a reference signal d(n) (echo in this case) and the

output of the AEC d̂(n). This error is used to update the filter parameters ĥ(n) ac-

cording to certain criteria. In the next section the basic adaptive filtering algorithm

known as LMS is presented then constraints in AEC application are provided. In

general the echo signal d(n) is corrupted by background noise (n(n)) and near-end

signal (s(n)) but in the following calculations we assume a free noise environment

(n(n) = 0) and echo-only period (s(n) = 0) for simplifications.
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2.2 Least mean square algorithm

The least mean square (LMS) algorithm was proposed by Widrow and Hoff in 1960

[Haykin 2002] and has served as basis for many other adaptive filtering algorithms.

In general it is derived using some approximation on the steepest descent algorithm

which is an iterative method to reach the estimate of the Wiener solution. Here the

steepest descent method is not presented but we give some necessary explanations

necessary of the basis of the LMS algorithm. To derive the LMS algorithm we will

choose an initial estimate ĥ(n) of h (assumed to be time invariant) at a certain time

index n. This initial estimate is generally chosen to be a filter with all the taps equal

to 0 and the initial index is generally 0 but, as the procedure is iterative we use the

time index n. With this initial estimate ĥ(n), the echo estimate d̂(n) is computed

as:

d̂(n) = ĥT (n)x(n) (2.4)

where x(n) = [x(n), x(n− 1), · · · , x(n−N + 1)] is the input signal vector of length

N . An error e(n) is then computed as the difference between the echo signal d(n)

and its estimate d̂(n):

e(n) = d(n)− d̂(n) (2.5)

Equations (2.4) and (2.5) show that the square of the error is a quadratic function

of the filter ĥ(n) and can be written as:

e2(n) = d2(n)− 2 · d(n)ĥT (n)x(n) + ĥT (n)x(n)xT (n)ĥ(n) (2.6)

Figure 2.4 illustrates an example of a two-tap filter h(n), and shows the shape of

the square error as a function of the two tap weights h0 and h1. The objective of the

LMS is that ĥ(n) converges to the optimal filter h
0

which is the filter that gives the

minimum mean square error. Note that the paraboloid and the minimum square er-

ror e2min(n) are time-dependent due to the variation of xT (n)x(n). Here the optimal

or Wiener solution is the filter h0 which, in ideal case, satisfies E{e2(n, h0)} = e2min

(e2min is the minimum square error overall the process) for a signal x(n) whereas the

true filter h is the solution which gives zero error (e(n, h) = 0) whatever x(n). The

difference between h
0

and h arises due to the fact that h is assumed to be a real

filter whereas h
0

is an estimate which generally depends on the excitation signal

x(n). Thus the optimal solution h
0

is the best estimate which may be reached by

ĥ(n) and is in general sufficiently accurate if the characteristics of the signal x(n)

do not change too much.

From Figure 2.4 we observe that the minimum square error e2min(n) is reached

when the derivative of the square error with respect to ĥ(n) is equal to zero. As the

square error is quadratic in ĥ(n) all the derivatives of the square error with respect

to ĥ(n) will point in the increasing direction of the error (under the assumption

that xT (n)x(n) is positive-definite which is generally the case for speech signal) so

that taking the opposite direction will lead towards the optimal filter. Hence the

LMS algorithm consists of updating with each new sample, x(n), the current filter
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Figure 2.4: Illustration of the iterative square error minimization. Example of the

square error shape with a two-tap optimal filter (h
0
= [h01, h

0
2]). The red arrow

points in the direction of the derivative of the square error w.r.t ĥ(n) whereas the

blue one points the opposite direction which leads to the minimum square error

e2min.
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estimate ĥ(n) in the opposite direction of the derivative of the square error e2(n)

w.r.t the filter ĥ(n). This can be formulated mathematically as:

ĥ(n+ 1) = ĥ(n)−
µ

2

∂e2(n)

∂ĥ(n)
(2.7)

where µ is a step-size used to control the adaptation rate which is divided by two for

simplification (see the final Equation 2.9). Equation 2.7 is illustrated in Figure 2.4

in which we observe that the derivative of the square error points in the increasing

direction of the square error (red arrow) and the opposite direction, scaled by µ,

points in the direction of the minimum square error e2min(n) (blue arrow).

We therefore required to compute the derivative of the square error with respect

to the filter ĥ(n) which is given by:

∂e2(n)

∂ĥ(n)
=

2e(n)∂e(n)

∂ĥ(n)
(2.8)

=
2e(n)∂(d(n)− ĥT (n)x(n))

∂ĥ(n)

= 2e(n)
( ∂d(n)

∂ĥ(n)
︸ ︷︷ ︸

=0

−
∂ĥT (n)x(n)

∂ĥ(n)

)

= −2e(n)x(n)

Combining Equations 2.7 and 2.8 we obtain the LMS algorithm given as

in [Haykin 2002]:

ĥ(n+ 1) = ĥ(n) + µe(n)x(n) (2.9)

Equation 2.9 is the basic form of LMS and most of the Minimum Mean Square

Error (MMSE)-based adaptive algorithms are derived from it.

From Figure 2.4 we see that if the step-size µ is too large the next estimate

ĥ(n + 1) may be farther from h
0
. This should be avoided and requires the study

of stability regarding the step-size µ in Equation 2.9. Note that in general when

used in terms of adaptive filtering stability refers to the conditions which permit

the algorithm to converge to the optimal filter. In the same way, if the algorithm

diverges from the optimal point, we refer to instability.

In the LMS algorithm the conditions for convergence relate to the step-size µ.

In Figure 2.4 we observe that, if µ is high the optimal value h
0

can be reached

quickly, but if it is too high ĥ(n + 1) can be far from the optimal point. It is thus

necessary to strike a compromise between fast convergence and stability. Under

the assumption of independent and identically distributed (i.i.d) inputs samples

conditions for stability can be shown to relate to µ [Haykin 2002] such that:

0 < µ < 2 · λmax (2.10)

where λmax is the maximum eigenvalue of the auto-correlation matrix of the input

signal x(n). In fact the LMS algorithm is unlikely to reach the exact optimum
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value and generally fluctuates around it instead. The error due to this fluctuation

is proportional to the step-size µ so that, the bigger µ, the faster the adaptation

but the bigger is the fluctuation error around the optimal solution. For this reason,

adaptive µ values have been investigated in adaptive filtering. The main task is

to find an adaptive µ which, at the beginning of the process is high and satisfies

the stability condition then becomes smaller when ĥ(n) is close to h
0
. This task is

easier in the general study of adaptive filtering but in AEC it is a challenge due to

different constraints that are explained next.

2.3 Adaptive filtering constraints for AEC

Before the various approaches to adaptive filtering are presented in Section 2.4 some

parameters that influence the adaptive filtering in AEC approaches are presented in

this section. The constraints described below are the common guiding mechanisms

involved with adaptive filtering for AEC.

2.3.1 Speech signal characteristics

When applied to speech signals adaptive filtering introduces two prob-

lems that are well described in the AEC literature [Hänsler & Schmidt 2004,

Vary & Martin 2006]: the non-stationarity and eigenvalue spread of the speech sig-

nal. The non-stationarity of the speech signal arises from the fact that to generate

the different phonemes the vocal track is time variant. This variation of the vocal

track leads to a variation in the speech signal spectra. The speech signal can be

approximated as the output of a time varying process to noise or impulse excitation

input [Vary & Martin 2006] which induces its non-stationarity. Even with the slow

variation of the vocal track, the speech signal may still be considered as short-term

stationary. The non-stationarity has as effect in adaptive filtering to make the es-

timate fluctuate around a mean so that good tracking behaviour is required. In

fact, under stationary condition, the term xT (n)x(n) will iteratively approximate

E{xT (n)x(n)}, which is time independent, but under non-stationary conditions it

will be time dependent. According to Equation 2.6 this will cause the minimum

square error e2min(n) to fluctuate around a mean point so that no stable optimum

can be reached. It has been shown that in these situations the LMS algorithm in-

troduces an additional amount of error to the minimum reachable error obtained in

the stationary environment [Widrow 1966].

The vocal track filter also introduces a correlation in the speech signal which

reduces the convergence. The speech signal spectrum shows higher energy in lower

frequencies and very low energy in higher frequencies [Hänsler & Schmidt 2004,

Vary & Martin 2006] meaning that the speech signal auto-correlation has spread

eigenvalues. It has been shown that the convergence rate is related to the ratio

of the maximum and minimum eigenvalue [Haykin 2002] and the more spread the

eigenvalues are the slower the adaptation. This is shown in Figure 2.4 where we

observe that ĥ1(n) converges faster to h01 than ĥ0(n) does to h00. This is explained
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by the fact that the projection of the vector
−−−−→
∆h(n) in Figure 2.4 onto the h1(n)

axis is greater in magnitude than that on h0(n). If in one step the component of
−−−−→
∆h(n) on h1 is too big it may rise above h01. The step may be small, however,

for ĥ0 to reach its optimal position h00. This shows that, in this case, the stabil-

ity condition is more dependent on h1 (which in this case corresponds to the λmax

in Equation 2.10) than h0. Hence whereas ĥ1 can quickly converge to its optimal

position h01, ĥ0 is constrained to slowly converge to its optimal position to avoid

overshooting h01. If the eigenvalue is not spread, as in the case for white noise, at

each step the projection of
−−−−→
∆h(n) onto the different axes will be similar so that all

the parameters will converge toward their optimal positions at the same rate and

none of them will impose a dominant influence. This is one of the reasons which

motivate frequency domain adaptive filtering where each frequency bin of the filter

ĥ(n) can be parametrized independently from the others.

The speech signal is not the only factor which affects the LMS algorithm. To

take full advantage of adaptive filtering it is necessary to appreciate the effect of

echo path changes and the presence of noise and near-end speech which can be well

handled with efficient parametrization.

2.3.2 Acoustic echo path variability

One problem inherent to AEC is the time variability of the Echo Path (EP). In

fact the EP is dependent of the environment characteristics, e.g. room size. This

environment is generally not static in mobile communication or teleconferencing

due to speaker movement or changes in the environment such as opened doors or

windows. A difficult situation arises when the position of the loudspeaker relative to

the microphone changes (generally does not arise as the relative position between the

loudspeaker and the microphone is fixed). This will introduce delay changes meaning

that the position of the direct path also changes. As the direct path corresponds in

general to the most significant filter tap of h(n) the adaptive filter will be perturbed

and takes longer to re-converge. The effects of Echo Path Change (EPC) are also

relative to the sampling frequency of the Digital Signal Processor (DSP). If the

relative distance between the microphone and the loudspeaker changes by δd cm then

the delay of the direct path will change by a number of samples equal to Nd = δd fs
vs

where fs is the sampling frequency and vs is the sound velocity. With a sampling

frequency of 8 kHz and sound velocity of 341 m/s, a relative distance δd = 4.2

cm will result in a delay change of one sample [Breining et al. 1999]. This further

complicates the tracking problem of the acoustic path to those problems already

introduced by the speech signal characteristics. In [Van de Kerkhof & Kitzen 1992]

it has been shown that with longer filters the LMS based adaptive filter is not able

to track EPC introduced by a moving speaker.

The solutions proposed are in general faster adaptive filters which do not al-

ways solve the tracking problem. In fact the tracking problem introduced by EPC

interacts with that introduced by speech signal non-stationarity. The echo path

variability changes the parameters of the optimal filter h
0
(n), which becomes time
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dependent, whereas the speech non-stationarity affects the estimator (by affect-

ing the position of the minimum square error) which results in a more complex

tracking problem. These effects introduce non-stationarity but to use adaptive fil-

tering approach it is assumed that speech non-stationarity arises slowly so that the

speech signal is considered as short-term stationary whereas EPC are expected to be

smooth so that the difference is easily tracked by the adaptive filter. Abrupt echo

path changes are also assumed to arise less often than for speech characteristics

changes so that a fast adaptive filter may track the EP. Two solutions are used to

solve the EPC problem and are either faster adaptive filters or better approaches

to control the adaptation step. The latter increases the step-size when an EPC is

detected and reduces the step-size when the adaptive filter has converged.

The length of the acoustic path is also critical in AEC as it is necessary to have

enough taps in the adaptive filter to reach a good estimate of the echo. In general

this length depends on the environment of the near-end speaker. The length of the

acoustic path is relative to the reverberation time of the environment. Without

an idea of the specific environment it is better to use a long filter and in general

the acoustic path is between 100 taps to 2000 taps. Overly long filters increase

the computational complexity and convergence time of the AEC, and may pose

instability problems. These two factors are more difficult to manage in mobile

applications where the amount of memory is limited and real-time performance is

required.

2.3.3 Background noise and Double Talk

In general the echo signal used as a reference by the adaptive filter is corrupted by

noise. The presence of noise at low levels is not problematic but at significant levels

the performance of the AEC can be reduced and under such conditions a solution

should be found. The second effect that may be considered as noise for AEC is the

presence of a near-end speech signal. The presence of near-end speech is considered

as high level noise for the AEC and, if no control is applied, it may diverge from its

optimal point. The simultaneous presence of near-end and far-end signals is referred

to as Double Talk (DT). The difficulty with DT is due to the fact that both speech

signals have similar characteristics and lead to significant correlation in short-time

processes between near-end and far-end signals so that the adaptive filter will be

highly perturbed in such periods. Compared to the previous problems (speech signal

and echo path characteristics) these do not in general require the development of

new algorithms but are solved by controlling the AEC. In general it consists of

using an estimate of the background noise to slow down the adaptation in higher

noise. A Double Talk Detector (DTD) can be used to detect the presence of near-

end speech so that adaptation is paused during periods of DT. This poses a real

problem of step-size estimation as it becomes dependent on the noise estimation,

near-end speech detection and EPC detection. For each of these effects a different

decision must be taken. This explains the large amount of papers which focus on the

estimation of the optimal step-size [Hänsler & Schmidt 2004, Vary & Martin 2006].
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2.4 Linear AEC approaches

Many solutions have been proposed to improve the basic AEC approach which is

based on the LMS algorithm. These efforts can be categorized into three general

approaches: optimal parametrization of the LMS algorithm, new adaptive filters to

improve performance and complexity reduction of the AEC.

The first approach aims to maximize the performance of the AEC algorithm

according to the environment. This involves finding the optimal step-size to drive

the algorithm combining DTD, EPC detection and noise level estimation. The

second approach is based on new adaptive algorithms which may provide better

performance compared to the baseline LMS algorithm. The third approach addresses

the problem of complexity which is critical for mobile communications due to limited

computational power and memory with the additional real time process requirement.

Under the constraints of AEC the LMS algorithm is not very efficient. Hence

many solutions have been proposed to improve the convergence rate and complexity.

In general a compromise should be done between the two. Here we present some

popular solutions. Most are well developed in the AEC literature so more details can

be found in [Hänsler & Schmidt 2004, Vary & Martin 2006] especially in AEC appli-

cation and more generally [Haykin 2002, Farhang-Boroujeny 1998, Sayed 2008] for

adaptive filtering. Here a brief description is given and we focus on the advantages

and disadvantages of the different approaches. To avoid the repetition of certain

equations we will use the basic formulation of the adaptive filtering algorithm:

ĥ(n+ 1) = ĥ(n) + ∆h(n) (2.11)

where ∆h(n) is the gradient which generally encapsulates the difference between

one algorithm and another. Referring to Equation 2.9 the gradient ∆h(n) is equal

to µe(n)x(n) for the LMS algorithm.

2.4.1 Normalized-LMS algorithm

The stability of the LMS algorithm depends on µ which is bounded by the max-

imum eigenvalue. Since the input vector is time varying, it is difficult to choose

a single, fixed value of µ that ensures consistent performance. One solution is to

choose a small value of µ such that stability is assured for any input x(n). However,

at the expense of increased stability comes slower convergence, and vice versa. A

solution to the problem is a normalization of the set-size µ that adapts automat-

ically according to the norm of the input vector. This normalization is obtained

by bounding λmax in Equation 2.10 by the trace of the matrix xT (n)x(n) which

corresponds to the norm of the input vector. The new algorithm is referred to as

the Normalized-LMS (NLMS) algorithm and its gradient is given by [Haykin 2002]:

∆h(n) =
µn

‖x(n)‖2 + ξ
× x(n)× e(n), (2.12)
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where ξ is a small value used to avoid dividing by zero. The stability condition is

given by [Haykin 2002]:

0 < µn ≤ 2. (2.13)

The NLMS algorithm is thus equivalent to the LMS algorithm with a normalized

step size. The advantage of the NLMS algorithm is the reduced sensitivity to the

norm of the input vector and thus a general increase in stability and convergence.

Due to its low complexity NLMS is one of the most popular LMS variants.

Even if the NLMS algorithm has better performance than the LMS, it does

not bring a solution to the problem posed by the speech signal and echo path

characteristics. But, due to its stability, it has been used as a basis for many

other solutions. Three directions have been taken to address speech signal and

echo path characteristics; the use of new algorithms such as Adaptive Projection

Algorithm (APA) and Recursive Least Square (RLS), input signal pre-whitening or

decorrelation, and sparse domain adaptive filters. The first category corresponds to

adaptive filtering that is less affected by speech correlation. The second approach is

based on a decorrelation filtering to reduce speech signal correlation before applying

the NLMS algorithm. The third solution assumes that the acoustic path is sparse

and uses a tap dependent step-size to increase the adaptation of the most significant

taps in the acoustic path. These solutions are also implemented in different domains

such as frequency or sub-band. The most widely used algorithm in these different

domains is still the NLMS filter due to stability reason and computational efficiency.

2.4.2 Affine projection algorithm

The Affine Projection Algorithm (APA) is a generalization of the NLMS algorithm.

It is based on a gradient estimate which takes into account the error in the previous

input vector according to the filter. Hence, for each iteration, a vector of new

estimates is computed using previous data convolved with the current filter estimate

which can be written as [Haykin 2002]:

d̂n(n− k) = ĥT (n)x(n− k) for k = 0, 1, ...,K − 1 (2.14)

where the subscript n of d̂n(n−k) indicates that it is an estimate of d(n−k) at time

index n with the filter ĥ(n) and where K is the order of the APA algorithm. This

leads to an error vector given by e(n− k) = d(n− k)− d̂n(n− k). Minimizing the

error vector leads to a more general version of the NLMS algorithm with a gradient

given by:

∆h(n) = µXT (n)
(
X(n)XT (n) + ξIN

)−1
e(n) (2.15)

where the input matrix X(n) is equal to [x(n),x(n− 1), · · · ,x(n−K)] and where

IK is the identity matrix of dimension K × K. As in the NLMS algorithm ξ is a

regularization factor.

Equation 2.15 represents the APA algorithm gradient and X(n)XT (n) + ξIK
serves as in the NLMS for normalization. We see that if K = 1 the APA algorithm

is equivalent to NLMS.
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With these additional constraints APA converges faster than NLMS. The higher

K (order) the faster the convergence, but it has been shown that the more the order

increases, the less significant is the improvement [Breining et al. 1999]. This gain of

performance results in an increase in computational complexity and memory require-

ments. This is due to the matrix inversion with a dimension equal to the order (K)

of the APA and also the computation of K−1 estimates of d̂n(n−k) that requires to

put in memory previous samples of x(n) and d(n). The computation of each estimate

d̂n(n − k) requires a convolution of the filter and the corresponding vector. To re-

duce the complexity of APA, fast versions have been introduced. The Fast Adaptive

Projection Algorithm (FAPA) are based on fast convolution in Fourier domain or

block convolution [Haykin 2002, Tanaka et al. 1999]. These fast versions are subject

to instability, however. Hence, when these fast versions are applied the regulariza-

tion of the APA is difficult and may lead to some instability [Haykin 2002]. Some

solutions have been proposed in [Ding 2000, Chen et al. 2006, Challa et al. 2007]

regarding the normalization of the FAPA. Another FAPA using an approxima-

tion of the present error vector e(n) according to the previous one e(n − 1)

( en(n−k) ≈ (1−µ)en−1((n− 1)− (k− 1)) ) is proposed in [Gay & Tavathia 1995].

This avoids the computation of the convolution between previous inputs and current

filter taps but, at ultimately end, it can also result in instability.

Additionally, the APA has the drawback to introduce more perturbation com-

pared to the NLMS algorithm during EPC periods. In fact, minimizing the previous

error according to the current echo path estimate assumes that h
0

is static. Hence,

if an EPC arises the APA will be perturbed during this period. This is due to

the memory of the system which corresponds to the APA order K. A solution

to reduce this effect is to use a lower order but on the other hand, this will in-

crease the convergence time. Another drawback of the APA that has been shown

in [Yamada et al. 2002] is its inefficiency in noisy environments. To demonstrate

this inefficiency, in [Yamada et al. 2002] APA was formulated using Projection Onto

Convex Set (POCS) theory and they propose an algorithm based on the Adaptive

Sub-gradient Projected Method (ASPM) as a solution. In this solution, instead of

assuming that d(n − k) − d̂n(n − k) should be equal to zero, which is the target

in APA, they take into account the presence of noise to bound the difference as∥
∥
∥d(n− k)− d̂n(n− k)

∥
∥
∥ < ρ where ρ is related to the level of noise.

2.4.3 Recursive least square algorithm

The RLS algorithm is different from those described previously which are based

on the MMSE criteria. The RLS algorithm is derived from the Least Square (LS)

criteria where the cost function is given by:

J(n) =
L∑

l=0

λn−le2(n− l) (2.16)

Here the cost function is given by the weighting of the square of the errors. The

weighting parameter λ ensures that, when λ < 1, the more the error is in the
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past then the less important it is in the cost function. Based on this cost function

the RLS filter can be derived by its minimization and leads to a gradient given

by [Haykin 2002, Hänsler & Schmidt 2004]:

∆h(n) = g(n)e(n|n− 1) (2.17)

where g(n) is the RLS gain factor given by:

g(n) =
λ−1R̂−1

xx (n− 1)x(n)

1 + λ−1xT (n)R̂−1
xx (n− 1)x(n)

(2.18)

with R̂−1
xx (n) computed as:

R̂−1
xx (n) = λ−1R̂−1

xx (n− 1)− λ−1g(n)xT (n)R̂−1
xx (n− 1) (2.19)

and where the error is given by:

e(n|n− 1) = d(n)− ĥT (n− 1)x(n) (2.20)

This is the general approach used for the RLS algorithm even if the basic ap-

proach does not require the iterative computation of R̂−1
xx (n). The recursive estima-

tion of R̂−1
xx (n) is used for complexity reduction.

Regarding the cost function in Equation 2.16, the closer λ is to 1 the more pre-

vious errors are taken into account. RLS therefore uses memory just like APA.

The effect of this memory, which is longer when λ is close to one, helps im-

proving convergence and stability but on the other hand reduces tracking perfor-

mance [Hänsler & Schmidt 2004, Haykin 2002]. If λ is close to 1, during periods

when the speech signal is not consistent the algorithm will not be much perturbed

but during EPC it will require more time to re-converge. This explains the com-

promise between fast convergence, stability and tracking capability when using the

RLS. To solve the tracking problem of RLS a variant has been proposed. Extended

RLS (E-RLS) in [Haykin et al. 1997] takes advantage of the duality between RLS

and Kalman filtering to improve the tracking capability.

Another drawback of this algorithm is the computational complexity.

Hence, Fast RLS (FRLS) has been proposed to reduce complexity, these

solutions are in general based on lattice algorithm and the computation-

ally efficient Fast Transversal Filter (FTF) proposed in [Cioffi & Kailath 1984].

However, the latter solution suffers from instability with fixed-point pro-

cessors. Other solutions have been developed to solve the problem

of instability [Slock & Kailath 1988, Houacine 1991, Benesty & Gansler 2001,

Callender & Cowan 1990, Arezki et al. 2006]. In [Slock & Kailath 1988] after

analysing error propagation in the FTF based RLS, they propose to introduce some

redundancy in the feedback to stabilize the algorithm.
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Figure 2.7: AEC using fixed predictor. The error e(n) is reconstructed with the

inverse filter of the predictor.

2.4.4 Normalized-LMS with decorrelation filtering

It is well known that the vocal track can be modelled using a filter. An Auto-

regressive (AR) model of the vocal track and its adaptive estimation is illus-

trated in Figure 2.5. The filter a(n) models the vocal track and is assumed to

be slowly variable and fluctuates around a mean value. If w(n) is an efficient

estimate of a(n) then the error e(n) will be close to a white signal with less

eigenvalue spread than the original signal x(n). Hence, if e(n) is used as in-

put to the NLMS algorithm it results in faster convergence than with x(n). If

a decorrelation filter is applied only to the far-end signal then the estimate ĥ(n)

will be perturbed and, accordingly the same filter is applied to the far-end sig-

nal as well [Breining et al. 1999, Hänsler & Schmidt 2004]. The two widely used

approaches are illustrated in Figure 2.6 and 2.7. In Figure 2.6 the adaptive decor-

relation filter procedure is used. This decorrelation filtering is generally based on

the Levinson algorithm or with a simple NLMS filter [Frenzel & Hennecke 1992,

Yasukana et al. 1988, Mboup et al. 1992, Mboup et al. 1994]. Figure 2.7 shows the

fixed decorrelation filtering approach. In fact, due to speech non-stationarity, adap-

tive decorrelation filtering provides better performance than fixed filtering as it can

follow the vocal track variations. On the other hand the fixed decorrelator is less

complexity demanding by using the inverse filter w(−1) (w(n) ∗ w(−1)(n) = δ(n)).

The inverse filter is not always easy to estimate but it is shown in [Haykin 2002]

that w is a minimum phase filter so the estimation of w(−1) is entirely feasi-
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ble [Breining et al. 1999]. Another fixed decorrelation system has been proposed

in the subband domain and uses the predictor filter on the near-end signal and the

error signal. This simplifies the system but requires that the inverse filter to be

estimated by the AEC filter. A comparison of complexity and performance of dif-

ferent approaches to decorrelation filtering is proposed in [Rupp 1993]. It has been

shown that better improvement can be obtained with less taps and in general the

maximum order of the decorrelation is about 20 taps [Breining et al. 1999].

2.4.5 Sparse adaptive filtering

Sparse adaptive filter is based on a fast adaptation of the most significant taps

in the acoustic path. In general they are dedicated to electrical echo cancellation

where the condition of sparsity is satisfied [Paleologu et al. 2010], but it has been

shown in [Loganathan et al. 2011] that the first samples of the acoustic path can

be assumed as sparse and might be well estimated using a sparse adaptive filter.

The most well-known sparse adaptive filter is the Proportionate NLMS (PNLMS)

algorithm introduced in [Duttweiler 2000] where the gradient is given by:

∆h(n) = µ
G(n− 1)x(n)e(n)

xT (n)G(n− 1)x(n) + ξ
(2.21)

where G(n− 1) is given as:

G(n− 1) = diag{g0(n− 1), g1(n− 1), · · · , gN−1(n− 1)} (2.22)

and where the diagonal elements gl(n) are given as:

gl(n) =
γl(n)

1
L

∑L−1
l=0 γl(n)

(2.23)

with:

γl = {ρmax[δ, |ĥ0|, |ĥ1|, · · · , |ĥN−1|], |ĥl|} (2.24)

where ρ and δ are some small values that are typically 0.001. ρ is used to avoid

stalling of small taps and δ is used for regularization [Paleologu et al. 2010]. We re-

mark that, if G(n− 1) is equal to the identity matrix, we obtain the gradient of the

NLMS algorithm in Equation 2.21. This solution provides better performance but

has the drawback of being more complex compared to the NLMS algorithm and may

also result in lower performance when the LEMS is not sparse. This leads to the de-

velopment of many other algorithms for sparse system identification, the most pop-

ular of which is the Improved PNLMS (IPNLMS) algorithm [Benesty & Gay 2002]

which may have comparable performance to NLMS even for dispersive systems.

The extension of the PNLMS to the APA has also been proposed as Proportion-

ate APA (PAPA) [Gansler et al. 2000]. The disadvantage of these algorithms is

that they require an a priori on the LEMS, sparsity otherwise they just increase

complexity.
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Figure 2.8: Frequency Block LMS (FBLMS) process.

2.4.6 Frequency domain approaches

The aim in block processing is to reduce the complexity of the LMS algo-

rithm [Hänsler & Schmidt 2004]. Block processing uses a block of B input and out-

put samples per iteration. The filter is updated every B samples and can significantly

reduce the computational complexity. The disadvantage in block processing schemes

is the control of parameters. All parameters are controlled block-by-block instead of

sample-by-sample as with the NLMS algorithm which can be seen as reducing the

time resolution [Hänsler & Schmidt 2004]. This resolution is important when the

AEC algorithm needs to be controlled by a DTD. This is not efficient if the block size

is too large. Block adaptive filtering is in general applied in the frequency domain

to reduce complexity using fast convolution. The frequency domain gradient of an

overlap/save fast convolution is given by [Haykin 2002, Hänsler & Schmidt 2004]:

∆H(n) = µDFT [first N elements of IDFT[P−1(n)X (n)E(n)],01×(B−1)] (2.25)

where the vector X (n) corresponds to DFT (x̃B (n)) with x̃B (n) = [x(n), x(n −

1), · · · , x(n− (M +B)−1)] and E(n) = DFT[e(n), e(n−1), · · · , e(n−B−1)|01×M ].

Note that these Fourier transformations require zero padding to make the frequency

domain multiplication equivalent to time domain convolution, which explains the

presence of 01×(B−1) in Equation 2.25. The first N elements to which the Inverse

Discrete Fourier Transform (IDFT) is applied in Equation 2.25 corresponds to the

elements that are saved when using the overlap and save method. The vector P(n)

is a normalization vector comparable to the NLMS algorithm but here it is applied

per bin and is given by:

P(n) = λP(n− 1) + (1− λ)X (n)XH(n) (2.26)
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Figure 2.9: General filter bank approach

Each bin has its own normalization factor, it may result in better control of the

adaptation rate than in the case of NLMS where the same adaptation step is used

for all taps. The general block of the FBLMS approach is illustrated in Figure 2.8.

In particular it shows the different Fast Fourier Transform (FFT) and Inverse Fast

Fourier Transform (IFFT) routines which are used in the filtering and updating

processes as presented in [Hänsler & Schmidt 2004].

A further complexity reduction is possible using block partition-

ing [Farhang-Boroujeny 1998]. This procedure consists of partitioning the

filter length and applying independent adaptation processes to each partition. If

we suppose that the filter length N is equal to M × L then the convolution:

d̂(k) =
N−1∑

n=0

ĥ(n)x(k − n) (2.27)

can be written as:

d̂(k) =
M∑

m=0

d̂m(k) (2.28)

where d̂m(k) is given by:

d̂m(k) =
L∑

l=0

ĥ(L×m+ l))x(k − (L×m+ l)) (2.29)

Fast convolution in the frequency domain can be applied to compute Equation 2.29

and will reduce the complexity compared to standard FBLMS. This is generally

achieved with a reduction of performance [Farhang-Boroujeny 1998].

The drawback of these techniques is the delay that will be introduced due to the

block-by-block process and the lost of time resolution [Hänsler & Schmidt 2004]. To

solve the resolution problem an efficient solution has been proposed which involves

to a subband domain processing.

2.4.7 Subband domain approaches

Subband processing is another approach to reduce the complexity of a full-band

process and is a mid-way between time domain processing and frequency domain
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processing. The general approach is to split the signal in different bands and then

to apply an adaptive filter in each band as in conventional NLMS. After the process

the output is reconstructed. The subband process itself requires two main blocks:

an analysis filter bank to split signal into different bands, and a synthesis filter bank

to reconstruct the subband signal.

LEMS
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h̄3

Analysis
filter

Analysis
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x(n)

d(n)
d̂0(n) d̂1(n) d̂2(n) d̂3(n)

e(n)

-

-

-

-

h(n)

Figure 2.10: Synthesis-independent subband domain LMS
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Figure 2.11: Synthesis-dependent subband domain LMS

The general subband process is illustrated in Figure 2.9. The analysis filter bank

uses different non-overlapping filters to split the signal into different bands so, at

the output of each filter, the signal is narrow band and is down-sampled. The down-

sampling will reduce the complexity of the process as, in this case, the number of

filter taps are reduced by a factor equal to the down-sampling factor. When the filter

bank is well designed, the bands are symmetric so that this property can also be
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used to reduce the complexity. Another advantage is the possibility to use different

filter lengths in each band relative to the strength of the speech in the subband in

question. Lower bands in which speech energy is higher can therefore have more

taps than higher bands where the level of speech is less significant.

In the case of adaptive filtering there are two possibilities to make the subband

AEC. Figure 2.10 illustrates the most widely used. The input signal x(n) and

the echo d(n) pass through an analysis filter and the error e(n) is computed in the

subband domain then reconstructed with a synthesis filter to obtain the time domain

error. This structure is generally referred to as “synthesis-independent”, because the

adaptation process is independent to the synthesis process.

The second structure is given in Figure 2.11. In this scheme the input signal

x(n) passes through an analysis filter then the estimated signal d̂(n) computed

in subband domain is reconstructed and subtracted from the echo signal d(n) in

the time domain to obtain the error. The error passes through an analysis filter

for the updating process of the subband filters. This structure is referred to as

“synthesis-dependent” since we need the synthesis process to update the filter. The

structure is comparable to the FBLMS structure illustrated in Figure 2.8 where the

Discrete Fourier Transform (DFT) and IDFT are replaced respectively by analysis

and synthesis filter banks.

The synthesis-independent structure requires a stop-band which is difficult to re-

alize in practice and some distortions may appear in the error signal. The synthesis-

dependent structure requires to use in parallel analysis and synthesis filtering which

may have generally different delays that increase the complexity of the structure

and stability [Farhang-Boroujeny 1998].

A less complex subband system is obtained with critical sampling, meaning that

the down-sampling factor is equal to the number of subbands. The increased overlap

between subbands may however reduce performance. The drawback of subband

approaches is the delay introduced due to the use of analysis and synthesis filter

banks. The subband system may also require some anti-causal taps in the estimated

filter [Hänsler & Schmidt 2004]. The requirement of the anti-causal taps is due to

the fact that the down-sampling process is not a time shift invariant process.





Chapter 3

Non-linear AEC

The focus in this chapter switches to non-linear Acoustic Echo Cancellation (AEC).

Non-linear structures are presented without detailing the filtering process as they are

mainly derived from linear AEC solutions. The non-linear echo cancellation arises

with the problem of non-linearities introduced by the use of low-cost or miniatur-

ized devices which exhibit some non-linearities. Here we present an overview of

non-linear AEC approaches that have been proposed in the literature. The problem

of non-linear echo has been tackled in two main directions: adaptive systems and

post-filtering. The first is based on a non-linear model of the Loudspeaker Enclosure

Microphone System (LEMS) and uses in general standard adaptive filtering algo-

rithms to provide an estimate of the non-linear echo. This system can be viewed as

an extension of linear AEC to a non-linear model of the LEMS. The second approach

uses residual echo suppression techniques to estimate the useful near-end signal and

is generally based on approaches similar to speech enhancement in noise. As with

noise compensation this approach also relies on some a priori on the non-linearity

model to estimate the non-linear component to be suppressed.

3.1 General approach

In this section we present the general approach of non-linear AEC system. We focus

here on the different structures that can be derived according to the assumptions

on the LEMS. As in the linear case the section is divided into two parts, a first part

which focuses on the modelling of the LEMS and a second one which presents the

identification approaches.

3.1.1 Non-linear modelling approaches

The non-linear model is more complex and requires knowledge of the characteristics

of the non-linearities. In AEC and many other applications, even when a system

is supposed to be non-linear it is nevertheless assumed to have a linear component.

In general in AEC the linear component is assumed to dominate the non-linear

component and is used as a priori in some identification processes. Figure 3.1

illustrates the LEMS in three mains blocks. This representation uses a simplification

of the LEMS where, instead of a component decomposition, each block represents a

subsystem comprising a group of components. Hence we have the down-link path,

S1 , which involves all components between the AEC input and the loudspeaker.

The acoustic channel, S2 , represents the coupling between the loudspeaker and the
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Figure 3.1: Non-linear LEMS model. Here the systems S1 , S2 and S3 , correspond

respectively to the down-link path, the acoustical channel and the up-link path. The

LEMS is non-linear if at least one sub-system is non-linear.

microphone. The up-link path, S3 , involves all components between the microphone

and the AEC reference point.

Hence the non-linear model differs from the linear model as soon as one of the

blocks presents a non-linear characteristic. The block itself is considered as non-

linear when a component in the model is not well defined as linear. The entire

LEMS is then considered as non-linear and must be modelled according to the non-

linearities that arise in the system.

Depending on the sub-system which introduces the non-linearities, different

structures may be used to efficiently model the LEMS. The LEMS of Figure 3.1 may

be differently modelled according to the position of the non-linear sub-system. The

most widely used structures are illustrated in Figure 3.2. In this case S1 is assumed

to be non-linear and the rest of the system is assumed to be linear. This structure

can be seen as the concatenation of a non-linear system and a linear system, since

the concatenation of two linear systems is linear. Depending on the type of the

non-linear model of S1 , the model can also be assumed to be globally non-linear by

merging the non-linear system S1 and the linear system S
e

2,3
to obtain S

e

1,2,3
. Nev-

ertheless, even when the global approach is used, we still need to define the blocks

that are sources of non-linearity. A priori knowledge on the non-linearity sources

helps to design a robust algorithm. Figure 3.2 (b) and (c) present two different
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Figure 3.2: Example of non-linear LEMS. The down-link (S1) is assumed to be a

source of non-linearity whereas the others are assumed to be linear (S2 and S3).

f(x;h) represents a non-linear function parameterised by h and h2,h3 are linear

impulse responses of system S2 and S3 respectively. In this example the impulse

response of S2,3, h2,3 is equivalent to the convolution of h2 with h3.
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fc(x)
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c

−c
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Figure 3.3: Example of non-linear function that are used to model clipping non-

linearity. (a) represents a hard clipping model and (b) a smooth clipping model

which can be represented by different types of functions.

structures to model the LEMS, the choice between these structures is important for

the robustness of the system but a decision of efficiency cannot be made until the

characteristics of the different system are well defined.

A well investigated non-linear model is the clipping (saturation) model which

assumes that component above certain signal level or amplitude introduces some

distortions. This is well known for amplifier which become saturated at significant

signal level. The clipping model itself can be written in different ways, a simplified

model is when one assumes that the limit is reached at a fixed point, which is called

hard clipping as illustrated in Figure 3.3 (a). The more complex version is given in

Figure 3.3 (b) where the amplification factor changes smoothly before the clipping
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Figure 3.4: Concept of system identification in non-linear case, Here it is assumed

that at least one of the functions f1(x;h1),f2(x;h2),f3(x;h3) is non-linear and h
p,k

is not necessarily equivalent to hp ∗ hk
. Only one of the dashed structure is used as

acoustic echo canceller.

level is reached. Due to different possible ways to model the non-linear LEMS details

for a specific model are not provided and will be investigated latter in the core of

the dissertation for the Volterra and clipping non-linearity models. After modelling

of the LEMS the AEC algorithm uses an identification procedure to estimate the

optimal model parameters.

3.1.2 System identification

In the non-linear case a similar approach as the linear case is generally adopted.

According to the model and the structure that have been chosen the different pa-

rameters defined in the model are estimated. Hence, according to the number of

systems adopted we may have one (S
e

1,2,3
) , two (S1 , S

e

2,3
) or (S

e

1,2
, S3) or three

(S1 , S2 , S3) to identify as illustrated in Figure 3.4. It shows the different structures

that can be adopted regarding to the systems characteristics for a better identifica-

tion procedure. In application generally the case (S1 , S2 , S3) is used only when S1

and S3 are non-linear and S2 linear and is still a difficult identification procedure.

Cascaded structure

The Cascaded Structure (CS) refers to identification procedures where at least two

systems need to be identified such as (S1 , S
e

2,3
), (S

e

1,2
, S3) or (S1 , S2 , S3). In the
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LEMS model illustrated in Figure 3.2 we can write S1 as a non-linear function

of x and a vector of parameters h1 to define the output f(x;h1). S2 and S3 are

simply represented by linear filters h2 and h3 respectively. This example is chosen

as it is used latter to developed some of the algorithms proposed in this thesis. In

Figure 3.2 (a) which is the true LEMS model, the echo signal is given by:

d(n) = h3 ∗ h2 ∗ f(x;h1)(n) (3.1)

Three vectors of parameters are thus needed to identify the model but, since in AEC

the identification of each individual sub-system is not an issue the LEMS can be

simplified to Figure 3.2 (b) so that f2,3(x;h2,3) = h3(n) ∗ h2(n) ∗ x(n) = h
e

2,3
∗ x(n).

Thus instead of identifying two filters we try to identify one filter representing the

concatenation of S2 and S3 . A reason to do so is the difficulty to identify two linear

filters that are concatenated with current identification procedure that are based on

error minimization. The use of h
e

2,3
is preferable as the concatenation of two linear

systems is also linear. Hence the echo signal will be written as h
e

2,3
∗ f(x;h1).

In Figure 3.2 (b), the objective will be to identify the functions (f1(x;h1), h
e

2,3
).

However, in the AEC application we can satisfy ourself with any couple (hr ∗

f1(x;h1), hs ∗ h
e

2,3
) with the condition that hr and hs exist and hr ∗ hs = δ(n)

(they are invertible). In this case the output of the systems (f1(x;h1), h
e

2,3
) and

(hr ∗ f1(x;h1), f2,3(x;hs ∗ h2,3)) is identical but the systems are not identical.

Parallel structure

The Parallel Structure (PS) is the most widely used structure in AEC and corre-

sponds to (S
e

1,2,3
). The overall system is modelled by only one non-linear system as in

Figure 3.2 (c). In this case we merge the non-linear and linear systems which results

in a non-linear system which can be written as f1,2,3(x;h1,2,3), a non-linear function of

x with a vector of parameters h1,2,3 generally different to h
e

1,2,3
(h1(n)∗h2(n)∗h3(n)).

Depending on the model of non-linearity h1,2,3 can be differently related to h1 and

h
e

2,3
and its derivation is not always guaranteed.

In Figure 3.2 (a), if f(x;h1) is a non-linear function which is linear in its pa-

rameters (f(x;α · h1) = α · f(x;h1)) hence we can write h
e

1,2,3
= h1 ⊛ h

e

2,3

1 and

results in f1,2,3(x;h1,2,3) = f(x;h
e

1,2,3
). An example of a non-linear function which

satisfies this condition is the polynomial function. The clipping models given in

Figure 3.3 do not satisfy this condition but are generally approximated by a poly-

nomial function which is linear in parameters using Taylor series. As it is easier to

obtain f1,2,3(x;h1,2,3) using a polynomial approximation of f(x;h1) this explains the

reason of the widely used Volterra filter. Taylor series avoid the implementation of

complex functions such as exponentials functions that are used in some non-linear

models and thus allow complexity reduction, however, generally leads to a Volterra

model of the LEMS.
1The symbol "⊛" is used here as the operation is slightly different from the linear convolution.

An example is shown in Section 6.1.2 (Equation 6.9) with the concatenation of a second order

Volterra kernel and a linear filter.
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Figure 3.5: Parallel non-linear AEC based on quadratic Volterra adaptive filtering

3.2 Non-linear adaptive filtering

The constraints encountered for linear adaptive filtering remain also for non-linear

solutions. Hence, non-linear AEC are known to be complex with slow convergence.

All these problems have led to a significant effort in non-linear acoustic echo can-

cellation to devise solutions to non-linear adaptive filtering. These solutions can be

divided into three main structures.

Parallel Structure PS approaches use a global model of the LEMS to estimate

the echo signal. Cascaded Structure CS approaches use a concatenation of different

types of systems to estimate the echo signal. Loudspeaker Pre-processing (LP)

approaches where the linear AEC is combined with a pre-processor which aims to

linearise the loudspeaker output.

3.2.1 Parallel structures

The parallel structure (PS) is a system where the linear echo component and the

non-linear component are estimated and summed to obtain the echo component.

The Volterra model of the LEMS is part of this structure as the linear echo com-

ponent is estimated by the first order filter, whereas non-linear components are

estimated by higher order kernels such as the second order non-linearity which are

estimated by the quadratic kernel. Note that parallel solutions presented here are

not specifically dedicated to acoustic echo cancellation, hence solutions from net-

work echo cancellation and non-linear system identification are also cited. This is

due to the fact that the widely used Volterra model is dedicated to a wide range of

non-linear applications.

When the Volterra filter is used to model the LEMS the echo signal is given by:

d(n) =
P∑

p=1

dp(n) (3.2)
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where dp(n) corresponds to the output of the p− th kernel which is given by:

dp(n) =

Np−1
∑

k1=0

· · ·

Np−1
∑

kp=kp−1

h(np,1,np,2,··· ,np,p)

p
∏

q=1

x(n− kq) (3.3)

where Np is the memory of the pth kernel. Due to the linearity between the input

power series and the Volterra kernel, linear adaptive filtering approaches are well

adapted to Volterra filtering. Hence the quadratic kernel output can be written as:

d2(n) = hT
Q
(n)xQ(n) (3.4)

where hQ(n) is a vector that contains the taps of the quadratic kernel given by:

hQ(n) = [h2(0, 0), h2(0, 1) · · ·h2(0, N2 − 1), · · · , h2(N2 − 1, N2 − 1)]T (3.5)

Note that, for symmetry reasons i.e. hQ(l, p) = hQ(p, l), only half of the taps are

used. The input vector xQ(n) is given by:

xQ(n) = [x2(n), x(n)x(n−1), · · · , x(n)x(n−N2−1), · · · , x(n−N2−1)x(n−N2−1)]T

(3.6)

Using this structure most of the linear implementations are easily extended to

the Volterra filter which is one of the reason why Volterra filters are widely used. In

this case applying the Least Mean Square (LMS) algorithm will lead to:

ĥ1(n+ 1) = ĥ1(n) + µe(n)x(n) (3.7)

for the linear filter and,

ĥQ(n+ 1) = ĥQ(n) + µQe(n)xQ(n) (3.8)

for the quadratic kernel adaptive estimation. We note that, in Equation 3.8, the

same error is used for all the kernels meaning that they will affect each other. A

second point is that the stability issue of the quadratic kernel is more challenging as

the normalization is not as easy as for the linear case. Solutions to non-linear echo

cancellation are presented in the following in which the majority use a quadratic

Volterra filter for complexity reasons.

The Volterra solution, presented in [Thomas 1971], is one of the first solu-

tion for non-linear echo cancellation and in the conclusions the author explains

that this solution suffers from complexity and that an efficient estimator for the

Volterra filter parameters is required. Regarding the fact that the PS is affected

by the shape of the acoustic channel between the loudspeaker and the micro-

phone, in [Stenger & Rabenstein 1998, Stenger et al. 1999b] a truncated version

of the Volterra quadratic kernel is proposed where the relatively null coefficients

that represent the delay between the loudspeaker and the microphone are dis-

carded in the process. Another simplification of the Volterra quadratic kernel has

also been proposed in [Kuech & Kellermann 2002] where a cascaded structure is
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used to truncate the Volterra quadratic kernel to its diagonal which represents

the most significant part of the kernel. This approach is a simplified form of the

Multi Memory Decomposition (MMD) proposed in [Frank 1994, Frank 1995] for

loudspeaker linearisation. Volterra filter orthogonalization has also been proposed

by Mathews in [Mathews 1995a, Mathews 1995b] using Lattice Recursive Least

Square (LRLS) or QR Recursive Least Square (QR-RLS) but the complexity is not

taken into account as the system is dedicated to the identification process. Kuech

[Kuech et al. 2005] proposed a power filter orthogonalization for small loudspeak-

ers where a Gram-Schmidt orthogonalization is used followed by a bias correction

which reduces the complexity compared to the Volterra filter. The power filter is an

approximation of the Volterra kernels to their diagonal elements which is an equiva-

lent model of a cascade of a memoryless polynomial expansion and linear filter. The

input output relation is given by:

d(n) =
P∑

p=1

hT
p (n)xp(n) (3.9)

where xp(n) is equal to [xp(n), xp(n− 1), · · · , xp(n−Np)] which corresponds to the

diagonal elements of the p−th kernel of the Volterra filter. Recently a multi-channel

procedure has been proposed to improve the performance in [Malik & Enzner 2011].

This multi-channel procedure is based from a Markov model of the acoustic chan-

nel as in [Enzner & Vary 2006] which uses a frequency domain Kalman filtering to

estimate the echo path.

Other solutions have been proposed to improve the Volterra filter us-

ing the Adaptive Projection Algorithm (APA) or Recursive Least Square

(RLS) algorithms [Mathews & Lee 1988, Mathews 1991, Fermo et al. 2000,

Lee & Mathews 1993]. Even if these algorithms improve performance compared

to Normalized-LMS (NLMS)-based Volterra filters, they have the disadvantage of

increasing computational complexity.

To improve the estimation procedure a Volterra filter combination is proposed

in [Azpicueta-Ruiz et al. 2009, Azpicueta-Ruiz et al. 2011] which relies on the use of

two Volterra filters, in a similar fashion to the combination of linear filters. With two

quadratic kernels such solutions are too complex for real-time mobile applications.

The sparsity of the quadratic kernel has lead to application of Proportionate NLMS

(PNLMS) to Volterra filtering as proposed in [Kuech & Kellermann ]. The use of a

sparse adaptive filter for the quadratic kernel is well justified since the significant

taps of the quadratic kernel are concentrated around the diagonal but it results in

an increase in complexity. As the speech correlation has a great effect on NLMS

algorithm a Volterra filtering based on NLMS algorithm with fixed decorrelation

procedure is proposed in [Kuech et al. 2006].

The Volterra non-linear echo filter has also been extended to other domains

like the frequency domain [Mansour & Gray 1981, Reed & Hawksford 2000].

These solutions are based on fast convolution, as used in the linear Fre-

quency Block LMS (FBLMS) algorithm, to reduce complexity and it is also
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claimed that frequency domain adaptive filtering provides faster conver-

gence. In [Kuech & Kellermann 2005] a block partitioning has been used.

Based on this block partitioned, frequency domain Volterra filter structure,

Zeller et al have proposed many improvements [Zeller & Kellermann 2010a],

such as the iterated Partitioned Frequency Block Volterra LMS

(PFBVLMS) [Zeller & Kellermann 2007, Zeller & Kellermann 2008] which is

an extension of the work of [Eneman & Moonen 2003] on iterated Partitioned

Frequency Block LMS (PFBLMS) to Volterra filtering. This iterated procedure can

be written in the time domain as:

for r = 1 to R do (3.10)

h(r)(n) = h(r−1)(n) + ∆h(r)(n)

end

h(0)(n+ 1) = h(R)(n)

where ∆hr(n) is computed using x(n) and the error er(n) which is given by:

e(r)(n) = y(n)− xT (n)h(r−1)(n) (3.11)

This data reusing method permits to use the same data R times to improve sys-

tem performance but on the other hand, increases complexity and the process delay.

An evolutionary Volterra filter is proposed in [Zeller et al. 2009, Zeller et al. 2010,

Zeller et al. 2011] which aims to fit the quadratic kernel to its optimal size using

the combination of two Volterra filters with different memory lengths. This solution

permits to avoid under-modelling or over-modelling of the LEMS using a kernel size

control. The control is based on the error resulting from the different filters and

a technique that reduces the complexity of the adaptation. This method copies

the taps of the filter with the best performance to the others with respect to their

position and takes into account the difference in their number of taps.

The Volterra filter has also been used in the subband domain. Here the process

is more complicated due to aliasing and cross-band effects which become more diffi-

cult in non-linear environments. However, subband approaches have been proposed

by [Zhou et al. 2006, Burton et al. 2009, Furuhashi et al. 2006]. They are generally

synthesis-dependent non-linear filters which are an extension of the linear struc-

ture illustrated in Figure 2.11. This approach aims to reduce the complexity of the

system without losing too much time resolution and is claimed to improve system

performance as well. This structure is more efficient than the second one (Fig-

ure 2.10) which introduces more constraints due to non-linear cross-terms between

subbands. Nevertheless a solution has been proposed with the synthesis-independent

structure in the Short-Term Fourier Transform (STFT) domain Volterra identifica-

tion by [Avargel & Cohen 2009] which takes into account linear and non-linear cross

terms. With this model it has been shown theoretically, with white Gaussian inputs



44 Chapter 3. Non-linear AEC

AEC

from far-endnear-end
x(n)

y(n) e(n)
+
−

pre-processor

d̂(n)

h(n)
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Figure 3.6: Example of cascaded non-linear AEC based on Wiener model. The

pre-processor is used as loudspeaker model

that the quadratic model can improve system performance only for higher non-linear

to linear component ratios. These results may not hold in the speech case as speech

linear components are typically more correlated with the non-linear component due

to speech signal harmonicity.

These solutions increase Volterra filter performance in terms of the complexity

and convergence. Further improvements are still needed due to the higher number

of parameters that are required to be updated which may easily be difficult for

a real-time mobile application where memory is limited. The main drawback of

the Volterra solution in non-linear AEC applications is that it is limited to static

environments. This is due to the high number of parameters that need to be updated

for each Echo Path Change (EPC). Many other solutions have been proposed where

fewer parameters are required. These solutions are based on a cascaded structure

of the LEMS model which is described next section.

3.2.2 Cascaded structure

The use of cascaded structures in AEC applications is based on the assumption

that loudspeaker is the main source of non-linearities. This is confirmed by experi-

ments which show that the loudspeaker is the main source of non-linearities due to

hands-free mode and other imperfections related to the loudspeaker structure. In

general non-linearities from enclosure vibration are uncorrelated with the far-end sig-

nal [Birkett & Goubran 1995b]. This explains why loudspeaker non-linearities have
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been studied in a more general way in addition to specific studies involving that

for the echo cancellation application [Frank 1994, Quaegebeur 2007, Schurer 1997].

Models of the loudspeaker produced from these and related studies are typically used

in solutions for non-linear AEC, even for parallel structures of the LEMS. Four cas-

caded structures have proved popular. They are the Wiener structure or NL-L (non-

linear system (pre-processor) followed by a linear system), Hammerstein structure

or L-NL a (linear system followed by a non-linear system), Wiener-Hammerstein or

NL-L-NL and Hammerstein-Wiener or L-NL-L. In general in the Wiener and Ham-

merstein structure the NL system is a polynomial system without memory and is

generally assumed to be static. To avoid being restrictive we consider as cascaded

structure (CS) the concatenation of at least two systems where at least one of them

is non-linear and the estimation of each system is performed separately. We use

separate estimation procedures due to the fact that many cascaded structures can

then be combined to form one PS (see Section 3.1.2). An advantage of the CS is that

when it is well separated it requires less parameters and may give better convergence

than parallel structures. On the other hand, however, it is more sensitive to local

minima than parallel structures as the objective function is not always convex.

Example of a CS is illustrated in Figure 3.6. It uses a non-linear pre-processor

represented by a non-linear function f(hNL ;x(n)) depends on some parameters hNL

which need to be estimated and a linear AEC represented by h(n). The general

estimation procedure with the NLMS adaptive filtering approach is given by:

ĥNL(n+ 1) = ĥNL(n)− µNL

∂e2(n)

∂ĥNL(n)
(3.12)

for the pre-processor filter and:

ĥ(n+ 1) = ĥ(n) + µ
l

∂e2(n)

∂ĥ(n)
(3.13)

for the linear filter estimation. The pre-processor function f(hNL ;x(n)) is

a non-linear function of x(n). Many types of pre-processor have been pro-

posed but the most popular use hard clipping, piecewise linear or sigmoid func-

tions [Birkett & Goubran 1994, Nollett & Jones 1997, Stenger & Kellermann 2000,

Fu & Zhu 2008] and polynomial or Volterra series [Stenger & Kellermann 2000,

Guerin et al. 2003]. The parameters of which are represented by hNL in Figure 3.6.

From Equation 3.12 and 3.13 we see that the estimators are dependent as they use

the same error.

A CS, where the loudspeaker is modelled using a polynomial function, is pro-

posed in [Birkett & Goubran 1995a]. The proposed structure is based on three-

layer time-delay neural network for the non-linear part, instead of the NLMS

procedure in Equation 3.12, followed by a linear AEC based on the NLMS algo-

rithm. This solution has shown that, in the cascaded approach, the higher the

non-linearities are the better the performance of the cascaded approach compared

to the linear AEC only. But, for small non-linearities, the linear system can per-
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form better than the non-linear alternative. It has been extended to a Wiener-

Hammerstein model using a non-linear clipping model [Nollett & Jones 1997]. This

structure provides better performance than a linear AEC and, since all the

parameters are estimated using the NLMS approach, it is less complex than

the neural network approach in [Birkett & Goubran 1995a] though convergence

to the global mean square minimum is not guaranteed. Some similar solu-

tions have also been proposed in [Stenger et al. 1999a, Stenger & Kellermann 2000]

which uses Wiener model, the clipping model of [Nollett & Jones 1997] and

the polynomial model of [Birkett & Goubran 1994] for the loudspeaker model.

In [Stenger & Kellermann 2000] a solution to improve the adaptation is proposed

using an orthogonalization procedure based on speech statistics and an RLS algo-

rithm in the place of the NLMS algorithm in Equation 3.12 for the pre-processor

parameters estimation. The solution with the RLS algorithm is shown to improve

performance but with increased of the system complexity, even if the number of

pre-processor parameters is smaller compared to linear AEC.

Another solution proposed in [Shi et al. 2007] estimates the parameters of

a polynomial expansion in a Wiener system based on the pseudo-coherence

method. It is shown to be more accurate but more complex than the RLS al-

gorithm [Shi et al. 2008a]. Based on the coherence method a Wiener-Hammerstein

model of the LEMS is proposed in [Shi et al. 2008b] where the first, non-linear model

is of the loudspeaker whereas the second model is the inverse of the microphone.

The same authors propose in [Shi et al. 2009] a shortening filter for long impulse

responses. A Wiener system is used in the acoustic link and a shortened filter is

applied to the microphone signal. The objective of the shortened filter is to reduce

the length of the Echo Path (EP). The convolution of the echo path with a short-

ened filter results to a filter which has its significant taps concentrated in the earlier

part. This shortened approach which is more known in communication system has

shown to give the possibility of reducing the length of the linear filter in the Wiener

system. The drawback in AEC applications is that the shortened filter affects the

near-end signal.

The more general CS proposed in [Guerin et al. 2003] uses a non-linear Volterra

model of the loudspeaker and, to avoid local minima, the linear kernel of the Volterra

filter is constrained to one. This approach introduces a general model of the loud-

speaker and provides better results compared to the parallel approach in terms of

complexity and convergence but increases AEC complexity compared to models with

power expansions.

3.2.3 Loudspeaker pre-processing

The loudspeaker pre-processing (LP) approach uses the combination of two filters

as in a CS. A non-linear filter is used before the loudspeaker to linearise its output

and a linear filter is used to estimate the echo signal. In general this approach has a

comparable complexity to the CS. The linearisation procedure is not well studied in

the context of AEC. One reason may be the fact that, due to the speech harmonic-
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Figure 3.7: Non-linear AEC based on loudspeaker linearisation

ity, the effect of non-linearities under certain levels are not perceived. A solution

presented in [Furuhashi et al. 2006] which combines linear AEC with an offline esti-

mation of the non-linear system in the subband domain to linearise the loudspeaker

output. It is shown that this solution may increase linear AEC performance. An-

other advantage of such structures is that the two systems are less coupled than

with a CS. The drawback of the solution proposed in [Furuhashi et al. 2006] is the

requirement to estimate the characteristics of each loudspeaker. Furthermore, even

though the loudspeaker characteristics are largely static, they may vary over time.

An advantage of the linearisation structure is that it does not require oversampling

as proposed in [Frank 1996, Zeller & Kellermann 2010b, Mäkelä & Niemistö 2003]

to reduce the effect of high-frequency non-linearities introduced in the residual echo

when using parallel or cascaded structures. As non-linearities generated in the

LEMS which are above the microphone sampling frequency are removed in the mi-

crophone signal so they are compensated in the AEC link by oversampling or low

pass filtering. The disadvantage of loudspeaker pre-processing is the additional non-

linearities generated at higher-frequencies and it also requires that the loudspeaker

linear impulse response to be invertible.

3.3 Non-linear echo post-processing

Residual echo suppression has been proposed to suppress echo which cannot

be estimated through conventional, linear AEC due to convergence issues or

insufficient numbers of taps [Beaugeant et al. 1998]. It is also proposed as

a solution to non-linear echo cancellation. One such approach is proposed

in [Hoshuyama & Sugiyama 2006b]. This solution assumes that residual non-linear

echo and the estimated echo are correlated so an offline estimation of the correlation

coefficient in the frequency domain is developed. Since such a solution is somewhat
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Figure 3.8: Acoustic echo suppression with non-linear echo post-processing. The

adaptive filter estimates the linear component of the echo and residual echo is further

suppressed by the non-linear residual echo suppressor.

device dependent an online coefficient estimation approach is proposed by the same

authors in [Hoshuyama & Sugiyama 2006c].

The power filter used in [Kuech et al. 2005] has also been extended to residual

echo suppression where non-linear echo is estimated based on an unconstrained

adaptive frequency domain approach to reduce complexity. This approach can

also be used to estimate the useful near-end signal [Kuech & Kellermann 2007].

Another solution involving the use of power expansion for non-linear model

is proposed in [Shi et al. 2008c]. A subband domain solution is proposed

in [Bendersky et al. 2008] to estimate the linear filter and also the non-linear resid-

ual echo where estimates of the non-linearities in the residual error are based on

harmonic compensation.

Residual echo suppression is less complex than non-linear adaptive filtering

approaches. The main disadvantage is distortion introduced in the useful sig-

nal. Another approach to non-linear echo post-processing is the solution proposed

by [Wada & Juang 2012] where the objective is not residual echo suppression from

the near-end signal but the enhancement of the feedback error applied to the linear

adaptive filter. This structure tries to recover the true residual linear error so that

it can be feedback to the linear AEC under the conditions where non-linearities

are minimal. It has the advantage of making linear AEC robust to non-linearities

without disturbing the near-end signal. The problem with this method is that the

residual non-linear echo component will not be removed from the near-end signal.
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Linear AEC analysis

Since linear Acoustic Echo Cancellation (AEC) is still widely used even in the pres-

ence of non-linearity this chapter presents an analysis of different adaptive filtering

algorithms dedicated to linear AEC and their robustness to non-linearity. The study

is also directly relevant to non-linear AEC since the same adaptive filter algorithms

are often applied in dedicated non-linear AEC solutions. For the analysis of the

different approaches some metrics are required. Two metrics are used in this anal-

ysis. The System Distance (SD), which measures the distance between the real

Echo Path (EP) and its estimate, and the Echo Return Loss Enhancement (ERLE)

which measures the amount of echo suppressed. The assessment of the linear AEC

algorithms in non-linear environments requires a model of non-linearities. Hence a

polynomial model of non-linearities is used to simulate their effect.

The analysis of linear AEC in non-linear environments first aims to characterise

the behaviour and robustness of the different linear adaptive filtering algorithms.

This is helpful to identify the most reliable linear adaptive filter algorithms in non-

linear environments. The analysis is also of use in choosing specific adaptive filters

when we have an a priori on the environment i.e. linear, small non-linearities or

highly non-linear. Also reported is a comparative analysis of AEC behaviour in

the presence of non-linearity and noise. Many adaptive filtering solutions have

been proposed for noisy environments and so this comparison shows if linear AEC

algorithms exhibit similar behaviour in non-linear and noisy environments. This

analysis is based on our works presented in [Mossi et al. 2010a, Mossi et al. 2010b].

According to the results provided by these tests a theoretical analysis of the

non-linearity effect on the different AEC algorithms is presented. A time variant

formulation of the Wiener AEC solution is proposed to incorporate the effect of non-

linearities on linear AEC. We then use this time variable formulation to explain the

behaviour of each linear AEC algorithm.

As all algorithms are already introduced in Chapter 2, we start by presenting

the simulation set-up and the metrics use for the analysis.

4.1 Simulations set-up

Figure 4.1 illustrates the system model, where a linear AEC algorithm (Normalized-

LMS (NLMS), Adaptive Projection Algorithm (APA) or Frequency Block LMS

(FBLMS)) is used to reduce the echo signal in different linear or non-linear en-

vironments. The first environment is non-linear where non-linearities are generated

artificially according to a non-linear model. All non-linearities are assumed to stem
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D
A

D
A

x(n) + g(x(n))

n(n)

Figure 4.1: System model

from the loudspeaker and are represented by g(x(n)). The second environment

contains background noise which is assumed to be generated in the near end en-

vironment. In general these situations arise in the same time in real applications

but here, as our objective is to analyse separately the effects of these two perturba-

tions and compare the behaviour of the AEC algorithms in each case they are thus

investigated separately.

4.1.1 Non-linear model

Since the assessment presented here requires comparisons of performance both with

and without non-linearities under otherwise identical conditions it is necessary that

non-linear distortions be generated artificially so that they are well controlled. Here

we briefly describe the sources of non-linearity which are already well defined in the

literature and the model that has been chosen for the assessment.

In general non-linearities can be introduced by the Up-Link (UL) and Down-Link

(DL) amplifiers, by the loudspeaker, the microphone, resonance from the mobile ter-

minal housing and the acoustic EP. However, since the loudspeaker signal is usually

of high level, especially in hands-free mode, it is commonly assumed that non-

linearities from the DL amplifier and loudspeaker dominate and that, consequently,

all other sources are negligible [Stenger & Kellermann 2000, Guerin et al. 2003,

Kuech & Kellermann 2006]. It is also shown in [Birkett & Goubran 1995b] that

non-linearities introduced by the housing can be considered as uncorrelated noise

meaning that their assessment is comparable to that of ambient noise. Under this
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assumption the acoustic path may be considered as linear.

In [Guerin et al. 2003, Fermo et al. 2000] DL non-linearities may be adequately

modelled using a Volterra model. As in the work of [Birkett & Goubran 1995a,

Stenger & Kellermann 2000, Kuech & Kellermann 2006] a Volterra model of ampli-

fier and loudspeaker non-linearities may be approximated by a cascade of memory-

less saturation characteristics. Here we take into account only the second and third

order non-linearities as they are generally assumed to be the most dominant com-

ponents [Birkett & Goubran 1995a, Guerin et al. 2003]. For all experimental work

reported in this chapter non-linearities are generated according to:

x
ld
(n) = x(n) + αx2(n) + βx3(n), (4.1)

where x
ld
(n) is the non-linear output of the loudspeaker and the non-linear echo

component g(x(n)) is equal to αx2(n) + βx3(n). α and β are the second and third

order weighting components respectively and lie in the range of α, β ∈ [0, 1]. It

is worth mentioning that the couple (α, β) = (0, 0) corresponds to the linear case.

This range of parameters was deemed to be representative of realistic non-linearities

measured through laboratory tests of several popular, current mobile phones. It

also agrees with those in the general literature, e.g. [Frank 1995]. The loudspeaker

signal x
ld
(n) is then convolved with an impulse response h(n) to simulate the linear

EP between the loudspeaker and the microphone.

4.1.2 Experimental set-up

We present the different test conditions for each adaptive filter and compare their

performance in the presence of non-linearities or white noise. Echo reduction is

assessed in terms of ERLE, convergence time and system distance SD. The du-

ration of the far-end speech signal x(n) is sufficient to ensure the convergence of

each algorithm. In all cases ERLE measurements relate to intervals in which the

algorithms are deemed to have converged. Non-linear artefacts are introduced into

the down-link signal according to the model described in Section 4.1.1. The loud-

speaker output, x
ld
(n), is composed of the sum of the original speech signal x(n)

and a non-linear component αx2(n)+βx3(n) which are both convolved with the EP

h(n). This leads to a linear echo component x(n) ∗h(n) and a non-linear echo com-

ponent [αx2(n)+βx3(n)]∗h(n). Then, a linear echo to non-linear echo ratio (SNeR)

is computed as in [Vondrasek & Pollak 2005]:

SNeR =
1

K

K∑

i=1

SNeRseg(i), (4.2)

where SNeRseg(i) is given by:

SNeRseg(i) = 10log10

∑M−1
m=0 x2i (m)

∑M−1
m=0 g2i (x(n))

(4.3)

where xi(n) and gi(x(n)) are the linear and non-linear echo components respectively

in the ith frame of analysed signals. The SNeRseg(i) is computed using windows of
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32 ms (M = 256 samples for a sampling rate of 8 kHz) according to the short-term

stationarity of speech. The SNeR level is used as a reference to generate a noisy

signal with linear echo, where the mean Signal-to-Noise Ratio (SNR) is equal to the

SNeR. In so doing we have two linear echo signals that are equally disturbed, one

with non-linear echo, and another with additive noise. The weighting factors α and

β are in the range of [0, 1] as in [Mossi et al. 2010a]. This permits to artificially

increase the level of the non-linear echo component (and noise) by increasing α

and/or β. We compare the behaviour of each adaptive filter, with both non-linear

echo and noise, when linear adaptive filters are configured with the same step size µ,

and to obtain approximately the same level of ERLE by adjusting the regularization

parameter. A second configuration is done by choosing the step-size µ so that each

adaptive filter reaches its maximum ERLE.

4.2 Measurement metrics

To compare the performance of adaptive filtering algorithms two objective criteria

are used. They are the SD and the ERLE which are described below.

4.2.1 System distance

The system distance (SD) criterion is based on the difference between the estimation

by the AEC of the filter impulse response, ĥ(n) and the true impulse response of

the Loudspeaker Enclosure Microphone System (LEMS), h(n) [Breining et al. 1999,

Vary & Martin 2006]:

h̄(n) = ‖h(n)− ĥ(n)‖ (4.4)

In general the relative system distance is used to compare system performance

under different conditions according to:

SD(n)dB = 10 · log
10

{
h̄2(n)

‖h(n)‖2

}

(4.5)

Figure 4.2 shows an example SD profile for an adaptive AEC filter, and is

included here to help illustrate the concept. The algorithm begins at time t = 0

where, due to the initialization of the AEC taps to zero, the SD is equal to 0 dB. In

this case the filter taps are updated once every sample (0.0625 ms) and the curve

shows initially that ĥ(n) begins to converge toward the real filter h(n) as shown by

the falling profile. A decreasing SD indicates the convergence of ĥ(n) toward h(n).

Some peaks are also observed in the SD profile of Figure 4.2. They correspond

to disturbances, which may be due to periods of low SNR, deficient length or a bad

parametrization. The general idea is that a quickly decreasing SD indicates faster

adaptive filter converge.

The SD can only be used for simulation as in real conditions the acoustic path

is completely unknown. The SD is furthermore dependent on the input signal fre-

quency band. In fact, when the SD is used for the assessment of an adaptive filter,
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Figure 4.2: An example system distance profile.

where the input is a speech signal, not all frequencies of h(n) are necessarily excited,

meaning that the error d(n) − d̂(n) may go to zero even when the system distance

profile is far from zero. A simple example of this case is when x(n) is a sinusoid.

In general, adaptive filters converge quickly in this case but on the other hand only

one harmonic of h(n) will be estimated by ĥ(n). In the frequency domain Ĥ(f) ≈ 0

whatever H(f) for all frequencies different from f0 which is the frequency of x(n)

where Ĥ(f) ≈ H(f0). Hence ĥ(n) can only estimate accurately the harmonics of

h(n) that are excited by x(n). In other words, the band of ĥ(n) is relative to that

of x(n), as explained in Section 2.3.1. This shows that the system distance is fully

accurate only for identification processes where full band noise signals are used.

Nevertheless the SD is still relevant for the comparison of different adaptive filters

in linear environments. In practice, whilst the SD gives a quick and easy insight

into AEC performance, it is not as useful in the case of non-linear environments. In

fact, as will be seen later in non-linear environments the identification of the real

system is quasi impossible so that other metrics are required. A circumstance in

non-linear environments where the SD can be used is to assess the robustness of the

adaptive filter in the estimation of the linear echo component when a linear h(n) is

available.
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4.2.2 Echo return loss enhancement

The Echo Return Loss Enhancement (ERLE) is given by [Hänsler & Schmidt 2004,

Vary & Martin 2006]:

ERLE(n)dB = 10 · log
10

E
{
d2(n)

}

E
{

(d(n)− d̂(n))2
} (4.6)
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Figure 4.3: An example of ERLE for the NLMS.

The denominator corresponds to the error in the absence of near end speech,

s(n) and of noise, n(n), so Equation 4.6 can also be written as:

ERLE(n)dB = 10 · log
10

E
{
d2(n)

}

E {e(n)2}
(4.7)

The ERLE gives an indication of performance according to the level of the error

signal, e(n). As the error is in the denominator, the smaller its value, the greater

the ERLE, and the better the convergence, i.e. the higher the ERLE the better

the system. It gives an indication of system performance and can also be used in

non-linear environments since it does not need any reference to a linear impulse

response, i.e. ĥ(n). However, the ERLE is also biased by the presence of noise or
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near-end speech in real applications. To show that let:

σd = E
{
d2(n)

}

σe = E
{

(d(n)− d̂(n))2
}

σn = E
{
n2(n)

}

be the energies of the echo signal, the error signal (difference between the real echo

and its estimate) and the noise. In the noise condition the ERLE is given by:

ERLE(n)dB = 10 · log
10

E
{
(d(n) + n(n))2

}

E {(e(n) + n(n))2}
(4.8)

where e(n) represents here the difference between the echo signal d(n) and its esti-

mate d̂(n). With the decorrelation assumption between the noise and speech signal

we can then write Equation 4.7 as:

ERLE(n)dB = 10 · log
10

σd + σn
σe + σn

(4.9)

= 10 · log
10
{
σd
σe

σe(σd + σn)

σd(σe + σn)
}

= 10 · log
10
{
σd
σe

}+ 10 · log
10
{
σe(σd + σn)

σd(σe + σn)
}

If the convergence condition is satisfied then σd ≥ σe which implies that σe(σd+σn)
σd(σe+σn)

is always less than 1 and so log
10
{σe(σd+σn)
σd(σe+σn)

} is negative giving an impression of less

echo reduction. Even if the ERLE is biased by the presence of noise for the same

SNR the ERLE can indicate which algorithm has the lower residual error.

4.3 Assessment of linear AEC algorithms in adverse en-

vironments

In this section two different comparisons are conducted for each metric. The first

assessment compares the robustness of the different algorithms in non-linear envi-

ronments. The second is a comparative assessment in non-linear and noise environ-

ments.

4.3.1 Echo attenuation (ERLE)

Algorithm assessment

Figure 4.4 gives the ERLE against time for the APA, NLMS and FBLMS algorithms

for different values of SNeR. Here the algorithms are parametrized to reach their

maximum ERLE independently and we observe that APA converges more quickly

than the others. These curves show clearly how non-linearities reduce the ERLE

reached by each algorithm. As already mentioned the FBLMS is the most affected
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Figure 4.4: ERLE over time of NLMS, FBLMS and APA. Test results to com-

pare the performance in linear and non-linear environments where each algorithm

is parametrized to reach its maximum ERLE.
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Figure 4.5: Maximum ERLE (in dB) achieved after convergence as a function of

SNR/SNeR (also in dB). Here the SNR or SNeR corresponds to added noise (WN) or

to non-linear echo (NL) as indicated. Profiles are illustrated for both perturbations

and for each of the four approaches to AEC. APA, FBLMS and NLMS are all

configured to give equivalent performance under linear echo conditions.
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and its ERLE is lower than that of NLMS for SNeR≤ 60 dB. Here we observe that,

when the APA is parametrized to reach a higher amount of echo reduction with

quick convergence, its performance decreases faster than that of NLMS. But, even

if the APA algorithm is disturbed significantly by non-linearities, it still reaches a

better ERLE than other algorithms after convergence. From these experiments, a

first conclusion is that the faster an algorithm converges the more it is affected by

non-linearities. The APA, for instance, is known to converge quickly compared to

the NLMS but its performance drastically decreases when non-linearities increase.

FBLMS, however, is severely affected even though it does not converge quickly in

linear environments. This behaviour is explained by the block-by-block processing

nature of FBLMS. According to Equation 4.1, small input signals x(n) lead to

small non-linearities. As a result, even for high values of α and β, a sample-based

algorithm will be, for certain periods of low x(n), equivalent to a linear environment

and thus, during such periods, it will be relatively less disturbed by non-linearities.

Considering block-based processing such as FBLMS, a whole frame of low level

x(n) is needed to have the same effect. As a result, block-based algorithms are

more disturbed by the same level of non-linear distortion. In fact improvements in

convergence in the frequency domain are due to the decorrelation of the frequency

bin. In the presence of non-linearity this decorrelation will be affected by the non-

linear component in the error signal used for adaptation. This is explained by the

fact that non-linearities introduce frequencies at multiples of the linear frequency

component. A simple example is if we assume a signal containing two sinusoids,

where the high frequency is the double of the low frequency. If the latter generates a

second order harmonic it will directly perturb the high frequency components. This

example may hold for speech if we consider its harmonicity. If this decorrelation

is affected by the presence of non-linearities then convergence will be slower. Since

updates are performed only every B samples, where B is the block length (B =

M = 256 in our experiments), we may expect poor performance.

Figure 4.5 shows the ERLE after convergence against SNeR or SNR for each of

the four different algorithms. We define the ERLEmax value after convergence as the

mean of the ERLE during the period of our test sequence between 50 to 60 s. The

general trend of these curves shows that the maximum ERLE of all the algorithms

decreases when the non-linearity increases (lower SNeR).

Generally, for high values of SNeR (small values of α and β) the ERLE difference

is close to zero, indicating a low degradation in echo cancellation performance due

to small non-linearities. For NLMS and APA when SNeR≥ 105 dB, the ERLE is

almost unaffected by the non-linearities. This is shown by the flatness of the curves

in these ranges. The most affected algorithm is the FBLMS, where the difference in

ERLE decreases even for low levels of non-linearity.

Comparative noise and non-linear assessment

Figure 4.5 also shows the maximum ERLE achieved by each algorithm in noisy

environments. We observe that, as for non-linear echo, noise also decreases the
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performance of all adaptive filters. These properties are well known and expected

[Vary & Martin 2006, Birkett & Goubran 1995b]. We see that the LMS algorithm

is the most robust of all adaptive filters considered; it has the least degradation

in performance as the SNR or SNeR decreases. This is due to its poor ERLE

performance which is so low that the algorithm cannot even be configured to give

equivalent performance to the other algorithms under linear echo conditions. This is

expected as the stability over the process of the Least Mean Square (LMS) requires

a very small step-size to ensure convergence. It is known that, the smaller the step-

size, the lower the effects of the perturbations on the adaptation process and the

better the resulting Minimum Mean Square Error (MMSE).

In noisy environments the ERLE of APA, NLMS and FBLMS algorithms de-

creases by approximately the same amount. For the APA and NLMS algorithms,

when the SNR< 100 dB, the difference between the ERLE in non-linear and noisy

environments is about 10 dB with better performance in non-linear environments

than noisy environments. The FBLMS algorithm seems to show the smallest dif-

ferences between non-linear and noisy environments. This can again be explained

by the averaging effect of block-by-block approaches. In the case of noise the per-

turbation is effectively averaged over the block and thus has a reduced impact on

performance. This is not the case with non-linear echo, which is correlated with the

input signal. The result is that noise perturbations have less effect than they do

for the other approaches (compared to non-linearities) so that noise and non-linear

echo have an equivalent effect on the performance of the FBLMS algorithm.

The difference between the effects of non-linearities and those of noise are ex-

plained by two hypotheses:

Noise spectrum: The filter frequency response depends on the differences in energy

of the linear echo component and the perturbation (non-linear echo or noise). The

spectrum of the non-linear echo component generally has a similar profile to that of

the linear echo component whereas the spectrum of white noise is flat. This means

that, during periods of voiced speech, the amplitude of the noise signal can be much

lower than the amplitude of the speech signal at low frequencies, but much higher

at high frequencies. At higher frequencies the linear echo component can thus be

masked by the noise spectrum, leading to significant perturbation during periods of

voiced speech.

Non-linearities are correlated with the far-end signal: Since non-linearities

are correlated with the input signal, this can result in the adaptive filter under-

estimating the linear part but slightly attenuating the non-linearities. This is less

the case in noisy environments as there is no correlation between the noise and the

far-end speech signal.

Note that these results are comparable to results reported

in [Birkett & Goubran 1995b] which show that non-linearities caused by the

loudspeaker have less effect on linear AEC than those caused by enclosure vibra-

tions. These results are explained by the fact that loudspeaker non-linearities are
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Figure 4.6: Convergence performance with non-linear (NL) and white noise (WN)

perturbations for (a) APA, FBLMS and NLMS algorithms against SNeR and SNR.

more correlated to the far-end signal than enclosure vibrations which are noise-like.

4.3.2 Convergence Time

Algorithm assessment

We define the convergence time for each algorithm as the time needed for the adap-

tive filter to reach 95% of its maximum ERLE value. Convergence times are de-

termined using the same speech signals as used previously and are estimated for

all conditions: linear echo, non-linear echo, and linear echo with noise. Figure 4.6

shows the convergence time in seconds against SNR or SNeR for each of the four

algorithms and both perturbations.

We see that, with the exception of the LMS algorithm, all profiles have a similar

trend even though differences in convergence time are in the order of 25 s at 110 dB.

In addition, for each algorithm, convergence times are greater for non-linear per-

turbations than they are for noise. The LMS algorithm is the slowest to converge

where the SNeR or SNR is low but the fastest where they are high (> 100 dB). This

is explained by the fact that the ERLE obtained is lower: about 80 dB compared to

110 dB for all other algorithms in linear echo conditions (right side of Figure 4.5).

Figures 4.6 also shows that the convergence time decreases when non-linearities

increase. Such unexpected results are explained by the fact that the algorithms
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Figure 4.7: Convergence performance with non-linear (NL) and white noise (WN)

perturbations for the NLMS algorithm plotted as ERLE against time.

converge in practice to a higher minimum error; the ERLE level is in fact reached

faster simply because it is lower. Looking, for instance, at the profile for LMS

algorithm, its convergence time decreases from 23 s to less that 5 s for an SNeR

varying between 130 and 25 dB, but at the same time the ERLE achieved by LMS

collapses by 45 dB (see Figure 4.5). It is nevertheless an important result that

echo cancellation algorithms operating in non-linear environments provide less echo

reduction but their maximum level of echo reduction is reached relatively quickly.

Accordingly, fast converging algorithms such as APA can be of less interest in non-

linear environments as the argument to use such algorithms due to their reduced

convergence time may no longer hold.

Comparative noise and non-linear assessment

The plots in Figure 4.6 show the absolute convergence time in seconds but do not give

an impression of the dynamic performance and, as already discussed, nor do they

reflect the ERLE that is eventually achieved. They are thus potentially misleading

and for this reason we present in Figure 4.7 a plot of ERLE against time, here

for the NLMS algorithm to better illustrate its dynamic and absolute performance.

Figure 4.7 shows the ERLE against time with linear echo only and added non-linear

echo or noise at an SNeR of 52 dB and SNeR of 26 dB respectively.

These plots show that higher levels of perturbation result in lower levels of ERLE.

In the case of linear echo (top profile) convergence is slow and is not even reached
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during the 60 s illustrated. Crucially, though, the ERLE is much higher than it is for

non-linear and noise perturbations. However, in these cases the algorithm converges

faster, but to a lower level (i.e. ∼55 dB for non-linear echo with an SNeR of 52 dB

and ∼20 dB at 26 dB SNeR, cf. ∼45 dB for noise with an SNR of 52 dB and ∼25 dB

at 26 dB SNR). Hence consideration of the convergence time or maximum obtained

ERLE are not sufficient on their own to properly appreciate the performance of each

approach. Similar profiles were obtained for specifics APA, FBLMS adaptive filters

and show an identical trend to that shown here for the NLMS algorithm albeit to

different levels of ERLE. Finally, since all algorithms are shown to converge reason-

ably quickly in noise and non-linear environments it is of questionable advantage

to focus effort on more computationally efficient algorithms; efforts are better di-

rected toward the development of more robust algorithms. Indeed, more stable and

straight forward algorithms, such as NLMS, are arguably of more interest for mobile

terminal applications than their less stable and more computationally demanding

alternatives such as APA.

4.3.3 Estimation of linear echo path

Algorithm assessment

The assessment of performance with linear echo is commonly measured according

to the SD. It is less appropriate in the case of non-linear echo as the SD shows only

how the linear EP is estimated by the adaptive filter. In linear echo environments,

the SD indicates how effective is the echo cancellation. In the case of non-linear

echo, the SD indicates only how well the linear component is estimated but does

not necessarily reflect the level of echo attenuation actually achieved.

Plotted in Figures 4.8 (a) and 4.8 (b) is the evolution of the SD in dB against

time for APA and NLMS algorithms respectively. We first observe that APA results

in better estimation in the presence of low level non-linearities, but less accurate

estimation when non-linearities increase. The NLMS shows slower convergence than

APA but estimates are closer to the 256 dB of SNeR case until the SNeR become

lower than 80 dB. The linear condition SD of the NLMS is similar to that 256 dB of

SNeR reason why it is not shown here. This shows that the estimation of the linear

component of the echo is more robust when using NLMS rather than APA in highly

non-linear environments. The behaviour of the NLMS algorithm is similar to that

of LMS (results not shown here). The FBLMS SD shows that it is more affected

than other algorithms. This is explained by the same reasons given previously, the

effect of block processing and also by the fact that it is adapted by blocks of M

samples.

One could easily assume that linear echo cancellers estimate the linear compo-

nent of the echo, but this assumption is not supported by these results. Indeed

the SD increases when non-linearities increase. This means that, in practice, echo

cancellers do not converge to a reliable estimate of the optimal Wiener solution

of the EP in linear condition. This observation is of particular interest as many
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Figure 4.8: SD over time in non-linear environments for (a) NLMS and (b) APA

algorithms. In this case only the third order non-linear component is used (α = 0, β)

but similar behaviour is observed when second order non-linearities are introduced.
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Figure 4.9: Plots of SD (in dB) against time (in seconds) for the NLMS algorithm.

Profiles are illustrated for linear echo and also for linear echo with either non-linear

echo or added noise at two different levels.

algorithms assume that a non-linear system can be accurately modelled by a cas-

cade of a linear echo canceller and post cancellation of the residual non-linear echo

[Hoshuyama & Sugiyama 2006a, Kuech & Kellermann 2007]. According to such as-

sumptions, the linear AEC should approximate the linear optimal solution. Our

experiment contradicts this assumption and leads to questions regarding the use of

such approaches. The deviation of the linear AEC estimate from the linear optimal

Wiener solution is discussed in the next section.

Comparative noise and non-linear assessment

Figure 4.9 shows the behaviour of the NLMS SD as a function of time. Whilst

there are differences in exact SD values, the order of the profiles and general trends

are indicative of performance for APA and FBLMS. In general, the better the SD,

the better the ERLE. However, upon comparison of Figures 4.7 and Figure 4.9

we observe an apparent disparity. Figure 4.7 shows that performance with non-

linear echo is generally better than that under additive noise with the same SNR,

whereas Figure 4.9 shows almost no differences. This is due to the fact that the

SD is only equivalent to ERLE under the condition of total linearity. The ERLE

reflects the global performance according to the residual error, whereas the SD

reflects the accuracy of the echo path estimate ĥ(n). Equivalent values of SD show

that linear echo can be attenuated equally well with either non-linear echo or noise
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perturbations. The differences in the ERLE, however, show that non-linear echo

perturbations are better attenuated than noise. This is due to the fact that, in non-

linear environments, some of the non-linearities are indeed effectively attenuated by

the adaptive filter even if the residual error is still higher than in the linear situation.

This is explained by the fact that adaptive filters aim to reduce the correlation

(increase the orthogonality) between the error and the input signal. Since non-

linear echo is correlated with the input signal it can also be attenuated, albeit only

slightly. This is not the case with additive noise. This does not imply that adaptive

filters are better in non-linear environments than they are in noisy environments

as the adaptive filter does not aim to reduce the noise, but rather the echo signal

which includes the non-linear component. It nevertheless shows that non-linearity

cannot be assumed to be similar in nature as additive noise. In the next section

we try to illustrate the implications of correlation, the relation to convolution and

the potential of modelling non-linear environments as time-varying systems with

the assumption of a time invariant EP (or an EP which varies more slowly than the

speech signal).

4.4 Discussion

This section presents a mathematical analysis of the effects observed in reported ex-

perimental results. Under the assumption of a time invariant EP we propose a time

variant model of the system that takes into account non-linear components which

are correlated with the far-end signal. We then explain the reasons why the perfor-

mance of APA and FBLMS algorithms decrease faster in non-linear environments

than it does for NLMS.

4.4.1 From time invariant to time variant echo path

We propose to derive the Wiener solution of the echo path estimate in non-linear

environments. As in the experimental work non-linearities are assumed to be gen-

erated only by the loudspeaker. In this case the echo signal is given by:

d(n) = h(n) ∗ (x(n) + g(x(n))) (4.10)

= h(n) ∗ x(n) + h(n) ∗ g(x(n))

where g(x) is a non-linear function of x corresponding to loudspeaker effect. In our

experimental test, g(x) = αx2 + βx3 but the analysis provided here is not limited

to a polynomial model of g(x). In the presence of the non-linear echo component

h(n)∗g(x(n)) the Wiener solution under the assumption of (short-time) stationarity

is given by [Haykin 2002]:

h
0

nl
= R−1p+R−1p

h∗g(x),x
(4.11)
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where h
0

nl
is the optimal solution in non-linear environments. R, p and p

h∗g(x),x
are

the auto-correlation matrix of x(n), the cross-correlation vector between x(n) and

d(n) and the cross-correlation vector between h(n) ∗ g(x(n)) and x(n) respectively.

If g(x(n)) and x(n) are completely decorrelated then g(x(n)) can be considered

as uncorrelated noise and lead to p
h∗g(x),x

being equal to zero. In this case we have

the same optimal solution in linear and non-linear environments (h
0

nl
= h

0
). But

the most appropriate assumption is that the non-linearities are well correlated with

the far-end speech signal and leads to p
h∗g(x),x

being non-zero in short-time process.

As observed in experimental results reported in Section 4.3.3 the correlation may

explain the difference between the ERLE in non-linear and noise environments. In

the general case this correlation can be assumed regarding the observation that,

in general, some distortions are harmonic distortions which, with the short-time

process, can introduce correlation. Since this correlation cannot be considered as

perfect we can then decompose g(x(n)) into two components: [g(x(n))]
//

which is

assumed to be perfectly correlated with x(n) and [g(x(n))]
⊥

which is completely

uncorrelated with x(n) and which, therefore, play the same role as uncorrelated

noise. In this case Equation 4.11 can be written as:

h
0

nl
= R−1p+R−1ph∗g,x (4.12)

= R−1p+R−1
(
p

h∗[g(x)]
//

,x
+ p

h∗[g(x)]
⊥

,x
︸ ︷︷ ︸

=0

)

= R−1p+R−1p
h∗[g(x)]

//
,x

If [g(x(n))]
//

exists then there also exists an h
//
(n) so that:

[g(x(n))]
//

= h
//
(n) ∗ x(n) (4.13)

Equation 4.13 can be viewed as a linear prediction analysis which can be written

as:

g(x(n)) = [g(x(n))]
//

+ [g(x(n))]
⊥

(4.14)

= h
//
(n) ∗ x(n) + [g(x(n))]

⊥

where [g(x(n))]
⊥

is a prediction error. We do not assume, however, that the corre-

lated component [g(x(n))]
//

is stronger than the decorrelated component [g(x(n))]
⊥

which in practice depends on the type of distortions. If we convolve the two sides

of Equation 4.13 by h(n) we obtain:

h(n) ∗ [g(x(n))]
//

= h(n) ∗ h
//
(n) ∗ x(n) (4.15)

= h
//
(n) ∗ h(n) ∗ x(n)

Equation 4.15 shows that the cross-correlation ph∗g,x(n) can be written as a

function of the cross-correlation p(n) as p(n) ∗ h
//
(n). Hence the optimal solution



66 Chapter 4. Linear AEC analysis

in non-linear environments can be written as:

h
0

nl = h
0
+ h

0
∗ h

//
(4.16)

= h
0
+ h

0
∗ h

//

= (δ(n) + h
//
) ∗ h

0

where δ(n) is the Dirac function. As h
//

is time variant due to speech non-

stationarity Equation 4.16 is extended to a more general relation given as:

hnl(n) = (δ(n) + h
//
(n)) ∗ h(n) (4.17)

Equation 4.17 shows that, even when h(n) is a Linear Time Invariant (LTI) system,

the linear path tracked by the AEC will be time variable and is represented by

hnl(n). This also shows that the variability introduced by h
//
(n) depends on the

speech characteristics. The assumption here is that the relation between the non-

linear component and the linear component is time varying and may fluctuate around

a mean value depending on the correlation between the non-linear component and

the far-end signal. Equation 4.17 shows that in frame-by-frame process the optimal

solution deviates from the linear optimal solution. The global optimal solutions for

the linear (h
0
) and non-linear (h

0

nl) case, however, are the same if the mean of h
//
(n)

is equal to zero. Hence the LEMS becomes a time varying filter due to variation

in the speech signal characteristics that will affect h
//
(n). This introduces a major

problem since it is in general assumed that the echo path variations are independent

from the input, which is not the case here. This also shows the difficulty in applying

statistical analysis in this situation as the properties of the speech signal must be

taken into account.

The analysis provides an explanation to the results on the comparison between

the non-linearity and the noise and we will be extended next to the comparison

of different algorithms. As we have shown that the LEMS can be considered as

time varying due to the correlated part of the non-linear component and the far-end

signal we can now explain the reason why APA and FBLMS performance decrease

faster than NLMS.

4.4.2 Effect of the time varying EP

Here we provide explanations regarding the effect of the time varying EP on the

APA and the FBLMS algorithms.

Affine projection algorithm

Figure 4.10 illustrates a third order APA procedure at time sample 10 where k rep-

resents the delay position of the input vector data which corresponds to a delayed

error. If only k = 0 is used this corresponds to the basic NLMS as explained in

Section 2.4.2. This illustration aims to show that the condition where ĥ(10) min-

imises all the errors (e10(8), e10(9), e10(10)) requires that h(8) and h(9) are identical
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Figure 4.10: Illustration of an third order APA procedure at time sample n = 10.

to h(10). This means in a general sense that the EP should be time invariant. We

can simplify Equation 2.15 as:

∆h(n) = K(n)e(n) (4.18)

where K(n) is given by µXT (n)
(
X(n)XT (n) + ξIN

)−1
represents the gain applied

to the error. In circumstances of non-linearity the error vector e(n) is given by:

e(n− k) = d(n− k)− ĥT (n)x(n− k) (4.19)

Equation 4.19 can be rewritten as:

e(n− k) = hT
nl
(n− k)x(n− k)− ĥT (n)x(n− k) (4.20)

= [(u+ h
//
(n− k)) ∗ h(n)]Tx(n− k)− ĥT (n)x(n− k)

= (h(n)− ĥ(n))Tx(n− k) + (h
//

∗ h)T (n− k)x(n− k)
︸ ︷︷ ︸

residual error due to LTI assumption

= e
l
(n− k) + etv(n− k)

where "*" is the notation for the convolution operator used her to keep the simplicity

of the equation and u = [1, 0, · · · , 0]T with same length as h
//
(n). Note that ĥ(n)

is not the same estimate as in the linear case since the estimation is perturbed

by the presence of non-linearity. It is assumed, however, to be a close estimate

of the current h
nl
(n) which is different to h

nl
(n − k). Hence e(n) is given by the

summation of two vectors e
l
(n) and etv(n), where e

l
(n) is the error vector when

the (LTI) assumption holds and etv(n) is a perturbation error vector when the

assumption of time invariance does not hold (as in non-linear case). As the past

directions and the next direction are not the same in the steady-state period the

algorithm will introduce more perturbation compared to the case where only the

current error sample e(n) direction is used as in the NLMS. This will introduce a

perturbation error which corresponds to one sample etv(n) instead of a perturbation

vector. The above analysis thus explains why NLMS introduces less perturbations.
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Figure 4.11: Illustration of BLMS procedure at time sample n = 11 with a block

length B = 3.

In conclusion we may expect more perturbation if the order of the APA increases

since the bigger the value of K (APA order), the higher the difference between

hnl(n−K) and hnl(n).

Frequency block LMS

Figure 4.11 illustrates the time domain equivalent process of the FBLMS which

is referred to as BLMS. A block length of 3 is assumed here for illustration only

(efficient FBLMS is obtained when B = N as used in the experimental tests).

Compared to APA we remark that, for the BLMS the more m increases the more

we exploit future samples meaning in real applications we introduce more delay,

whereas for the APA the more k increases the more we use past samples which does

not introduce delay.

The FBLMS has a similar problem as the APA, as a block-by-block process

where the efficient block length corresponds to that of the EP length. In fact, for

the FBLMS the error increases as a block error is computed and it is assumed that,

inside this block, the system is stationary, which is not true when the EP is time

variant. This will increase the error and make frequency domain fast convolution

inefficient. Considering the BLMS we can write the gradient as:

∆h(n,B) = µ
B−1∑

m=0

e(nB +m)x(nB +m) (4.21)

In non-linear environment Equation 4.21 can be written as:

∆h(n,B) = µ

B−1∑

m=0

e(nB +m)x(nB +m) (4.22)

= µ
B−1∑

m=0

hT
nl
(nB +m)x(nB +m)− ĥT (n)x(nB +m)
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In Equation 4.22 since h
nl
(nB+m) is time variant it is no longer possible to use the

frequency domain fast convolution since it relies on stationarity. To use frequency

domain convolution it is required that the filter is at least constant over the length

of the Discrete Fourier Transform (DFT) thereby explaining the requirement of

stationarity when using the DFT. This is only acceptable for an EP which is slowly

time-variant compared to the block length. As in the APA we can derive the error

introduced by each sample in the block due to the assumption of LTI:

etv(nB +m) = (h
//

∗ h)T (nB +m)x(nB +m) (4.23)

The time variant EP explains also the problem with the FBLMS and shows that

such systems are inefficient in non-linear environments. Compared to the APA, the

FBLMS is highly affected as the block length of the FBLMS should be sufficiently

long to satisfy the condition where it becomes less complex than the NLMS. The

APA order is in general less than 10, due to an increase in complexity, in addition to

the fact that the FBLMS is updated only every B samples instead of every sample.

The second problem assumed with the FBLMS is that, in the frequency domain,

the input frequency bins are assumed to be decorrelated, but in the presence of non-

linearity this independence may be affected due to speech harmonicity. Hence all the

bins will be affected by DFT[(h
//

∗ h)T (nB+m)x(nB+m)] = H
//
(f)×H(f)X (f)

which means that the effect mainly depends on H
//
(f). For speech signals it should

be expected that H
//
(f) has a greater effect on the position of speech harmonics

meaning that the FBLMS will be highly perturbed as the harmonics of speech signal

are generally high level.

APA and FBLMS results reported above show their inefficiency in non-linear

environments. Another approach that is not presented in our test results is

the Recursive Least Square (RLS). It also shows poor performance in presence

of non-linearity [Niemistö & Mäkelä 2003b] as expected under tracking conditions

[Haykin 2002, Eweda 1994].

Non-linear and noise effects

We have seen that the ERLE is better in non-linear conditions than in noise

condition. These observations explained on account of the assumption that

non-linearities are correlated with the far end speech signal. Hence we can write

the microphone signal under the two conditions as:

y(n) = x(n) ∗ h(n) + n(n) (noise) (4.24)

y(n) = x(n) ∗ h(n) + g(x(n)) ∗ h(n) (non-linear) (4.25)

with the condition that the SNR is equal to the SNeR meaning that E{x2(n)}
E{n(n)2}

equals

E{x2(n)}
E{(g(x(n))∗h(n))2}

. With the assumption that the non-linearity is correlated with the
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far-end signal x(n) we can write Equation 4.25 as:

y(n) = x(n) ∗ h(n) + g(x(n)) ∗ h(n) (4.26)

= x(n) ∗ hnl(n) + [g(x(n))]⊥

(4.27)

As [g(x(n))]⊥ has lower energy than g(x(n)) this may result in a lower effect on

linear AEC as compared to the noise. However, we have observed that the average

SD in non-linear and noise environments are not overly dissimilar. This can be

explained by the instability of the speech characteristics so that the mean overtime

of h
//
(n) is equal to zero, hence E{hnl(n) = (δ(n) + h

//
(n)) ∗ h(n)} tends to h0

which is the linear optimal solution. This can be written as:

E{hnl(n)} = E{(δ(n) + h
//
(n)) ∗ h(n)} (4.28)

As h
//
(n) depends on the signal characteristics and not on the environment after the

loudspeaker we can assume that it is independent from h(n). Hence Equation 4.28

can be written as:

E{hnl(n)} = (δ(n) + E{h
//
(n)}) ∗ E{h(n)} (4.29)

= (δ(n) + E{h
//
(n)}

︸ ︷︷ ︸

≈0

) ∗ E{h(n)}

≈ E{h(n)}

This shows that, if the relation between non-linear and the linear components is not

stable we can expect as given in Figure 4.9 that the SD of the linear AEC in the

noise and non-linear environments to be similar in the mean. Thus we can reduce

in a certain interval a part of the non-linear echo component without improving the

estimate of linear echo. Note that the expectation used in Equation 4.29 is assumed

to be done on a longer time process than that for the derivation of the Wiener

solution in Equation 4.11.

This approach also shows that echo post-processing in non-linear conditions

should take into account the problem of echo path deviations introduced by the cor-

relation between non-linear and linear components. This will affect the assumption

that the AEC can converge to the optimal solution and also the correlation assump-

tion of the residual non-linearities and the linear component. In fact this explains

that, when the linear AEC follows the variable path, the non-linear component may

be reduced whereas a part of the linear component cannot be removed.

4.4.3 Frequency domain approach and echo post-filtering

This approach can also be analysed in the frequency domain as reported

in [Mossi et al. 2010c]. The frequency domain filter can be shown to be given by:

H
nl
(f) = (1 +H

//
(f))H(f) (4.30)
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where from [Mossi et al. 2010c] H
//
(f) is given by:

H
//
(f) =

γ
G(x(n),f),X(f)

γ
X(f)

(4.31)

where γ
G(x(n),f),X(f)

is the cross spectral density between the non-linearities and the

far-end signal and γ
X(f)

is the spectral density of the far-end signal. Note that,

as a frame-level approach, H
//
(f) is time dependent. This shows that, when the

frequency bins of the linear and non-linear components overlap, the Wiener solution

will not converge to the linear optimal solution.

With the frequency domain solution in Equation 4.30 we can easily understand

the results reported in [Yemdji et al. 2010] where we use different frequency domain

Wiener filter approaches for echo suppression and for residual echo suppression.

When the Wiener solution is applied in a linear environment its provides less echo

reduction compared to when it is applied in a non-linear environment. This shows

that a part of the non-linear component can be reduced and, since the Wiener

solution does not take into account the phase difference, echo suppression approaches

become more robust in reducing the non-linear component.

In [Yemdji et al. 2010] it is also reported results where a linear AEC is com-

bined with a post-filter based on the frequency domain Wiener approach referred

as residual echo suppression. It is shown that, after the AEC the difference in

ERLE between the linear and non-linear environment is about 10 dB but, after

post-filtering, it is only about 6 dB meaning that the post-filter can reduce more

non-linearities compared to the AEC. This can be explained by the fact that the

AEC is more perturbed by the variability of the echo path introduced by the non-

linear component which is correlated with the far-end signal. This is not the case

for the post-filtering which estimates a new filter for each frame. However, the

presence of an uncorrelated component in the non-linear component leads to the

fact that we have better results when we use a post-filter in linear conditions than

non-linear conditions. A better ERLE is thus expected in linear environments than

in non-linear environments.

This theoretical analysis also shows that the solution proposed

in [Hoshuyama & Sugiyama 2006a, Hoshuyama & Sugiyama 2006c] is compatible

to the approach described above. The approach in [Hoshuyama & Sugiyama 2006a]

uses the linear estimate of the echo signal to reduce the non-linearities. This

approach shows the effectiveness of their results in removing the correlated non-

linear component. This also shows that, when a non-linear post-filter is used one

should take into-account the correlation between the linear echo component and

the non-linear echo component in the estimation procedure. If not respected this

may lead to the over or under estimation of the non-linear component or residual

linear component.



72 Chapter 4. Linear AEC analysis

4.5 Conclusions

This section provides an assessment of linear AEC performance in non-linear envi-

ronments modelled by a polynomial approximation. We compare the performance

of four common standard algorithms. Experimental results show that APA achieves

similar performance to NLMS in highly non-linear environments. The performance

of FBLMS collapses even for relatively small non-linearities. We also show that, in

the presence of non-linearities, the linear echo component is not well estimated by

conventional approaches to AEC.

In noisy environments, however, there is little difference between each approach

and, being less computationally demanding than the other approaches, FBLMS is

an appealing solution in this case. We also show that, as the level of perturbations

increase, performance decreases in both non-linear and noisy environments. Nev-

ertheless, the echo canceller seems to be more robust to non-linearities than noise

with a similar SNR (with the exception of the FBLMS algorithm). We show that

the linear component of the EP is under estimated but is as accurate in the case of

non-linear echo as it is in noisy environments, again with a similar SNR. In addi-

tion, as the non-linear component is correlated with the far-end signal a fraction of

non-linearities are effectively attenuated. Noise, in contrast, is neither correlated,

nor attenuated.

Finally we show how non-linear echo cancellation can be addressed as through

time varying filter estimation and that this approach has potential to bring im-

provements in non-linear environments. Given the correlation between the input

speech signal and non-linear echo, this model illustrates why echo cancellers are less

perturbed by non-linear echo than they are by additive noise. An important con-

sideration is that the effectiveness of such a model is based only on the existence of

[g(x(n))]
//

and not on the model itself, even if, depending on the non-linearities, it

may or may not be the dominant component. This is generally the case with speech

due to its harmonicity. This leads us to question the common application of linear

AEC to cancel the linear component in non-linear environments.

The fact that linear AEC performance decreases in non-linear environment shows

the requirement of developing algorithms that take into account non-linearities.

However, this requires to define the main sources of non-linearities and their char-

acteristics. This is the objective of the next section.



Chapter 5

Static modelling of the

loudspeaker

The objective in this chapter is to define the main sources of non-linearity in the

Loudspeaker Enclosure Microphone System (LEMS) and to propose an appropriate

model, in this case static. The LEMS is described as a cascade of three different

systems: the down-link path, the acoustic channel and the up-link path. Each part

is classified according to the literature as linear or non-linear. It is well known for

example that the loudspeaker is the main source of non-linearities. Measurements

made to compare the distortions introduced in the down-link to those introduced by

the up-link confirm that the loudspeaker introduces significantly more non-linearities

than the microphone. To understand these non-linearities we review the electro-

dynamic loudspeaker literature and present their main sources. Finally, based on

our literature review we propose a discrete, static model for the loudspeaker which

is presented in [Mossi et al. 2010d].

5.1 LEMS components

The most determinant parameters of the Acoustic Echo Cancellation (AEC) are

related to the LEMS which itself involves different components. The LEMS can be

divided into three main paths. The down-link path involves the components after

the AEC reference input to the loudspeaker. The acoustical channel is based on

the characteristics of the near-end environment and groups together all influences

on the loudspeaker signal which is coupled to the microphone. The up-link path is

composed of the components from the microphone to the reference echo point of the

AEC. All these components are described further below.

5.1.1 Down-link path

The Down-Link (DL) path is generally composed of the Digital-to-Analog Con-

verter (DAC), an analogue amplifier and a loudspeaker. The DAC is assumed to

introduce low distortion in the original signal as quantization noise. The amplifier in

the analogue domain can introduce clipping distortion. Most of the distortions in-

troduced by the amplifier are generally clipping distortions due to the low electrical

power of the mobile. The clipping effect can in fact be well modelled but is generally

complex due to the hysteresis effect [Pillonnet et al. 2008, Burrow & Grant 2001].

The hysteresis effect introduces memory in the distortion which then increases the
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complexity of the model. A simplification involves modelling amplifier distortion as

a simple hard clipping. This hard clipping is studied further in Section 6.3.1.

The loudspeaker is also a source of distortion; in fact it is one of the LEMS

devices which has received the most attention in the literature. Many papers have

focused on the source of loudspeaker distortion and have proposed solutions to

model them. This is explained by the fact that, instead of being part of the AEC

problem, modelling of loudspeaker distortion is itself a wide area of research. Hence,

non-linear AEC sometimes relies on solutions proposed in the loudspeaker area to

propose a model for the LEMS. In Section 5.3 we will present the most widely used

model of the electro-dynamic loudspeaker and the different source of non-linearities

that have been investigated in the literature.

5.1.2 Acoustic channel of near-end environment

The acoustic channel is generally assumed to be linear but it has been shown

in [Birkett & Goubran 1994] that it may introduce some non-linearities due to

enclosure vibrations. These non-linearities are very difficult to model and

resemble as noise-like distortion and may severely reduce the Echo Return

Loss Enhancement (ERLE) of linear AEC [Birkett & Goubran 1994]. Results

in [Birkett & Goubran 1994] show, however, that non-linearities from the loud-

speaker have less effect compared to those of the enclosure. Another constraint that

is introduced by the enclosure vibration is echo path changes. Even if we assume

that non-linearities can be well modelled, enclosure vibration will introduce Echo

Path (EP) instability and so a simple adaptive filter cannot easily track such non-

linearities. Enclosure distortions are not considered in our study and the acoustic

channel is assumed to be linear.

5.1.3 Up-link path

The up-link path is composed of three components: microphone, amplifier and

Analog-to-Digital Converter (ADC). The microphone is a simple transducer which

converts the acoustic signal to the electrical domain. The microphone is sometimes

based on similar transduction elements as the loudspeaker, it is nevertheless consid-

ered to introduce little distortions. Microphone distortions have accordingly been

for less studied [Ravaud et al. 2009]. Research in the microphone field is mainly fo-

cused on the directivity problem than non-linearity. In any case microphone signals

are generally low level and do not introduce significant distortion. In general the

up-link amplifier is also used in the range where it can be considered as linear but

distortion will nevertheless be introduced by the ADC is comparable to quantization

noise.



5.2. Analysis of real device distortion 75

Mobile
Network simulator

(CMU)

ref signal

meas signal 2

PC
+

sound card
(MFE VI)

meas signal 1

Figure 5.1: Global system, receiving direction

Mobile
Network simulator

(CMU)

ref signal

meas signal 2

PC
+

sound card
(MFE VI)

meas signal 1

Figure 5.2: Global system, sending direction

5.2 Analysis of real device distortion

This section presents an analysis of the LEMS based on mobile phone measurements.

The objective is to define components that generate more distortions. Hence, they

can be further modelled.

Real device measurements consist of verifying the assumption that the loud-

speaker introduces more non-linearities than the microphone. In this measurement

the mobile phone is fixed. Signals are sent directly to the loudspeaker of the termi-

nal or the mouth of a mannequin and recorded with the mobile phone microphone

or a reference microphone in the ear of the mannequin. The signals sent to the

loudspeaker are referred to as receiving direction signals as illustrated in Figure 5.1

whereas those from the mouth of the mannequin are referred to as sending direction

signals as illustrated in Figure 5.2.

5.2.1 Experimental set-up

The systems used for all of our experiments are illustrated in Figure 5.1 and 5.2. A

Personal Computer (PC) is used to store and record all audio data that is sent to, or

received from a mobile terminal via an MFE VI sound card [HEAD acoustics 2008]

and a network simulator [ROHDES&SCHWARTZ 2008]. In Figure 5.1 a signal

is played by the PC, transmitted through the network simulator to the mobile

and then played by mobile terminal loudspeaker. The loudspeaker output is then

recorded with an independent, high-quality microphone mounted in the ear of a

mannequin [ITU 1996] and with the mobile microphone which sends its signal back

to the PC via the same network simulator. As illustrated in Figure 5.2 the signal

played by the PC is sent to the mannequin and played by the loudspeaker in the
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mouth. The signal is again recorded by the two microphones.

The mobile terminal is placed at a distance of 20 cm from the mouth, i.e. in

hands-free mode rather than handset mode, and all speech enhancement processes

are deactivated. Since we aim to verify the source of distortions in the LEMS we

first verified the linearity of all other system, or channel elements. The sampling fre-

quency of the input signals is 48 kHz. When using the loudspeaker this is converted

in the network simulator to 8 kHz according to GSM specifications then recorded

at 48 kHz at the ear of the mannequin and at 8 kHz at the mobile microphone.

System linearity

In addition to the non-linear distortion introduced by the loudspeaker, various other

non-linear signal processing algorithms, such as the speech codec (here the Enhanced

Full-Rate codec), may also contribute distortions and thus corrupt the model of

distortions introduced specifically by the loudspeaker. Therefore, it is necessary to

determine amplitude and frequency ranges where the other system elements can

be considered to behave linearly. Any distortions under these conditions can thus

be reliably attributed to the loudspeaker only. To determine the linear range we

conducted some non-intrusive tests where artificial, pure sinusoidal signals were

sent to the mobile terminal but were recorded in digital form immediately before

the loudspeaker. Signals with different amplitudes and frequencies were considered.

By comparing the single sinusoidal input to the output we can easily observe any

non-linear behaviour and thus determine amplitude and frequency ranges for which

the system can be assumed linear. Our experimental results show that the system

is effectively linear for the full amplitude range between the frequencies of 200 Hz

and 3700 Hz.

5.2.2 Device measurements

The non-linear behaviour of the loudspeaker and microphone is thus observed by

repeating the same experiment described above but where signals are recorded after

the loudspeaker or the mannequin. Here we consider single sinusoidal test signals

with one of 10 different amplitudes in the range of 0 dB (full-scale) to −27 dB

with a step size of −3 dB and one of 80 different frequencies within the range of

50 Hz to 4000 Hz with a step size of 50 Hz. Each of these signals may be denoted

by Ai,refe
2jπfi,ref where Ai,ref is the amplitude and fi,ref is the frequency. This

amounts to a total of 800 test signals. In order to observe the resulting harmonics

the output signals are transformed into the frequency domain. Measured signals are

then used to compute the total harmonic distortion.

Preliminary experiments showed that loudspeaker non-linearities are sufficiently

modelled by considering up to 6th order harmonics. This is explained by the use of

a 4000 Hz sampling frequency meaning that many higher frequency harmonics will

not be recorded by the mobile microphone, which is limited in most current mobile

phone terminals to frequencies lower than 4000 Hz. The THD is computed over 6
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Figure 5.3: THD in dB measured in the receiving direction
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Figure 5.4: THD in dB measured in the sending direction

harmonics and is given by:

THD =

∑6
p=2

∥
∥
∥A2

i,refe
2jπp∗fi,ref

∥
∥
∥

∥
∥
∥A2

i,refe
2jπfi,ref

∥
∥
∥

(5.1)

where A2
i,refe

2jπp∗fi,ref is the estimated level of the pth harmonic in the measured

signal. The THD is computed over all frequencies and amplitudes.

Receiving and sending direction THDs are illustrated in Figure 5.3 and 5.4 re-

spectively. Upon their comparison, we observe that the receiving direction signal is

the more disturbed illustrated by greater amount of yellow and red. The loudspeaker

thus introduces more distortion. We also observe that, in the receiving direction,

distortion is greater at higher amplitudes. In the sending direction, however, some

low distortions are present for low level signals. These small distortions can be ex-
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plained by the fact that low level signals are very sensible to estimation error and

noise.

When comparing the distortions in the mobile phone microphone (Fig-

ure 5.3 (a) and 5.4 (a)) to that of the mannequin ear (Figure 5.3 (b) and 5.4 (b)),

we observe that the mobile phone microphone introduces more distortions at lower

frequencies (under 1000 Hz) than the reference microphone. For frequencies in the

range of 1000 Hz to 3500 Hz, however, the reference microphone signal seems to be

more distorted. This is explained by the limited sampling frequency of the mobile

microphone. As the ear microphone and the mobile microphone have different sam-

pling frequencies it is therefore normal that the ear microphone signal is the more

distorted. In fact for the mobile terminal microphone all second harmonics generated

above 2000 Hz and third harmonics generated above 1400 Hz will be filtered as the

mobile phone sampling frequency is limited to 4000 Hz. The reference microphone

provides a clearer picture of the loudspeaker distortions. It shows that, even if it

is true that loudspeaker distortions are generally localized in low frequencies with

high level signal they can be significant until 2500 Hz, as shown in Figure 5.3 (b).

Figures 5.3 (a) and (b) show that the recorded signal from the mobile microphone

has more distortion in the lower frequencies (< 1000 Hz). This difference can be

explained by the effect of the acoustic path which is different for the microphone. As

explained previously the middle range difference is due to the sampling frequency

of the mobile microphone.

Figure 5.4 (a) shows that the mobile phone microphone can be considered as

linear even if we can observe that it is not as perfect as the reference microphone

(Figure 5.4 (b)). More distortion is also noticed for lower frequencies (< 200 Hz)

than higher frequencies (> 3700 Hz). These distortions are generally introduced by

the channel before the loudspeaker and should not be taken into account.

These measurements show that the loudspeaker introduces more non-linearity

than the microphone and justifies why this work focuses on loudspeaker distortions.

To understand these non-linearities a study of the loudspeaker is required but is

beyond the scope of this work. Hence we present an overview of the electro-dynamic

loudspeaker model and the source of non-linearities in the literature review.

5.3 Electro-dynamic loudspeaker

This section presents a literature review of the electro-dynamic loudspeaker and an

appropriate model. Loudspeakers are transducers that are used to convert electrical

signal to acoustic signal. Different types of transduction exist and lead to different

types of loudspeaker including e.g. piezo-electric, electromagnetic, electrostatic and

electro-dynamic.

The most widely used loudspeaker is the electro-dynamic loudspeaker which

is based on the principle of electromagnetic induction. Its popularity is due to its

low-cost and robustness, reliability in the corresponding human ear frequency range.

This popularity has been boosted by the development of neodymium magnets which
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Figure 5.6: Thiele and Small model of the electro-dynamic loudspeaker.

allows very light speakers and greater efficiency which is of particular appeal in

the mobile phone market. The electro-dynamic loudspeaker represents 99% of the

loudspeaker market [Quaegebeur 2007].

An illustration of a typical electrodynamic loudspeaker is illustrated in Fig-

ure 5.5. Speakers used in mobile phones, however, do not typically include a rim. A

discussion of non-linearities and more specifications can be found in [Bright 2002].

5.3.1 Electro-dynamic model

The electro-dynamic loudspeaker is based on electro-magnetic induction. An induc-

tion force is imposed on an element traversed by a current in a magnetic field. The

transduction elements include the magnet, the voice coil and the cone. The magnet

generates the magnetic field necessary for the induction. The voice coil is fixed on

"fine" aluminium paper which is connected to the diaphragm. The diaphragm is

supported by the frame via suspensions; the spider for the inner suspension and the

rim for the outer suspension.

When the voice coil is traversed by an electrical current, due to the presence of

the magnetic field a force is generated (Lorentz force). This results in movement

of the voice coil and the diaphragm and results in change in acoustical pressure.
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This transduction is typically modelled as an electro-mechanical system proposed

by Thiele and Small [Schurer 1997, Quaegebeur 2007]. The model is illustrated in

Figure 5.6.

The elements in Figure 5.6 can be classified in the electrical or mechanical do-

main. A voltage ue is applied to the loudspeaker. Re and Le are respectively the

resistance and self-inductance of the voice coil. u is the voltage of the self-inductance

when the voice coil is traversed by a current i. In the mechanical part Bl is the

force factor which, in the Lorentz case and according to the loudspeaker geometry,

gives the induction as F = −Bli. Mm represents the mechanical moving mass, Km

the stiffness of the spider and rim and Rm the mechanical damping. This model

may include an acoustical impedance as given in [Schurer 1997] which is generally

needed to make the difference between a vented cabinet and a closed cabinet model.

This extension is generally required for a state space loudspeaker control and is not

the objective in this thesis due to reasons explained later. The model has different

extensions regarding whether the model is used with a closed cabinet or vented cab-

inet where the effect of pressure in the back of the loudspeaker is not the same. But

this is beyond the topic of our work and we stay with the general model given by:

ue(t) = Rei(t) + Ldi(t)
dt +Bl dx

dt

Bli(t) = Mm
d
2x(t)
dt2

+Rm
dx(t)
dt +Kmx(t)

(5.2)

Non-linearities stem from the electrical domain and the mechanical domain, both of

which are described below.

5.3.2 Electrical non-linearities

Electrical non-linearities are those which arise with electrical parameters, however,

their effects may affect in the mechanical parameters.

Non-linearities of the force factor

In reality Equation 5.2 is an approximation based on the assumption of an uniform

magnetic field which is indeed rarely the case. In fact, when the voice coil moves,

a part of it may be far from the magnet and make the magnetic field to be non-

uniform. In this case the force factor Bl cannot be assumed linear. Two non-linear

models have been proposed. A polynomial expansion model given by:

Bl(x) = Bl0 +Bl1x+Bl2x
2 · · · (5.3)

and a Gaussian model given by:

Bl(x) = Bl0 e
−µ(x−x0)2 (5.4)

The latter is assumed to have a better approximation of the real model but is

practically expensive and less popular.
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Non-linearities of the self-inductance

When the self-inductance moves and is traversed by a current this will create another

magnetic field that is opposed to the movement. This can be formulated as a

self-inductance which depends on the current and affects the voltage of the self-

inductance. Hence, the voltage of the self-inductance is given by:

u(t) =
dLe(x(t))i(t)

dt
(5.5)

=
dLe(x(t))

dt
i(t) + Le(x(t))

di(t)

dt

= i(t)
dLe(x(t))

dx

dx(t)

dt
+ Le(x(t))

di(t)

dt

due to the dependency of the movement of the self-inductance another additional

force in the mechanical parameter appears which is derived from the energy:

Fr(x, t) =
∂Wl

∂x
(5.6)

=
∂(12 i

2Le)

∂x

=
1

2
i2

dLe

dx

Fr(x, t) is the reluctance force which affects the mechanical part and is opposed to

the induction force F = −Bli which is due to Eddy current. As the voltage at the

self-inductance and a reluctance force are generated this introduces some additional

component in the electrical and mechanical parts respectively of the Thiele and

Small model. These non-linearities are also modelled by a polynomial expansion:

Le(x) = L0 + L1x+ L2x
2 · · · (5.7)

5.3.3 Mechanical non-linearities

Mechanical non-linearities arise due to variations in the mechanical parameters such

as stiffness and mass deformation due to the movement of the diaphragm.

Non-linear stiffness

In the linear case the stiffness is assumed to be linear, but in reality the stiffness

is excursion dependent. Hence, like the self-inductance, it is also modelled with a

polynomial expansion series as:

Km(x) = K0 +K1x+K2x
2 · · · (5.8)

The model of the stiffness is difficult when all other parameters that may influence

the stiffness such as repeatability, temperature and others, are taken into account.
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Other sources of non-linearity

Mechanical clipping is generally avoided but may arise if the excursion reaches the

limit of the diaphragm and extension. Mass variation non-linearities also affect the

mechanical part of the loudspeaker as the resulting force which depends on the mass

will become excursion dependent. Some other non-linearities are also introduced in

the acoustical part such as Doppler distortion and non-linear wave propagation.

Non-linear analysis approaches

Many approaches have been proposed for loudspeaker modelling, i.e. the state space

and Volterra models. The state space model usually requires an access to the loud-

speaker components. The control of such models requires a preliminary knowledge

of the parameters and the behaviour of the distortions. The advantage of such a

model is mainly the number of parameters which are smaller, but is not well fitted

to AEC applications. As it requires knowledge of different parameters and if these

parameters are not well defined, it may introduce instability. In [Kajikawa 2011] it

is shown that the Volterra model may have better performance for the non-linearity

reduction of the loudspeaker. The Volterra filter has been widely used for non-linear

identification and the capability to model loudspeakers has been demonstrated in

many papers. Next we present two different approaches to model loudspeaker’s

non-linearity.

5.4 Loudspeaker distortion modelling

Loudspeakers convert electrical signals into sound but may introduce distortions.

With the miniaturization of mobile terminals the linearity of the loudspeaker is of-

ten adversely affected and, at sufficient levels, the associated non-linear distortion

can become disturbing for the near-end listener. Linearity is also important for dig-

ital signal processing (DSP) algorithms which assume linear conditions. Therefore,

without appropriate compensation, the performance of all downstream processes,

will also be adversely affected, e.g. as in echo cancellation [Mossi et al. 2010a].

One approach to mitigate such distortion involves loudspeaker linearisation tech-

niques which all rely on non-linear modelling of the loudspeaker. Modelling typically

involves an electro-acoustic and mechanical study of the loudspeaker to characterise

its behaviour in non-linear conditions. These approaches, however, are generally

too complex due to the high number of parameters which need to be estimated and

the complex relationship between the electro-acoustic and mechanical properties as

described in Section 5.3. The general conclusion of such studies show that loudspeak-

ers are adequately characterised using a Volterra series for weak non-linearities and

researchers have proposed many different loudspeaker models via such approaches

[Frank 1994, Gao & Snelgrove 1990].

We present two non-linear loudspeaker models which are both based on practi-

cal studies of input-output characteristics. The first model is based on frequency-
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domain, harmonic distortion modelling whereas the second approach is based on

parallelized polynomial filters to model harmonic distortion. Both models are de-

rived from the same set of empirical observations and are compared to real system

outputs in order to demonstrate their effectiveness in predicting non-linear distortion

in speech signals.

This section presents a system set-up for loudspeaker modelling which is used

to collect practical examples of non-linear loudspeaker distortion from real mobile

terminals. This data is used to derive the two non-linear loudspeaker models. The

section ends with an assessment of the two approaches by comparing loudspeaker

outputs for real speech signals to those generated according to each of the two

models.

5.4.1 System characterization

Here we describe the experimental test that was used to acquire the empirical ob-

servations from which the two models are derived.

Set-up for loudspeaker modelling

The system used for the loudspeaker characterization is as illustrated in Figure 5.1

and the set-up is similar to that presented in Section 5.2.1. The difference is that,

for the mobile loudspeaker characterization, only the reference microphone is used

to record the signals. In these experiments the mobile terminal is placed in close

proximity to the reference microphone, i.e. in handset mode rather than hands-free.

Handset mode is used to reduce the effect of the acoustic channel which may have

different effects on the fundamental components and their harmonics and lead to

an acoustic-channel-dependent characterization. As in the previous set-up the other

devices are deactivated (e.g. speech enhancement) and the linearity condition of the

channel without the loudspeaker is again necessary (see Section 5.2.1).

A similar approach is again used i.e. the THD computation described in Sec-

tion 5.2.2. The same sinusoids are sent to the loudspeaker and recorded at the

mannequin ear. Again the measured signals are transformed into the frequency do-

main in order to isolate and characterise the different harmonic components. Then,

according to the same quantized frequency scale, the amplitudes at the output are

set into a matrix, one for each input amplitude. Each matrix element thus gives the

amplitudes at the output for each of the 80 fundamental reference frequencies and

their generated harmonics. These matrices characterise the non-linear behaviour of

the loudspeaker and are the basis of the models that are described next.

Two models are described here: one is based upon a frequency domain approach

and the other is based upon a polynomial approach.

5.4.2 Frequency domain model

The matrix model is based on the assumption that speech signals may be represented

as a sum of sinusoids and thus that the non-linear effect of the loudspeaker may be
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Figure 5.7: The frequency domain model. The input signal is windowed and trans-

formed into the frequency domain where harmonic distortions are introduced accord-

ing to the amplitude-dependent matrices. The notation bik/i represents the harmonic

generated by the ith frequency bin that will impact the kth fundamental bin

modelled as the summed distortion of individual sinusoids. The decomposition into

sinusoids is performed with the discrete Fourier transform (DFT) and the entire

model is constructed in the frequency domain.

An overview of the system is illustrated in Figure 5.7. The input signal is first

windowed into successive overlapping frames of length 40 ms with a frame rate

of 48 kHz, corresponding to a frame overlap of 75%. Each frame is transformed

into the frequency domain where each component is denoted by Xi = Aie
2jπfi

and where i is the DFT bin, Ai is the amplitude and fi is the frequency. Then, for

each frequency fi, we determine the nearest quantised sinusoidal reference frequency

fi,ref , in addition to the nearest reference amplitude Ai,ref , i.e. we identify the

‘closest’ or most applicable reference matrix. As explained in Section 5.2.1, each

reference sinusoid at the input leads, at the output, to (i) a sinusoid at frequency

fi,ref and amplitude Ai,ref (0) and (ii) 5 harmonics at frequencies (k + 1) · fi,ref
with corresponding amplitudes Ai,ref (k), for k = 1...5. Ai,ref (0) and Ai,ref (k) are

obtained directly from the matrices described in the previous subsection. We assume

that, if Ai ≈ Ai,ref and fi ≈ fi,ref , then Ai(k)
Ai

≈
Ai,ref (k)
Ai,ref

, and hence we obtain the

fundamental and harmonics generated by Aie
2jπfi using cross-multiplication with

Ai and is given by:

Ai(k) =
Ai,ref (k)

Ai,ref
×Ai (5.9)

= gai,fi,k ×Ai

where gai,fi,k =
Ai,ref (k)
Ai,ref

is the gain applied to the k-th harmonic for an input sig-

nal of amplitude ai and frequency fi. This process corresponds to the 3rd block in
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Figure 5.7. By combining all of the harmonics generated by each of the reference

signals (block 4 in Figure 5.7) we obtain an approximation of the non-linear distor-

tion in the frequency domain. Finally, a time domain signal is then resynthesized

by applying an inverse DFT with overlap-and-add.

5.4.3 Polynomial model

∑
x(n)

P2(x(n))

Pk(x(n))

FIR1

FIR2

FIRk

FIR6P6(x(n))

xout(n)

x0(n)

x1(n)

xk−1(n)

x5(n)

Figure 5.8: The polynomial model. The signal is processed in each stage by different

polynomial and FIR filters

The so-called polynomial model is based upon a combination of polynomial and

FIR filters. In contrast to the frequency domain model the idea here is to generate

the different harmonics in the time domain according to different polynomial filters.

The system is illustrated in Figure 5.8 where the polynomial filters are given by

Pk(x(n)). Six parallelized branches aim to compute the linear response, x0(n), and

the non-linear harmonics, xk(n). All signals are summed together with the original

input signal to give the output xout(n).

The polynomial filter coefficients are determined according to the relationship

between a cosine function at multiple frequencies and a cosine function at multiple

powers:

cos(2πn× f) =
n∑

i=0

αicos
i(2πf). (5.10)

Using trigonometric properties we determine the value of αi for n = 1, ..., 6 (one

fundamental frequency and five harmonics). These values correspond to the different

coefficients in the polynomial model given by the Chebyshev polynomials as:
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P1(x) = x

P2(x) = 2x2 − 1

P3(x) = 4x3 − 3x

P4(x) = 8x4 − 8x2 + 1

P5(x) = 16x5 − 20x3 + 5x

P6(x) = 32x6 − 48x4 + 18x2 − 1. (5.11)

Without added filtering the amplitude of the generated harmonics is independent

of the input frequency and so an additional bank of FIR filters is used to adjust their

amplitudes.

If, for example, a particular range of input frequencies do not lead to any sig-

nificant energy at the k-th harmonic, then a high-pass FIR filter, FIRk, with high

attenuation is applied to the output of the polynomial filter Pk(x(n)). For k = 1

the FIR filter is the impulse response which characterizes the coupling between the

loudspeaker and the microphone in the ear of the mannequin.

To estimate the FIR filter coefficients we use reference signals to compute the

gains, in a similar manner to that described at the beginning of Section 5.4.1 in Sub-

section “set-up for loudspeaker modelling”. Filter gains are computed per harmonic

using frame-by-frame Fast Fourier Transform (FFT)s of the input (Ai,refe
2jπfi,ref )

and each individual output harmonic (Ai,ref (k)e
2jπkfi,ref ). Filter gains are then

determined according to their average ratio:

Gk(fl) =
|Ai,ref (l)ej2πlfi |2

|Ai,refej2πfi |2
, (5.12)

where fl is the frequency of the harmonic equal to (k + 1) · fi. The FIR filter is

then the minimum phase filter which reflects the determined gain profile. After the

estimation of all filter coefficients the system output is easy to compute. The input

signal is passed through each combined polynomial and FIR filtering stage and the

sum of the resulting signals gives the system output.

5.4.4 Constraints and limitations

Before we assess each of the two models we describe the limitations of each approach

and their potential accuracy. The limits are defined by the complexity of the model,

i.e. the size of the harmonic matrix. For the frequency domain model this translates

directly to the number of harmonics considered, which has a direct impact on system

accuracy. The bigger the matrix the better the accuracy, but the more complex the

model. For the polynomial model, accuracy depends on the number of stages and

the length of the FIR filters. Increasing in the number of parameters will increase

the complexity but less so than for the frequency domain model.

Finally, in the two approaches described above, intermodulation distortions are

not considered. In the frequency domain model they are completely ignored. Some
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intermodulation distortions are generated with the polynomial model (though they

were not fully considered directly in the design and polynomial parameter estima-

tion). The only effect in this case is that they cannot be controlled independently

from the harmonics.

5.4.5 Experimental work

To compare the two models we assess each of them with real speech signals that

are played at the loudspeaker of a mobile terminal and recorded at the ear of the

mannequin as described in Sections 5.4.2 and 5.4.3. The signals measured at the ear

are compared to the results obtained according to the two models described above.

Three different metrics are used to assess model accuracy. First, signals are assessed

in the time domain in terms of the segmental Signal-to-Estimate Ratio (SER) given

by:

SER(m) = 10× log10

( ∑(m+1)×N
i=m×N x2real(i)

∑(m+1)×N
i=m×N x2model(i)

)

(5.13)

where xreal is the speech signal recorded at the ear of the mannequin and xmodel is the

distorted speech predicted according to the model. Performance is also assessed in

the frequency and cepstral domains through the log-spectral and cepstral distances.

The Log-spectral Distance (LsD) is given by:

LsD(m) =
√

E{(Lxreal
(m)− Lxmodel

(m))2} (5.14)

where

Lxs(m) = 20 · log10(FFT [xs(m ·N), ..., xs((m+ 1) ·N)]) (5.15)

and the Cepstral Distance (CD) is given by:

CD(m) =

√
∑

N

[Cxreal
(m)− Cxmodel

(m)]2 (5.16)

where

Cxs(m) = IFFT{ln|FFT [xs((m ·N))...xs((m+ 1) ·N)]|} (5.17)

The CD is intended to give a more perceptually-related assessment, or at least

one which is better correlated to subjective assessment than the log-spectral dis-

tance. In Equations 5.15 and 5.17 the index s refers to measurements or estimates

from real experiments or a model respectively. Measurements come from consecu-

tive frames of 20 ms in length. For all experiments reported here performance is

evaluated using a dataset of 3 speech signals with a total length of 1 minute.
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Figure 5.9: SER against time for the two loudspeaker models. The frequency do-

main distortion model underestimates the real output whereas the polynomial model

overestimates the real output (An SER of 0 dB indicates accurate estimates).

Time domain assessment

The SER provides an impression of global system performance and, when plotted

against time, profiles illustrate variation in the error against time between modelled

and ground-truth distortions. Figure 5.9 shows a profile for an example speech signal

which typifies performance across the whole speech dataset. The solid blue profile

illustrates performance for the frequency domain model and the dashed red profile

illustrates performance for the polynomial model. On average the two systems

give similarly accurate distortion estimates: despite some deviations the SER for

both models is generally within a margin of +/− 2 dB. Figure 5.9 also shows that

the polynomial model generally overestimates the distortion (SER< 0) whereas the

frequency domain model generally underestimates the distortion (SER> 0). This

can be explained by the complete absence of intermodulation harmonic estimation

in the frequency domain model, leading to lower energies in xmodel than in xreal. In

contrast, the polynomial model leads to an overestimation of intermodulation, and

consequently more energy in xmodel than in xreal.

Overall, the two models lead to approximately the same amount of error with a

mean absolute SER of 1.33 dB and 1.28 dB for the frequency domain and polyno-

mial models respectively, for the complete speech dataset. The profiles in Figure 5.9

contain some significant troughs, especially for the frequency domain model (around
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1, 1.8, 5 and 6 s for instance). Listening tests reveal that they typically occur only

during speech/non-speech transitions, i.e. at 1, 1.8 and 5 seconds in Figure 5.9. This

can be explained by the fact that the frequency domain model generates harmonics

from the speech signal either side of the transition. Considering a silence/speech

transition this leads to a form of pre-echo as the harmonics are generated for the

entire frame being processed. This is the classical pre-echo effect inherent in fre-

quency domain processing. Informal listening tests show that these transitions are

generally less perturbing with the polynomial model, despite important differences

that can still be noticed in the SER measurement during such periods.

Spectral and cepstral domain assessment
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Figure 5.10: Frequency domain assessment with the log-spectral distance

In order to give an assessment that is more reflective of human perception we

also computed LsD and CD to assess model accuracy.

Figures 5.10 and 5.11 show profiles for LsD and CD respectively, for each of the

two models. As for time domain measurements with the SER, the two models show

similar performance. LsD for both frequency domain and the polynomial models are

relatively close (averages of 7.11 dB cf. 7.10 dB across the entire speech datasets).

As illustrated in Figure 5.11, the CD between modelled and ground-truth distortions

is reasonably similar. The global mean of the CD for this typical example is about

0.52 for the frequency domain model and 0.50 for the polynomial model. We found

similar averages between 0.5 and 0.7 for the whole speech dataset.
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Figure 5.11: Frequency domain assessment with the cepstral distance

There are noticeable peaks in the LsD profiles. These peaks correspond to the

peaks in the SER profiles, i.e. during transitions. The CD profiles, however, show

more erratic behaviour. Even if the CD remains relatively low, such erratic be-

haviour can be explained by the fact that the CD better reflects human perception

and is hence more sensitive to perceptual distortion than the other distances con-

sidered. The peaks appear during different periods for the two models. Even if the

mean distances are similar, the CD reflects the fact that the deviations between

modelled and real signals sound different for both models: the kind of deviation

introduced by the polynomial model does not appear for the same kind of speech

signal as for the frequency domain model. Listening tests confirm this assessment.

On one hand, the polynomial model interferes with the timbre of the signal, some-

times overly exaggerating certain frequencies compared to real recorded signals. On

the other hand the deviations introduced by the frequency domain model are more

noticeable during transitions, even within the speech signal, for instance during tran-

sitions between voiced and unvoiced speech. In any case the CD is relatively small

and the variation over time is not that high. This indicates that the two models give

a good approximation of non-linear system behaviour. This conclusion is confirmed

by listening tests during which the differences are audible, but the model outputs

are comparable to the real recorded signals.
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5.5 Conclusion

Using real measurements recorded using a real mobile phone we compare the dis-

tortions from the loudspeaker and the microphone and show that the loudspeaker is

the main source of non-linearities. According to these results we make an overview

of the electro-mechanical model of the loudspeaker and present the main sources of

non-linearities. We then present two models of non-linear harmonic distortion in

mobile terminal loudspeakers. Both models may be used to give relatively accurate

predictions of loudspeaker behaviour, through a fixed set of coefficients determined

empirically, and can be seen as a good first approximation of small loudspeakers.

Nevertheless the models do not match perfectly with reality and thus there remains

some potential for improvement. The lack of reliable intermodulation modelling

seems to be the main drawback of both approaches.

The fact that these models are static is also a drawback in AEC applications as

they are device dependent and cannot follow the changes that arise along time in

the loudspeaker parameters. Hence, these solutions particularly the time domain

model are used to develop non-linear AEC approaches that will be presented in the

next chapter.





Chapter 6

Adaptive non-linear AEC

Non-linearities generally degrade the performance of most echo cancellation algo-

rithms which are based on the assumption of linearity and thus the problem of

non-linear echo cancellation has emerged as an increasingly important problem.

There are two main approaches to tackle the problem of non-linearities in the

acoustic path. The first approach is based on non-linear post filtering to sup-

press the residual non-linear echo [Hoshuyama & Sugiyama 2006c]. In general the

post-filter is preceded by a conventional linear adaptive filter. However, non-

linearities have an adverse effect on linear filtering which impacts upon non-linear

post processing and thus degrades global performance. The second, more popular

approach is based on the use of a Volterra series and non-linear adaptive filter-

ing [Stenger & Rabenstein 1998, Fermo et al. 2000]. Whilst there is less dependence

on the performance of linear filtering the approach typically suffers from slow con-

vergence. This lead us to focus on new structures which can utilise the model of

the loudspeaker developed previously in Chapter 5. The model of the loudspeaker

is used as a compensator for non-linearity pre-processing.

A Cascaded Structure (CS) is chosen here due to the lower number of parameters

required compared to the Volterra filter in a parallel approach. The pre-processor

proposed here is used in two different approaches. The first approach consists of

pre-processing the linear Acoustic Echo Cancellation (AEC) input to emulate the

loudspeaker non-linearity effects. The second consists of linearising the loudspeaker

by pre-processing its input and thus allow to support the use of linear AEC.

The Volterra filter is discussed first as the baseline non-linear AEC approach.

The Volterra filter is presented with an overview of its characteristics. We propose to

first investigate the Volterra filter identification, then we focus on the special case of a

Volterra filter derived from the concatenation of a non-linear system and a linear sys-

tem. This approach is used in this thesis since, as described in Chapter 5, the main

non-linearities are introduced by the loudspeaker and we consider that the rest of the

Loudspeaker Enclosure Microphone System (LEMS) is linear. Then we introduce the

CS which is split into two sections. The first presents a baseline cascaded structure

developed in [Mossi et al. 2011a] whereas the second present an improved version

where we combine the basic model of the loudspeaker with a clipping compen-

sator and decorrelation pre-processing of the linear AEC input [Mossi et al. 2012].

We then present the loudspeaker pre-processing approach where linearisation pre-

processing is applied to the loudspeaker input signal [Mossi et al. 2011b]. Finally,

the last section presents a summary of the different algorithms which are assessed

in the next chapter.
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6.1 Volterra series approach

In this section we present the general second order Volterra filter and then focus

on its application to acoustic echo cancellation. The objective is to highlight some

characteristics of the Volterra filter which are already known in non-linear AEC

applications and the limitations of the structure. We then justify the investigation

of pre-processing approaches for non-linear AEC in the case of loudspeaker non-

linearity.

The Volterra filter is an extension of the Taylor series to non-linear systems

with memory. In general, eletrical and mechanical systems have memory and can-

not be well modelled by Taylor series which is in generally used to model mem-

oryless systems. The Volterra series takes cross term effect from past samples

into account. This makes the Volterra filter more reliable for system modelling

and is the most widely used non-linear model. Another feature which contributes

to its appeal is the linearity in parameters which allows easy exploitation of lin-

ear system algorithms. The Volterra filter is widely used but the foundation

of the Volterra series for engineering applications is reported in few papers such

as [Schetzen 2006, Boyd et al. 1984, Boyd 1985].

This section is organized in two parts. The first part introduces the general

Volterra series. In the second part we describe the application of the Volterra to

non-linear AEC.

6.1.1 Volterra filter identification

While it may be readily extended to higher orders, we focus on quadratic Volterra

filter identification. The objective is to understand the issues which arise when

trying to identify the Volterra kernel. The output of the Volterra filter is given by:

y(n) = h0 +
P∑

p=1

Np−1
∑

l1=0

· · ·

Np−1
∑

lp=0

hp(l1 , · · · , lp)x(n− l1) · · ·x(n− lp) (6.1)

where hp(l1 , · · · , lp) is the p − th order Volterra kernel, P represents the order of

the Volterra filter (which is generally equal to 2 for complexity reasons) and N
p

represents the memory of the p − th non-linear kernel whose size corresponds to

Np
p
. The particular kernel of the Volterra filter is the 0 − th order kernel which

corresponds to a constant value of the system (generally not used) and the 1st order

kernel which corresponds to the linear system filter. The Volterra filter can be

considered as a Multiple Inputs Single Output (MISO) system where each input

corresponds to a kernel and the output is the sum of the different kernel outputs.

In most systems the Volterra filter is limited to the quadratic kernel such as on-line

system identification. When the Volterra filter is limited to the quadratic kernel
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Figure 6.1: Matrix representation of the second order Volterra kernel,

hT
Q
(n)xQ(n)(NQ = 4)

(second order P=2) without a constant component it is given by:

y(n) =
N−1∑

m=0

h1(m)x(n−m)

︸ ︷︷ ︸

hT
1
(n)x(n)

+

N
Q
−1

∑

l1=0

N
Q
−1

∑

l2=0

hQ(l1 , l2)x(n− l1)x(n− l2)

︸ ︷︷ ︸

hT
Q
(n)x

Q
(n)

(6.2)

where all the parameters are defined as in Section 3.2.1. Here the quadratic kernel

is denoted with the index Q to differentiate it from further notations used later.

The quadratic kernel can be represented by a 2-dimensional matrix as illustrated

in Figure 6.1. The figure shows the taps of the quadratic Volterra kernel where the

output of the kernel is given by the summation two words taps, hQ(l1 , l2) multiplied

with the corresponding input signal samples at row, x(n− l1) and line, x(n− l2). In

the figure the taps are divided into two colours, black (lower triangular taps) and

blue (upper triangular and diagonal taps). This approach is used here to show that,

in AEC applications it is not required to estimate the overall Volterra kernel, as will

be explained latter. By transposing the matrix hQ(n) in Figure 6.1 the output value

will not change. This shows that the identifiability of filter hQ(n) is not guaranteed

when using error minimization techniques. This is due to the fact that, by switching

hQ(l1 , l2) and hQ(l2 , l1) the result will not change. To show that let us suppose that

y2(n, l1 , l2) and y2(n, l2 , l1) are given as:

y2(n, l1 , l2) = x(n− l1)x(n− l2)hQ(l1 , l2)

y2(n, l2 , l1) = x(n− l2)x(n− l1)hQ(l2 , l1)

y2(n, l1 , l2) + y2(n, l2 , l1) = x(n− l1)x(n− l2)(hQ(l1 , l2) + hQ(l2 , l1)) (6.3)

As these two elements (y2(n, l1 , l2), y2(n, l2 , l1)) are summed in the final output y(n)

of Equation 6.2, their position do not affect the output as given in Equation 6.3. Ad-

ditionally, whatever the couple (tQ(l1 , l2), tQ(l2 , l1)) such that tQ(l1 , l2)+ tQ(l2 , l1) =

hQ(l1 , l2) + hQ(l2 , l1) satisfy the error minimization criteria. This poses a problem

of identifiability of the Volterra kernel in general. But, as is generally the case for

applications such as echo cancellation, proper identification is not an issue. Hence,

as this identification issue does not change the value of the output, the performance
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in AEC applications will not be affected. The advantage of such a property is that

it reduces complexity meaning that the filter can be reduced to around half of its

elements. This is done by setting tQ(l2 , l1) = 0 and tQ(l1 , l2) = hQ(l1 , l2)+hQ(l2 , l1).

This approach is generally used to reduce the complexity of the Volterra filter

in many approaches to non-linear system identification based on Volterra filter-

ing [Kuech & Kellermann 2004, Zeller & Kellermann 2010a].

In AEC applications the Volterra filter is used as a model of the LEMS, even

if some of the elements (echo path, microphone) of the LEMS may be assumed as

linear, meaning that the Volterra filter may represent a concatenation of linear and

non-linear systems (see section 3.1). It is generally used in a Parallel Structure

(PS) where it can be considered as an MISO system whose parameters need to be

identified. Hence, the first and second order adaptive identification procedure are

as given in Equation 3.8.

ĥ1(n+ 1) = ĥ1(n) + µ1e(n)x(n) (6.4)

ĥQ(n+ 1) = ĥQ(n) + µQe(n)xQ(n)

where hQ = [hQ(i, j)] with i, j = 0 to NQ−1 is an NQ×NQ matrix as represented in

Figure 6.1. These Equations show how the filter can be estimated using linear adap-

tive filtering approaches. Another approach consists of sub-dividing the quadratic

kernel into sub-filters where each filter corresponds to a row of the matrix hQ in

Figure 6.1. In this case the adaptation process is given by:

ĥ
l1
(n+ 1) = ĥ

l1
(n) + µ

l1
x(n− l1)x(n)e(n) (6.5)

where l1 is the index of the quadratic kernel matrix hQ row vectors which vary from

0 to NQ − 1. For each l1 , hl1
(n) is given by:

h
l1
(n) = [hQ(l1 , 0), hQ(l1 , 1), · · · , hQ(l1 , NQ − 1)]T (6.6)

which corresponds to the rows of the matrix hQ . In this procedure it is easier to

choose the step-size µ
l1

than the global identification procedure in Equation 6.4

where the normalization is done for the overall matrix.

6.1.2 Volterra filter for non-linear AEC

Figure 6.2 illustrates a simplified Volterra filtering approach for non-linear AEC.

The loudspeaker is modelled by two filters: h1(n) which represents the linear fil-

ter and hQ(n) which represents the quadratic kernel. The Volterra filter is used

for AEC and it is assumed to model the full LEMS. This includes the cascade

of a non-linear system (loudspeaker) and a linear system (acoustic channel and

up-link path) can be globally modelled as one non-linear system. The linear fil-

ter ĥ
l
(n) of the AEC should converge to the concatenation of h(n) and h1(n) and

the quadratic kernel to a two dimensional matrix as shown in Figure 6.2 (left)

representing the concatenation of hQ(n) and h(n). This approach has some im-

pacts that have been observed in previous works such as [Stenger et al. 1999b]
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Figure 6.2: Volterra approach to non-linear echo cancellation. ĥ1(n) and ĥQ(n) aim
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Figure 6.3: Visualisation of the quadratic Volterra kernel of the loudspeaker, hQ(n)

concatenated with a linear channel h(n). Each delayed version of the quadratic

kernel, hQ(n) is multiplied by the corresponding delayed filter coefficient of h(n).

As in the matrix representing hQ(n) in Figure 6.1 we observe that even in the

equivalent matrix of h̄Q(n) we still have the symmetry meaning that only taps in

blue need to be estimated.

which proposes the truncation of the quadratic kernel to remove null coeffi-

cients which correspond to the delay between the loudspeaker and microphone.

In [Kuech & Kellermann 2002, Kuech & Kellermann ], Kuech proposes to simplify

the Volterra filter to the elements around the diagonal using simplified Multi Mem-
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Figure 6.4: The equivalent matrix h̄Q(n) representing of the concatenation of a

quadratic kernel hQ(n) follow by a linear system h(n). This result includes some

null components as it is assumed that the length of the quadratic kernel is lower

than that of the linear system.

ory Decomposition (MMD) approaches and Proportionate NLMS (PNLMS) by as-

suming a sparse Volterra filter. This is supported by the fact that the quadratic

kernel of the LEMS dominant taps are around the main diagonal. We focus on this

characteristic here and show the effect of loudspeaker non-linearities on Volterra

filter models of the LEMS. We show here that a larger matrix dimension is required

but, due to the fact that the non-linearities are generated by the loudspeaker only,

the coefficients around the main diagonal are significant.

Now we assume that the system is composed of a cascaded non-linear system

with a 1st order kernel h1(n) of length N1 , a quadratic kernel hQ(n) with a memory

length NQ and a linear system, h(n) representing the acoustic channel and up-link

path. Since the linear system h1(n) does not affect the non-linear component, we

focus our attention on the quadratic kernel of the concatenated system ((h1 , hQ)(n)∗

h(n)) which represents the global non-linear component, h̄Q(n) = hQ(n)⊛ h(n) (⊛:

represents here an operator corresponding to the result of the concatenation of two

systems, when the systems are both linear this is equivalent to the convolution

operator), and referred to here as the equivalent system.

Figure 6.3 illustrates the quadratic kernel hQ(n) convolution with the linear

system h(n). It shows that the equivalent non-linear system h̄Q(n) corresponds

to delayed versions of the quadratic kernel hQ(n) weighted by the coefficient of

h(n). The resulting equivalent kernel is given in Figure 6.4. We observe that, if the
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memory of the non-linear system (loudspeaker) is smaller compared to that of the

linear system of the LEMS, meaning that NQ ≪ N , only the diagonal components

are significant in the global LEMS. They will nevertheless have a quadratic kernel

length of about N + NQ with the same non-linear memory length (NQ) as the

initial (loudspeaker) non-linear system. In AEC the assumption that NQ ≪ N ,

generally holds due to the fact that the LEMS system is mainly dominated by the

characteristics of the near-end environment, i.e. the room reverberation time. To

obtain the equivalent matrix elements h̄Q according to hQ(n) and h(n) we first

express the resulting echo component as:

ȳQ(n) =
N−1∑

m=0

h(m)yQ(n−m) (6.7)

=
N−1∑

m=0

h(m)

N
Q
−1

∑

l1=0

N
Q
−1

∑

l2

hQ(l1 , l2)x(n− l1 −m)x(n− l2 −m)

Supposing that l̄1 = m+ l1 and l̄2 = m+ l2 , Equation 6.7 can be written as:

ȳQ(n) =
N−1∑

m=0

N
Q
−1+m
∑

l̄1=m

N
Q
−1+m
∑

l̄2=m

h(m)hQ(l̄1 −m, l̄2 −m)x(n− l̄1)x(n− l̄2) (6.8)

We can then write the new equivalent coefficients as:

h̄Q(l̄1 , l̄2) =
N−1∑

m=0

N
Q
−1+m
∑

l̄1=m

N
Q
−1+m
∑

l̄2=m

h(m)h(l̄1 −m, l̄2 −m) (6.9)

Equation 6.9 shows that the equivalent quadratic kernel of the Volterra filter which

represents the LEMS has a memory length N̄2 equal to NQ + N where NQ is the

memory for the loudspeaker quadratic kernel and N is the length of the linear filter.

This means that the Volterra filter has a length. This is deduced from the definition

of l̄i = li + m, where the maximum of li is NQ − 1 and that of m is N − 1. The

summation indexes l̄1 and l̄2 in Equation 6.9 shows that the resulting filter cross

term memory is equal to NQ as the range of l̄i , i = 1, 2 is (NQ−1+m)−m+1 = NQ .

The convolution of the quadratic kernel with a linear filter does not affect the

symmetry conditions in the resulting equivalent quadratic kernel so the resulting

equivalent matrix can be simplified to its upper or lower part including the diagonal

elements without decreasing the estimation efficiency. In practice the quadratic

kernel Volterra filter to be estimated has only significant elements on its NQ diagonal

elements, the rest of the matrix elements are negligible in the case of loudspeaker

non-linearity.
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Figure 6.5: Linear channel representing the concatenation of the acoustical channel

and up-link path

Example of Volterra estimation

Here we show the effect of using a non-linear system based on a quadratic Volterra

model followed by the linear filter. A simplified version of a non-linear model is

used. As the linear part of the non-linear system will only affect the linear part of

the global system, we are more focused on the resulting quadratic kernel. Hence the

non-linear system is combined with a filter h1(n) = 1 and quadratic non-linearities

of memory length NQ = 10.

yQ(n) =
9∑

l1=0

l1∑

l2=0

hQ(l1 , l2)x(n− l1)x(n− l2) (6.10)

Equation 6.10 differs from the general Equation 6.2 in that it does not take into

account the difference between l1 and l2 (coefficients are not given here as they are

not needed). The linear filter is illustrated in Figure 6.5, this illustration helps to

perceive the effect of h(n) on the shape of the resulting quadratic kernel.

The resulting echo signal is then given by:

d(n) = h(n) ∗ (x(n) + d2(n)) (6.11)

Using the estimation procedure given in Equation 6.5 we obtain the results

illustrated in Figures 6.6 and 6.7 for the quadratic kernel with a speech and random

signal respectively.

Upon comparison of Figures 6.6 and 6.7 we observe that, for random signal the

matrix is more accurately identified than in the case of a speech signal. This is
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Figure 6.6: Estimated taps of the Volterra filter given by Equation 6.5 with a speech

signal.
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Figure 6.7: Estimated taps of the Volterra filter given by Equation 6.5 with a random

signal. (b) Triangular matrix shows that the quadratic filter follows the shape of

the linear filter but is more longer due to the length of the quadratic filter of the

loudspeaker.
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shown by the fact that elements far from the diagonal are closer to zero for the

random signal case than with the speech case. This shows that, as for the linear

system the problem of speech correlation affects the estimation of the Volterra filter

parameters. We also observe more non-zeros taps in Figure 6.7 (a) which are far

from the main diagonal whereas in the triangular matrix shown in Figure 6.7 (b)

most of the taps far from the diagonal are close to zero. As explained previously,

if the sum of two numbers t(l1 , l2) + t(l2 , l1) is equal to that of h(l1 , l2) + h(l2 , l1)

they are also solution for the error minimization (see Equation 6.3). The triangular

matrix approach shows the case where t(l1 , l2) is forced to zero so that t(l2 , l1) is

constrained to estimate h(l1 , l2) + h(l2 , l1). Even if it is not immediately noticeable

on Figures 6.6 and 6.7 we also observe that the taps which are not on the main

diagonal are (twice) higher in the triangular case than in the full matrix case.

In Figures 6.6 and 6.7 we observe that the shape of the diagonal is comparable to

that of the linear filter in Figure 6.5. This means that it is required to the quadratic

kernel diagonal length to be at least equal to that of the linear filter. However, only

its diagonal elements are significant meaning that the computation is significantly

increased compared to the performance gained with the Volterra filter.

The fact that the dimension of the resulting kernel is equal to NQ + N is also

seen on Figure 6.7 (b) in which some taps above l1 < 100 (100: length of the linear

filter) are slightly different from zero and in which some taps l1 < 110 are equal

to zero. This is expected from Equation 6.9 but is not perceptible with the speech

signal due to the correlation effect.

Regarding Equation 6.9 and the observations in Figure 6.7 we remark that the

resulting quadratic kernel of the LEMS has two dimensions of memory, the channel

memory determined by NQ + N and the non-linearity memory equal to that of

the quadratic filter in the loudspeaker NQ . This poses some constraints in the

application of the Volterra filter in non-linear AEC.

As is well known, the main problem in AEC is the length of the acoustic path

in general ranges from 50 to 2000 taps. When the linear channel is longer it will be

difficult to use a Volterra filter for identification on account of the computational

demand. This is explained by the fact that most of the solutions developed to

speed up the convergence rate of the conventional Least Mean Square (LMS) algo-

rithm are complex even in the linear echo case. The simplification of the Volterra

filter to diagonal matrix implementations is then required and explains the rea-

son behind some proposed solutions such as MMD and the truncation proposed by

[Stenger et al. 1999b].

The most challenging constraint of using Volterra filters for non-linear AEC is

the variability of the acoustic channel. If the channel is static then the Volterra filter

will be a good solution as it will not require tap re-estimation. Hence, according

to Equation 6.9 in case of Echo Path Change (EPC) ( which affect h(n)) all the

kernels need to be re-estimated and this poses a problem of re-convergence. The

initial convergence poses less problem as the initial taps are in general set to zero.

But, when the filter has already converged, if an echo path change arises it may

require more time to re-converge than the convergence after initialization. This is
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explained by the fact that each kernel will introduce some error which may affect

the other kernels and slow down convergence. In addition to this problem as seen

in Figure 6.6 the estimation is more difficult when the input is a speech signal.

The work developed here for the quadratic kernel Volterra model can be easily

extended to higher than 2nd order Volterra filters. Here we present only the second

order solution as the Volterra filter in AEC is in general limited to the quadratic.

As we have observed it is practically difficult to use Volterra solution when the

Echo Path (EP) is long. This problem is solved by using the cascaded structure

to non-linear echo cancellation. This approach has some limits but requires less

coefficients than the parallel Volterra approach. Cascaded structure is presented

in the next section using the time domain model of the loudspeaker reported in

Section 5.4.

6.2 Cascaded structure

In general the Volterra model takes a unified approach to estimate the overall LEMS

which is a PS. This involves the simultaneous tracking of non-linearities and changes

in the acoustical channel, i.e. the path between the loudspeaker and microphone.

This is potentially inefficient since the same acoustic path is estimated by each

Volterra sub-filter. Since the kernels inputs are correlated, convergence is typically

slow. Here we propose a method that can improve the convergence of the system

using a cascaded LEMS model. This approach uses a pre-processor which aims

to model the loudspeaker non-linearities in series with a conventional linear adap-

tive filter to model the time varying acoustic channel. The linear adaptive filter

is thus applied to a single input signal, which estimates the loudspeaker output,

instead of being applied in parallel to the inputs of each sub-filter as in the Volterra

model. Similar approaches to pre-processing based on clipping or polynomial models

have already been proposed in [Nollett & Jones 1997, Stenger & Kellermann 2000,

Costa et al. 2003, Guerin et al. 2003]. The pre-processor is based upon the loud-

speaker model in Section 5.4.3. The time domain model uses parallel polyno-

mial filters followed by a linear Finite Impulse Response (FIR) filter to model

the loudspeaker non-linearities and can be considered equivalent to power fil-

ters [Kuech & Kellermann 2006]. However, the model proposed model in Sec-

tion 5.4.3 is static, is thus dependent to the specific device and does not track

slow variations which might occur over time.

This section is divided into three parts, we first present the model of the system

and introduce signal and parameter notations. We also describe how all the different

system modules interact. In the second part we develop the estimation procedure

of the different parameters. Finally, we present the problem of local minima when

using the cascaded structure.
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Figure 6.8: The LEMS is divided into two blocks. The first corresponds to the

non-linear model whereas the second block is a linear model.

6.2.1 System model

In this section we present a general model of the LEMS. We also review the power

filter presented in [Kuech & Kellermann 2006] and the CS proposed here.

The general LEMS illustrated in Figure 6.8 can be divided into two differ-

ent blocks. The first involves the down-link components and includes the am-

plifier and loudspeaker. With small components (amplifier, loudspeaker), shorter

impulse responses and lower variability is safely assumed. The second block in-

volves the acoustic channel and the up-link components. The acoustic channel

which, in the absence of significant non-linearities, can be well-modelled by a linear

filter [Breining et al. 1999]. The acoustical channel has a significantly longer im-

pulse response and also a higher degree of time variability, thus filtering approaches

are generally adaptive in nature [Breining et al. 1999]. The up-link components

include the microphone and amplifier. This part introduces less distortion and

is generally assumed to be linear [Stenger & Kellermann 2000, Guerin et al. 2003,

Kuech & Kellermann 2006].

In view of their different characteristics and in contrast to the PS approaches,

the idea here is to treat each block of the system according to its distinct feature.

The first block is distinctly non-linear whereas the second block is predominantly

linear. It is therefore desirable to use just two filters: one to represent the down-

link path, which is assumed to have a short impulse response and be the principle

source of non-linearities, and a second filter to represent both the acoustical channel
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x1(n) x2(n) xP (n)

∑

h
1
(n) h

2
(n) h

P
(n)

y
P
(n)

y(n)

h(n)

x(n)

{Pre-processor

{Linear filter

(b) cascaded structure

Block 1

Block 2

x1(n) x2(n) xP (n)

∑

h̄
1
(n) h̄

2
(n) h̄

P
(n)

y(n)

x(n)

(a) parallel structure

Figure 6.9: Different structures for the power filter model. (a) PS of the LEMS uses

P longer sub-filters (h̄p(n)). (b) CS of the LEMS, P lower sub-filters (hp(n)) in the

pre-processor and the power filter model with P longer sub-filter (h̄p(n)).

and the up-link path. The second block is dominated by the characteristics of the

acoustical channel: a longer impulse response and higher variability. This strategy

leads to a cascaded structure of the LEMS as illustrated in Figure 6.8 which includes

a separate pre-processor and linear adaptive filter for AEC.

With such an approach conventional linear adaptive filters are well suited to

the second block. Being non-linear the down-link path is more troublesome but

polynomial models [Mossi et al. 2010d] are appropriate. A polynomial loudspeaker

model as in [Mossi et al. 2010d] is used here, so that its combination with a linear

filter (Figure 6.9 (a)) is comparable to the power filter model for non-linear AEC

(Figure 6.9 (b)). Here the sub-filters of the power filter model are a combination of

the pre-processor sub-filters hp(n) and the linear filter h(n) leading to the equality

h̄p(n) = h(n) ∗ hp(n). For each sub-filter h̄p(n) we need at least the same number

of taps as h(n) to model the LEMS with power filters. With more taps and high

variability in the acoustic channel it becomes difficult to track the LEMS in this

way which thus explains why the Volterra model is difficult to use in practice.

An orthogonalization procedure was introduced in [Kuech & Kellermann 2006] to

improve the performance when the length of h̄p is too large. The orthogonalization

effect is explained in the following section which includes a detailed description of

our approach.
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6.2.2 Parameter estimation

In this section we present our approach to non-linear AEC with emphasis on the

estimation of the loudspeaker model. Filter estimation is performed according to the

Minimum Mean Square Error (MMSE) criterion. The Mean Square Error (MSE) is

given by:

E{e2(n)} = E{(y(n)− ŷ(n))2}

where y(n) is the echo signal and ŷ(n) is the estimated echo signal given by:

ŷ(n) = ĥT (n)ŷP (n)

ĥ(n) is an N -column vector which represents the echo path and ŷP (n) =

[ŷP (n), · · · , ŷP (n − N + 1)] is an N -column vector which contains the loudspeaker

output estimates given by:

ŷP (n) =
P∑

p=1

ĥT
p
(n)xp(n)

ĥp(n) is the estimated filter vector of length Np and xp(n) = [xp(n), · · · , xp(n−

Np + 1)]T . The error can thus be written as:

e(n) = y(n)− ĥT (n)
P∑

p=1

ĥT
p
(n)Xp(n) (6.12)

where Xp(n) = [xp(n), · · · ,xp(n − N + 1)]. As Equation 6.12 contains too many

unknowns we need to assume that ŷP (n) = yP (n), i.e. that the estimate is equal to

the true value. The MMSE solution of ĥ(n) is then given by:

ĥ = R−1
y
P
py,y

P

where py,y
P

is the cross-correlation between the microphone signal and the out-

put of the loudspeaker and Ry
P

is the auto-correlation of the loudspeaker output

E{yT
P
(n)yT

P
(n)}. This solution thus depends on knowledge of the loudspeaker output

which will be discussed later in this section.

Here we derive an estimate of the pre-processor sub-filters while assuming that

only the filter ĥ
k

is unknown whereas the others are known (ĥ = h and ĥ
p 6=k

= h
p 6=k

).

The MMSE solution is given by:

∂E{e(n)2}

∂h
k

=
δE{(y(n)− hT (n)

∑P
p=1 ĥ

T
p
(n)Xp(n))

2}

δh
k

= E{X
k
(n)ĥT (n)

(
y(n)− hT (n)

P∑

p=1

ĥT
p
(n)Xp(n)

)
}
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If we pose X
k
(n)ĥT (n) = ỹ

k
(n),ỹ

k
(n) has a length of N

k
then:

∂E{e(n)2}

∂h
k

= E{ỹ
k
(n)
(
y(n)− ĥT (n)

P∑

p=1

hT
p
(n)Xp(n)

)
}

= py,ỹ
k
− pYp 6=k,ỹ

k
− h

k
Rỹ

k

where py,ỹ
k

is the cross-correlation between the echo signal and the corresponding

output and where pYp 6=k,ỹ
k

is the cross-correlation between the other sub-filter out-

puts and the output of the sub-filter k. The estimate of the filter h
k

in the MMSE

sense is given by:

ĥ
k
= R−1

y
k

(
py,y

k
− pYp 6=k,ỹ

k

)
(6.13)

Equation 6.13 shows that the estimation of the pre-processor sub-filters are depen-

dent due to their inter-correlation. Since pre-processor sub-filters use different power

expansions of the same signal this may lead to a degradation of the estimation as a

direct consequence of the inter-correlation. To overcome this limitation an orthog-

onalization procedure introduced in [Kuech & Kellermann 2006] shows that better

performance is achieved when the sub-filter inputs are orthogonal. Orthogonaliza-

tion leads to py,ỹ
k
= py

k
,ỹ

k
and pYp 6=k,ỹ

k
= 0 so that the filter parameters become

independent. In the proposed model we did not use orthogonalization since, with

fewer taps in the pre-processor filters, it does not improve performance. As shown

in [Kuech & Kellermann 2006] a further bias correction would be needed to improve

performance and would lead to an overly complex solution in our case.

As we are in a short-term stationary environment adaptive filters are a necessity.

The LMS adaptive filter can easily be derived using an approach similar to that

described in [Nollett & Jones 1997, Stenger & Kellermann 2000, Haykin 2002]. The

LMS algorithm for the sub-filter h
k
(n) is given by:

ĥ
k
(n+ 1) = ĥ

k
(n) +

1

2
µ

k

δe(n)2

δh
k

(6.14)

= ĥ
k
(n) + µ

k

δe(n)

δh
k

e(n)

= ĥ
k
(n) + µ

k
X

k
(n)ĥT (n)e(n)

whereas the linear filter is given by:

ĥ(n+ 1) = ĥ(n) + µŶp(n)e(n) (6.15)

Equations 6.14 and 6.15 show that the linear filter and the pre-processor filter

estimates are dependent. The problem of the dependency between filters is dis-

cussed in [Stenger & Kellermann 2000] where the authors suggest that linear filter

adaptation is done before adaptation of the pre-processor. Here we start with the

linear filter ĥ(n) and the sub-filters ĥ1(n) and ĥ2(n), since their inputs are the least

correlated.
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The updating process of the sub-filter in Equation 6.14 of the CS is very complex.

This is due to the fact that the adaptation procedure of sub-filters in Equation 6.14

requires the linear filter. This also means that the estimate of the linear filter

is important for the pre-processor. Another challenging aspect of the down-link

path non-linearities is the clipping effect. The clipping is challenging due to the

fact that it may be time variable. In this case the pre-processor parameters may

highly change which may perturb the overall system. Note that this also in the

case of Volterra procedure will introduce a change of all the kernel taps and will

be inefficient. To overcome these situations we propose in the next section three

improvements of this baseline CS. Before introducing the proposed improvements

we will first explain the problem of local minimum that arises in CS and the solution

proposed in [Guerin et al. 2003].

6.2.3 Global and local minima

The fact that the CS approaches suffer from presence of local minima (MMSE

sense) have been reported in many papers on non-linear AEC. Here we give some

explanations related to the presence of local minima and the solution proposed

in [Guerin et al. 2003]. In CS the pre-processor output, ŷP (n) is not assumed to

be an efficient estimate of the output yP (n). The requirement is that ŷP (n) to

approximate hr(n) ∗ yP (n) (where hr(n) is a linear filter, ŷP (n) ≈ hr(n) ∗ yP (n))

what we refer to linearly related. However, this is acceptable if the linear filter that

follows the pre-processor can compensate the linearity between the loudspeaker and

the pre-processor outputs.

Hence, if the output of the pre-processor corresponds to hr(n) ∗ yP (n) the linear

filter ĥ(n) should converge to hs(n) ∗ h(n) with hr(n) ∗ hs(n) = δ(n). If hs(n)

exists then the system converges to a global minimum. However, if hs(n) cannot be

estimated (hr(n) not invertible) then it is a local minimum. In [Guerin et al. 2003]

it is proposed to use ĥ1(n) = 1 (hr(n) = h
(−1)

1 (n): the inverse of h1(n), in this case

it constraints the filter to converge to one minimum but not necessarily a global

minimum. It becomes a global minimum if and only if hs(n) the inverse of h1(n)

can be sufficiently estimated otherwise it is a local minimum. Nevertheless, even

when it is a local minima it has the advantage to constrain the system to converge

to only one solution. This is important as it avoids fluctuation around different

minimas in the presence of perturbations.

Following the idea in [Guerin et al. 2003] to constrain the system to one solution

we apply a smaller step-size on the estimation of h1(n) compared to the other sub-

filters. But, sub-filters (p > 1) also need to use smaller step-sizes compared to that

of the linear filter for stability reason. This will initially work as the constraint

proposed in [Guerin et al. 2003] but can improve the solution if the inverse of h1(n)

does not exist, however, it may converge a bit slower compared to the solution

in [Guerin et al. 2003].
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6.3 Improved cascaded structure

This section focuses on improving the CS to non-linear AEC developed in Sec-

tion 6.2. The CS has shown to give good tracking performance [Mossi et al. 2011b]

and in this section we present three directions to improve CS. First, we have

developed various modifications to the original work in [Nollett & Jones 1997,

Guerin et al. 2003] to significantly improve computational efficiency of the pre-

processor.

Second, we investigate the use of separate models of the amplifier and loud-

speaker within the pre-processor. These two components typically exhibit different

characteristics and thus independent models are more appropriate: a clipping model

for the amplifier and a power-filter model for the loudspeaker.

Third, we have investigated the use of Decorrelation Filtering (DF). This

aims to counter the increase in correlation caused by pre-processor filtering

and the presence of non-linearities. DF is also known to improve the conver-

gence of AEC based on Normalized-LMS (NLMS) algorithms [Breining et al. 1999,

Hänsler & Schmidt 2004] when the input signal is highly correlated. Even if al-

ternative linear AEC algorithms, such as the Recursive Least Square (RLS) al-

gorithm, tend to deliver faster convergence, tracking performance is known to

be inferior to that of the NLMS algorithm in certain non-stationary environ-

ment [Breining et al. 1999, Haykin 2002]. With DF, NLMS algorithms are generally

preferred on account of lower complexity, and better stability and tracking perfor-

mance.

The remainder of this section is organized as follows. In Section 6.3.1 we present

an overview of the proposed system model which aims to give an overview of signals,

parameters and their relationships. In Section 6.3.2 procedures to estimate the

different parameters are used in the model.

6.3.1 System model

In this section we review the non-linear AEC model presented in Section 6.2 and

outline the essence of the contributions presented. As illustrated in Figure 6.10 the

approach is composed of a non-linear pre-processor (1) and a group of interconnected

modules combining DF and linear AEC.

Pre-processor and clipping model

The pre-processor is used to model the characteristics of the down-link path, i.e. the

amplifier and the loudspeaker. As illustrated in Figure 6.10 (top) the far-end signal

x(n) is first processed to obtain an output signal ŷP (n) which is an estimate of the

loudspeaker output. As in the CS the loudspeaker is assumed to be the main source

of non-linearity.

In general, due to limited power, the amplifier may introduce clipping

distortion for high level signals. Clipping distortion is modelled here as

in [Nollett & Jones 1997, Stenger & Kellermann 2000] using a hard clipping model
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ŷ(n)

linear AEC with
decorrelation filter

(1)

(2)

(3)

non-linear

copy after
update

Figure 6.10: The non-linear AEC system is composed of a pre-processor that models

the down-link path, a decorrelation filter w(n) and a linear AEC h(n).
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Figure 6.11: Pre-processor of the non-linear AEC system: a concatenation of a

clipping compensator to model the amplifier and a power filter model of the loud-

speaker.

which is a function with a parameter c. As illustrated in Figure 6.11 the clipping

function is given as:

z(n) = fc(x(n)) =
{ sign(x(n))c if |x(n)| ≥ c

x(n) if |x(n)| < c
(6.16)

where c ≥ 0 is the absolute value of the clipping level.

The loudspeaker is also assumed to be non-linear and is modelled with a power

filter also illustrated in Figure 6.11. The output z(n) of the clipping function is
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processed by the power filter to obtain an estimate ŷP (n) of the loudspeaker output.

The output ŷP (n) of the power filter is a summation of the different sub-filter outputs

hp=1,2,3(n) which are filtered versions of the input signal at different powers. The

pre-processor output ŷP (n) is thus given by:

ŷP (n) =
P∑

p=1

hT
p
(n)zp(n)

︸ ︷︷ ︸

=ŷp (n)

(6.17)

where P = 3 is the number of pre-processor sub-filters and zp(n) = [zp(n), zp(n −

1), · · · , zp(n − Np)]
T is the input signal to the sub-filter hp(n) with Np taps and

output ŷp(n). The down-link path is assumed to have a low memory (short im-

pulse response) and is static or changes slowly (compared to the acoustic chan-

nel) [Stenger & Kellermann 2000, Guerin et al. 2003, Mossi et al. 2011b].

Decorrelation filtering and linear AEC

The adaptive decorrelation filter (block 2 in Figure 6.10) is represented by the adap-

tive filter w(n) and is applied to the pre-processor output. Duplicate filtering

is applied to the echo signal y(n) so that the echo path estimate will still con-

verge to h(n) [Breining et al. 1999, Hänsler & Schmidt 2004]. As in [Widrow 1971,

Haykin 2002] the output is given by:

ŷw
P
(n) = ŷP (n)−wT (n)ŷP (n− 1), (6.18)

and according to classical linear prediction analysis, ŷw
P
(n) is a decorrelated signal.

The linear AEC module (block 3 in Figure 6.10) represents the concatenation

of the acoustic channel and the up-link path. On account of the decorrelation filter

the linear AEC operates on ŷw
P
(n). The output of the linear AEC module in the

decorrelated link is given by:

ŷw(n) = hT (n)ŷw
P
(n)

where ŷw
P
(n) = [ŷw

P
(n), ŷw

P
(n−1), · · · , ŷw

P
(n−N −1)]T . The real echo estimate ŷ(n)

is then obtained using the updated version of ĥ(n) filter, ĥ(n+ 1) which is applied

to ŷP (n) as illustrated in Figure 6.10. The use of ĥ(n + 1) to compute ŷ(n) has

the advantage to take into account the new update information in the estimation of

the echo. In fact the decorrelation filter has shown to provide fast convergence. By

introducing the strategy of using the updating filter we improve the filter estimation

as we take into account the new information. This procedure is efficient in echo only

period. When a near-end signal is present it requires the adaptation to be paused.

This procedure is similar to certain frequency domain Wiener filtering where the

filter gains are estimated with the current samples and then applied to the current

microphone signal. Higher step-size (close to 1) should be avoided as they will

introduce more attenuation in presence of noise. As will be seen in the assessment

a better loudspeaker model is required to reach better echo reduction.
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6.3.2 Parameter estimation

Though the estimation of the different modules parameters are individually straight

forward, the integration of the clipping compensator and adaptive decorrelation

filter into the basic CS of Section 6.2 requires more investigation to make these

estimators efficient. The basic CS is presented here starting with a description of

our baseline system and an approach to reduce its complexity.

Cascaded structure

The cascaded power filter and linear AEC system are presented in detail

in [Mossi et al. 2011b] and thus we give here the essential baseline estimation pro-

cedures with minimal detail only. Ignoring the clipping compensator in Figure 6.11,

i.e. by assuming that x(n) = z(n), the pre-processor estimate is obtained according

to:

ĥp(n+ 1) = ĥp(n) + µ̄p(n) [ĥ
T (n)Zp(n)]

T e(n)
︸ ︷︷ ︸

=∆hp (n)

(6.19)

where Zp(n) = [zp(n), zp(n − 1), · · · , zp(n −N − 1)]T and where zp(n) is an input

vector with length Np where the normalized step size µ̄p(n) =
µp

‖hT (n)Zp (n)‖
2
+ξ

and

where ξ is a regularization factor to avoid division by zero. The estimate of the

linear filter h(n) is given by:

ĥ(n+ 1) = ĥ(n) + µ
l
(n)ŷP (n)e(n), (6.20)

where µ̄
l
(n) =

µ
l

‖ŷP
(n)‖

2
+ξ

.

Complexity reduction

We propose here an approach to reduce sub-filter estimation complexity which aims
to offset the extra computation introduced through Clipping Compensation (CC).
Computation of the gradient ∆hp(n) in Equation 6.19 is rather complex as the cal-

culation of Zp(n)ĥ
T (n) requires Np × N multiplications. A more efficient approx-

imation can be obtained if, for all but the first coefficient of the gradient ∆hp(n),

ĥ(n) is replaced by a previously calculated echo path estimate. Thus, instead of:

ĥT (n)Z
p
(n) = [ĥT (n)z

p
(n), · · · , ĥT (n)z

p
(l)

︸ ︷︷ ︸

=z̃
p
(l)

,

· · · , ĥT (n)z
p
(n−N

p
− 1)]

where z̃p(l) = ĥT (n)zp(l), which depends on the current estimate ĥ(n), we use:

z̃p(l) = ĥT (l)zp(l)
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which depends on ĥ(l) calculated in previous iterations. This approximation does
not require any computation for l < n and leads to:

ĥT (n)Z
p
(n) = [ĥT (n)z

p
(n), · · · , ĥT (l)z

p
(l)

︸ ︷︷ ︸

=z̃
p
(l)

,

· · · , ĥT (n−N
p
− 1)z

p
(n−N

p
− 1)]

Complexity is thus reduced by a factor of Np per sub-filter with the added

advantage of reacting faster to changes in the echo path. The only drawback is

that convergence is somewhat slower. Note that a similar simplification can be

applied to other CS as they use similar adaptation of pre-processor, for example

those in [Nollett & Jones 1997, Guerin et al. 2003].

Clipping compensation

In this section we first present the cascade of the power filter and linear AEC algo-

rithm according to [Mossi et al. 2011b]. Then we show how Clipping Compensation

(CC) can be efficiently incorporated into the global model.

The proposed approach combines the clipping system proposed

in [Nollett & Jones 1997, Stenger & Kellermann 2000] with the cascaded model pre-

sented in [Mossi et al. 2011b]. We show here that the CC can be implemented with

a complexity comparable to the system presented in [Stenger & Kellermann 2000]

where no pre-processor is used. We again use the LMS approach to derive an adap-

tive clipping level estimator. The model presented here is based on a hard clipping

model [Nollett & Jones 1997] (which could easily be extended to soft clipping) as

given in Equation 6.16. To derive a gradient for the estimator according to the

LMS approach we need to incorporate the clipping function within an expression

for the error e(n) thus leading to:

e(n) = y(n)− hT (n)
P∑

p=1

hT
p
(n) [fc(X(n))]p
︸ ︷︷ ︸

=Zp (n)

where [fc(X(n))]p indicates that the function fc(x(n)) is applied to each element

of the matrix X(n) = [x(n),x(n − 1), · · · ,x(n − N)] where x(n) = [x(n), x(n −

1), · · · , x(n−Np)].

Applying the LMS approach we derive the clipping level estimator using the

derivative of the error with respect to c which leads to:

ĉ(n+ 1) = ĉ(n) + µch
T (n)

P∑

p=1

hT
p
(n) [

∂fc
∂c

(X(n))]p
︸ ︷︷ ︸

=[Ż(n)]p

e(n) (6.21)

where ∂fc
∂c (x(n)) is the derivative of fc(x(n)) according to c and Ż(n) is the derivative

of Z(n) according to c. From Equation 6.16 we see that ∂fc
∂c (x(n)) is equal to:
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∂fc
∂c

(x(n)) =

{
sign(x(n)) if |x(n)| ≤ c

0 elsewhere
(6.22)

We observe that the gradient in Equation 6.21 is highly complex due to the cascaded

pre-processor. To simplify its calculation, we note that the derivative ∂fc
∂c (x(n)) is

independent from the sub-filter order p which explains the use of [Ż(n)]p instead of

Żp(n) in which case the derivative depends on p. Hence,

if ∃k/ [f
ĉ
(x(n))]

k
→ [fc(x(n))]k ⇒ ∀ p [f

ĉ
(x(n))]p → [fc(x(n))]p ,

where the convergence is in the sens of ĉ converges to c. Meaning that if we can

minimize the gradient in one sub-filter it will be automatically minimised in the other

sub-filters. This means that we can reasonably ignore some of the pre-processor

sub-channels. Here we consider only the sub-channel 1 as it presents the strongest

component of the echo signal. We thus consider z(n) to be composed of a linear

component zl(n) and a non-linear distortion component zd(n) so that z(n) = zl(n)+

zd(n). We then suppose that the distortions within the power filter generated by

zd(n) for p ≥ 2 are negligible, i.e.

(|z(n)| − c)p
︸ ︷︷ ︸

z(n)≥c,p≥2

≈ 0, (6.23)

so that they can be safely ignored in the compensation.

In fact, as we suppose that only the linear part (p = 1) is affected by the clipping,

the error minimization that leads ĉ(n) to converge to c will also minimize the error

in the non-linear part (p ≥ 2) as ĉ is also applied to the non-linear part. This means

that the approximation in Equation 6.23 will be more effective when ĉ(n) converges

so that it can reach its optimal value in the minimum mean square error sense. This

approximation implicitly assumes that fc(x(n))p≥2 is independent from c and leads

to (∂fc∂c (x(n)))p≥2 being equal to zero. Equation 6.21 is thus simplified to:

ĉ(n+ 1) = ĉ(n) + µch
T (n)hT

1
(n)

∂fc
∂c

(X(n))e(n) (6.24)

A second source of complexity relates to the cascade of the two filters h(n)∗h1(n)

in Equation 6.24. In fact it is possible to use the estimates (ĥ(n) ∗ ĥ1(n)) but, in

practice, they must be highly accurate otherwise Equation 6.24 will be ineffective

and give poor performance. Another problem encountered using ĥ(n)∗ ĥ1(n) is that

it leads to a more complex system since, for each iteration, N ×N1 multiplications

are required to compute the convolution. To overcome this problem we need to

constrain one of the filters to be equal to δ(n) (Dirac function). In practice it is

easier to set ĥ1(n) = δ(n) as used in [Guerin et al. 2003] so that h(n)∗h1(n) ≈ ĥ(n).

We can then rewrite Equation 6.24 as:

ĉ(n+ 1) = ĉ(n) + µcĥ
T (n)

∂fc
∂c

(x(n))e(n) (6.25)
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which is less complex and amenable to real-time implementation. If instead we

were to constrain ĥ1(n) to be equal to δ(n) then it will affect the estimate of the

sub-filters p ≥ 2 and the linear AEC. In this case the linear filter will converge to

h1(n) ∗ h(n) and the sub-filter ĥp(n) will converge to h−1
1

(n) ∗ hp(n).

Finally note that, in terms of implementation the pre-processor is not signifi-

cantly different to the system presented in Section 6.2.2. The only change is that

the first order sub-filter ĥ1(n) is set to 1 and is not adaptive.

Decorrelation filtering

Conventional, fixed approaches to decorrelation are not appropriate here due to

the use of pre-processing to which the decorrelation filter must adapt. Adaptive

decorrelation is thus necessary but is inevitably more complex. Using the LMS

criteria to minimize the decorrelation filter output ŷw
P
(n) we obtain an adaptive

estimate of w(n) according to:

w(n+ 1) = w(n) + µw(n)ŷP (n− 1)ŷw
P
(n)

where µw(n) =
µ

‖ŷP
(n−1)‖

2
+ξ

and where µ ≤ 1.

We now consider the effect of Decorrelation Filtering (DF) on other system

elements. First ŷP (n) in Equation 6.20 is replaced by ŷw
P
(n) and similarly e(n) is

replaced by ew(n) as in Figure 6.10. The input to the linear AEC module is thus

decorrelated and so convergence is improved. Second, on account of adaptive pre-

processing, the signal ŷP (n) in Equation 6.17 will be highly non-stationary. It is then

necessary to apply lower step-sizes to sub-filter estimation in order to reduce the

non-stationarity in ŷP (n) and thus to improve DF. For this reason the decorrelation

filter is of short order so that it can reliably follow variations in pre-processing. The

decorrelation filter also has secondary benefits. In Equation 6.19 we see that sub-

filter estimation uses the linear AEC estimate ĥ(n) and will now be more accurate

(faster convergence). The pre-processor estimate is then itself more accurate and

will converge faster, resulting in more stable sub-filter estimation ĥp(n). Note also

that, due to the presence of CC, decorrelation filter estimation should be paused

during intervals in which CC is applied, i.e. when z(n) = ĉ(n), since in these intervals

a constant-level pre-processor output may disturb estimation. A solution involves

changing the decorrelation filter step size to µ̄w(n) = (¬∂fc
∂c (x(n)))·µw(n) where ¬ is

the logic ’NOT’ and where ∂fc
∂c (x(n)) is as given in Equation 6.22. Hence ¬∂fc

∂c (x(n))

is equal to 0 when z(n) = ĉ(n) and equal to δ(n) otherwise.

The proposed improvement enhances the performance of the CS and can be easily

extended to different pre-processor models. Nevertheless just as with PSs, the CS

has the drawback to introduce some distortions in the processed microphone signal.

This effect is due to the limitation of the microphone sampling frequency which

suppresses higher frequency distortions already included in the non-linear model of

the AEC. To avoid such an effect re-sampling or low pass filtering was reported

in [Frank 1996, Niemistö & Mäkelä 2003a] to suppress higher frequencies generate
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by the non-linear system of the AEC. Here we investigate another approach which

consists of moving the pre-processor from the AEC path to the down-link path.

6.4 Loudspeaker pre-processing

In this section we present an approach to non-linear AEC. This approach is based on

the same LEMS model as in the CS which involves a non-linear model of the down-

link path and a linear model of the acoustic channel and up-link path. Using this

model we propose here an approach that uses Loudspeaker Pre-processing (LP) and

linear AEC to improve performance of an otherwise classical approach to linear AEC.

The proposed approach relates to an on-line linearisation pre-processing algorithm

that adapts to long-term variations in the loudspeaker characteristics. This feature

contrasts with fixed pre-processor algorithms which have been reported previously.

In this section we focus on non-linear adaptive filtering based on LP where

the loudspeaker input is pre-processed by a non-linear filter, referred to here as a

linearisation pre-processor. It aims to compensate for non-linearities that are sub-

sequently introduced by the loudspeaker so that, when combined, the linearisation

pre-processor and loudspeaker form a linear system. LP then permits the use of

conventional linear AEC. In terms of echo reduction performance is improved and,

as the linearisation pre-processor relies only on the loudspeaker characteristics, it

does not need to be re-initialized when the acoustic environment changes. This is

a distinct benefit over alternative post-loudspeaker approaches which depend fun-

damentally on the acoustic path and thus suffer from convergence issues when the

echo path changes.

In practice, however, LP is rarely used with AEC since there is no direct access

to the loudspeaker output. A solution proposed in [Furuhashi et al. 2006] renders

the system dependent to the device and is based upon an inverse, static model of

the loudspeaker. Transducer characteristics are dynamic, however, and in practice

such solutions can sometimes even increase distortion instead of reducing non-linear

echo. The solution proposed here uses an on-line LP approach which enables the

tracking of long-term variation.

This section is organized similarly as the previous section. We present the LP

approach and define the parameters involved. Then we describe the overall system,

its operation and behaviour.

6.4.1 System model

The overall system is illustrated in Figure 6.12. In contrast to the CS approach,

the pre-processor is now in the downlink path. Here the system is composed of an

adaptive pre-processor which aims to linearise the loudspeaker output and a linear

AEC module which tracks the acoustic path (acoustic channel + down-link devices).

The LP system is illustrated in Figure 6.13 and corresponds to the down-link

path in Figure 6.12, including the pre-processor and the loudspeaker. The far-

end signal x(n) forms the input to the pre-processor and the linear acoustic echo
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AEC

From far-endNear-end

x(n)

y(n) e(n)

∑
−

Pre-processory
l
(n)

ŷ(n)

h(n) h̃(n)

Block 1

z(n)

h̃(n)

Block 2

Figure 6.12: LP and acoustic echo cancellation where the LEMS is divided into two

blocks. The first is a non-linear model and the second is a linear model.
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Figure 6.13: Loudspeaker linearisation system.

canceller. According to the non-linear power model the discrete loudspeaker output

y
l
(n) can be written as:

y
l
(n) =

Q
∑

q=1

hq(n)z
T
q
(n) (6.26)

where the vector z(n) is the input, hq(n) is the sub-filter applied to the qth power

of z(n) and Q is the maximum signal exponent. The vector zq(n) is given by:

zq(n) = [zq(n), zq(n− 1), · · · , zq(n−Mq − 1)]T (6.27)

where Mq is the length of each filter hq(n). It is always independent of q for all

work reported here.

There is no need to process the linear component of x(n) (top path) which is

instead delayed by d samples and corresponds to the processing delay of the non-

linear components (p ≥ 2). Together they are used to generate an output that

aims to compensate for the non-linearities which are subsequently introduced by

the loudspeaker [Frank 1994, Lashkari 2005]. The pre-processor output signal can

be written as:

z(n) = x(n) +
P∑

p=2

h̃p(n)x
T
p
(n) (6.28)
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where z(n) is the output of the pre-processor, the vector xp(n) is the far-end signal

vector and h̃p(n) is the sub-filter of the pth power input. The objective is to obtain

a loudspeaker output such that y
l
(n) ≈ h1(n)x

T (n) where h1(n) is the linear loud-

speaker impulse response. If this approximation is reached then the resulting echo

signal can be estimated using a conventional linear adaptive AEC filter such as the

LMS algorithm.

6.4.2 Parameter estimation

In this section we present the proposed non-linear AEC algorithm which is based

on the well-known LMS approach.

AEC filtering

To derive the estimate of AEC filter and linearisation pre-processor we need to

express the AEC system error (e(n) in Figure 6.12) according to the different model

parameters. According to Equation 6.26 and Equation 6.28 the discrete loudspeaker

output can be rewritten as:

y
l
(n) =

Q
∑

q=1

hq(n)

{

x(n) +
P∑

p=2

h̃p(n)x
T
p
(n)

}

q

=

Q
∑

q=1

hq(n)

{

xT
1∗q(n) +

P∑

p=2

h̃p(n)x
T
p∗q(n)

}

= h1(n)x
T
1
(n) +

Q
∑

q=2

hq(n)xq(n)

+
P∑

p=2

h1(n)[h̃p(n)X
T
p∗(q=1)(n)]

T

+

Q
∑

q=2

P∑

p=2

hq(n)[h̃p(n)X
T
p∗q(n)]

T

︸ ︷︷ ︸

neglected(p∗q≥4)

where Xp∗q(n) is an Mp ×Mq matrix form of the signal x(p∗q)(n) given by:

Xp∗q(n) = [xp∗q(n),xp∗q(n− 1), · · · ,xp∗q(n−Mp − 1)]

where xp∗q(n) is a vector of length Mq defined as in Equation 6.27. Mp and Mq are

respectively the length of filters h̃p(n) and hq(n). We assume that the highest order

terms are negligible and that the non-linearity can be modelled sufficiently with

P = 3. Experiments performed by other authors and with real loudspeakers show

that the performance benefit obtained from the inclusion of higher order terms does

not justify the extra complexity [Kuech & Kellermann 2006, Furuhashi et al. 2006,
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Frank 1994]. The loudspeaker output can therefore be approximated as:

y
l
(n) = h1(n)x

T
1
(n) +

Q
∑

q=2

hq(n)xq(n)

+
P∑

p=2

h1(n)[h̃p(n)X
T
p·(q=1)(n)]

T

The output of the loudspeaker is convolved with the acoustic path h(n) (acoustic

channel + up-link):

y(n) = h(n)[h1(n)X
T
1
(n)]T +

Q
∑

q=2

h(n)[hq(n)X
T
q
(n)]T

+

P∑

p=2

(h(n) ∗ h
1
(n))[h̃p(n)X

T
p∗(q=1)(n)]

T

The AEC output is given by:

ŷ(n) = h̃(n)xT (n)

and the error between the echo and its estimate is given by:

e(n) = y(n)− ŷ(n). (6.29)

The error is used to obtain an adaptive estimate of the linear filter [Haykin 2002].

We assume that the linear echo component is dominant and thus that we have direct

access to it. Using the LMS approach the adaptation of the AEC filter is given by:

h̃(n+ 1) = h̃(n) + µe(n)x(n) (6.30)

and, after sufficient iterations, h̃(n), will converge to h
l
(n), where h

l
(n) is the linear

filter such that its convolution with x(n) gives the linear echo component. Note from

the first term of Equation 6.29, which represents the linear echo component, that

h
l
(n) = h1(n) ∗ h(n).

Linearisation processing

In the same way as for the AEC filter the sub-filters of the linearisation pre-processor

are estimated using the LMS approach, leading to:

h̃p(n+ 1) = h̃p(n) + µ
δe2(n)

δh̃p(n)

By deriving the square of the error with respect to h̃p=2,3(n) we obtain:

h̃p(n+ 1) = h̃p(n) + µe(n)h(n)[h1(n)X
T
p·(q=1)(n)]

T (6.31)
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In Equation 6.31 the filter h
l
(n) = h(n) ∗ h1(n) is unknown. To overcome this

problem an estimate h̃(n) in Equation 6.30 is used and leads to:

h̃p(n+ 1) = h̃p(n) + µne(n)h̃(n)x
T
p·(q=1)(n) (6.32)

where µn is a normalized step-size equal to µ

|h̃(n)XT
p·(q=1)

(n)|2
with 0 < µ ≤ 1. Equa-

tion 6.32 provides a solution for the linearisation of the loudspeaker in non-linear

echo environments.

From Equation 6.32, we see that the pre-processor updating process uses the es-

timate of the AEC, h̃(n), meaning that the linear component should be dominant.

As the estimate h̃(n) of the AEC is used to estimate the sub-filters, h̃p=2,3(n), it

is important to ensure that the pre-processor still depends only on the loudspeaker

characteristics. This means that the sub-filter estimates should converge to a fixed

filter which depends only on hq=1,2,3(n) (loudspeaker characteristics). The indepen-

dence of the pre-processor to h(n) (acoustic path) is needed to ensure stability to

changes in the echo path characteristics. We thus extend Equation 6.29 to:

e(n) =
(
h

l
(n)− h̃(n)

)
xT

1
(n)

︸ ︷︷ ︸

linear component

(6.33)

+ h
l
(n)

Q
∑

q=2

(
[h(−1)

1
(n)hq(n)] + h̃p(n)

)
xT
q·(q=1)(n)

︸ ︷︷ ︸

non-linear component

Equation 6.33 shows that, if the linear component h̃(n) is an estimate of h
l
(n),

the first term (linear component) in Equation 6.33 goes to zero.

To minimize the second term (non-linear component) the estimate of each filter

h̃p(n) should converge to −h(−1)
1

(n) ∗ hq=p(n) with h(−1)
1

(n) ∗ h1(n) = δ(n) (where

δ(n) is the Dirac function). This shows that h̃p(n) is independent of the acoustic

path. Thus, with a reliable estimate of the pre-processor, the updating process can

be frozen without degrading the performance of the overall system. This is poten-

tially beneficial in terms of reduced computational complexity and for robustness in

adverse environments.

6.5 Summary of the different non-linear algorithms

Here we present a summary of the different non-linear AEC approaches. We clas-

sified them into three categories: Parallel Structure (PS), Cascaded Structure (CS)

and Loudspeaker Pre-processing (LP). This summary serves as reference for the

assessment presented in the next chapter.

6.5.1 Parallel structure

PS refers to algorithms that model overall LEMS as one non-linear system. We will

use two models here the Volterra filter and the power filter. This latter corresponds
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to the PS version of the CS that we have presented previously. The Volterra filter

is limited to the quadratic kernel. Hence, one filter is used to estimate the linear

component and a second filter for the quadratic kernel output.

PS Volterra filter algorithm

• linear filter

– ĥ1(n+ 1) = ĥ1(n) + µ1e(n)x(n)

– complexity: 2×N multiplications

• quadratic filter

– ĥQ(n+ 1) = ĥQ(n) + µQe(n)xQ(n)

– complexity: N2 +N multiplications

• complexity: N2 + 3×N

The power filter model is referred to PS in comparison to the CS version used

in this thesis. It estimates different sub-filters which use different power expansion

of the far-end signal as input.

PS algorithm

• linear filter and non-linear sub-filter

– ĥp(n+ 1) = ĥp(n) + µ1e(n)xp(n)

– p is the power of the input, p = 1 corresponds to the linear filter, P = 3

is the number of sub-filters (hp(n))

– complexity: 2× P ×N multiplications

6.5.2 Cascaded structure

The CS uses a pre-processor to estimate loudspeaker parameters followed by a linear

filter which is used to estimate the rest of the LEMS (acoustic channel and up-link

devices).

CS algorithm

• pre-processor

– linear filter (acoustic channel and up-link devices)

∗ ĥ(n+ 1) = ĥ(n) + µe(n)x(n)

∗ complexity: 2×N

– sub-filters (basic pre-processor elements)
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∗ ĥp(n+ 1) = ĥp(n) + µ̄p(n)[ĥ
T (n)Xp(n)]

T e(n)

∗ p is the power of the input, P = 3 is the number of pre-processor

sub-filters (hp(n))

∗ complexity: P × (N̄ + 2 × Np) (assuming Np is the same for all

sub-filters, N̄ = N but in practice it is better to truncate the filter

ĥ(n) to use N̄ = N/2 which corresponds to earlier taps which are

significant and more robust to noise)

– clipping compensation (CC)

∗ ĉ(n+ 1) = ĉ(n) + µcĥ
T (n)∂fc∂c (x(n))e(n)

∗ c is the clipping level. When the CC is used the algorithm is referred

to Cascaded Structure with Clipping Compensation (CS + CC).

∗ complexity: N̄ multiplications

• decorrelation filtering (DF)

– w(n+ 1) = w(n) + µw(n)ŷP (n− 1)ŷw
P
(n)

– yP (n − 1) is the output of the pre-processor. ŷw
P
(n) is the prediction

error. When the decorrelation filter is used the system is referred to

Cascaded Structure with Clipping Compensation and Decorrelation Fil-

tering (CS + CC + DF), without the clipping compensator it is referred

to Cascaded Structure with Decorrelation Filtering (CS + DF).

– complexity: 3×Nw +N +∆ (∆: process delay)

• complexity:

– CS: P × (N̄ + 2×Np) + 2×N

– CS + CC: (P − 1)× (N̄ + 2×Np) + 2×N + N̄

– CS + DF: (P − 1)× (N̄ + 2×Np) + 3×N + 3×Nw

– CS + CC + DF: (P − 1)× (N̄ + 2×Np) + 3×N + N̄ + 3×Nw

6.5.3 Loudspeaker pre-processing

The LP algorithm is a pre-processing approach where the pre-processor aims to

linearise the output of the loudspeaker. It has similar elements as the basic CS.

LP algorithm

• pre-processor

– linear filter (acoustic channel and up-link devices)

∗ ĥ(n+ 1) = ĥ(n) + µe(n)x(n)

∗ complexity: 2×N multiplications

– sub-filters (basic pre-processor elements)
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∗ ĥp(n+ 1) = ĥp(n) + µ̄p(n)[ĥ
T (n)Xp(n)]

T e(n)

∗ p > 1 is the power of the input, P = 3 is the number of pre-processor

sub-filters (hp(n)) with h1(n) = Zd (d: processing delay in sub-filters

2 and 3).

∗ complexity: (P − 1)× (N + 2×Np) multiplications

• complexity: (P − 1)× (N + 2×Np) + 2×N

6.6 Conclusions

This chapter presents the application of Volterra filter to non-linear AEC for the

special case of loudspeaker non-linearity. We show that the equivalent model of

the global LEMS has a quadratic kernel with longer memory but the non-linearities

memory is equivalent to that of the loudspeaker. This supports the assumption

that the Volterra kernel is in general sparse and the fact that the significant taps

are around the main diagonal.

We also show that the CS can be an efficient solution when the acoustic channel

is assumed to be time variant. We propose three approaches to improve the baseline

CS. These improvements aim to reduce the complexity of the iterative estimation

procedure, efficiently incorporate a clipping estimator and improved linear AEC

performance with a decorrelation filter.

As the parallel and cascaded structures both introduce distortion in the micro-

phone signal we investigate the use of pre-processing in the Down-Link (DL) path.

Based on LP this approach solves the problem of additional distortion in the mi-

crophone signal. Being focused on the loudspeaker properties it does not require

re-initialisation. The drawback in this approach is that it introduces some distortion

in the loudspeaker at lower frequencies.

In the next chapter we present the assessment of each solution with synthesised

and real recorded data.
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Non-linear AEC assessment

This chapter presents an assessment of the different algorithms with synthetized

and real data. With synthetized data we focus on analysing the characteristics of

the different algorithms as the environment is known. The performance of linear

Acoustic Echo Cancellation (AEC), the different versions of the Cascaded Struc-

ture (CS), the Parallel Structure (PS) and the Loudspeaker Pre-processing (LP)

performance are all compared. The Echo Return Loss Enhancement (ERLE) and

System Distance (SD) are used as metrics for the assessment. The ERLE, which

measures echo reduction, is used in all assessments, however the SD which measures

the performance of the algorithms to estimate the real echo path is used only for

the LP assessment to assess linearisation performance.

The analysis of real data is then used to assess the different algorithms where no

a priori is available. In this case we additionally assess the PS Volterra filter as no

assumption is made on the non-linearity model. However, the LP, which requires

the signal to be processed before the loudspeaker cannot be assessed with recorded

data and is not presented in this section. The ERLE is used for all assessments.

7.1 Analysis with synthetized data

The assessment performed in this section aims to reveal the behaviour of the different

algorithms in conditions where the non-linearity model matches with the real system.

The robustness in noise conditions is also presented using a signal-to-noise ratio of

50 and 30 dB. Before the analysis of the results we first describe the far-end speech

signals and then the Loudspeaker Enclosure Microphone System (LEMS) which is

the important element in AEC applications. The LEMS characteristics are presented

as in Section 5.1. We use a non-linear model to simulate the loudspeaker and a

linear model to simulate the concatenation of the acoustic channel and the up-link

devices according to conclusions of Chapter 5. Latter, when clipping distortion is

assessed, we additionally simulate a hard clipping effect which is applied before the

loudspeaker model.

7.1.1 Simulation parameters

The different parameters used to build the synthetized environments are described

here. Additionally the different algorithms and their parameters are also presented.
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Figure 7.1: Signals recorded from a smart-phone and used for the simulation
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Table 7.1: Characteristics of the speech signals
Characteristics Signal 1 Signal 2

Long term energy (rms) [dBov] -31.927 -14.444

Active speech level [dBov] -30.295 -13.633

RMS peak-factor [dB] 31.836 14.444

Active peak factor [dB] 30.203 13.633

Activity factor [%] 68.665 82.966

Speech signals

Two speech signals are used in this analysis as far-end signals. They are illustrated in

Figure 7.1. The difference between these two signals lies principally in their loudness.

The first signal, which is of moderate, non-saturated volume is referred to as signal

1 whereas the second is a loud, saturated signal referred to as signal 2. These two

signals are considered here to show the effect of non-linearities according to signal

loudness, as signal loudness is known to be the main cause of non-linearity. The

two signals were recorded at the loudspeaker input point of a smart-phone and used

here as far-end signals. The characteristics of each signal are given in Table 7.1.

Characteristics are estimated using the active level estimator (actlev function) of

the software tools for speech and audio coding standardization produced by the

ITU Telecommunication Standardization Sector (ITU-T) [ITU-T 2011, ITU-T 2010,

ITU-T 2009]. Comparing their long term energy we notice 17.5 (dBov) less energy

in Signal 1 than in Signal 2. There is also a high degree of inactivity in Signal 1

than in Signal 2. These difference are clearly evident in Figure 7.1. The two signals

are applied to a synthetized LEMS to generate the echo signals. The following

subsections present the different components and parameters which are assumed to

have an influence on the LEMS.

Down-link devices

• Amplifier (clipping distortion):

Clipping distortion is assumed to be generated by the amplifier. Here we

simulate a hard limiter which is applied only for the purposes of clipping

compensation assessment presented in Section 7.1.4 where the limited value

is fixed to 0.5. This means that all samples whose amplitude is above 0.5 are

set to 0.5 with the same sign of the original sample. The objective of this

assessment is to observe the interest of using a clipping compensator in the

presence of clipping distortion.

• Loudspeaker The loudspeaker is modelled by a power filter as described in

Section 6.3. Here 3 sub-filters are assumed with a length equal to 50 taps.

Sub-filters parameters are measured with signals recorded from real devices.

A random signal is sent to a loudspeaker and recorded at the ear of the man-

nequin as described in Section 5.4.1 (see Figure 5.1). Then, assuming a power
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filter model of the loudspeaker, a Least Square (LS) procedure is used to es-

timate the model parameters. This approach neglects the filter between the

loudspeaker output and the microphone which we assume is reasonable in

handset mode.

Estimated sub-filters are then used in simulations to model the loudspeaker

in our synthetized environment. The output of the loudspeaker is obtained by

convolving each sub-filter with the corresponding input signal. Hence we can

generate a synthetized loudspeaker output signal that will be convolved with

the rest of the LEMS elements to generate the echo signal.

Acoustic channel and up-link devices

The rest of the LEMS is composed of the acoustic channel and the micro-

phone which are assumed to be linear and modelled by one linear filter. As-

suming that changes may arise in the near-end environment three linear filters

are used in this work. They come from the Aachen Impulse Responses (AIR)

database [Jeub et al. 2009, Jeub et al. 2010]. The AIR database contains different

impulse responses measured in different conditions. The three used here correspond

to impulse responses measured in a kitchen of size 5.20 m × 2.60 m, an office room

(5.00 m × 6.40 m) and a lecture room (10.80 m × 10.90 m). All impulse responses

have a sampling frequency of 48 kHz. For our simulation we down-sample these

three impulse responses to a sampling frequency of 8 kHz which corresponds to the

sampling frequency of narrow band communication.

The three impulse responses are truncated to 200 taps. They are then succes-

sively used to model the Echo Path (EP) (acoustic channel and microphone). The

transition where we change the EP from one impulse response to another impulse

response corresponds to echo path changes. These echo path changes happen in

general when the speaker is moving or when a change arises in the environment.

7.1.2 Algorithms

Here we describe the algorithms used in this assessment and their respective parame-

ters. While significant experiment has been conducted with different parameters, we

provide here a subset which is representative of general trends and which illustrates

the main differences.

Linear AEC

The linear AEC is based on the Normalized-LMS (NLMS) algorithm and the pa-

rameters are chosen so that it can provide a good performance and less disturbance

during all the test especially when the noise level increases. The parameter step-size

is hence set to µ = 0.5 and the regularization factor ξ = 0.1. The length is chosen

according to the concatenation of the loudspeaker linear component which is equal

to 50 taps (length of the linear impulse response) and the impulse responses (acous-
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tic channel and up-link devices) which have 200 taps. Hence the linear AEC filter

length has 250 taps.

Parallel structure

The parallel structure (PS) is described in Sections 6.2.1 and 6.5.1. It is based on a

power filter model which used 3 sub-filters of the same length. The first sub-filter is

used to estimate the linear component of the echo. The second and third sub-filters

are used to estimate the non-linear echo component. Each sub-filter is estimated

using an NLMS approach. In this case each sub-filter needs to have a minimum

length equal to that of the echo path which also involves the loudspeaker model, i.e.

250 taps.

The parallel structure uses the 250 taps in each sub-filter. The linear part of

the parallel structure (h1(n)) is parameterised identically to the linear AEC with

same step-size and regularization factor. The other sub-filters are parameterised to

provide a better result Signal 2 than Signal 1 since the former correspond to the high

non-linear case. As expected their step-size is lower compared to h1(n) for stability

reasons. Sub-filter step-sizes are equal to µp=2,3 = 0.1 with a regularization factor

ξp=2,3 = 0.1.

Cascaded structure

The cascaded structure (CS) which is the focus in this work is used to divide the

LEMS system into two blocks: a first non-linear block (pre-processor) which models

the loudspeaker and a second linear filter which models the remainder of the LEMS

which is assumed to be linear.

The pre-processor uses a power filter model of the loudspeaker and, as for the

PS, 3 sub-filters. As described in Sections 6.2.1 and 6.5.2 they are based on an

NLMS algorithm. The outputs of the sub-filters are summed up and form the input

to the linear filter. This linear filter is also based on a NLMS algorithm.

This system has P = 3 sub-filters where each of them has 50 taps. Each sub-

filter is parameterised with a small step-size (µ1 = 0.001, µp=2,3 = 0.01) and a

small regularization factor (ξp=1,2,3 = 0.0001). Smaller step-sizes are used to ensure

system stability and that of the first sub-filter (p = 1) is chosen smaller to avoid

fluctuation around different solutions. The linear filter of the cascaded structure is

parameterised similarly to the linear AEC with 250 taps and a step-size equal to

µ = 0.5.

Improved cascaded structure

The improved cascaded structure is described in Sections 6.3 and 6.5.2. It combines

Decorrelation Filtering (DF) and Clipping Compensation (CC). Decorrelation fil-

tering is applied to the output of the pre-processor of the CS. Then the decorrelated

signal forms the input to the linear AEC. This procedure uses an adaptive linear

prediction analysis based on a NLMS algorithm to decorrelate the pre-processor
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output. This allows fast convergence of the linear filter and by using the updated

version of the filter in the reconstruction of the true echo signal, it also improves

the tracking capability.

The cascaded structure and decorrelation filter use the parameters as the CS

only we add the DF process and set the first sub-filter to a delta function. The filter

length should be low order and is equal to 3 with a step-size equal to µw = 0.001.

The second branch of the decorrelation filter is just a duplication of the estimated

filter and does not require any parameterization.

CC is based on the estimation of one parameter which represents the clipping

level. This parameter estimation is based as well on adaptive estimation.

The Cascaded Structure with Clipping Compensation (CS + CC) are imple-

mented as separate blocks which aim to enhance the CS in the basic presence of

clipping distortion. All the parameters are kept similar to those used for the basic

cascaded structure except that h1(n) is again set to a delta function. The step-size

of the CC is again small and equal to µc = 0.01 with a regularization factor equal

to 0.1.

The global CS which combines DF and CC in one module is referred to as

the Cascaded Structure with Clipping Compensation and Decorrelation Filter-

ing (CS + CC + DF). The CS + CC + DF combines the two systems with their

original parameterisation. However, in this case the DF is controlled by the CC,

as explained in Section 6.3. When a clipping effect is detected the decorrelation

procedure update is paused.

Loudspeaker pre-processing

As with the CS approach, the loudspeaker pre-processing LP approach is based on

the use of a pre-processor, however in this case the objective of the pre-processor

is not to emulate the loudspeaker but to linearise the loudspeaker output. The

objective here is to generate some non-linearities that are opposed in phase to those

generated by the loudspeaker at its output. In contrast to the CS pre-processor it

uses two sub-filters whose estimation is also based on a NLMS algorithm.

The loudspeaker pre-processor has similar characteristics to the CS. The linear

filter of the LP is parameterised as the linear AEC with as step-size 0.5 and 250

taps. The sub-filters have 50 taps. Their step-sizes are similar to that of the CS

(µp=2,3 = 0.01 for all sub-filters) and their regularization factors are ξp=2,3 = 0.1.

In the simulation we first present an assessment of the linear AEC, the cascaded

approach and its parallel version as given in Figure 6.9. Assessment are performed

for different signal-to-noise ratios without control of the step-size and for two dif-

ferent speech signals; one of a low level signal (Signal 1) and another loud signal

(Signal 2) . They are used together to show the impact of varying loudness in AEC

approaches as it can be a source of non-linearity.

In the LP we show that when loudspeaker parameters are static, as is the case for

simulations presented here we can pause the pre-processor updates without losing

much in performance.
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Figure 7.2: ERLE over time for linear AEC (NLMS) and non-linear AEC (Cascaded

structure (CS) and Parallel structure (PS)) with SNR of 50 dB. The lower level signal

(a) introduces less distortion than the higher level signal (b).
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Figure 7.3: ERLE over time for linear AEC (NLMS) and non-linear AEC (Cascaded

structure (CS) and a Parallel structure (PS)) with a SNR of 30 dB. The lower level

signal (a) introduces less distortion than the higher level signal (b).
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7.1.3 Assessment parallel and cascaded structures

In this section the linear AEC, PS and CS approaches are assessed in two different

noise conditions. The first condition has an SNR of 50 dB and the second an SNR of

30 dB. The assessment is based on the ERLE metric. We focus on the analysis of echo

reduction and convergence behaviour. Two aspects of convergence are mentioned

here: initial convergence, which corresponds to the beginning of the process with

filter taps initialized to zero, and the convergence after echo path changes.

SNR of 50 dB

Figure 7.2 illustrates the ERLE profiles over time for the linear and non-linear AEC

approaches using the two different speech signals. We observe different behaviour

for the two signals. Results for Signal 1 are illustrated in Figure 7.2 (a) in which we

observe better performance with the linear AEC and the CS. Results for Signal 2

are illustrated in Figure 7.2 (b). Here the PS structure shows better performance.

We also observe that with Signal 1 (Figure 7.2 (a)) the linear AEC algorithm and

CS provide better convergence than the PS. This is explained by the fact that the

non-linearities in this case are respectively lower so that, at the beginning of the

process the system behaves as linear. Also the presence of the noise may perturb

the estimation of non-linearities. Difference in convergence is also observed during

the two echo path changes around 43 and 86 s.

For Signal 2 in Figure 7.2 (b), the signal is louder and often saturated. We

observe that the convergence behaviour changes completely. At the beginning of

the process the PS provides better convergence than the CS and linear AEC. This

is expected as lower step-sizes are used in the CS pre-processor. From the beginning

until 5 s the linear AEC and CS show similar behaviour. Afterwards, however,

the CS starts to provide better performance than the linear AEC. This shows the

effect of applying lower step-sizes to the CS pre-processor. Low step-sizes provide a

stability but also lead to slower convergence.

Still referring to Signal 2 and Figure 7.2 (b), after approximately 15 s, before

the first Echo Path Change (EPC) the PS gives 10 dB more ERLE than the CS and

20 more than the linear AEC algorithm. This is explained by the slow convergence

of the CS or presence of local minima. In contrast to observations for Signal 1,

we observe with Signal 2 that the convergence at the beginning of the process and

after the two EPCs is not similar. In fact, when EPCs occur around 16.5 and

33 s we observe that the CS provides better convergence which is due to the lower

step-size used in the pre-processor. Whereas these lower step-sizes reduce initial

convergence they increase robustness against EPCs. Echo path changes normally

affect the pre-processor as well but will be imperceptible with low step-sizes.

Other tests with different parameters have shown that we can reach a better

ERLE than those illustrated in Figure 7.2 (a) for Signal 1 with the PS but these

same parameters will induce divergence with Signal 2. Higher regularization factors

can provide better stability but result in a lower ERLEs for the PS than for the CS

and the linear AEC algorithm.
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SNR of 30 dB

Figure 7.3 illustrates the ERLE over time for each of the different algorithms using

the same speech signals. But now for an SNR of 30 dB we observe that when the

noise level increases the ERLE is lower in all cases. This is expected as the algorithms

are all limited by the noise level. For Signal 1 in Figure 7.3 (a) we again observe

faster convergence with the linear AEC and CS than for the PS. However, the

differences in convergence at the beginning and after EPCs are less noticeable with

increased noise. The linear AEC algorithm and CS now provide similar performance

to the PS. This shows that, depending on the noise level, non-linearities may have

less impact than noise which is shown in Chapter 5. Nevertheless the CS shows

slightly better echo reduction than other algorithms.

Figure 7.3 (b) shows that even when the noise level increases and under higher

levels of non-linearity the PS provides better performance. We observe the same

effect in Figure 7.2 (b), around 15 s before the first EPC the ERLE for the PS

is about 7 dB higher than that of the CS. When EPCs arise around 16.5 and 33

s the CS again converges more quickly but the difference compared to the PS is

reduced by the increase in noise (Figure 7.2 (b) and Figure 7.3 (b)). Normally, the

CS is expected to be more affected by noise. In fact as the pre-processor depends

on the linear filter estimate, when the noise increases the linear filter estimate is less

accurate and degrades the pre-processor. Here only the earlier taps of the linear

filter are used which is supposed to be more robust to noise and explains the fast

convergence of the CS in this case.

The CS approach is efficient under conditions where non-linearities are low in

which case it provides comparable results to the linear filter. Experiments with the

second signal (Signal 2) shows that the pre-processor is more robust against EPCs

when the signal level is high but that it converges slowly at the beginning of the pro-

cess. Increased noise, however, affects the convergence of the pre-processor estimate

by affecting the linear filter estimate which hence leads to reduce the performance.

However, it is shown that the PS offers faster convergence and better echo reduction

than the CS when the non-linearities are high except during EPCs.

Now we focus on signal 2 and show that decorrelation filtering DF can improve

convergence of the CS and hence provide better echo reduction. Then we present the

CC assessment which assumes clipping distortion introduced before the loudspeaker.

7.1.4 Improved cascaded structure assessment

The assessment of the improved cascaded structure presents first the improvement

brought by the use of DF. Whereas the second step focuses on the use of CC and the

combination of CS + CC + DF. Assessments presented are based on the Signal 2

where CS shows slow convergence.
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Figure 7.4: ERLE over time of non-linear AEC (Cascaded structures (CS, CS + DF)

and Parallel structure (PS)) with SNR of 50 and 30 dB.
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Figure 7.5: Output error of Cascaded structures (CS, CS + DF) and Parallel struc-

ture (PS)) with SNR of 30 dB. The vertical lines show the different echo path change

and the red rectangles show where CS + DF attenuated the error. Note that the

error was scaled by 2 ∗ 106 to make visible the noise attenuation.
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Figure 7.6: ERLE over time of linear AEC (NLMS) and non-linear AEC. (a) Linear

AEC, Cascaded structures (CS, CS + CC) and Parallel structure (PS) with an SNR

of 30 dB. (b) Cascaded structures (CS, CS + CC, CS + CC + DF).



138 Chapter 7. Non-linear AEC assessment

Decorrelation filtering

Figure 7.4 illustrates the ERLE over time for the CS, the CS + DF and the PS.

The CS and PS results are the same as those given in Figures 7.2 (b) and 7.3 (b).

Results are shown for Signal 2 and SNRs of 50 and 30 dB. Upon comparison of the

ERLE profiles in Figure 7.4 (a) we observe that the CS + DF converges faster than

the CS. This is explained by the use of a decorrelated signal in the linear filter. We

observe that during EPCs around 16.5 and 33 s the CS + DF reacts faster than the

CS and PS. We see that just after the EPC the CS + DF has about 10 dB more

ERLE than the CS and PS around 16.5 s.

In Figure 7.4 (b), where the SNR is equal to 30 dB, we observe that the CS + DF

still provides a better initial convergence also after EPC. However, the ERLE of the

CS + DF is much higher than that of the other algorithms when the SNR is equal

to 30 dB compared to 50 dB of SNR. Hence we focus on a representation of the

error to observe if the noise was not affected by the DF procedure.

Figure 7.5 shows the output errors in the time domain and corresponding spectra

for the three algorithms. As expected we observe that the error attenuation of the

different algorithms is in line with the ERLE. We also observe around 22, 32 and

48 s some peaks in the CS and CS + DF error which are not well observable with

the ERLE. These effects may be related to the shape of the original signal or a

mismatch in the estimators. However, the peaks in the CS + DF error signal are

smaller than that in the CS error. Additionally we see that the error is slightly

attenuated (red blocks) in certain periods when using the CS + DF. This is due to

the echo signal estimation procedure which uses the updated version of the filter in

high noise conditions. This implies that a control is required in high noise conditions

even if no spectral domain distortion is introduced by this approach. We also observe

that the PS error has higher energy in high frequencies after EPCs which is explained

by the convergence time required in sub-filters 2 and 3. This shows that after EPC

the PS is less able to remove the non-linearities than CS + DF.

These results show that the DF improves the convergence (especially initial

convergence) of the CS. In the following section we present a general model of the

non-linear AEC which combines DF and CC and is referred to as CS + CC + DF.

However, before assessing this solution we first focus on the improvement of the CC

when using a CS based non-linear AEC. The CS approach, which additionally uses

a CC, is referred to as CS + CC and is presented next.

Clipping compensation combined with decorrelation filtering

Here the objective is to assess the clipping compensation and the combined system

with decorrelation filtering. We aim to show the importance of using a clipping

compensator when clipping distortion arises. In this case the clipping parameter is

set to 0.5 and we focus on clipping compensation results for Signal 2. As the level

of Signal 1 does not reach the clipping level, results show comparable performance

with the CS and CS + CC, as expected.
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Figure 7.6 illustrates the ERLE of the different linear and non-linear approaches.

Figure 7.6 (a) shows the ERLE of the linear AEC, CS, CS + CC and PS. We observe

that, as all pre-processor modules use low step-sizes, the linear filter performance

with CC increases slowly. We also see that performance is robust to EPCs which is

important in AEC applications. Even if the CS and PS are based on a non-linear

model, they do not achieve better performance than the linear AEC. This can be

explained by the fact that clipping is not well estimated by a power series. Hence, in

such conditions a simple linear system may be preferable, even if clipping distortion

may not arise as often as in this simulation case. We observe that, after the echo

path change at around 12.5 s, fast convergence is observed with the CC. This means

that clipping compensation will improve robustness to EPCs as did the CS without

clipping distortion.

Figure 7.6 (b) shows the ERLE profiles of the improved CS approaches. We

observe that CS + DF provides better performance, however, more attenuation of

the noise signal may happen as the model is less accurate. We also observe that,

when the system is well modelled with the CS + CC + DF, we have better perfor-

mance. The improvement of CS + CC + DF is mainly shown around 15 s after the

echo path change. This shows that it is better to have a more general model of

non-linearities than CS + CC or CS + DF.

Better performance is shown initially for the CS + DF which is understandable

as the CC converges very slowly to be robust during EPCs. After around 7 s we

notice a difference between CS + CC and CS in Figure 7.6 (a) at this same period

we observe that the CS + CC + DF starts to provide better performance compared

to CS + DF. This shows that the CS + DF can be improved by CC. In fact the

use of the CC better models non-linearities and helps DF to be more efficient.

7.1.5 Loudspeaker pre-processing assessment

The loudspeaker pre-processing (LP) assessment shows similar behaviour to that of

linear AEC and the low level signal as we have seen for the CS. Here the LP is

compared with the linear AEC with a similar level of noise. The SNR of the linear

AEC is given by the power ratio between the echo signal (linear and non-linear

components) and of that of the background noise. This SNR is the same for CS

and PS. However, the SNR of the LP is the power ratio between the echo signal

(where the non-linear component is already attenuated) and that of the background

noise. Hence, the SNR refers here to that of the linear AEC. As LP may introduce

distortion in the far-end signal the ERLE is not sufficient for assessment and the

system distance (SD) is additionally used here to assess the linearisation process.

Compared to the assessment of the CS and PS the ERLE of the LP take into account

only the suppression of linear echo whereas that non-linearities are assessed by the

SD.

Linearisation performance is assessed using the SD between the linear filter,

which results from the cascade of the loudspeaker and the acoustic path ( hl(n) =

h1(n)∗h(n) ), and the AEC filter ĥ(n). Note that the convolution of hl(n) with the
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Figure 7.7: Comparative performance of linear AEC (NLMS) and loudspeaker pre-

processing (LP, LP 1) for an SNR of 50 dB. The SD shows that the loudspeaker

pre-processing has an accurate estimation of the far-end linear component.
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Figure 7.8: Comparative performance of linear AEC (NLMS) and loudspeaker

pre-processing (LP, LP 1) for an SNR of 30 dB. SD shows that loudspeaker pre-

processing reaches an accurate estimate of the far-end linear component.
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far-end signal gives the linear echo component. In this case the system distance is

given by SD(n) = |hl(n)−ĥ(n)
hl(n)

|. We compare the system distance of the linear AEC

(NLMS) algorithm both with and without linearisation pre-processing.

In this assessment we also focus on the independence of the pre-processing re-

garding the EP. Hence, after the second EPC, the pre-processor is paused in Loud-

speaker Pre-processing 1 (LP1). To show that longer signals are used by replicating

half of Signal 2 to have better convergence of the pre-processor which updating

process is paused after the second EPC.

SNR equal to 50 dB

Figure 7.7 illustrates the ERLE and SD against time for Signal 2 which is used as

far-end signal with SNR of 50 dB.

Echo reduction: The ERLE profiles in Figure 7.7 (a) shows that the loud-

speaker pre-processing helps the system to converge faster than that of the linear

AEC. We observe that, until after 8 s the LP convergence is slow. After approxi-

mately 15 s we observe a difference of ERLE about 10 dB compared to the linear

AEC. We also observe that when the EPC arises the LP converges faster than the

linear AEC which is a similar behaviour as with CS. After the second EPC we

observe that the LP is slightly better than LP1 for which pre-processing adaptation

has been paused. This means that the pre-processor continues to converge. The fact

that these parameters are independent from the EPC allow an off-line estimation

of these parameters in ideal conditions. Adaptation needs only to be performed

occasionally and the parameters do not need to be reset upon each use (call).

Linearisation performance: Results are presented in Figure 7.7 (b) and show

the system distance against time for each configuration. We observe that LP achieves

better accuracy and shows an SD reduction in the order of 5 to 10 dB more than

the linear AEC. This confirms the results obtained with the ERLE and the fact

that the loudspeaker pre-processor provides an accurate estimate of the far-end

signal at the output of the loudspeaker. An interest point is when we observe the

EPC period around 25 and 50 s, we see that the two systems have a peak that

shows the abrupt path change. Due to efficient parameter estimation the LP re-

converges quickly whereas the linear AEC is perturbed in its re-convergence by

the presence of non-linearities. This deviation of the linear AEC is in general due

to noise and is explained in Section 4.4 which describes how non-linearities may

deviate the estimated path from the linear Wiener solution. We observed during

periods around 35 and 60 s that the linear AEC is highly disturbed whereas the

LP approach still converges. This difference is more important at 60 s LP and LP1

converge whereas the linear AEC is highly disturbed. We also observe that after

the second EPC the difference between the LP and LP1 profiles is small meaning

that the pre-processor has converged. This cannot be done with the PS as all the

parameters are environment dependent.



7.2. Analysis with real data 143

SNR equal to 30 dB

Figure 7.8 illustrates the ERLE and SD profiles for an SNR of 30 dB. As expected

we see that all metrics show decreased LP performance.

Echo reduction: We observe in Figure 7.8 that the LP still gives better per-

formance than linear AEC. Initially, and around the different EPCs at 25 and 50 s

ERLE profiles show that the LP converges very quickly. The last part shows that,

when the pre-processor is paused, LP1 can be better than LP. This can be explained

by the fact that the pre-processor has not converged so that, when the pre-processor

is paused in LP1 the constraint will be on the linear filter of the LP1 which tries to

have a more efficient estimate according to the current state of the pre-processor.

This means that the pre-processor has not completely converged but the linear filter

can find the best estimates that gives the minimum error according to the current

state of the pre-processor.

Linearisation process: Figure 7.8 (b) shows the SD profiles for the different

algorithms. Upon comparison of the LP SD for 30 dB SNR and the linear AEC

for 50 dB SNR we observe that the LP can reach a better linear echo component

estimation than the linear AEC in lower SNR. This characteristic is better shown

in terms of SD than ERLE as the latter is biased due to the pre-processing of the

far-end signal. This characteristics is still dependent on the noise level and the

level of non-linearities. The SD for the linear AEC and LP in Figure 7.8 (b) are

closer. This can be explained by the slower convergence of the pre-processor and

the presence of more noise. We also observe that the LP shows a better convergence

than the linear AEC when EPCs arise. When the LP1 pre-processor is paused we

observe that, during high level signal period, at around 55 − 60 s the LP is better

than LP1 whereas afterwards LP1 shows better performance. This can be explained

by the fact that when the pre-processor is paused the linear filter reaches a lower

error even if this is not a global minimum. Note that the bias in the linear path

estimation is not only due to the pre-processor estimation accuracy. It is normal to

expect that bias in presence of noise even when the pre-processor is accurate.

Results for a synthetized environment show that improvements to CS are brought

by the DF and CC. The resulting system CS + CC + DF provides better conver-

gence than the PS and allows for efficient echo reduction. On the other hand the

LP is as to be efficient as the CS to EPCs and can be paused without significant im-

pact on performance. However, this procedure is shown in a simulated environment

where the loudspeaker is static. Real time processing tests are required to verify

this procedure. In the following we report an assessment with real data recorded

with a smart-phone.

7.2 Analysis with real data

Two different experiments are reported in this section. Both involve data recorded

from a real smart-phone. The first aims to assess tracking performance whereas the

second aims to assess clipping compensation performance.
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7.2.1 Data

Signals used for this test are extracted from the same database used for analysis

with synthetic set-up. In the first experiment tracking performance is assessed using

recordings of real mobile devices in hands-free mode with abrupt echo path changes

and an interval containing high-level signals in order to induce clipping. During the

interval between 0 and 30 s the phone is placed on a table before being taken in

hand from 30 to 40 s and then placed again on the table from 40 s until the end. In

the second approach a loud signal is applied to the loudspeaker to assess increases

in non-linear distortion.

7.2.2 Algorithms

The same algorithms presented in the synthetized data analysis are used, with the

exception of LP which requires online processing. We additionally assess the PS

Volterra approach by assuming no a priori on the type of non-linearity. The same

parameters used in the previous synthetized environment are kept with the exception

of the length of the sub-filters which are reduced to 10 taps and lead to the use of 210

taps in the linear AEC and the PS sub-filters. This is to avoid increase error when

the pre-processor is unknown. The volterra filter also has 210 taps in the first order

kernel (linear filter) with the same parameters as the synthetized environment linear

AEC. The quadratic kernel of the Volterra filter has 5050 taps which is equivalent

to (N2−N)
2 +N when the half matrix is used. The step-size of the quadratic kernel

is equal to 0.1 and a regularization factor to 1. These parameters have been shown

to ensure its stability along the different tests and provide better ensemble results.

7.2.3 Tracking performance

Figure 7.9 (a) illustrates ERLE profiles for the different solutions. We observe that

the linear AEC and the CS + CC obtain better performance than the other solu-

tions. This can be explained by the low signal level which introduces less distortion

so that linear AEC and CS are more efficient. This behaviour has been observed in

low level signals even in the simulation and confirms the comparable performance of

CS to linear AEC in linear environments. We observe that the convergence of the

PS is slow due to the low level of non-linearity that is not easy to estimate.

After the first EPC we observe better convergence for the CS than the PS, as

before. This shows that the CS convergence is not negligible even in a real test case.

We also observe that at around 32 s the CS is also perturbed whereas the CS + CC

is stable. This can be explained by the fact that the integration of the clipping

compensation in the pre-processor leads to a better stability. This difference is due

to the constraint on sub-filter 1 in the CS + CC. In fact when the system is quasi

linear, as in this case, we can expect the constraint h1(n) = 1 to obtain better

results than the CS.

The second EPC around 40 s shows similar behaviour for each of the different

algorithms even if we observe in this case that the CS is more stable and better
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Figure 7.9: ERLE against time for the linear AEC (NLMS) and non-linear AEC

approaches with Signal 1, with EPCs.
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than the PS, which has slower convergence. To reduce the convergence time of the

PS it is possible to increase the step-size of sub-filters 2 and 3, but in this case the

system will be less stable. As a common error is used in the updating process of

the different sub-filters, when the system is close to being linear, sub-filters 2 and 3

with high step-sizes may introduce more perturbations.

The third EPC is followed by a longer and louder period speech signal compared

to the latter three parts. This period shows a change in algorithm behaviour. We

again observe fast convergence in the case of the PS. We also observe that for the

linear AEC the ERLE is slightly under that of non-linear systems. In certain peri-

ods we observe that the CS + CC has better performance which may be explained

by some slightly short period of clipping distortion. Here the PS reaches similar

performance to the CS which is explained by the loudness of the signal.

Performance for the more complex solutions are presented and the CS + CC is

used as it has shown to be the best solution in the algorithms presented in Fig-

ure 7.9 (a). The CS + CC shows similar performance to the PS Volterra solution,

even after EPC, whereas PS is expected to be lower. This can be explained by the

decorrelation between the first order component and the quadratic component. This

decorrelation helps the quadratic Volterra filter to behave as a linear filter in a linear

environment but, if a third order is considered, the behaviour will change due to the

correlation of first order and third order components. In the PS presented in the

previous case (Figure 7.9 (a)) a third order component is used which is correlated

with the first order component thus convergence is slower. However, we observe that

in the loud signal period the CS + CC is better than the PS Volterra solution. This

can be explained by the slow convergence of the Volterra solution or a mismatch

between the real system and the Volterra filter. CS + DF and CS + CC + DF have

better ERLE than the other systems, which is predictable due to decorrelation fil-

tering. We observe that algorithms which use DF present similar performance, for

certain periods the combination of DF and CC provide better performance than the

CS + DF only. A significant improvement is obtained when using DF and 5 dB of

difference of ERLE is observed compared to the other systems without decorrelation

filtering.

7.2.4 Loud signal assessment

Figure 7.10 illustrates the performance of the different systems with a loud signal.

Figure 7.10 (a) shows the behaviour of the linear AEC, the CS, CS + CC and the

PS. We observe that the CS + CC converges more quickly at the beginning of the

process than the other algorithms. This can be explained by the presence of some

clipping distortion. Between 6 and 13 s better performance is provided by the PS

which can be explained by a period without clipping distortion. Then, in a second

period around 17 s CS + CC shows better performance which can also be explained

by a period of clipping distortion. Around 19 s we observe a peak in the profile for

the linear AEC which can be due to many reasons such as changes in the non-linear

behaviour of the real system or a strong linear component. Except for this in general
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the ERLE for the linear AEC is lower compared to the other systems but above that

of the CS around 10 s.

Figure 7.10 (b) shows that the CS + CC is better than the Volterra approach

at the beginning of the process but around the same period (11 − 16 s) during

which PS in Figure 7.10 (a) shows better performance, we observe that the Volterra

filter is also better than CS + CC. Then, at the period when the clipping effect

arises around 17 s we observe better performance of the CS + CC compared to

the Volterra filter. This shows that, in short periods, the Volterra filter cannot

model a clipping distortion. Comparing the CS + DF and CS + CC + DF, we can

observe some similarity with the CS + CC and Volterra filters. In most periods

where the CS + CC is better than the Volterra filter, the CS + CC + DF is also

better than CS + DF. This shows that the decorrelation filter can provide better

performance when the model well-fits the real system. This is normal as the more

the output of the pre-processor is linearly close to the loudspeaker output, the more

the improvement brought by the decorrelation filtering. Here we also observe that

the systems with decorrelation filtering have 5 to 9 dB more ERLE than systems

without decorrelation filtering.

The real data analysis shows that as with simulated data the CS still present

better convergence during EPCs. Some unexpected behaviours are observed with

real data which can be explained by a mismatch with the non-linear model that

may happen in real system. However, we observe that the DF procedure increases

the performance of the CS even with real data, and can achieve better with CC.

These tests show that the CS + CC + DF provides better results compared to the

Volterra filter which is the baseline system generally used in non-linear AEC.

7.3 Conclusions

This chapter demonstrates the performance for each of the different algorithms. A

simulated environment, where parameters are under full control, is used to assess the

different algorithms. The simulated environment shows that where non-linearities

are low the CS provides comparable performance to linear AEC. Under such condi-

tions linear AEC and CS have faster convergence than the PS. Better convergence

is explained by the fact that at the beginning of the process the system behaves like

a linear system. The behaviour of PS is explained by some perturbations introduced

by sub-filters 2 and 3.

However, when non-linear distortions are significant, as is the case with loud

signals the PS shows faster convergence due to the ability to estimate non-linear

component than CS which uses small step-sizes in the pre-processor. When EPCs

arise the PS has more difficulty to re-converge than the CS which exploit the reliable

output of the pre-processor. Hence the basic CS provides better performance with

time variable EP non-linearities than PS, whereas the latter is more efficient in echo

reduction in static environments.

In a second step we also show that the convergence and echo reduction of the CS
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can be improved using DF. The CS + CC scheme effectively tackles clipping which

may arise with loud signal. With clipping compensation the CS + CC shows better

performance than CS but the most efficient is the CS + CC + DF which combines

clipping compensation and decorrelation filtering and is shown to outperform all

other algorithms for all different conditions.

The LP is also shown to provide better performance than linear AEC by reducing

the non-linear component. If the loudspeaker characteristics are static then the pre-

processing can be paused without any significant loss in performance.

Finally we have used data recorded from a smart-phone with both a low level

signal and a loud signal. Experiments with the low level signal show that linear

AEC and CS have better performance especially if the mobile is moved in which

case re-adaptation is required. When the signal is loud the PS can provide com-

parable performance to CS. The CS + CC shows better improvement with loud

signals where clipping distortion is expected. We have observed, similarly to some

simulation results, that the CS + CC is better in periods where clipping arises but

sometimes the PS performs better in periods without clipping distortion and EPCs.

Better results are provided by systems with decorrelation filtering. However, the

best result is generally provided by the system combining decorrelation filtering and

clipping compensation.

The assessment have shown that the CS structure is an efficient solution for non-

linear systems with EPC. They can behave as linear systems in linear environments

and provide faster convergence and better robustness to EPC in highly non-linear

conditions. These two advantages are significant when considering the fact that the

EPC problem is a challenging issue in linear AEC and more difficult for non-linear

AEC.

This work has shown in terms of echo reduction that CS + CC + DF generally

outperforms the different algorithms. This is due to its ability to model different

types of distortion and to converge quickly.





Chapter 8

Conclusions and future work

8.1 Conclusions

This thesis relates to the problem of Acoustic Echo Cancellation (AEC) and specifi-

cally that of non-linearity. Following a review of the state-of-the-art solutions in lin-

ear and non-linear AEC are presented. Non-linear solutions are subdivided into four

categories: the parallel structure, cascaded structure, loudspeaker pre-processing

and non-linear echo post-filtering. We present an analysis of the different non-linear

structures and assess the environments under which they are expected to be effi-

cient. We show that in a time invariant environment the Parallel Structure (PS) is

more robust and can provide better results than the Cascaded Structure (CS). On

the other hand, if the environment is subject to some variability such as echo path

changes then the CS is more efficient as it can more easily follow the changes to the

environments.

Our contribution starts with an analysis of the effect of non-linearities on linear

AEC. This analysis shows that solutions such as the Adaptive Projection Algo-

rithm (APA) and Frequency Block LMS (FBLMS), which are known to provide

better performance in linear environments, are far less efficient in non-linear en-

vironments. We then propose a theoretical analysis of the effects of non-linearity

on linear AEC. The analysis is based on the Wiener solution of the echo path in

non-linear conditions, with the assumption that non-linear and linear components

are correlated in the case of speech signals. The theoretical analysis explains the

behaviour of linear AEC in non-linear conditions. It also shows that some non-

linear echo post-filtering may under or over estimate residual echo in the presence of

non-linearity. This analysis demonstrates that, in non-linear environments, the sim-

ple Normalized-LMS (NLMS) is relatively robust and can be an appropriate choice

compared to alternative, more complex solutions such as APA. Nonetheless, the loss

in performance of linear AEC shows that efficient, specific solutions are required in

non-linear environments.

Before investigating non-linear AEC solutions we first characterise the source

of non-linearities in mobile phone environments. Measurements in real mobile de-

vices confirm that the loudspeaker is the main source of non-linearities, as is widely

acknowledged in the non-linear AEC literature. Based on these observations we

propose two non-linear loudspeaker models: a frequency domain and a time domain

model. Both models show a certain accuracy with real signals but the frequency

domain model is significantly more complex than the time domain model. Fixed

models are also not appropriate and so we propose to adaptively estimate the pa-
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rameters of the time domain model.

Since the loudspeaker is the main source of non-linearities we adopt a non-

linear Loudspeaker Enclosure Microphone System (LEMS) structure. This structure

assumes a non-linear filter (pre-processor) representing the loudspeaker followed by

a linear filter representing the concatenation of the acoustic channel and microphone

responses. We show that only a small number of taps around the diagonal of the

Volterra quadratic kernel are significant, as confirmed in the literature.

Regarding the high number of parameters required in the PS and the LEMS

structure we decided to focus our work on a cascaded structure. We first propose

to adapt the cascaded structure to the time domain loudspeaker model. The CS

is based on two adaptive filters: a non-linear adaptive filter which estimates loud-

speaker parameters (referred to as a pre-processor) and a second filter which is

assumed to be linear.

The improved version of the CS advances the state-of-the-art. New develop-

ments relate to computationally efficient pre-processing and clipping compensation

which aim to improve non-linear modelling and decorrelation filtering which aims

to improve linear filter tracking performance.

In addition we propose a Loudspeaker Pre-processing (LP) approach where a

pre-processing is applied before the loudspeaker to linearise its output. A linear

AEC can be efficiently used in this case, as the LEMS to be estimated becomes

a linear function. A drawback of this solution is that the LP introduces at high

frequency distortion in the far-end signal.

We finally compare the linear AEC and the different non-linear AEC solutions

(PS and CS) in two situations: a synthetized scenario and a real data scenario. The

objective with the synthetized analysis is to compare the behaviour of the different

approaches in an environment where the characteristics are known a priori. The

subsequent use of real data validate our findings for mobile terminals.

It is shown that, when non-linearities are low, linear AEC provides comparable

performance to CS. The amount of echo reduction achieved with the PS is slightly

lower than that of linear AEC. We have also shown that linear AEC and CS converge

faster than the PS at the beginning of a call and during echo path changes. When

the system is highly non-linear, we observe different behaviour with each algorithm.

The PS shows better convergence and echo reduction compared to the CS and linear

AEC at the beginning of a call. However, when echo path changes arise (in which

case the filter taps are not initialized to zero) the CS shows faster re-convergence

than the PS, as expected from our analysis.

Tests with the improved CS structure show that Decorrelation Filtering (DF)

improves the convergence of the CS even in highly non-linear conditions. The CS

with DF shows faster convergence, better tracking and more echo reduction than the

CS and PS. However, it is shown that, in noisy conditions the Cascaded Structure

with Decorrelation Filtering (CS + DF) may attenuate noise. This leads to the

requirement of a control based on noise power.

In the presence of clipping distortion better echo reduction is obtained when

the CS incorporates Clipping Compensation (CC). The Cascaded Structure with
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Clipping Compensation (CS + CC) provides better performance than CS and PS.

We also show that when CS + CC is combined with DF faster convergence can

be achieved. As a result, the full combination of Cascaded Structure with Clip-

ping Compensation and Decorrelation Filtering (CS + CC + DF) provides the best

overall performance.

The LP approach is assessed with linear AEC. LP provides better echo reduction

and more efficient linearisation than the linear AEC alone. It is also shown that when

the loudspeaker characteristics are static, as in the simulation, the pre-processor

adaptation can be paused without any significant decrease in LP performance. This

approach therefore has similar potential to off-line pre-processor estimation proposed

in the literature.

The interest of the simulation is to determine the properties of the different

approaches in a controlled environment. Our experiments show that the algorithms

react as expected in such simulated environments. The simulation is nevertheless

insufficient on their own in AEC assessment as different behaviours may arise in

practice and the real system is never perfectly modelled as assumed in simulations.

Signals recorded in real scenarios with a smart-phone are then used to assess the

different algorithms. These results are difficult to clearly interpret since the real

environment is not fully known, however, some of our expectations are confirmed.

We observe that when the far-end signal is of moderate volume (does not in-

clude clipping) linear AEC and the CS converge faster than the PS. In contrast

when the signal is loud the PS shows better echo reduction than the CS and linear

AEC. It is also shown that the Volterra filter provides comparable performance to

the CS + CC. In these tests the CS + CC + DF shows the best results among the

different systems and can be seen as an efficient choice for non-linear echo cancel-

lation even in real environments. In the absence of clipping distortion CS and DF

can be combined on their own to reduce the computational load.

Regarding these different tests results, the different algorithms can be classified

according to two environments: a static environment where the most efficient so-

lution is the PS in terms of echo reduction but with slightly low performance in

quasi linear conditions. The PS Volterra solution is particularly complex so that

CS + DF and CS + CC + DF are good compromise in performance versus com-

putational load. In the case where the environment is variable, such as with echo

path changes the best structure is the CS. This structure can furthermore be com-

bined with DF to improve convergence. If clipping distortion is expected then the

CS + CC + DF is the most efficient.

The LP was not assessed with real data as we would have had to develop a

real-time system for such analysis. This is a limitation for recommendations as

synthetized environment results do not always reflect results in real condition. Nev-

ertheless, from simulations we can expect the LP to be at least better than CS.

On the other hand the LP can also be combined with DF to improve convergence,

even if it is potentially problematic to further combined LP and CC regarding their

structure.

Finally, we focus on approaches based on loudspeaker pre-processing. We pro-
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pose some improvements to the CS and an online loudspeaker linearisation to make

more efficiency conventional linear AEC.

8.2 Perspectives

In this section we introduce some perspectives that can be investigated to improve

non-linear AEC performance.

Non-linear acoustic echo post-filtering

In Section 4.4, the analysis of linear AEC behaviour in non-linear conditions shows

that non-linearities can be considered similar in nature to the combination of

correlated and uncorrelated components. This subdivision can be exploited to

derive a two steps non-linear echo suppression.

correlated component: The correlated component induces the linear AEC to

behave as in a non-stationary environment. Hence, it is required the use of linear

AEC with fast tracking capability to follow the changes introduced by the correlated

non-linear component. Fast-tracking, adaptive filters have previously received great

deal of attention in the literature principally for time-variant systems. Even if

some solutions for fast tracking already exist such as the Extended RLS (E-RLS)

introduced in [Haykin et al. 1997], this task is challenging since the AEC will be

perturbed by the uncorrelated component.

uncorrelated component: As the linear AEC cannot remove the uncorrelated

component a post-filtering approach will be required to remove that component. The

uncorrelated residual echo can be treated as noise but requires a further statistical

analysis, such as power spectral density estimation, to be reliably tackled.

Multi-microphone non-linear AEC

Multi-microphone systems have been investigated in different domains, however,

they are less investigated for non-linear AEC. This situation may be explained by

the fact that the well-known Volterra solution in non-linear AEC will be highly

complex. In this case the complexity of the PS in single microphone is multiplied

by the number of microphones whose signals are treated. However, the CS and LP

are more efficient in such circumstance since only one pre-processor is required to

treat non-linearities of the different channels.

In Section 6.2.3 it is shown that CS is subject to local minima. This problem

can be investigated by using multi-microphone approaches. Hence, the pre-processor

can be constrained to satisfy different error minimization in the different channels

in order to reduce the effect of local minima. These solutions can also rely on

approaches developed in multi-microphone source localization and de-reverberation

techniques.
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