
EURECOM
Department of Networking and Security

Campus SophiaTech
450, route des Chappes

06410 Biot France
FRANCE

Research Report RR-12-273

A P2P Based Usage Control Enforcement Scheme Resilient
to Re-injection Attacks

Augoust 6th, 2012

Iraklis Leontiadis, Refik Molva, and Melek Onen

Tel : (+33) 4 93 00 81 00
Fax : (+33) 4 93 00 82 00

Email : {Firstname.Name1,Firstname.Name2,Firstname.Name3}@eurecom.fr

1EURECOM’s research is partially supported by its industrial members: BMW Group, Cisco,
Monaco Telecom, Orange, SAP, SFR, Sharp, STEricsson, Swisscom, Symantec, Thales.

A P2P Based Usage Control Enforcement
Scheme Resilient to Re-injection Attacks

Iraklis Leontiadis, Refik Molva, and Melek Onen
Eurecom, Biot, France

{leontiad, molva, onen}@eurecom.fr

Abstract—Existing privacy controls based on access con-
trol techniques do not prevent massive dissemination of
private data by malevolent acquaintances of social network,
unauthorized duplication of files or personal messages, or
persistence of some files in third-party operated storage
beyond their deletion by their owners. We suggest a usage
control enforcement scheme that allows users to gain
control over their data and the way this is disseminated
in outsourced storage. The scheme is based on a peer-to-
peer architecture whereby a randomly selected set of peers
assure usage control enforcement for each data segment.
Usage control is achieved based on the assumption that
at least t out of any set of n randomly chosen peers
will not behave maliciously. Such a system would still
suffer from re-injection attacks whereby attackers can gain
ownership of data and the usage policy thereof by simply
re-storing data after slight modification of the content. In
order to cope with re-injection attacks the scheme relies
on a similarity detection mechanism based on special hash
functions. The robustness of the scheme has been evaluated
in an experimental setting using a variety of re-injection
attacks.

I. INTRODUCTION

With the advent of social networks and cloud com-
puting the processing and storage of private data is
more and more outsourced to services operated by third
parties. The significant capacity increase and widespread
dissemination advantages offered by these services also
come with unprecedented security and privacy concerns.
Beyond basic exposures that are partially covered by
classical security mechanisms such as data confidential-
ity, authentication, and access control new security and
privacy requirements arise due to the sheer volume of
data exchanges and the span of dissemination enabled by
these services. Existing privacy controls based on access
control techniques do not prevent massive dissemination
of private data by malevolent acquaintances of social
network, unauthorized duplication of files or personal
messages, or persistence of some files in third-party
operated storage beyond their deletion by their owners.
As a result of such exposures, users of these outsourced
services lose control over their data thereof. Bestowing

users back with the control of their data and over the way
it is disseminated within these services can unfortunately
not be achieved by means of the classical access control
mechanisms.

Access control can achieve perfect control over the
identity of parties authorized to access the data and the
circumstances of the access operation pertaining to time
and content but it does not allow for any control over
the way these parties make further use of the data. Such
a comprehensive control spanning the entire lifetime of
each data segment can actually, be assured through a
security service called usage control.

In this paper, we suggest an original solution to tackle
a special case of the usage control problem. Even though
a generic usage control solution fitting all possible set-
tings seems infeasible, in a confined environment with
a well defined set of subjects, resources and operations,
usage control can be achieved. The impact of leaving the
system to violate some of the rules would be negligible.
The proposed solution defines a P2P system where data
management operations performed and controlled by a
subset of peers. The enforcement is assured thanks to the
collaboration of peers and based on the assumption that
at least t out of any set of n randomly chosen peers will
not behave maliciously. All users having adopted the P2P
network for any operation, including ensures usage con-
trol enforcement, violations outside this network would
not significantly affect the system. Furthermore, even in
such a confined environment, an adversary may try to
alter some policies by slightly modifying the content
and re-introducing it in order to gain the ownership of
the data. The proposed enforcement mechanism allows
peers to detect similarities between any upcoming data
and existing ones, thanks to the use of special functions
defined as error tolerant hash function (ETHF).

In section 2 we define the problem of usage control
and depict the idea of our solution. Related work is
presented in section 3. In section 4 the preliminaries of
our solution are examined and in section 5 we give a
detailed description of the scheme. Before closing with

our conclusion and future work in section 8, we examine
the security of the proposed mechanism in section 6 and
in section 7 we evaluate the correctness of the error
tolerant hash function.

II. PROBLEM STATEMENT

A. Usage control

If we could try to give a definition for usage control
then this can be summarized as follows: Enforce com-
pliance with policy during the entire lifetime of each
resource. Usage control’s main difference with access
control is the notion of continuous policy validation
whereas access control is discrete in the sense that there
is no policy enforcement between various checkpoints.
In contrast, usage control enforces the policy during the
time elapsed between checkpoints.

For instance an access control system verifies that
a user has the rights required by the policy before
authorizing access to a file, but it does not monitor
the operations performed by that subject on the data
driven from the file during that access operation–whereas
a usage control policy enforcement system would also
assure that the data obtained through the access operation
is used properly, i.e. in accordance with the usage control
policy. Thus, an online social network (OSN) application
that verifies access to personal data as part of user
profile, assures access control but not usage control
because usage control violations such as duplication or
dissemination of personal data by parties authorized for
access control, such as friends, cannot be prevented even
when required by the owner.

As already introduced in the previous section, the
proposed solution is applied to a confined environment
whereby all data within the system is protected following
usage control policies defined by their respective owner.
In a scenario with such a confined environment, let S be
a system that implements usage control on a set of data
D based on the policy of data owners. Usage control in
such a scenario inherently suffers from two limitations
that would allow malicious users to evade the usage
control on data D by system S.

In the first type of attack, that we define as bypass
attacks a legitimate user can escape from usage control
enforcement on a piece of data di by simply pulling out
di from S and using it outside S in an unauthorized way.
Even though impossible to prevent, the bypass attack
has a limited impact if S has a global coverage that
makes it inescapable for the overwhelming majority of
users. Some OSNs such as Facebook or LinkedIn are
inescapable with respect to the inter-personal commu-
nication and if these OSNs implement a usage control

system like S then the bypass attack on personal data
would only have a very limited impact.

Even a system that would benefit from the impact
factor to prevent the bypass attacks, would still suffer
from the other inherent exposure of usage control system
that is the re-injection attack. In such an attack an
adversary extracts some data di that are governed by
a usage control policy ui, imposed by its owner oi.
Afterwards the malicious user slightly alters the data
and tries to re-store data d′i but now with the same or dif-
ferent usage control policy u′i. As such she will present
herself as the new owner o′i of data d′i abusing the usage
control policy system and affecting the dissemination of
legitimate users’ data by duplicating it.

B. Idea of solution

In order to assure usage control while preventing
both bypass and re-injection attacks, we propose a dis-
tributed enforcement mechanism based on a P2P system
whereby peers collaborate with each other to assure the
enforcement of usage control policies defined by data
owners: in the proposed solution, each data is assigned
to and managed by a predefined set of n peers whereby
at least t of them are considered as being legitimate. The
new system hence relies on a threshold solution whereby
at least t legitimate nodes collaborate and guarantee the
correct enforcement of policies defined for each piece of
data.

Yet, such an initial solution does not protect the system
from re-injection attacks. Since the control of each data
is decentralized and distributed among a different subset
of nodes, any attacker may slightly alter the data and
submit it as a fresh new one to the system which will
further assign it to different nodes and hence render the
attack successful.

Such attacks are avoided thanks to the design of
a dedicated data assignment algorithm which detects
similarities between any new and already stored data.
The algorithm assures that similar data are assigned to
the same set of nodes. Furthermore, the node assignment
operation of course cannot be implemented by the user
itself: hence, randomly selected peers should agree on
this final set of peers assigned to the management of
a specific content. Therefore in addition to the need
for a hash function resilient to changes, the system
should define a random generator to select these random
peers whose main role is to apply the error-tolerant hash
function for data assignment. Basic cryptographic hash
functions are a good candidate for this preliminary step.

Furthermore, even before the problem of node assign-
ment, one should define the way how content is defined
in the system. Indeed, the relevant and unique content

2

has to be extracted from files that may be defined or
encoded in different ways. We therefore assume that each
file consists of some metadata that includes information
about the file and the content itself. This content is used
as the input to the previously introduced error tolerant
hash function.

To summarize, the proposed usage control mechanism
that defines the P2P network as the confined environment
protects against re-injection attacks thanks to the use of
error-tolerant hash functions mainly. However, the use of
such functions is not sufficient in order to fully ensure
the control over data. The main building blocks of our
scheme are described in section IV.

III. RELATED WORK

We next give a description of previous related work.
In [1] authors provide the first definition of usage con-

trol policy in the sense of ongoing policy enforcement
after data release. A set of authorizations, obligations and
conditions should be smoothly orchestrated for a usage
control policy scheme. Conditions should be validated
in accordance with obligations in order to allow autho-
rizations on objects. Janicke et al [2] conducted research
towards a formalization of usage control policy enforce-
ment through a formal language definition with concrete
classes of mechanisms. Usage control policy is enforced
by Executors and Inhibitors. Delays are appended in
content when usage control is forbidden. The mean of
enforcement is not presented in this paper even though
there is a well defined mathematical notation using the
Z language for representation. In a similar direction
Zhang et al [3] gave a different formalization of usage
control using petri nets. In [4],[5] the authors proposed
a policy based usage control language for usage control
enforcement. Zhao et al [4] in their analysis proposed the
notion of timing constraints which advocates an ongoing
usage control policy. Both papers lack the definition of a
mechanism whereby the enforcement of a usage control
policy can be applied in an architecture with malicious
users. Janicke et al [6] proposed an enforcement scheme
which is most closer to the proposed solution in the
sense of enforcement in a distributed environment. They
depicted it in a form of statecharts and make use o formal
language to analyze the dependencies of policies and
these will affect the decision made from each controller.
It differs from our construction as there is insufficient
analysis of an inherent mechanism that is practical
widely.

Recently a scheme proposed for secure data manage-
ment over the cloud has been proposed by N. Santos et al
[7]. Data are sealed based on a particular policy defined
by the data owners and only cloud nodes that satisfy

the policy requirements can retrieve the data. Our model
takes into account the malicious nodes that may collude
to the cloud and provides a more general adversary
model. Another drawback is the existence of a single
point of failure named monitor which acts as solution to
the barrier of multiple Trusted Platform Modules (TPM)
that act as verifiers to cloud nodes integrity. Nonetheless
once the data is released it cannot be controlled by a
specific usage control policy.

In [8] the authors proposed a usage control enforce-
ment targeted for the X11 graphical user interface man-
agement daemon in Linux, Unix and Mac operating
systems. Their solution is based on data flow tracking
in between different resources. In [9], Kumari et al
enforce the usage control policies in the application
level of a web browser by evaluating it in a web
based online social network plugin. Harvan et al [10]
implemented a data flow control mechanism with system
calls interposition by controlling the usage control to
system calls with a monitoring mechanism. Even though
the aforementioned practical usage control enforcement
mechanisms are implemented in the different levels of a
system we cope with a significant factor which can result
in a misbehavior of the usage control on a resource,
which is the re-injection attacks.

IV. PRELIMINARIES

In order to introduce the proposed scheme, we de-
scribe the tools which will further be used as the main
building blocks of the proposed usage control mecha-
nism.

We consider the scenario whereby a user Ui wishes to
store a file Fi to further share it with some other users.
In order to enforce a usage policy on this particular file
the owner of the file Ui, defines a set of policy rules Pi.

A. Peer to peer network.

As previously mentioned, the proposed solution im-
plements usage control within a P2P network which
can be defined as a confined environment with a global
coverage: we assume that the impact of bypass attacks
hence is limited.

In this P2P system, data lookup, data retrieval and all
other operations defined in usage control policies follow
a protocol based on Distributed Hash Tables (DHT). A
DHT associates the stored data with a key. Each key is
assigned to a subset of nodes who corresponds to the
peers that are responsible of storing the corresponding
data and enforcing the correct usage of it. The mapping
between the key and the subset of nodes is based on the
use of a specific hash function which is described in the
next section.

3

The correctness and security of the proposed usage
control scheme relies on the legitimate behavior of a
certain subset of peers. Lookup and retrieval operations
for a certain data object are distributed among n peers
whereby at least t of them do not behave maliciously.

B. Error tolerant hash function.

In the proposed solution, the hash functions that define
the mapping between certain data and the subset of nodes
which will store it is an error tolerant hash function
which will allow peers to detect similarities between the
pieces of data.

As opposed to cryptographic hash functions which
given a slightly modified data return a totally different
digest than the original one, an error tolerant hash
function (ETHF) is resilient to some changes on the
input and is defined as follows:

Definition 1: Hs is an ETHF if and only if satisfies
the following properties:

1) resiliency to changes: given two similar files x1,
x2 with similarity degree σ then the hamming dis-
tance is less than σ. I.e: HD(Hs(x1),Hs(x2)) ≤
σ.

2) first pre-image resistance: given the result of
Hs(x) it is computationally hard for a probabilistic
polynomial time (PPT) adversary to reconstruct x.

Similarity detection was the focus of several research
activities [11], [12]. One of the most performant solu-
tion [13] which is nowadays widely used is Charikar’s
simhash algorithm [14]. This algorithm is used to check
similarities between web documents. The approach con-
sists of creating a sequence of tokens in such a way
that each web page is treated as an m-dimensional
vector by extracting a set of features from the input.
Authors apply random projections of the vector to a
single vector using randomizations. The similarity of two
documents depends on the similarity of the positions at
the projection vector.

The Simhash algorithm can be divided into the fol-
lowing four sequential phases. Figure 1 illustrates an
example of the way simhash operates.
Feature extraction During this first phase, a set of k
features is extracted from the input file. For example
given the following text input “Our university is a grad-
uate school” when the features are sequential words of
the text grouped in sets of 3 words the output becomes:
{“Our”, ”uni”, ‘ver ”,”sit”, “y i ”,”is ”, “a g”, “rad”,
“uat”, “e s”, “coo”, ”l ”}
Hashing: Each feature is now hashed with a crypto-
graphic hash function and represented as a l bit array
digest.

Algorithm 1 Simhash algorithm

1: procedure SIMHASH(a, b) . On input a message m
compute its simhash digest

2: f1, . . . , fn ← E(m).
3: for all f1 do hi,1|| . . . ||hi,l ← H(fi)
4: end for
5: for all j ∈ {1, . . . , l} do Tj :=

n∑
i=1

fi,j

6: end for
7: Fj =

{
0 if Tj < 0
1 otherwise

8: return F = F1|| . . . ||Fk

9: end procedure

Accumulation: The set of all digests is accumulated in
the following way: Given the set of the binary digests
from the previous step an l×k matrix is constructed. An
addition operation is performed at the elements of each
column by treating each 0 as −1 and each 1 as 1.
Reduction: Depending on the sign of the numerical
value of each element in the array that was constructed
from the previous step, the final fingerprint is calculated
using the sign of each value in the table. For each
negative value or zero a 0 is assigned, and 1 otherwise.

C. Error correcting code.

Since the proposed solution consists of a complete
data management scheme that assumes usage control as
well, this management scheme should of course ensure
data reliability. Therefore, a redundancy mechanism be-
comes a basic building block of the system. Our solution
implements an error correcting code (ECC) [15] which
encodes a k symbol message into n symbols such that
given any k symbols the original message can be recon-
structed using the corresponding decoding function. We
denote the encoding function as Enc : {0, 1}k → {0, 1}n
and the decoding function as Dec : {0, 1}n → {0, 1}k.

D. Content Generator.

Even though two files may look different following
a similarity checking mechanism, their actual content
still can be the same. This occurs due to the different
representation of a file. Configuration data and layout
parameters may result on different representations of
the file but the content still can remain the same. The
generator Gen separates the Data D from the metadata
M of a file F . We refer to this operation as content
generation implemented by a function G. Furthermore
when the P2P network is asked to retrieve content
the InvG() function reconstructs the file from both its
content and its metadata.

4

+

1 1 0 00 1
0 1 1 1 0 0

1 1 0 00 1
0 1 1 1 0 0

0 1 1 1 0 0

1 1 0 00 1
0 1 1 1 0 0

0 1 1 1 0 0

-8 -2

0 1 1 1 0 0

(2) Hashing

 "Our university is a graduate school"

(1) Features Extraction

{"Our","uni","ver","sit","y_i",
"s_a","_gr","adu","ate","_sc",
"hoo","l__"}

(3) Accumulation

(4) Reduction

-2 8 2 2 -2

0

Fig. 1: Simhash’s phases. In phase 1 the features extraction functionality extracts the features from the file given as
input. Next the hashing procedure occurs whereby all the features are encrypted using cryptographic hash functions.
Afterward in phase 3 the accumulation operation takes places and in the end from the reduction phase the final
Simhash digest is computed based on the sign of each number element from the previous phase

V. THE PROPOSED MECHANISM

A. Overview

As mentioned in the previous section, the proposed
solution relies on the existence of a peer to peer (P2P)
network. Therefore, the main data management opera-
tions are executed through this P2P network following
the steps defined in the newly proposed protocol. In this
particular P2P network, nodes can have four roles:
• Producers basically are nodes that wish to share

some data in the network. The producer generates
content and becomes the owner of this specific
content. It also specifies the usage control policy
rules for the retrieval and the usage of this specific
content.

• Consumers ”consume” content. These are nodes
that wish to retrieve some data. Consumers receives
the required content only if they fulfill the require-
ments defined by the policy rules sticked with the
relevant content.

• Caretakers are responsible of both storing content
and verifying whether a consumer is authorized for
the specific usage of the data based on the respective
policy defined by the producer.

• Initiators define the set of caretakers that are re-
sponsible of a specific content upon reception of
storage request.

The proposed mechanism is mainly defined by two
operations, namely the storage and the retrieval. As-
suming that not all nodes are legitimate, the operations
defined at both phases are distributed among a set of
n caretaker nodes and such operations are successful
only if a threshold number of caretakers collaborate.
This threshold number is set regarding the trust degree
on the network. During the storage phase, the newly

Notations
F File
D Data
MD Metadata
P Policy
I Initiator
UP Producer
UC Consumer
CT Caretaker
Hs Error tolerant hash function
H Cryptographic hash function
Gen Content Generator
InvG() Inverse Content Generator
Enc Encode function
Dec Decode function

TABLE I: Protocol’s notations

proposed protection mechanism assures that similar data
are stored and managed by the same set of caretakers.
The similarity verification is performed using the error
tolerant hash function that was defined in section 1 .
During the retrieval phase, the consumer contacts each
relevant caretaker which in turn verifies whether the
consumer fulfills the requirements originating from the
policy rules of the targeted content. In the following
section, we describe each operation in details.

The summary of the notations is presented in table 1.
F , D, MD and P respectively denote the file that is
to be saved in the system, the content of the file, the
metadata that act as representation configurations of the
file and. I, UP , UC, CT act for initiator, producer,
consumer and caretaker subsequently. Hs is the Error
tolerant hash function which is the main building block
of the protocol and H denote a cryptographic hash
function. Gen indicates the Content Generator which
separates the data D from the metadata MD of a file
F and InvG() is the Inverse Content Generator that

5

is responsible for the reconstruction of the file. Finally
Enc denotes the encoding function of the error correcting
code and Dec is the decoding operation.

B. Storage
We assume the scenario where a producer UPi wishes

to store a file Fi with its predefined policy Pi. The
storage protocol is subdivided into the following three
main phases:
• Initialization: At this first phase, the producer UPi

sends the file Fi together with its policy Pi to a set
of l initiators Ii. These l initiators are randomly
selected thanks to the use of a regular cryptographic
hash function H . UPi computes H(F) and the out-
put defines Ii. The random selection of l initiators
are mandatory because all nodes are not assumed
to be legitimate but the collaboration of at least l
nodes is assumed to produce a correct output. The
parameter l is predefined and depends on the trust
degree of the P2P level. In addition to define the
set of caretakers for a particular content, the first
role of initiators is to extract the content from the
file itself. Indeed, initiators first extract content Di

and construct its respective metadata MDi from
file Fi using the generator Gen described in IV-D.
All further operations will be performed over the
content Di.

• Node assignment: The main role of initiators is
to define the set of caretakers that will store the
relevant content. Of course, before allowing the
storage of the data and in order to protect the
network from re-injection attacks, each initiator
checks the similarity between files that are already
inserted in the system and the candidate content.
Therefore, initiators implements a error tolerant
hash function Hs as it is defined in 1.
Assume Hs(Dj) = hs′i. Each initiator then com-
putes the hamming distance between the candidate
output hs′i and the output of Hs on each file already
existing in the index. If there exists a value hsj
in the index whereas HD(hs′i, hsj) ≤ σ then
initiators identify a re-injection attack and reject
the storage request. On the other hand, if initiators
agree on the novelty of the candidate content, then
the output hsi defines the unique set of caretaker
nodes that are in charge of storing the data together
with its policy. In order to assure the integrity of this
result, a group signature is generated over the tuple
(filenamei||UPi, {CTi,j}). This tuple is further
added to the newly updated P2P filesystem index.

• Content and policy storage: Once the non-
similarity verification is successful and the new file

references are added in the P2P filesystem index,
the data is prepared to be sent to the corresponding
caretakers. In order to first ensure data reliability,
the error correction code described in section IV-C
is applied over the data and the policy and over the
metadata separately. Therefore initiators generate
the newly encoded data blocks {ei,1, .., ei,n+k}
and the encoded metadata blocks {e′i,1, e′i,n+k}.
Initiators further sign each couple (ei,j , e

′
i,j) using

a group signature again and send it to the corre-
sponding caretaker node CTi,j . Once these encoded
blocks received, the caretaker CTi,j first verifies
initiators’ signature and further stores this couple
together with its policy.

C. Retrieval

We assume consumer UCk would like to retrieve a
file Fi. As opposed to the storage protocol, the retrieval
protocol does not use any error tolerant hash function
and does not involve initiators. Only caretakers and
consumers play a role in this protocol which is divided
into the three following phases as in the case of the
storage protocol:
• data lookup: Consumer UCk sends a regular P2P

lookup request for the file Fi using the filename of
Fi. Following the index, UCk receives the set of
caretakers that store the data corresponding to Fi.

• verification: UCk sends a retrieval request to at
least n caretaker nodes together with its credentials.
Each caretaker CTi,j verifies whether consumer
UCk’s credentials are compliant with the policy Pi.
If this verification is successful UCk receives the
corresponding couple (ei,j , e

′
i,j) from each CTi,j .

• content retrieval and file reconstruction: Once
consumer UCk receives at least n pairs of encoded
blocks (ei,j , e

′
i,j) at least, it applies the decoding

function D over these encoded blocks in order
to compute the original blocks and hence retrieve
both data Di and MDi. Following the information
in MDi, UCk reconstructs Fi using the inverse
generator InvG().

Storage and retrieval protocols are described in figure
2 and figure 3 respectively.

VI. SECURITY ANALYSIS

The correctness and security of the proposed mecha-
nism on the one hand relies on the correct behavior of t
peers out of any set of n peers as mentioned several times
in previous sections; on the other hand, usage control
is also achieved thanks to the use of cryptographic
hash functions for the selection of initiators and the
error tolerant hash function which assigns the same

6

Input: A producer UPi wants to save file F under policy P
1) UPi hashes the file F and gets the list of initiators. −→ H(F) {t1,t2,t3, . . ., tl}
2) UPi sends the file F along with an identification parameter UPi to the initiators.
3) The initiators separate content from metadata using generator {Di,Mi} ← G(F)
4) The selected nodes compute the list of caretakers Hs(D) −→ {n1, n2, . . . ,nk} −→ = hs′i
5) The list of {n1, n2, . . . ,n3}signed nodes is signed with a group signature operation by the caretakers.
6) if for all HD(hsj , hs

′
i) > σ then:

a) filename|Uid is used as a key to store {n1, n2, . . . ,n3}.
b) The initiators encode content,policy and metadata. Enc(Di, Pi) −→ {di,ri} = ei,j ,
Enc(Mi) −→ {m′i, r′′i } = e′i,j

c) They send (ei,j , e
′
i,j) to the caretakers signed with a group signature scheme.

d) if Verify(ei,j , e
′
i,j) := success

i) CTi,j stores {(ei,j , e′i,j)}
e) else : Reject operation.

7) else : Reject operation.

Fig. 2: Storage

Input: A consumer U seeks to obtain file F under policy P with credentials C
1) UCk asks for filename|Uid gets the list of nodes {n1,n2,n3, . . ., nl}
2) UCk is asking for Di from every participant of the {n1,n2,n3, . . ., nl} list.
3) Each CTi,j evaluates credentials Ci for data Di that she owns
4) if Evaluate(UCk, Ci, Di, Pi) = Success :

a) Each CTi,j sends {(ei,j , e′i,j)} to UCk.
b) UCk decodes: Dec(ei,j) −→ {Di, Pi} , Dec(e′i,j) −→ {Mi}.
c) UCk applies the inverse generator function InvG() that regenerates content. InvG(Di,Mi) −→ F

5) else Reject operation

Fig. 3: Retrieval

caretakers to similar files to detect re-injection attacks.
In this decentralized architecture, since any node can
have a malicious behavior, a malicious producer should
not be able to assign the caretakers for a given file.
Furthermore, it should neither be able to choose the
set of initiators to perform this operation because of
collusion risks between initiators and himself. Thanks
to the use of cryptographic hash functions a different
randomly selected set of initiators is defined for each
different file.

Furthermore, the assignment operation itself assures
that similar files are attributed to the same set of care-
takers thanks to the use of error tolerant hash functions.
As defined in definition IV-B, an adversary should not
be able to retrieve a file given the output of an ETHF .
In this section, we prove that simhash is first-preimage
resistant.

Theorem 1: Hs is first pre-image resistant, ie. there
is no polynomial adversary A that can reconstruct the

content of a file F given the output of the Simhash with
probability no better than negligible.

Proof: In order to show that Hs is first pre-image
resistant, we first model the algorithm as a set of three
transitions corresponding to the last three phases of the
simhash algorithm, namely, hashing, accumulation,
reduction and a set of four states s1, s2, s3 and s4 where
s2, s3 and s4 respectively represent the outputs of each
phase and s1 denotes the input of the hashing phase.
The model can be summarized by the following states:
• s1 : The file is a set of plaintext features.
• s2 : Fingerprints are hashed.
• s3 : Each feature is represented as a k long vector

after the accumulation phase.
• s4 : In the end a final fingerprint is available for

similarity checking.
and the following transitions:
• t1 corresponds to the hashing phase and transforms
s1 to s2.

7

• t2: Each hashed feature is accumulated based on
index with all the other hashed features to construct
a single vector.

• t3: The accumulated values are mapped into a bi-
nary vector: depending on the sign of the numerical
value of the array that was constructed from the
previous step, for each negative or 0 a 0 is placed,
otherwise a 1.

Therefore, the proof of Theorem 1 consists of proving
that it is hard to find s1 given s4. We now sequentially
analyze the probability of finding the state before a
transition given the state after its execution, starting
from t3 until t1. We therefore start to evaluate the
probability of finding s3 given s4. In t3, each number
in s3 is mapped to a bit (0,1) based on its sign. Since
the accumulation phase consists of a simple addition
operation of l numbers which are set to either −1 or
1, the resulting sum for each element of the array is an
integer between [-l, l]. Hence the probability of finding
one element of s3 is 1/(2l+ 1). Since s4 is k-bit large,
the probability to find s3 given s4 is:

Pr[s3 ← s4] = (
1

2l + 1
)k

The previous equation shows that unfortunately, it is
not hard to retrieve s3 from s4. We further analyze the
hardness of finding s2 based on s3.

The state s3 consists of an array T of size k, where
each element is a number of size l and is the result of the
accumulation phase of simhash algorithm as described
in IV-B. We compute the probabilities of an adversary
to successfully guess the set of all k numbers such that
when summing them accordingly with the description of
the accumulation phase of simhash algorithm she can
reconstruct the state s2. There are two possible cases.
Such a probability basically depends on the number l and
differs if l is even or odd. We now analyze the probability
Pr[Ti] of finding the l numbers whose sum is equal to
Ti with respect to the nature of l.
Even: If l is even then l = 2 · k and there are l + 1
possibilities of the sum. These are:

−l,−l + 2,−l + 4, . . . , 0, 2, 4, . . . , l

When Ti = −l the solution is trivial and all the numbers
should be equal to 0 as 0 indicates a transformation into
−1, hence Pr[Ti] = 1. If Ti = −l + 2 then one of
the numbers that make this particular Ti should be 1.
As such an adversary can reconstruct this number with
probability:

Pr[Ti] =
1(
l
1

) =
1

l

In the case where Ti = −l + 4 there are 2 elements
whose value is 1 and l − 2 whose value is 0. As such
Pr[Ti] = 1

(l
2)

Following the previous equation, since

there are l + 1 possible values that Ti can have, the
probability of correctly guessing the l numbers whose
sum is Ti is defined in the following equation:

Pr[Ti] = 1 +
1(
l
1

) + 1(
l
2

) + . . .+
1(
l

l−1
) + 1

Since array T is k in length the probability of success-
fully guessing all the numbers that construct each value
of the array is:

Pr[s2 ← s3] = (
1

1 + l
·

l∑

i=0

1(
l
i

))k

Odd: Similarly when l is odd, there are only l possible
values for Ti; hence, the probability of finding the l
values whose is Ti for all k bits is:

Pr[s2 ← s3] = (
1

l
·

l∑

i=0

1(
l
i

))k

We analyze the hardness of finding s1 given s2. t1
corresponds to the hashing phase that implements cryp-
tographic hash functions which by their very definition
are first pre-image resistant. Finding s1 from s2 is as
hard as breaking the first pre-image resistance property
of a cryptographic hash function.

To conclude, given s4, we proved that the probability
of a polynomial time adversary that can reconstruct s1
is no better than negligible, hence Hs is first pre-image
resistant.

VII. EVALUATION

We implement the Hs simhash function and we run
several times the algorithm given as input to it text
files. The experiments are conducted in two steps. The
accuracy of the newly proposed error-tolerant hash func-
tion is first evaluated by applying the simhash algorithm
over small text files where the content consists of 140
characters. We extend previously implemented work in
plagiarism detection competitions [16], [17], [18] by
defining the following sophisticated attack scenarios that
can be considered as being relevant for file similarity
detection in the context of the protection against re-
injection attacks.
Small files alterations

1) Append words in the beginning.
2) Append words at the end of the file.
3) Append words in the middle of the file.

We apply the simhash algorithm several times changing
the number of shingles. The set of shingles is the

8

extracted features each of them defined by a sequential
number of words. The size of each set is randomly
chosen. The higher the similarity metric results to more
similar the files.

shingles Similarity
2 89.84
3 87.89
4 89.45
5 87.05

(a) Append in the begin-
ning

shingles Similarity
2 78.90
3 76.17
4 65.62
5 66.40

(b) Append in the end

shingles Similarity
2 75.39
3 75.39
4 66.40
5 69.92

(c) Append in the middle

TABLE II: Small files comparisons.

As shown from the previous tables the similarity of
altered files according to our different re-injections sce-
narios in what we consider small files can be accurately
estimated by observing our results. By changing the
number of each shingle that will constitute the set of
extracted features we achieved almost the same results.
By doing so it is straightforward that the algorithm is
more resilient to the set of extracted features that in
our case is the number of consequent words inside a
document. Thus by taking the smallest value of the
simhash output as a minimum bound of similar files we
can identify possible re-injection attacks on small files.

In a second step, we apply the same algorithm over
bigger files up to many pages as scientific papers. The
similarity ratio under the previously defined three attacks
always outputs 100% since such modification is not con-
sidered as a significant alteration in a big file. Therefore,
we have defined a second set of attack scenarios which
seems more appropriate for the case with big files:
Big files alterations

1) Replacement of words that present high entropy.
2) Replacement of the most used words.
3) Removal of a set of sequential words.
4) Addition of random text.
Following the same practice for big files (Table 2)

we changed the number of shingles. We observed that
by changing the words that present the highest entropy
we achieve the highest similarity results. High similarity
results are shown also to addition and removal of a
set of sequential words . Thus we can estimate in big
files with accuracy whether or not possible re-injection
attacks have been conducted.

shingles Similarity
2 97.26
3 96.87
4 95.70
5 97.65

(a) Replace words with
high entropy

shingles Similarity
2 78.51
3 76.17
4 76.17
5 69.53

(b) Replace the most used
word

shingles Similarity
2 94.92
3 89.45
4 84.37
5 80.46

(c) Remove a set of se-
quential words

shingles Similarity
2 94.92
3 89.45
4 84.37
5 80.46

(d) Add a set of sequential
words

TABLE III: Big files comparisons.

To summarize our results in the evaluation section we
showed that the Hs is resilient to changes according to
the experiments presented above in various re-injection
scenarios in big and small files.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented a scheme for secure usage
control policy enforcement. The main building block of
our scheme is an error-tolerant hash function that guaran-
tees the unique assignment of storage nodes according to
the content of the file while still assigning similar files
to the same set of storage nodes. We evaluated the accu-
racy of the simhash algorithm with some experiments
run over different files with different attacking scenarios.
The scheme is easy to implement leveraging existing
P2P systems that underpin to the retrievability and the
random participation-assignment. Our solution is based
on the underlying hash functions and re-injection attacks
are mitigated using an error tolerant hash function. We
proved that ETHF is first pre-image resistant.

As part of future work we are planning to deploy the
proposed solution in a P2P system in order to further
evaluate it in terms of communication and computational
overhead.

REFERENCES

[1] J. Park and R. Sandhu, “The uconabc usage control model,” ACM
Trans. Inf. Syst. Secur., vol. 7, no. 1, pp. 128–174, Feb. 2004.
[Online]. Available: http://doi.acm.org/10.1145/984334.984339

[2] H. Janicke, A. Cau, F. Siewe, and H. Zedan, “Concurrent
enforcement of usage control policies,” in Proceedings of the
2008 IEEE Workshop on Policies for Distributed Systems and
Networks, ser. POLICY ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 111–118. [Online]. Available:
http://dx.doi.org/10.1109/POLICY.2008.44

[3] B. Katt, X. Zhang, and M. Hafner, “Towards a usage control
policy specification with petri nets,” pp. 905–912, 2009. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-05151-7 11

9

[4] B. Zhao, R. Sandhu, X. Zhang, and X. Qin, “Towards
a times-based usage control model,” in Proceedings of the
21st annual IFIP WG 11.3 working conference on Data and
applications security. Berlin, Heidelberg: Springer-Verlag, 2007,
pp. 227–242. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1770560.1770583

[5] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter,
“A policy language for distributed usage control,” ESORICS, pp.
531–546, 2007.

[6] H. Janicke, A. Cau, and H. Zedan, “A note on the formalisation
of ucon,” in Proceedings of the 12th ACM symposium on Access
control models and technologies, ser. SACMAT ’07. New
York, NY, USA: ACM, 2007, pp. 163–168. [Online]. Available:
http://doi.acm.org/10.1145/1266840.1266867

[7] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu, “Policy-
sealed data: A new abstraction for building trusted cloud ser-
vices,” in USENIX Security Symposium. USENIX Association,
2012.

[8] A. Pretschner, M. Büchler, M. Harvan, C. Schaefer, and T. Walter,
“Usage control enforcement with data flow tracking for x11,” in
5th International Workshop on Security and Trust Management
(STM 2009), 2009.

[9] P. Kumari, A. Pretschner, J. Peschla, and J.-M. Kuhn,
“Distributed data usage control for web applications: a social
network implementation,” in Proceedings of the first ACM
conference on Data and application security and privacy, ser.
CODASPY ’11. New York, NY, USA: ACM, 2011, pp.
85–96. [Online]. Available: http://doi.acm.org/10.1145/1943513.
1943526

[10] M. Harvan and A. Pretschner, “State-based usage control en-
forcement with data flow tracking using system call interposi-
tion,” Network and System Security, International Conference on,
vol. 0, pp. 373–380, 2009.

[11] H. Pucha, D. G. Andersen, and M. Kaminsky, “Exploiting
similarity for multi-source downloads using file handprints,”
in Proceedings of the 4th USENIX conference on Networked
systems design & implementation, ser. NSDI’07. Berkeley,
CA, USA: USENIX Association, 2007, pp. 2–2. [Online].
Available: http://dl.acm.org/citation.cfm?id=1973430.1973432

[12] G. S. Manku, A. Jain, and A. D. Sarma, “Detecting near-
duplicates for web crawling,” Proceeding WWW ’07 Proceedings
of the 16th international conference on World Wide Web, 2007.

[13] M. Henzinger, “Finding near-duplicate web pages: A large-scale
evaluation of algorithms,” Proceeding SIGIR ’06 Proceedings
of the 29th annual international ACM SIGIR conference on
Research and development in information retrieval, 2006.

[14] M. S. Charikar, “Similarity estimation techniques from rounding
algorithms,” Proceeding STOC ’02 Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing, 2002.

[15] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain
Finite Fields,” Journal of the Society for Industrial and Applied
Mathematics, vol. 8, no. 2, pp. 300–304, 1960. [Online].
Available: http://dx.doi.org/10.1137/0108018

[16] M. Potthast, B. Stein, A. Eiselt, B. universitt Weimar, A. Barrn-
cedeo, and P. Rosso, “P.: Overview of the 1st international compe-
tition on plagiarism detection,” in In: SEPLN 2009 Workshop on
Uncovering Plagiarism, Authorship, and Social Software Misuse
(PAN 09), CEUR-WS.org, 2009, pp. 1–9.

[17] M. Potthast, A. Barrn-Cedeo, A. Eiselt, B. Stein, and P. Rosso,
“Overview of the 2nd international competition on plagiarism
detection.” in CLEF (Notebook Papers/LABs/Workshops),
M. Braschler, D. Harman, and E. Pianta, Eds., 2010. [Online].
Available: http://dblp.uni-trier.de/db/conf/clef/clef2010w.html#
PotthastBESR10

[18] M. Potthast, A. Eiselt, A. Barrón-Cedeño, B. Stein, and P. Rosso,
“Overview of the 3rd international competition on plagiarism de-
tection,” in CLEF (Notebook Papers/Labs/Workshop), V. Petras,
P. Forner, and P. D. Clough, Eds., 2011.

10

