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Abstract

In this dissertation we deal with the design of strategies for agents interacting
in a dynamic environment. The mathematical tool of Game Theory (GT)
on Markov Decision Processes (MDPs) is adopted. The agents’ strategies
control both the transition probabilities among the states and the rewards
earned by each agent. Rewards are geometrically discounted over time. We
first study the competitive case, in which two agents act selfishly. The game
is zero-sum and the agents control disjoint sets of states. We devise two
algorithms to compute the Nash equilibrium for all discount factors close
enough to 1. Then we consider the long-run cooperative case, in which agents
can coordinate their strategies. We utilize our two algorithms to compute
the value of the coalitions in a routing game, in which several providers share
the same network and control the routing in disjoint sets of nodes. Next we
deal with dynamic cooperative GT on MDPs, in which coalitions can form
throughout the game. We show how to enforce a common agreement for
which the pay-off is distributed at each state, in a global optimum way and
such that no coalition is ever enticed to break the agreement. We apply
these concepts to a wireless multiple access channel, in which the channel
is quasi-static. We assign the rate to users in each channel state in a fair
and satisfactory manner. Next we provide three methods to compute a
confidence interval for Shapley value on Markovian games. Such methods
have polynomial complexity in the number of agents, while the complexity
of the exact computation is exponential. Two methods are still valid when
the values in each state are learned during the game. Finally we assess the
performance of two strategies to dynamically select the frequency band to
communicate on. We exploit an MDP formulation with uncountable state
space.
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Résumé

Dans cette thèse, nous étudions la théorie des jeux sur les Processus de
Décision de Markov (PDM). Des agents interagissent dans un environnement
dynamique, modélisée par une châıne de Markov. Les stratégies des agents
contrôlent les probabilités de transition entre les états et les récompenses
gagnées par chaque agent. Les récompenses sont géométriquement pondérées
avec le temps. Nous étudions d’abord le cas compétitif. Deux agents agissent
égöıstement, le jeu est à somme nulle et les agents contrôlent des ensembles
disjoints d’états. Nous élaborons deux algorithmes pour calculer l’équilibre
de Nash pour tous les facteurs de pondération suffisamment proche de 1.
Puis nous considérons le cas statique coopératif, dans lequel les joueurs
peuvent coordonner leurs stratégies. Nous utilisons ces deux algorithmes
pour calculer la valeur des coalitions dans un jeu de routage. Plusieurs
fournisseurs partagent le même réseau. Ensuite, nous traitons des jeux dy-
namiques et coopératifs sur PDM. Des coalitions peuvent se former tout au
long du jeu. Nous montrons comment distribuer la récompense dans chaque
état, de sorte que la solution est optimale pour la communauté et tous les
agents sont satisfaits pendant le jeu. Nous appliquons ces concepts à un
canal à accès multiple par fil avec un canal quasi-statique. Nous assignons
le débit du codage dans chaque état du canal d’une manière équitable. En-
fin, nous proposons trois méthodes afin de calculer un intervalle de confiance
pour la valeur de Shapley sur les jeux de Markov. Ces méthodes ont une
complexité polynomiale en le nombre d’agents, tandis que la complexité du
calcul exact est exponentielle. Enfin, nous évaluons la performance de deux
stratégies pour sélectionner dynamiquement la bande de fréquence de com-
munication. Nous exploitons une formulation PDM avec un espace d’états
dénombrable.
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Introduction

Markov Decision Processes (MDP’s) offer an elegant theoretical framework
to a number of practical decision making issues, in which the evolution of the
system is stochastic, but still depends on the decision taken at each time step
by some controller agents, or players. More specifically, there exists a set of
states, and in each of them the players have a set of actions at their disposal.
The set of actions chosen jointly by the players in a state determines both
an instantaneous reward for each of them and a probability distribution
on the next state. Typically, the rewards are then either plainly summed
over time, or geometrically discounted and then summed, or averaged. The
fields in which MDP’s found successful applications span from Computer
Science, Engineering, Economics, Medicine, to Biology (see White, 1993 [99]
for a general survey and Altman, 2002 [3] for applications to communication
networks).

MDP’s have been extensively studied over the last decades, mostly in the
single-agent case. Its origins trace back to Bellman (1957, [18]) and Howard
(1960, [42]). Typically, the main goal in single-agent MDP’s is to find the
optimal decision strategy that the controller has to implement to maximize
the long-run sum of rewards (see Puterman, 1994 [77] for a survey). Inter-
estingly, this model can also provide insightful results about the optimality
of the controllers’ decision with the variation of the horizon length, obtained
by tuning the discount factor within [0; 1) (see e.g. [41]). Of particular im-
portance is the so-called Blackwell optimality (Blackwell, 1962 [21]), which
is the property of those strategies which are optimal for all discount factors
sufficiently close to 1. Such strategies happen to be optimal under the av-
erage criterion, as well [77].

In this dissertation we will focus mainly on multi-agent MDP’s, except
for Chapter 4 in which an application of single-agent MDP’s will be consid-
ered. The bulk of the literature on multi-agent MDP’s focuses on the com-
petitive case, in which the agents, or players, are contenders and act selfishly,
with the aim of maximizing the long-run sum of individual rewards. Oddly
enough, the origin of multi-agent MDP’s predates the single-agent case, due
to the visionary Shapley’s paper in 1953 [81]. Under the competitive as-
sumption, there is no hope that the players can coordinate their actions in
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2 Introduction

order to achieve the social optimum, which coincides with the maximization
of the sum of the long-run rewards for each player. Instead, in this scenario
the celebrated Nash equilibrium (NE) (Nash, 1950 [64]) is typically utilized
to predict the behaviour of conflicting players. It is defined as the set of
strategies from which no player can unilaterally deviate by obtaining a ben-
efit. Many of the results available on the literature on competitive MDP’s
deal with the two-player case (see Filar and Vrieze, 1996 [32] for a survey).

In the same spirit, in Chapter 2 we will deal with two-player Competi-
tive MDP’s, also called Stochastic Games, in which the game played in each
state is zero-sum, i.e. for each pair of actions for the two players, the sum of
rewards earned by the players sums up to zero. Hence, the game is purely
antagonistic: no common agreement on any strategy solution can be reached
by the players, since any benefit for one player is a loss for the other. In
Section 2.1 we will focus on the computation of a pair of strategies at the
Nash equilibrium in a two-player zero-sum Competitive MDP. The reward
for each player is β-discounted over time, with β ∈ [0; 1). We will assume
that, in each state, at most one player has an effective control over it, i.e.
the Competitive MDP is with perfect information. In essence, we will con-
sider an MDP in which the control over rewards and transition probabilities
switches from a player to the other, depending on the state in which the
process finds itself, at each time step. In this scenario, we will devise two
algorithms which compute the strategies for both players at the NE, for all
discount factors sufficiently close to 1. One of them is proved to converge
in a finite time. To do so, we will basically combine two techniques. The
former is by Raghavan and Syed (2003, [78]), who provided an algorithm
to compute the strategies at NE in the same scenario described above, for
a fixed discount factor. The latter is by Hordijk, Dekker, and Kallenberg
(1985, [41]), who first utilized linear programming on the field of rational
functions with real coefficients to compute Blackwell optimal strategies in
single-agent MDP’s. Moreover, our algorithms produce the interval [β∗; 1)
in which the strategies are optimal, i.e. at NE. Thanks to the special struc-
ture of the Competitive MDP, such strategies are also optimal under the
average criterion.

In Section 2.4 we show a possible application of the algorithms described
in Section 2.1 to the study of a routing scenario by using Static Cooperative
Game Theory (SCGT) with transferable utility (TU) assumption. In SCGT,
the players can make binding agreements both on the adopted strategy and
on the sharing procedure of the resulting pay-off, which, under the TU as-
sumption, can be shared in any manner among the players. Potentially, each
subset of players can form a coalition. The objective of static Cooperative
Game Theory is two-fold: a social optimum solution has to be found, and
the maximum pay-off has to be shared in a satisfactory way for all the play-
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ers. Hence, all the players need to agree on a common contract, which has
to be profitable, or at least fair, for all of them. Several pay-off allocation
criteria that have been studied over the years, like the Core, Shapley value,
Nucleolus, τ -value etc. (see [69] for a survey).
Typically, in SCGT the pay-off allocation is a function of the value of each
coalition, which is the pay-off that a coalition can earn on its own, without
the ability of coordinating its actions with other players. Such value can be
computed à la Morgenstern-von Neumann [96], i.e. as the minimum cost (or
maximum pay-off) that a (sub-)coalition can guarantee if the anti-coalition
punishes it by adopting an adverse behaviour. Therefore, the game between
a coalition and the anti-coalition is still a zero-sum game.

Now, let us describe our routing game of Section 2.4. We consider a sys-
tem where several providers share the same network and control the routing
in disjoint sets of nodes; each link has a different cost for each provider. They
provide connection toward a unique server (destination) to their customers.
In order to carry out a successful transmission, they need to cooperate and
coordinate their own routing strategies so that the global transmission cost
is minimized. Hence, in this case we assume that the players, i.e. the service
providers, do not have a conflicting behaviour. Indeed, a selfish behaviour
would backfire on each service providers, who needs the help of the other
to deliver its packets. In this scenario, the transmission costs need to be
shared among the service providers. If we translate the scenario into the
MDP jargon, the states of the associated MDP are the nodes, and the ac-
tions for each player are the routing decision in each node, and the rewards
associated to an action are the cost of the selected link. We study this sit-
uation by utilizing SCGT, and we would like to be able to allocate a cost
to each provider, which depends on their ability to cooperate with the oth-
ers and carry out a successful transmission. For this purpose, we need to
compute the value for each coalition of providers, and we opt for a max-min
approach. Hence, the same model introduced in Section 2.1 emerges, and
we show how to adapt the algorithms described in Section 2.1 to compute
the value of each coalition of providers.

We remark that, in the cooperative model described in Section 2.4, the
interaction among the players is one-shot: the value of each coalition is
computed off-line, once for all, the transmission costs are shared among
the players at the beginning or at the end of the game indifferently, and
coalitions cannot form once the transmission has started. This is the reason
why we call this approach Long-Run Cooperative Game.
A different scenario is depicted in Chapter 3, in which the interaction among
the players continues over time, on each different step of a Markov Decision
Process, and coalitions may form throughout the game. We dub this scenario
Cooperative MDP.

Our work on Cooperative MDP’s fits in the more general context of
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Dynamic Cooperative Game Theory (DCGT), which has been one of the
most innovative and interesting topics in the field of Game Theory in the
last few years. The bulk of the research on Cooperative Games, spurred by
Morgenstern and von Neumann (1953, [96]), has focused ever since on the
study of Static Games, modelling one-shot interactions among players.

Nevertheless, most of the interaction situations among players, e.g. coun-
tries, firms, or users in a communication systems, are not one-shot but con-
tinue over time, and the environment in which they take place is dynamic.
This motivation stimulated the research on DCGT. The agreement is stip-
ulated by the players at the beginning of the game, once for all, mainly for
two reasons. Firstly, renegotiating a contract at each step in costly, in time
and money. Secondly, revising an agreement at each time step may result
in a myopic policy, that does not take into account the social optimum in
the long run. As an example, curbing the emission of pollutants requires
investment in cleaner technologies, that can be made only if the economic
agents commit themselves to a far-sighted investment strategy.
In this dynamic context, reaching a common agreement which is enduring
over time constitutes the real challenge, since coalitions are allowed to form
throughout the game. One of the most important notions in dynamic games
is the Time Consistency of a pay-off sharing (Petrosyan, 1977 [72]). Accord-
ing to it, at each intermediate step of the interaction process, the pay-off
distribution in the subgame from that instant onwards must respect the
same fairness criterion under which the agreement has been stipulated in
the first place. A more specific property for a pay-off dynamic allocation
is the sequential Core, for which no party should not be enticed to breach
the agreement at any time step, preferring to adopt a more profitable non-
cooperative mode of play from that instant onward. Kranich, Perea, and
Peters (2005, [48]) introduced the weak sequential Core, restricting the fo-
cus to credible deviations, i.e. deviations cannot be counter-blocked by any
subcoalition. Another interesting concept for DCGT is Cooperation Main-
tenance, for which, at each time step, each coalition should be persuaded to
postpone the decision of breaching the agreement. By induction, hence, the
social agreement is stable over time. Mazalov and Rettieva (2010, [59]) first
introduced this property in a fish-war setting.

Over the last decade, the research on DCGT has ramified into different
branches. The first one is on Repeated Cooperative Games, in which the
same game is played repeatedly over time. The papers by Oviedo (2000, [66])
and by Kranich, Perea, and Peters (2000, [47]) are the two independent pi-
oneering works in this field. A second research branch deals with different
states that succeed each other, and in each of them a different static game is
played. The state transition accounts for the dynamics of the environment
in which the interaction takes place. Kranich, Perea, and Peters (2005, [48])
studied the Core concept solution for these kinds of games, in which the
states succession is pre-determined. Predtetchinski (2007, [75]) considered
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that an endogenous Markov chain determines the probability of transition
among the states. A third major research thread in DCGT is on Differen-
tial Games (see Zaccour 2008, [102] for a survey), in which the state of the
game evolves continuously over time according to a deterministic differential
equation, controlled by the players’ strategies.

DCGT finds many applications in Economics and, not surprisingly, the
connections between the two fields is interwoven. DCGT has capitalized on
some concepts already existing in the vast Economics literature. For exam-
ple, a concept similar to the Time Consistency property has been elaborated
by the Nobel prize 2004 winners Kydland and Prescott (1977, [49]), about
the strategy that a policymaker has to implement in order to trigger the de-
sired response from the economic agents. Gale (1978, [35]) was the first to
introduce the idea of strong sequential Core, in a monetary economy model.
Moreover, the notion of Core in an exchange economy with incomplete in-
formation has been thoroughly studied over the last few decades (see Forges
et. al 2002, [34] for a survey), much before the theoretical foundations of
DCGT have been laid down.
On the other hand, the research on DCGT has been spurred by the real eco-
nomic issues, and in the last few years the recent advances on DCGT have
represented a valid tool for economists. Predtetchinski, Herings, and Pe-
ters (2002, [76]) studied the strong sequential Core in two-stage economies
in which the trade in assets takes place at period zero and the trade in
commodities occurs at period one. Herings, Predtetchinski, and Perea
(2006, [38]) studied the weak sequential Core in the same context.
We apply DCGT for the first time to a communication network model, in
Section 3.2.

Now, let us describe our TU Cooperative MDP model. It is essentially
a multi-agent MDP model in which the agents, or players, are allowed to
form coalitions throughout the game. Let us analyse first the long-run game
on MDP in a Static Cooperative Game perspective. If we look at the game
as a whole, we can still compute off-line the global optimum strategies for
the grand coalition of players, via classic optimization techniques for single-
agent MDP’s, in which the grand coalition is considered to be the agent. In
the long-run game, the value of each coalition is computed, as the long-run
sum of rewards that each coalition can attain on its own, and a coopera-
tive solution is assigned in the long-run game. So far, this formulation still
relates to SCGT. Nevertheless, two issues arise. Firstly, the long-run Coop-
erative solution is actually the expected value of a random variable, hence,
pragmatically, it is not clear how to allocate it to the players. Secondly,
since the horizon of the game is infinite, or finite or with unknown dura-
tion, players may demand to be rewarded at each stage of the game, i.e. in
each step of the controlled Markov chain. Therefore, the challenge becomes
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to devise a Cooperative Pay-off Distribution Procedure (CPDP) which dis-
tributes the long-run Cooperative solution throughout the game, in each of
its states. From this seemingly harmless compromise, a number of issues
arise. Since we assume that coalitions may form throughout the game, the
CPDP has to content all the players, throughout the game. Indeed, if a
long-run agreement has been stipulated by the players at the beginning of
the game according to some (e.g. fairness) criteria, it is not clear whether
the agreement can be sustained over time, i.e. whether such criterion keeps
holding after some steps, or a renegotiation is needed. Real life situations
abound with examples in which a long-term contract signed in the first place
needs to be renegotiated over time, e.g. the current economic situation in
the European Union. The property that a CPDP needs to possess in order to
avoid a renegotiation is Time Consistency (Petrosjan 1977, [72]). A second
major issue is on the stability of the grand coalition, throughout the game.
A (sub-)coalition might be enticed to breach the agreement at some point of
the dynamic game, since it can guarantee from that instant onwards a better
allocation on its own. In order to avoid this, the CPDP needs to belong to
the sequential Core (Kranich, Perea, and Peters 2005, [48]). Intuitively, this
property claims that, whenever a coalition faces the dilemma “do we break
the agreement now or we cooperate forever?”, then it should always opts
for the second option, since more profitable. Moreover, we demand that the
CPDP satisfies the Cooperation Maintenance property (Mazalov and Ret-
tieva 2010, [59]). Intuitively, this property suggests that, at each time step,
if any coalition faces the dilemma “do we break the agreement now or in one
step?”, then it should choose the second option. Finally, we consider the
presence of greedy players, having a myopic perspective of the game. In this
case, the CPDP needs to belong to the Core of each static game played in
each state of the MDP, in order to content the greedy players as well. Then,
we devise a CPDP for MDP’s, dubbed MDP-CPDP, and we find conditions
for which all the properties enlisted above are fulfilled. Remarkably, we find
that the Cooperation Maintenance property is a proper refinement of the
concept of sequential Core on Cooperative MDP’s.

In Section 3.2 we apply some of the concepts developed in Section 3.1
to a wireless communication scenario. We consider a Gaussian Multiple
Access Channel (MAC) in which the channel is quasi-static, i.e. it varies
slowly enough to be assumed constant for the whole duration of a codeword.
Moreover, we assume that it follows an endogenous finite state Homogeneous
Markov Chain (HMC) in which the state transitions occur at the end of each
coherence period. We allocate a rate to each user in each state of the Markov
chain. We stress that, in this scenario, the transition probabilities among
the channel states of the system do not depend on the users’ transmission
strategies. In this sense, the scenario is simplified with respect to the one
in Section 3.1. On the other hand, a new complication is brought on by the
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introduction of the Non-Transferable Utility (NTU) assumption, for which
the rate cannot be shared in any manner among the users, but only within
the Shannon Capacity region.
In this scenario we tackle the issue of allocating the rate in each state, in a
global optimum way, i.e. such that the sum-rate is maximum both in each
state and in the long-run process. We call M this global optimal set. We
investigate two procedures to select an allocation in M: the former, called
bottom-up, prescribes to allocate first the static allocations, while the latter,
dubbed top-down, suggests to select first the long-run allocations, and then
to derive the associated static allocations. The latter procedure would be
more useful, since it permits to adhere to a selection criterion in the long-run
process, being the one really concerning the users, which are endowed with
a long-term perspective of the game. Unfortunately, this procedure does not
always lead to feasible allocations, and we offer a remedy to it. Then we
address the issue of allocating a fair rate to the users in the dynamic process.
In the static case, the criteria of max-min, proportional, and α-fairness are
always well defined [5]. In our dynamic case, the scenario is complicated
by the the fact that we demand that the fairness criterion needs to hold
throughout the process, i.e. it has to be time consistent. It is not always
possible to find a time consistent fair allocation; nevertheless, we give a suf-
ficient condition for its existence. Then, we utilize some tools developed in
Section 3.1 to measure the users’ satisfaction with the rate assigned. We find
that M coincides with all the allocation rates belonging to the sequential
Core. Moreover, M is exactly the set of Cooperation Maintaining solutions.

In Section 3.3 we deal with Cooperative MDP’s under the TU assump-
tion, in which the transition probabilities among the states do not depend
on the players’ actions. Hence, like in Section 3.2, an endogenous Markov
chain governs the stochastic evolution of the state of the system, so we dub
this scenario as Markovian TU cooperative game.
We deal with this model in a perspective different from Sections 3.1, 3.2.
In fact, we do not study the pay-off allocation in each state, since, for a
linearity argument, this is a trivial issue. Instead, we tackle a complexity
issue relative to the computation of the Shapley value (Shapley 1953, [82])
in these kind of games. More specifically, we provide three methods to com-
pute a confidence interval for the Shapley-Shubik index in Markovian games
(SSM). We extend the approach of Bachrach et al. in 2010 [14] for static
games to Markovian games. The Shapley-Shubik index (Shapley and Shu-
bik, 1954 [85]) is the Shapley value applied to a simple game, i.e. a game
in which the coalition values are binary, i.e. 1 or 0. The Shapley-Shubik
index proves to be particularly suitable to assess a priori the power of the
members of a legislation committee, and has many applications to politics
(see Taylor and Pacelli 2008, [91] for an overview). In our case, the game
in each state is simple. We prove that an exponential number of queries
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is necessary for any deterministic algorithm even to approximate SSM with
polynomial accuracy. Motivated by this, we propose three different random-
ized approaches to compute a confidence interval for SSM. Their complexity
does not even depend on the number of players. Such approaches also hold
for the classic Shapley value of any cooperative Markovian game. The first
confidence interval, SCI, relies on the static assumption that the estima-
tor agent has access to the coalition values in all the states at the same
time, even before the Markov process initiates. Although SCI relies on an
impractical assumption, it is still a valid benchmark for the performance of
the approaches yielding the other two proposed confidence intervals, dubbed
DCI1 and DCI2. DCI1 and DCI2 both hold also under the more realistic
dynamic assumption that the estimator agent learns the value of coalitions
along the course of the game. We propose a straightforward way to opti-
mize the tightness of DCI1 and we compare the three proposed approaches in
terms of tightness of the confidence interval. Finally, we provide a trade-off
complexity/accuracy of our randomized algorithm, holding for any cooper-
ative Markovian game.

Finally, in Chapter 4 we utilize an MDP formulation with an uncount-
able state space to solve a dynamic selection problem among different trans-
mission channels. In the learning algorithms literature, this approach goes
under the label of Multi Armed Bandit (MAB), in which there exists a pool
of several random processes, or arms, that can be observed once at a time.
The total reward is the (discounted or averaged) sum of the instantaneous
values of the observed arms. Based on the past observations and on the sta-
tistical knowledge a priori of each arm, the goal is to maximize the expected
total reward.

The so-called Rested MAB assume that the state of an arm which has
not been pulled does not evolve in the next step. In this case, a brilliant
optimization solution was found by Gittins (1989, [37]). He observed that
the curse of state dimensionality in the number of arms caused by an MDP
formulation can be overcome with the computation of an index, for each
arm. The optimal solution consists in simply selecting the arm with the
highest index, in each decision step. Thus, the complexity of the solution
boils down from exponential to linear in the number of arms.

We deal instead with Restless MAB, in which the arms evolve even when
not observed, which is of course the case of the attenuation coefficients of
a transmission channel. In this case, an efficient solution has not been
found yet. Whittle (1988, [100]) proposed an index whose optimality is not
guaranteed though. It was proven by Papadimitriou and Tsitsiklis in [67]
that restless MAB are PSPACE-hard in general. Hence, in order to deal with
Restless MAB’s, one needs to resort to a MDP formulation with uncountable
state space, or equivalently to a Partially Observable MDP model. Typically,
the state of the decision problem at each time step is the instantaneous
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value of each arm in the last time step. Since the state of the unobserved
arms is unknown, the decision agent has at its disposal only its probability
distribution, conditioned on its last observation.

In our case, the processes to be selected at each time are independent
autoregressive processes of order 1, i.e. AR(1). They represent the slow
fading channel attenuations on different frequency bands of a multi-access
wireless network that a transmitter can utilize to communicate on. The
goal is to maximize the long-run average Signal-to-Noise Ratio (SNR) for
the user. Note that the user is assumed to know all the parameters of the
AR(1) processes, hence also their (unconditioned) expected value. A näıve
solution would prescribe to select invariably the channel with highest ex-
pected value. Roughly speaking, this procedure is highly suboptimal if the
expected values are similar to each other. Indeed, it is possible to exploit
the autocorrelation of the channels to select the one which is instantaneously
the best one.
We propose two heuristic algorithms with linear complexity in the number
of arms to solve the Restless MAB problem. The former, myopic, suggests
to select the channel with the highest conditioned expected reward, at each
time step. The latter, randomized, selects the seemingly sub-optimal arms
with a certain probability. We find that the myopic strategy performs close
to the optimal solution when all the arms are almost statistically equiva-
lent. When one channel is characterized with a much higher autocorrela-
tion, then the randomized approach outperforms the myopic approach and is
quasi-optimal. We then propose a Competitive MDP formulation, in which
different users access to the same pool of channels. We adapt the cited two
algorithms to approximate the best response of a user against the strategy
of a second user which is oblivious of the presence of the first.
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Introduction (en français)

Les Processus de Décision Markoviens (MDP) offrent un cadre théorique
très utile pour un certain nombre de problèmes décisionnel pratiques, dans
lesquelles l’évolution du système stochastique dépend cependant de la décision
prise par certains agents contrôleurs (ou joueurs). Plus précisément, il ex-
iste un ensemble d’états, et dans chacun d’eux les joueurs ont un ensemble
d’actions à leur disposition. L’ensemble des actions choisies conjointement
par les joueurs dans un état détermine à la fois une récompense instantanée
pour chacun d’eux et une distribution de probabilité sur les états suivants.
En règle générale, les récompenses sont soit additionnées dans le temps,
ou actualisées géométriquement et ensuite additionnées, ou autrement on
en prends la moyenne. Les domaines dans lesquels MDP a trouvé des ap-
plications réussies vont de l’informatique, de l’ingénierie, de l’économie, la
médecine, la biologie (voir White, 1993 [99] pour une vue d’ensemble et
Altman, 2002 [3] pour des applications aux réseaux de communication).

Les MDP ont été largement étudiés au cours des dernières décennies,
surtout dans le cas mono-agent. Ses origines remontent à Bellman (1957,
[18]) et Howard (1960, [42]). En règle générale, l’objectif principal des MDP
avec mono-agent est de trouver la stratégie optimale de décision que le
contrôleur doit mettre en oeuvre afin de maximiser la somme à long terme
de récompenses (voir Puterman, 1994 [77] pour une vue d’ensemble). Il
est intéressant de noter que ce modèle peut également fournir des résultats
pertinentes sur l’optimalité de la décision des contrôleurs quand la longueur
de l’horizon varie, obtenus en ajustant le facteur d’actualisation entre [0; 1)
(voir par exemple [41]). L’optimalité de Blackwell (Blackwell, 1962 [21])
est particulièrement important. Elle est la propriété de ces stratégies qui
sont optimales pour tous les facteurs d’actualisation suffisamment proche
de 1. Aussi, ces stratégies se révèlent être optimale selon le critère de la
moyenne [77].

Dans cette thèse, nous nous concentrerons principalement sur les systèmes
MDP avec multi-agents, sauf pour le Chapitre 4, dans lesquels nous ètudions
une application des MDP avec mono-agent. La majeure partie de la littérature
sur les systèmes MDP avec multi-agents se concentre sur la situation con-
currentielle dans laquelle les agents ou les joueurs agissent égöıstement, dans

11



12 Introduction

le but de maximiser la somme à long terme des récompenses individuelles.
Curieusement, l’origine des systèmes MDP avec multi-agents est antérieure
le cas mono-agent, en raison de papier visionnaire de Shapley en 1953 [81].
Dans l’hypothèse competitive, il n’ya aucun espoir que les joueurs puissent
coordonner leurs actions afin d’atteindre l’optimum social, qui cöıncide avec
la maximisation de la somme des récompenses à long terme pour chaque
joueur. Au lieu de cela, dans ce scénario, le célèbre équilibre de Nash (NE)
(Nash, 1950 [64]) est généralement utilisé pour prédire le comportement des
acteurs en conflit. Aucun jouer ne peut modifier seul sa stratégie de Nash
sans affaiblir sa position personnelle. La plupart des résultats disponibles
dans la littérature sur les MDP compétitives traitent avec le cas de deux
joueurs (voir Filar et Vrieze, 1996 [32] pour une vue d’ensemble).

Dans le même esprit, dans le Chapitre 2 nous allons étudier les MDPs
compétitifs avec deux joueurs, aussi appelés “jeux stochastiques”, dans lesquels
le jeu pratiqué dans chaque état est à somme nulle. Ça signifie que pour
chaque paire d’actions pour le deux joueurs, la somme des récompenses
gagnées par les joueurs est nulle. Par conséquent, le jeu est purement antag-
oniste: pas de consensus sur les stratégies peut être atteint par les joueurs,
puisque un profit pour un joueur est une perte pour l’autre. Dans la Sec-
tion 2.1 nous allons nous concentrer sur le calcul d’une paire de stratégies à
l’équilibre de Nash dans un MDP compétitif avec deux joueurs et à somme
nulle. La récompense pour chaque joueur est β-actualisée au fil du temps,
avec β ∈ [0, 1). Nous supposons que, dans chaque état, au plus un joueur
a un contrôle effectif, i.e. le MDP est á information parfaite. Nous allons
considérer un MDP dans lequelle le contrôle sur les récompenses et les prob-
abilités de transition passe d’un joueur à l’autre, en fonction de l’état dans
lequel se trouve le processus. Dans ce scénario, nous allons mettre au point
deux algorithmes qui calculent les stratégies pour les deux joueurs à la NE,
pour tous les facteurs d’actualisation suffisamment proche de 1. Nous prou-
vons que l’un d’eux converge en un temps fini, en combinant essentiellement
deux techniques. Le premier est par Raghavan et Syed (2003, [78]), qui four-
nit un algorithme pour calculer les stratégies au NE dans le même scénario
décrit ci-dessus, pour un facteur d’actualisation fixe. Ce dernier est défini
par Hordijk, Dekker et Kallenberg (1985, [41]), qui ont utilisé la programma-
tion linéaire sur le corps des fonctions rationnelles à coefficients réels pour
calculer le stratégies optimales de Blackwell pour MDP avec mono-agent. En
outre, nos algorithmes calculent l’intervalle [β∗; 1) dans lequelle les stratégies
sont Nash optimales. Grace à la structure particulière des MDP compétitifs,
ces stratégies sont également optimal selon le critère de la moyenne.

Dans la Section 2.4, nous montrons une éventuelle application des al-
gorithmes décrits dans la Section 2.1 pour l’étude d’un scénario de routage
statique en utilisant la théorie des jeux coopérative (SCGT) sous l’hypothèse
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de utilité transférable (TU). En SCGT, les joueurs peuvent faire des accords
contractuels à la fois sur la stratégie adoptée et sur la procédure de partage
du résultant payoff, ce qui, dans l’hypothèse TU, peut être partagé en au-
cune manière parmi les joueurs. Potentiellement, chaque sous-ensemble de
joueurs peut former une coalition. L’objectif de la théorie des jeux statiques
coopératifs est double: une solution optimum social est à déterminer, et le
maximum pay-off doit être partagée de manière satisfaisante pour tous les
joueurs. Par conséquent, tous les joueurs doivent se mettre d’accord sur un
contrat commun, qui doit d’être avantageux, ou du moins juste, pour chacun
d’eux. Plusieurs critères d’attribution du payoff qui ont été étudiés au cours
des années, comme le Core, la valeur de Shapley, le nucléolus, la τ -valeur,
etc. (voir [69] pour une vue d’ensemble).
En règle générale, en SCGT le pay-off est une fonction de la valeur de
chaque coalition, c’eat à dire la récompense qu’une coalition peut gagner
toute seule, sans la possibilité de coordonner ses actions avec les autres
joueurs. Cette valeur peut être calculée à la Morgenstern-von Neumann [96],
i.e. le coût minimum (ou le payoff maximum) qu’une coalition peut garan-
tir si l’anti-coalition la punit en adoptant un comportement antagoniste.
Par conséquent, le jeu entre une coalition et la anti-coalition est toujours à
somme nulle.

Maintenant, nous allons décrire notre jeu de routage de la Section 2.4.
Nous considérons un système où plusieurs fournisseurs qui se partagent le
même réseau et contrôlent le routage dans des ensembles disjoints de noeuds
et chaque lien a un coût différent pour chaque fournisseur. Ils fournissent
une connexion vers un serveur unique (destination) à leurs clients. Afin de
réaliser une transmission réussie, ils ont besoin de coopérer et de coordonner
leurs stratégies de routage de manière que le coût global de transmission est
réduit au minimum. Par conséquent, dans ce cas, nous supposons que les
joueurs, i.e. les fournisseurs de services, n’ont pas un comportement antag-
oniste. En effet, un comportement égöıste aurait un effet contre-productif
pour chacun des fournisseurs de services, qui ont besoin de l’aide des autres
pour livrer ses paquets. Dans ce scénario, les coûts de transmission doivent
être partagés entre les prestataires de services. Si nous traduisons le scénario
dans le jargon MDP, les états du MDP associé sont les noeuds et les ac-
tions de chaque joueur sont les décisions de routage dans chaque noeud, et
la récompense associée à une action est le coût du lien sélectionné. Nous
étudions cette situation en utilisant SCGT pour attribuer un coût à chaque
fournisseur, qui dépend de leur capacité à coopérer avec les autres et de
réaliser une transmission réussie. Pour cette raison, nous avons besoin de
calculer la valeur de chaque coalition de fournisseurs, et nous optons pour
une approche max-min. Par conséquent, le même modéle présenté dans la
Section 2.1 apparait, et nous montrons comment adapter les algorithmes
décrits dans la Section 2.1 pour calculer la valeur de chaque coalition de
fournisseurs.
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On remarque que, dans le modèle coopératif décrit dans la Section 2.4,
l’interaction entre les joueurs est ponctuelle: la valeur de chaque coalition
est calculée hors-ligne, une fois pour toutes, les coûts du transport sont
partagés entre les joueurs au début ou à la fin du jeu, indifféremment, et des
coalitions ne peuvent pas former quand la transmission a commencée. C’est
la raison pour laquelle nous appelons cette approche “jeu coopératif à long
terme”.
Un scénario différent est décrit dans le Chapitre 3, dans lequel l’interaction
entre les joueurs se poursuit au fil du temps, à chaque étape d’un processus
décisionnel de Markov, et des coalitions peuvent se former tout au long du
jeu. Nous appélons ce scénario “MDP coopératif”.

Notre travail sur les MDP coopératifs s’inscrit dans le contexte plus
général de la théorie des jeux coopératifs dynamiques (DCGT), qui a été l’un
des sujets les plus novatrices et intéressantes dans le domaine de la théorie
des jeux dans les dernières années. La majeure partie de la recherche sur
les jeux coopératifs, stimulée par Morgenstern et von Neumann (1953, [96]),
a mis l’accent sur l’étude des jeux statiques, qui modélisent les interactions
ponctuelles entre les joueurs.

Néanmoins, la plupart des situations d’interaction entre les joueurs, e.g.
pays, entreprises ou utilisateurs dans un système de communication, ne sont
pas ponctuelles, mais continuent au fil du temps dans un environnement
dynamique. Cette motivation a stimulé la recherche sur DCGT. L’accord
est établi par les joueurs au début du match, une fois pour toutes, princi-
palement pour deux raisons. Tout d’abord, la renégociation d’un contrat
à chaque étape est coûteuse, en temps et en argent. Deuxièmement, la
révision d’un accord à chaque étape temporelle peut amener à une politique
myope, qui ne tient pas compte de l’optimum social à long terme. A titre
d’exemple, dans la lutte contre les émissions de polluants, il faut investir dans
les technologies propres, qui ne peut être faite que si les agents économiques
eux-mêmes s’engagent dans une stratégie d’investissement clairvoyante.

Dans ce contexte dynamique, parvenir à un accord commun qui est
durable dans le temps constitue le véritable défi, puisque les coalitions sont
autorisées à former tout au long du jeu. L’une des notions les plus impor-
tantes dans les jeux dynamiques est la cohérence dans le temps d’un partage
du payoff (Petrosyan, 1977 [72]). Selon lui, à chaque étape intermédiaire du
processus d’interaction, la distribution du payoff dans le sous-jeu à partir
de cet instant doit respecter le critère de l’équité même en vertu du quel
le contrat a été stipulé en premier lieu. Une propriété plus spécifique pour
une allocation dynamique du payoff est le Core séquentiel, pour laquelle
aucun parti ne devrait pas être tenté de violer l’accord à n’importe quel
instant temporel, à partir de ce moment préférant adopter un approche non
coopératif plus rentable. Kranich, Perea, et Peters (2005, [48]) ont introduit
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le Core faible séquentielle, qui restreint la rechercheà des écarts crédibles,
i.e. les écarts qui ne peuvent pas être contre-bloquée par une sous-coalition.
Un autre concept intéressant pour DCGT est celui de la maintenance de la
coopération, pour lesquel, à chaque étape temporelle, chaque coalition de-
vrait être persuadée à différer la décision de violer l’accord. Par induction,
l’accord social est stable dans le temps. Mazalov et Rettieva (2010, [59]) ont
introduit pour la prémière fois cette propriété dans un cadre de “fish-war”.

Au cours de la dernière décennie, la recherche sur DCGT s’est ramifiée
en différentes branches. Le premier est sur les jeux coopératifs répétés, dans
lesquels le même jeu se joue à plusieurs reprises au fil du temps. Les articles
par Oviedo (2000, [66]) et par Kranich, Perea, et Peters (2000, [47]) sont les
deux travaux pionniers indépendants dans ce domaine.
Une autre branche de recherche s’occupe de différents états qui se succèdent,
et dans chacun d’eux un jeu statique différent est joué. Les transition d’états
réprésent la dynamique de l’environnement dans lequel l’interaction a lieu.
Kranich, Perea, et Peters (2005, [48]) ont étudié le concept de solution du
Core pour ces jeux, dans lesquels la succession des états est prédéterminée.
Predtetchinski (2007, [75]) a considéré qu’une châıne de Markov endogène
détermine la probabilité de transition entre les états. Un troisième axe ma-
jeur de recherche en DCGT est répresenté par les jeux différentiels (voir
Zaccour 2008, [102] pour une vue d’ensemble), dans lesquels l’état du jeu
évolue continuellement au fil du temps selon une équation différentielle
déterministe, contrôlée par les stratégies des joueurs.

DCGT s’applique à nombreuses applications en économie, et sans sur-
prise, les connexions entre les deux champs sont intimement liées. DCGT a
capitalisé sur certains concepts déjà existants dans la littérature économique.
Par exemple, un concept similaire à la propriété de cohérence dans le temps a
été élaboré par le prix Nobel de 2004 Kydland et Prescott (1977, [49]), à pro-
pos de la stratégie qu’un décideur doit mettre en oeuvre afin de déclencher la
réponse souhaitée des agents économiques. Gale (1978, [35]) fut le premier
à introduire l’idée de “Core séquentielle forte”, dans un modèle d’économie
monétaire. En outre, la notion de Core dans une économie d’échange d’informations
incomplètes a été soigneusement étudiée au cours des dernières décennies
(voir Forges et al. 2002, [34] pour une vue d’ensemble), bien avant que les
fondements théoriques de DCGT ont été définies.
D’autre part, la recherche sur DCGT a été stimulée par des questions
économiques réels, et dans les dernières années, les progrès sur DCGT ont
représenté un outil valable pour les économistes. Predtetchinski, Herings, et
Peters (2002, [76]) ont étudié le Core forte séquentielle en économies à deux
niveaux dans lesquelles le commerce des biens a lieu dans la prémiére période
et le commerce des produits se présente dans la périod successive. Herings,
Predtetchinski et Perea (2006, [38]) ont étudié le Core faible séquentiel dans
le même contexte.
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Nous appliquons DCGT pour la première fois à un modèle de réseau de
communication, dans la Section 3.2.

Maintenant, nous allons décrire notre modèle coopérative MDP sous
l’hypothèse TU. Il s’agit essentiellement d’un modèle multi-agent MDP dans
lequel les joueurs sont autorisés à former des coalitions tout au long du
jeu. Nous analysons d’abord le jeu à long terme sur le MDP dans une
perspective d’un jeu coopératif statique. Si on regarde le jeu dans son en-
semble, nous pouvons toujours calculer hors-ligne la stratégie optimale pour
la grande coalition de joueurs, par des techniques d’optimisation classiques
pour MDPs mono-agent, dans lequel la grande coalition est considéré comme
le seul agent. Dans le jeu à long terme, la valeur de chaque coalition est
calculée comme la somme de long terme de récompenses que chaque coali-
tion peut atteindre tout seul, et une solution coopérative est attribuée dans
le jeu à long terme. Jusqu’à présent, cette formulation se rapporte encore
à SCGT. Néanmoins, deux questions se posent. Tout d’abord, la solution
coopérative à long terme est en fait la valeur prévue d’une variable aléatoire,
et par conséquent, de faon pragmatique, il n’est pas clair comment la répartir
entre les joueurs. Deuxièmement, quand l’horizon du jeu est infini, ou fini
mais avec une durée inconnue, les joueurs peuvent exiger d’être récompensé
au chaque étape du jeu, c’est à dire à chaque étape de la châıne de Markov.
Par conséquent, le défi est de mettre au point une procédure de distribu-
tion coopérative du payoff (CMDP) qui distribue la solution coopérative à
long terme au long du jeu, dans chacun de ses états. De ce compromis ap-
paremment inoffensif, un certain nombre de questions se posent. Puisque
nous supposons que les coalitions peuvent se former tout au long du jeu, le
CMDP doit satisfaire tous les joueurs, tout au long du match. En effet, si
un accord à long terme a été stipulé par les joueurs au début du jeu en fonc-
tion de certains critères (par exemple, l’équité), il n’est pas clair si l’accord
peut être maintenu au fil du temps, i.e. si un tel critère se garde après
certaines étapes, ou une renégociation de l’accord est nécessaire. Des situ-
ations réelles abondent en exemples dans lesquels un contrat à long terme
conclu en premier lieu doit être renégocié au cours du temps, e.g. la situation
économique actuelle dans l’Union Européenne. La propriété que CMDP doit
posséder afin d’éviter une renégociation est la cohérence temporelle (Petros-
jan 1977, [72]). Un deuxième point important est la stabilité de la grande
coalition, tout au long du match. Une coalition pourraient être tentée de
violer l’accord à une certaine ètape du jeu dynamique, car elle ne peut garan-
tir une meilleure allocation elle-même à partir de cet instant. Afin d’éviter
cela, le CMDP a besoin d’appartenir au Core séquentiel (Kranich, Perea, et
Peters 2005, [48]). Intuitivement, cette propriété declare que, chaque fois
qu’une coalition est confrontée au dilemme “On romp le contrat maintenant
ou on coopére pour toujours?”, alors elle devrait opter pour la deuxième
option puisqu’elle est plus rentable. De plus, nous exigeons que le CMDP
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satisfait la propriété de la maintenance de la coopération (Mazalov et Ret-
tieva 2010, [59]). Intuitivement, cette propriété suggère que, à chaque étape
temporelle, si une coalition est confrontée au dilemme “On romp le contrat
maintenant ou dans une étape temporelle?”, alors il faut choisir la deuxième
option. Enfin, nous considérons la présence de joueurs avides, ayant une per-
spective myope du jeu. Dans ce cas, le CMDP a besoin d’appartenir au Core
de chaque jeu statique joué dans chaque état du MDP, afin de contenter les
joueurs avides aussi. Ensuite, nous élaborons un CMDP pour le MDP, bap-
tisé MDP-CMDP, et nous trouvons des conditions pour lesquelles toutes les
propriétés enrôlés ci-dessus sont satisfaites. Fait remarquable, nous consta-
tons que la propriété de la maintenance de la coopération est un raffinement
du concept du Core séquentiel pour les MDPs coopératifs.

Dans la Section 3.2 nous appliquons certains des concepts développés
dans la Section 3.1 pour un scénario de communication sans fil. On con-
sidère un canal d’accès multiple gaussien (MAC) dans lequel le canal est
quasi-statique, c’est à dire qu’il varie suffisamment lentement pour être sup-
posée constant pendant toute la durée d’un mot de code. De plus, nous
supposons qu’il suit une châıne de Markov homogène (HMC) endogène avec
un ensemble fini d’états dans lequel les transitions d’état se produisent à la
fin de chaque période de cohérence. Nous attribuons un débit du codage à
chaque utilisateur dans chaque état de la châıne de Markov. Nous soulignons
que, dans ce scénario, les probabilités de transition entre les états du canal du
système ne dépendent pas de stratégies de transmission des utilisateurs. En
ce sens, le scénario est simplifié par rapport à celui de la Section 3.1. D’autre
part, une nouvelle complication est causée par l’introduction de l’hypothèse
du payoff non-transférable (NTU), pour laquelle le débit du codage ne peut
être partagé en aucune manière parmi les utilisateurs, mais seulement dans
la région de la capacité de Shannon.
Dans ce scénario nous abordons la question de la répartition du débit du
codage dans chaque état, d’une manière optimum global, c’est à dire que
la somme des débits du codage est maximale à la fois dans chaque état et
dans le processus à long terme. Nous appelons M cet ensemble de débit du
codage optimal. Nous étudions deux procédures pour sélectionner une allo-
cation de M: la première, appelée “bottom-up”, prévoit d’allouer d’abord
les allocations statiques, tandis que le second, baptisé “top-down”, suggère
de choisir d’abord les allocations à long terme, et puis de calculer les alloca-
tions statiques associées. Cette dernière procédure serait plus utile, car elle
permet de respecter le critère de sélection dans le processus à long terme,
étant celle qui concerne les utilisateurs, qui sont dotés d’une perspective à
long terme du jeu. Malheureusement, cette procédure ne génère pas toujours
à des allocations réalisables, et nous offrons une solution pour ça. Ensuite,
nous abordons la question de l’allocation d’un débit du codage équitable
pour les utilisateurs dans le processus dynamique. Dans le cas statique, les
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critères de max-min, équité proportionnelle, et α-équité sont toujours bien
définis [5]. Dans notre cas dynamique, le scénario est compliqué par le fait
que nous exigeons que le critère de l’équité doit etre gardé tout au long du
processus. Il n’est pas toujours possible de trouver une allocation constam-
ment équitable; néanmoins, nous donnons une condition suffisante pour son
existence. Ensuite, nous utilisons des outils développés dans la Section 3.1
pour mesurer la satisfaction des utilisateurs avec le débit du codage attribué.
Nous constatons queM cöıncide avec l’ensemble des débits du codage appar-
tenant au Core séquentiel. De plus, M est exactement l’ensemble des débits
du codage qui satisfaisaient la propriété de la maintenance de la coopération.

Dans la Section 3.3 nous nous occupons de MDP coopératifs sous l’hypothèse
TU, dans lesquels les probabilités de transition entre les états ne dépendent
pas des actions des joueurs. Comme dans la Section 3.2, une châıne de
Markov endogène gouverne l’évolution stochastique de l’état du système,
donc nous appèlons ce scénario jeu coopératif Markovien.
Nous nous occupons de ce modèle dans une perspective différente de Sec-
tions 3.1, 3.2. En fait, nous n’avons pas étudié la répartition du payoff dans
chaque état, puisque, par un argument de linéarité, il s’agit d’une question
triviale. Au lieu de cela, nous abordons un problème de complexité relative
au calcul de la valeur de Shapley (Shapley 1953, [82]) dans ce genre de jeux.
Plus précisément, nous proposons trois méthodes pour calculer un inter-
valle de confiance pour l’indice de Shapley-Shubik dans les jeux de Markov
(SSM). Nous étendons l’approche de Bachrach et al. en 2010 [14] pour les
jeux statiques à des jeux de Markov. L’indice de Shapley-Shubik (Shapley
et Shubik, 1954 [85]) est la valeur de Shapley appliquée à un jeu simple,
c’est à dire un jeu dans lequel les valeurs des coalitions sont binaires, c’est à
dire 1 ou 0. L’indice de Shapley-Shubik s’avère particulièrement approprié
pour évaluer a priori le pouvoir des membres d’un comité de législation,
et présente nombreuses applications à la politique (voir Taylor et Pacelli
2008, [91] pour une vue d’ensemble). Dans notre cas, le jeu dans chaque
état est simple. Nous montrons que un nombre exponentiel de requêtes
est nécessaire pour tout algorithme déterministe même pour approximer
SSM avec une précision polynomial. Motivé par ça, nous proposons trois
différentes approches aléatoires pour calculer un intervalle de confiance pour
SSM. Leur complexité ne dépend pas du tout du nombre de joueurs. Ces ap-
proches sont valables aussi pour la valeur de Shapley classique de n’importe
quel jeu coopératif Markovien. Le prémier intervalle de confiance, SCI, est
valide sous l’hypothèse statique que l’agent estimateur a accès aux valeurs
de la coalition dans tous les états en même temps, avant même que le proces-
sus de Markov commence. Bien que SCI repose sur une hypothèse irréaliste,
il est encore un point de référence valable pour le calcul des deux autres
intervalles de confiance proposés, surnommés DCI1 et DCI2. DCI1 et DCI2
sont valids également dans l’hypothèse plus réaliste dynamique: l’agent esti-
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mateur apprend la valeur de coalitions au long du jeu. Nous proposons une
méthode simple pour minimiser la longueur de DCI1 et nous comparons
les trois approches proposées en termes de la longueur de l’intervalle de
confiance. Enfin, nous proposons un compromis entre la complexité et la
précision de notre algorithme randomisé, valide pour n’importe quel jeu
coopératif Markovien.

Enfin, dans le Chapitre 4, nous utilisons une formulation MDP avec
un espace d’états dénombrable pour résoudre un problème de sélection dy-
namique entre les différents canaux de transmission. Dans la littérature
des algorithmes d’apprentissage, cette approche va sous l’étiquette de Multi
Armed Bandit (MAB), dans lequel il existe un groupe de plusieurs proces-
sus aléatoires, ou des bras, qui peuvent être observés successivement. La
récompense totale est la somme (actualisée ou en moyenne) des valeurs in-
stantanées des bras observés. Sur la base des observations passées et de la
connaissance statistique a priori de chaque bras, l’objectif est de maximiser
la récompense attendue total.

Ce qu’on appelle Rested MAB suppose que l’état d’un bras qui n’a pas
été tiré n’évolue pas à l’étape temporelle suivante. Dans ce cas, une solution
d’optimisation brillante a été trouvé par Gittins (1989, [37]). Il a observé
que la malédiction de la dimensionnalité des états dans le nombre de bras
peut être surmontée avec le calcul d’un indice, pour chaque bras. La solution
optimale consiste simplement en sélectionner les bras avec l’indice le plus
élevé, dans chaque étape de décision. Ainsi, la complexité du calcul de la
solution passe de exponentiel à linéaire dans le nombre de bras.

Nous nous occupons plutôt de Restless MAB, dans lesquels les bras
évoluent même lorsqu’ils ne sont pas observés, ce qui est évidemment le
cas des coefficients d’atténuation d’un canal de transmission. Dans ce cas,
une solution efficace n’a pas encore été trouvée. Whittle (1988, [100]) a
proposé un indice dont l’optimalité n’est pas garantie. Il a été prouvé par
Papadimitriou et Tsitsiklis [67] que les restless MAB sont PSPACE-hard en
général. Par conséquent, afin de faire face à Restless MAB, on a besoin de
recourir à une formulation MDP avec un espace d’états dénombrable, ou de
manière équivalente à un modèle MDP partiellement observable. Typique-
ment, l’état du MDP à chaque étape temporelle est les valeurs instantanées
de chaque bras. Puisque l’état du bras non observés est inconnue, le seul
agent de décision n’a à sa disposition que ses distributions de probabilité,
conditionnées aux dernières observations.

Dans notre cas, les processus qui sont choisis à chaque fois sont des
processus autorégressifs indépendants d’ordre 1, c’est á dir AR(1). Ils
représentent les atténuations de canal à évanouissement lent sur les bandes
de fréquences différentes d’un réseau sans fil à accès multiple. L’objectif est
de maximiser le rapport signal sur bruit (SNR) à moyen au long terme pour
l’utilisateur. L’utilisateur est censé connâıtre tous les paramètres des pro-
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cessus AR(1), donc aussi leur valeur attendue (inconditionnel). Une solution
näıve suggère de choisir toujours le canal avec la plus grande valeur atten-
due. La procédure grosso modo est très sous-optimal si les valeurs atten-
dues sont semblables les uns aux autres. En effet, il est possible d’exploiter
l’auto-corrélation des canaux pour sélectionner celui qui est instantanément
le meilleur.
Nous proposons deux algorithmes heuristiques avec une complexité linéaire
avec le nombre d’armes à résoudre le problème Restless MAB. Le premier,
myope, suggère de sélectionner le canal avec le plus haut SNR attendue
conditionné, à chaque pas de temps. Celui-ci sélectionne les bras apparente-
ment sous-optimales avec une certaine probabilité. Nous constatons que
la stratégie myope se comporte presque optimalement lorsque tous les bras
sont presque statistiquement équivalents. Lorsqu’un canal est caractérisé
par une autocorrélation beaucoup plus élevé, alors l’approche randomisée
surpasse l’approche myope et celle est quasi-optimal. Nous proposons en-
suite une formulation en utilisant les MDP compétitifs, dans laquelle les
différents utilisateurs accédent au même pool de canaux. Nous adaptons les
deux algorithmes cités, rapprochant la “meilleur réponse” de l’utilisateur
à l’encontre de la stratégie d’un second utilisateur qui est insensible à la
présence du premièr.



Chapter 1

Markov Decision Processes
(MDPs) and Game Theory:
a brief overview

In this preliminary chapter we provide a short overview of Markov Deci-
sion Processes (MDPs), linear programming, Competitive and Cooperative
Game Theory. It will provide to the reader the essential tools to understand
the main results in this dissertation.

1.1 Discrete time Markov chains

Let P be a N -by-N stochastic matrix, i.e. non-negative and all its rows sum
up to 1. Let {Sn}n∈N∪{0} be a discrete-time stochastic process on a finite
state space S = {s1, . . . , sN}. If for all integers k ≥ 0:

p
(
Sk+1=sik+1

|Si=sik , Sk−1=sik−1
, . . . , S0=sk0

)
= p
(
Sk+1=sik+1

|Sk=sik
)

=Pik ,ik+1
,

then the stochastic process is a discrete time Homogeneous Markov chain
(HMC) with transition probability matrix P.
The matrix P is irreducible when each state is reachable from any state with
positive probability, i.e. for all si, sj there exists n such that (Pn)i,j > 0.
The stationary distribution of P is the column vector q ∈ R

N : qTP = qT ,∑
i qi = 1. If the HMC is irreducible, then q is the unique stationary

distribution1. It can be interpreted as the probability distribution on the

1if the HMC is countably infinite, then the positive recurrence assumption is needed
to guarantee the uniqueness of the stationary distribution. If the HMC is finite, instead,
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states that is invariant over time. If P is irreducible, then it is also Cesàro
summable and

lim
T↑∞

1

T

T∑

t=0

Pt = Q,

where each row of Q is the stationary distribution qT .

A good reference for the fundamentals of Markov chains is (Brémaud
1999, [24])

1.2 Linear programming

Linear programs are optimization problems that can be expressed in canon-
ical primal form

max cTx

s.t. Ax ≤ b

x ≥ 0

The dual formulation is

min bTy

s.t. yTA ≥ c

y ≥ 0

Another primal form is

max cTx

s.t. Ax ≤ b

whose asymmetric dual form is

min bTy

s.t. yTA = c

y ≥ 0

The strong duality theorem states that the optimal solutions of the primal
and dual problems are equal. Classically, the linear programming problem is
solved with the aid of the celebrated simplex algorithm, invented by Dantzig
in 1947 (see also Dantzig 1998, [28]). It relies on the fact that an optimal
solution is always found on an extreme point of the feasibility region, which
is a convex polytope. The simplex algorithm is an efficient method to walk

irreducibility implies positive recurrence.
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along the edges of the feasibility region through extreme points in which the
objective function assume values being closer and closer to the optimum.

A good reference for linear programming is Boyd and Vandenberghe
(2004 [23])

1.3 Markov Decision Processes

Markov Decision Processes (MDPs) are essentially controlled Markov chains,
in which the rewards gained by the agent and the transition probabilities
depend on the agent’s actions. In this dissertation we will mainly deal
with MDPs with finite states and finite actions space. In this case, S =
{s1, . . . , sN} is the set of states. In each state s ∈ S, the agent has at
its disposal the set of actions A(s). Let us assume that in state s the
agent selects an action a ∈ A(s). Then, an instantaneous reward r(s, a)
is earned. The process evolves stochastically on a discrete time grid t =
0, 1, . . . , according to a stochastic kernel controlled by the agent’s strategy
defined by the transition probability p(s′|s, a), where s, s′ ∈ S and a ∈ A(s).
Such kernel is stationary, i.e. the probability that the state at time t+ 1 is
s′, given that St = s and the action chosen in s is a, is independent of time
and of previous actions.
We call f a strategy for the agent, which determines the probability to take
an action at each time T , given the whole history h(T ) of previous action
and state succession up to time T . If we consider the β-discounted criterion,
β ∈ [0; 1), the total reward for the agent, given that s is the initial state of
the process, can be expressed as

Φ(β)(s, f) =

∞∑

t=0

βt
Ef (Rt|So = s), (1.1)

where Rt is the instantaneous reward earned at time t. In this dissertation
we will also utilize the equivalent notation Φ(β). We call β-discount optimal

strategy f∗(β) the strategy maximizing the following problem:

max
f

Φ(β)(s, f), ∀ s ∈ S. (1.2)

It is possible to prove that (1.2) has a solution, and the optimal strategy
f∗(β) exists. Moreover, an optimal solution can be found amongst stationary
strategies FS, for which the action taken at time t depends only on the state
of the process at time t, St. Hence, we will restrict our focus on stationary
strategies. Under a stationary strategy, the stochastic process on the set of
states S is a HMC. The strategy f ∈ FS determines a probability distribution
f(s) on A(s), such that f(s, a) is the probability that the agent chooses action
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a ∈ A(s) in state s. Moreover, if f ∈ FS, then we can rewrite (1.1) as

Φ(β)(s, f) =
∞∑

t=0

βt pt(s
′|s, f(s))

∑

a∈A(s′)

f(s′, a) r(s′, a), (1.3)

where pt(s
′|s) is the probability that the state is in state s′, t steps after

being in state s. It is convenient to write (1.3) in matricial form, as

Φ(β)(f) =

∞∑

t=0

βtP(f) r(f)

= (I− βP)−1 r(f),

where P(f) is the transition probability matrix associated to the strategy
f , i.e. Pi,j(f) = p(sj|si, f), Φ(β)(f) := [Φ(β)(s, f)]s∈S , and r(f) is a N -by-1
vector whose j-th component is r(sj , f) =

∑
a∈A(s′) f(sj, a) r(sj , a).

Let us now consider the average criterion. In the case when the station-
ary strategy f is adopted, the long-run reward can be expressed as

Φav(s, f) = lim sup
T↑∞

1

T

T∑

t=0

pt(s
′|s, f)

∑

a∈A(s′)

f(s′, a) r(s′, a). (1.4)

Let us assume that P(f) is irreducible for each f ∈ F. Then, P(f) is Cesàro
summable, and we can write

Φav(f) =
N∑

i=1

qi(f) r(si, f)

where q(f) is the stationary distribution of P(f).

1.3.1 Optimality equation and linear programming

Let us now focus on the β-discounted criterion. The maximal total dis-
counted reward Φ∗(β) := Φ(β)(f∗(β)) solves the following optimality equation:

Φ∗(β)(s) = max
a∈A(s)

{
r(s, a) + β

∑

s′∈S

p(s′|s, a)Φ∗(β)(s′)

}
, ∀ s ∈ S. (1.5)

Let us call a∗(s) an optimal action achieving the maximum in (1.5). Then,

f∗(β)(s, a) = 1 for a = a∗(s)

f∗(β)(s, a) = 0 for a 6= a∗(s).

Hence, the optimal strategy f∗(β)(s, a) can be found in the set of station-
ary pure (or deterministic) strategies. Also, the maximum reward Φ∗(β)
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can be computed as the optimal value of the following linear programming
optimization problem:

min
u∈RN

∑

s∈S

u(s) (1.6)

s.t. u(s) ≥ r(s, a)+β
∑

s′∈S

p(s′|s, a)u(s′), ∀ a ∈ A(s); s ∈ S.

The (asymmetric) dual problem of (1.6) is the following linear programming
problem:

max
x

∑

s∈S

∑

a∈A(s)

x(s, a) r(s, a) (1.7)

s.t.
∑

s∈S

∑

a∈A(s)

[
δ(s, s′)− βp(s′|s, a)

]
x(s, a) = 1, ∀ s′ ∈ S

x(s, a) ≥ 0, ∀ a ∈ A(s); s ∈ S.

where the dual variable is x. The optimal strategy f∗(β) can be computed
as

f∗(β)(s, a) =
x∗(s, a)∑

a′∈A(s) x
∗(s, a′)

, (1.8)

where x∗ is the optimal solution of (1.7).

In the case of average criterion, we can formulate the following linear
programming:

max
x

∑

s∈S

∑

a∈A(s)

x(s, a) r(s, a)

s.t.
∑

s∈S

∑

a∈A(s)

[
δ(s, s′)− p(s′|s, a)

]
x(s, a) = 0, ∀ s′ ∈ S

∑

a∈A(s)

x(s, a) = 1, ∀ s ∈ S

x(s, a) ≥ 0, ∀ a ∈ A(s); s ∈ S.

The optimal average strategy is computed analogously to (1.8).

1.3.2 Value iteration

Let us consider the β-discounted criterion. We are going to introduce the
approximation technique called value iteration, to solve an MDP optimiza-
tion problem. When the state space is large, but still finite, the use of value
iteration is to be preferred to a linear programming formulation.

Algorithm 1.3.1. Value Iteration for finite MDPs.
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1. Initialize u0(s) ∈ R for all s ∈ S, n = 0, ǫ > 0.

2. For all s ∈ S, compute un+1(s) as

un+1(s) = max
a∈A(s)

{
r(s, a) + β

∑

s′∈S

p(s′|s, a)un(s′)
}

:= L
(
un(s)

)

3. If
||un+1 − un|| < ǫ(1− β)/2β, (1.9)

then go to step 4, otherwise set n := n+ 1 and return to step 2.

4. For each s ∈ S, define

a(ǫ)(s) ∈ argmax
a∈A(s)

{
r(s, a) + β

∑

s′∈S

p(s′|s, a)un(s′)
}
.

The value un converges to the optimal Φ∗(β) for n ↑ ∞ and the station-
ary policy obtained from a(ǫ) is ǫ-optimal, i.e. ||un −Φ∗(β)|| < ǫ/2 whenever
(1.9) holds.

There exists a variant of the value iteration for MDPs with continuous
state space. The state space is discretized and step 2 of Algorithm 1.3.1 is
applied to the state grid SG, while in other points the value is interpolated
linearly. In other words, the operator L is redefined as

L′
(
un(s)

)
=

{
L
(
un(s)

)
if s ∈ SG∑

k λk un(sk), sk ∈ SG, if s /∈ SG

for some convex coefficients {λ}k such that s =
∑

k λksk. It is possible to
prove (Bäuerle and Rieder, 2011 [17]) that, if the mesh size is sufficiently
small, then the algorithm converges and gives an approximation of the op-
timal value.

1.3.3 Blackwell optimality

The average criterion is under-selective, since it does only take into ac-
count the arbitrarily distant tail of rewards. The Blackwell optimal strategy
(Blackwell, 1962 [21]) is a refinement of the average optimal strategy. It
coincides with the β-discounted optimal strategy, for all β sufficiently close
to 1. Hordjik, Dekker, and Kallenberg proposed in [41] to compute the
Blackwell optimal strategy by utilizing the simplex algorithm in the non-
Archimedean field of rational function with real coefficients.

A good reference for the fundamentals of single-agent MDPs is (Puter-
man, 1994 [77])
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1.4 Game Theory

1.4.1 Competitive Game Theory with two players

Let us assume the presence of two players, who interact with each other.
Player i = 1, 2 has at its disposal a set of actions Ai. When both players
select an action, each of them obtains a reward depending also on the other
player’s action. Let ri(a1, a2) be the reward for player i when players 1 and 2
select the actions a1 ∈ A1 and a2 ∈ A1, respectively. We say that the game is
zero-sum when, for each couple (a1, a2), r1(a1, a2) = −r2(a1, a2) := r(a1, a2).
In this case, both players adopt an antagonistic behaviour, since a benefit
for one is a loss for the other. To examine this situation, the (mixed) Nash
equilibrium (Nash, 1950 [64]) is typically utilized. It is defined as the couple
of probability distributions (f∗1 , f

∗
2 ) on the action sets A1, A2 respectively,

that no player has interest in deviating from, i.e.

r(f1, f
∗
2 ) ≤ r(f∗1 , f

∗
2 ) ≤ r(f∗1 , f2), ∀ f1 ∈ F1, f2 ∈ F2

whereFi is the set of mixed strategies for player i and r(f1, f2) is the expected
value of r under the strategies f1, f2. Thanks to the minimax Theorem (Von
Neumann, 1928 [95]) the optimal couple (f∗1 , f

∗
2 ) exists and the reward at

the equilibrium, can also be written as a max-min formulation

r(f∗1 , f
∗
2 ) = max

f1∈F1

min
f2∈F2

∑

a1∈A1

∑

a2∈A2

f1(a1)f2(a2)r(a1, a2) (1.10)

= min
f2∈F2

max
f1∈F1

∑

a1∈A1

∑

a2∈A2

f1(a1)f2(a2)r(a1, a2) (1.11)

:= val(R)

where R is the |A1|-by-|A2| matrix of the rewards. The strategy f∗1 (f∗2 )
maximizes (minimizes) expression (1.10) ((1.11)).

1.4.2 Static Cooperative games

In static cooperative games we consider the presence of P players which can
cooperate and coordinate their actions. We call P = {1, . . . , P} the grand
coalition. Again, let us assume that each player i has at its disposal the set of
actions Ai and that the reward ri depends on the players’ actions a1, . . . , aP .
To every coalition Λ ⊆ P the set of feasible pay-offs V(Λ) is assigned. Under
the Transferable Utility (TU) assumption, there exists v(Λ) ∈ R such that
V(Λ) is the hyperplane defined as:

V(Λ) =



x ∈ R

|Λ| :

|Λ|∑

i=1

xi ≤ v(Λ)



 .
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We consider v(∅) = 0. Under the Non-Transferable Utility (NTU), V(Λ)
may assume any shape; for example, in Section 3.2 V(Λ) is a polymatroid.
The feasible region V(Λ) can also be interpreted as the set of pay-offs that Λ
can obtain when it is not capable to coordinate its strategies with the anti-
coalition P\Λ. In the TU case, Morgenstern and von Neumann (1953, [96])
suggested to assume that the anti-coalition adopts an antagonist behaviour,
hence to compute v(Λ) as the value of the zero-sum game of Λ against P\Λ,
i.e.

v(Λ) = max
fΛ∈FΛ

min
fP\Λ∈FP\Λ

∑

i∈Λ

ri(fΛ, fP\Λ),

where FΛ is the set of mixed strategies available to Λ. The coalition value
v(Λ) can be also interpreted as the maximum sum of pay-offs that Λ can
guarantee, whatever the strategy of the anti-coalition is. Therefore, the an-
tagonistic behaviour of P\Λ is to be considered a worst-case scenario.

Let us discuss how to allocate the pay-off, or reward, to the players. Let
us assume that the grand coalition P is formed.
Let us introduce the notion of Core. Let x ∈ V(P). We say that x is
blocked by coalition Λ ⊆ P if there exists y ∈ V(Λ) such that yi > xi for all
i ∈ Λ, i.e. coalition Λ cannot accept the allocation x since it can achieve a
better allocation on its own. Then, the Core Co is defined as the set of all
unblocked allocations in V(P). In the TU case, Co has a nice formulation,
as the set of all x ∈ R

P such that

∑

i∈P

xi = v(P)

∑

i∈Λ

xi ≥ v(Λ), ∀Λ ⊂ P.

The Bondareva-Shapley Theorem (Bondareva, 1963 [22], Shapley, 1967
[83]) provides a necessary and sufficient condition for the Core to be non-
empty, i.e. for all functions α : 2P → [0; 1] such that

∑

Λ∋i

α(Λ) = 1, ∀ i ∈ P

then ∑

Λ⊆P

α(Λ)v(Λ) ≤ v(P).

The proof stems directly from the feasibility conditions of the dual linear
programming problem associated to the Core.
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The Shapley value Sh ∈ R
P (Shapley, 1953 [82]) is another way to

distribute the pay-off among the players, that we illustrate in the TU case:

Shi =
1

P !

∑

π∈Π(P )

v(Λ(π) ∪ {i}) − v(Λ(π)), ∀ i ∈ P

=
∑

Λ⊆P\{i}

(P − |Λ| − 1)!(|Λ|)!
P !

[v(Λ ∪ {i}) − v(Λ)]

where Π(P ) is the set of P ! permutations of {1, . . . , P} and Λ(π) is the set
of players preceding i in the permutation π. The Shapley value is the only
allocation x ∈ R

P for which these four properties are jointly satisfied:

• Efficiency :
∑

i xi = v(P);

• Dummy : if i is a dummy player, i.e. v(Λ ∪ {i}) − v(Λ) = 0 for all
Λ ⊆ P\{i}, then xi = 0;

• Symmetry : if two players i and j are symmetric with respect with the
game, i.e. v(Λ ∪ {i}) = v(Λ ∪ {j}) for all Λ ⊆ P\{i, j}, then xi = xj;

• Linearity : x(v1 + v2) = x(v1) + x(v2), where v1 + v2 is the game with
coalition values v(Λ) = v1(Λ) + v2(Λ), for all coalitions Λ.

Moreover, if the game is superadditive i.e.

v(Λ1 ∪ Λ2) ≥ v(Λ1) + v(Λ2), ∀Λ1 ∩ Λ = ∅,

then the Shapley value is also individually rational, i.e. Shi ≥ v({i}), for
each player i. We remark that the superadditive is a common assumption,
since it is a necessary condition to enforce cooperation among players.

A good reference for Competitive Game Theory is (Myerson 1997 [63]).
For the cooperative case, we suggest (Peleg and Sudhölter, 2007 [69])
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Chapter 2

Competitive and Long-run
Cooperative MDPs

2.1 Algorithms for uniform optimal strategies in

two-player zero-sum Competitive MDPs with
perfect information

In Competitive Markov Decision Processes (MDPs) with perfect informa-
tion, in each state at most one player has more than one action available.
We deal with zero-sum two-player Competitive MDPs with perfect infor-
mation. We propose two algorithms to find the uniform optimal strategies
and one method to compute the optimality range of discount factors. We
prove the convergence in finite time for one algorithm. The uniform opti-
mal strategies are also optimal for the long run average criterion and, in
transient games, for the undiscounted criterion as well.

2.1.1 Introduction

Competitive Markov Decision Processes (MDPs) are multi-stage interac-
tions among several participants in an environment whose conditions change
stochastically, influenced by the decisions of the players. Such games were in-
troduced by Shapley (1953, [81]), who proved the existence of the discounted
value and of the stationary discounted optimal strategies in two-player zero-
sum games with finite state and action spaces. The problem of long term
average reward games was addressed first by Gillette (1957, [36]). Bewley
and Kohlberg (1976, [19]) proved that the field of real Puiseux series is an
appropriate class to study the asymptotic behavior of discounted Compet-

31
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itive MDP when the discount factor tends to one. Mertens and Neyman
(1981, [61]) showed the existence of the long term average value of Competi-
tive MDPs. Then, Parthasarathy and Raghavan (1981, [68]) first introduced
the notion of order field property. This property implies that the solution
of a game lies in the same ordered field of the game data. Solan and Vieille
(2009, [88]) presented an algorithm to find the ǫ-optimal uniform discounted
strategies in two-player zero-sum Competitive MDPs, where ǫ > 0.

Perfect information games were addressed by several researchers (e.g.
see Thuijsman and Raghavan, 1997 [93], Altman, Feinberg, and Shwartz,
2000 [7]), since they are the most elementary form of Competitive MDPs:
the reward and the transition probabilities in each state are controlled at
most by one player. Recently, Raghavan and Syed (2002, [78]) provided an
algorithm which finds the optimal strategies for two-player zero-sum perfect
information games under the discounted criterion for a fixed discount factor.

Markov Decision Processes (MDPs) can be seen as Competitive MDPs
in which only one player can possess more than one action in each state. It
is well known (see e.g. Filar and Vrieze, 1997 [32]) that the optimal strat-
egy in an MDP can be computed with the help of a linear programming
formulation. Hordijk, Dekker and Kallenberg (1985, [41]) proposed to find
the Blackwell optimal strategies (uniform optimal discount strategies) for
MDPs by using the simplex method in the ordered field of rational functions
with real coefficients. Altman, Avrachenkov and Filar (1999, [6]) analysed
singularly perturbed MDP using the simplex method in the ordered field of
rational functions. More generally, Eaves and Rothblum (1994, [29]) studied
how to solve a vast class of linear problems, including linear programming,
in any ordered field.

In this section we propose two algorithms to determine the uniform op-
timal discount strategies in two-player zero-sum games with perfect infor-
mation. Such strategies are optimal in the long run average criterion as
well. The proposed approaches generalize the works by Hordijk, Dekker,
Kallenberg (1985, [41]) and Raghavan, Syed (2003, [78]) to the game model
in the field F (R) of the non-archimedean ordered field of rational functions
with coefficients in R.

Let Γ be a two-player zero-sum Competitive MDP with perfect infor-
mation and Γi(h), i= 1, 2 be the MDP that player i faces when the other
player fixes his own strategy h. Our first algorithm can be summed up in
the following 3 steps:

1. Choose a stationary pure strategy g for player 2.

2. Find the uniform optimal strategy f for player 1 in the MDP Γ1(g).
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3. Find the first state controlled by player 2 in which a change of strategy
g′ is a benefit for player 2 for all the discount factors close enough to
1. If it does not exists, then (f ,g) are uniform optimal, otherwise set
g :=g′ and go to step 2.

It is evident that player 1 is left totally free to optimize the MDP that he
faces at each iteration of the algorithm in the most efficient way.
Our second algorithm is a best response approach, in which the two players
alternatively find their own uniform optimal strategies:

1. Choose a stationary pure strategy g for player 2.

2. Find the uniform optimal strategy f for player 1 in the MDP Γ1(g).

3. If g is uniform optimal for player 2 in the MDP Γ2(f), then (f ,g) are
uniform optimal. Otherwise, find the uniform optimal strategy g′ in
Γ2(f), set g :=g′ and go to step 2.

The convergence in a finite time of the first algorithm is proven, while for
the second we provide numerical analysis. We also show that the second
algorithm has a lower complexity.

This section is organized as follows. In Section 2.1.2 we introduce for-
mally the properties of Competitive MDPs, section 2.1.3 is dedicated to the
description of the field of rational functions with real coefficients, while in
section 2.1.4 we recall the linear programming procedures in the field F (R)
in order to find a Blackwell optimal policy for MDPs. We present some new
useful results on perfect information games in Section 2.1.5 and section 2.1.6
is dedicated to the description and to the validation of our first algorithm.
In section 2.1.7 we provide a numerical example. In Section 2.1.8 we intro-
duce an algorithm whose convergence is only conjectured; we report some
considerations and numerical results about the complexity of our algorithms
in Section 2.1.8. In Section 2.2 we finally prove that, for transient stochastic
games, (f∗,g∗) are optimal under the undiscounted criterion as well.

Some notation remarks: the ordering relation between vectors of the
same length a ≥ (≤)b means that for every component i, a(i) ≥ (≤)b(i).
The discount factor and the interest rate are barred (β, ρ) if they are a fixed
value; the symbols β, ρ represent the related variables.

2.1.2 The model

In a two-player Competitive MDP Γ we have a set of states S = {s1, s2, . . . , sN},
and for each state s the set of actions available to the i -th player is called

A(i)(s) = {a(i)1 (s), . . . , a
(i)
mi(s)

}, i = 1, 2. Each triple (s, a1, a2) with a1 ∈
A(1), a2 ∈ A(2) is assigned an immediate reward r(s, a1, a2) for player 1,
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−r(s, a1, a2) for player 2 and a transition probability distribution p(.|s, a1, a2)
on S.

A stationary strategy u ∈ US for the i -th player determines the proba-

bility u(a|s) that in state s player i chooses the actions a ∈ [a
(i)
1 , . . . , a

(i)
mi(s)

].
We assume that both the number of states and the overall number of avail-
able actions are finite.

It is evident that a couple of strategies f ∈ FS , g ∈ GS for player 1 and
2, respectively, sets up a Markov chain in which the transition probability
equals

p(s′|s, f ,g) =
m1(s)∑

p=1

m2(s)∑

q=1

p(s′|s, a(1)p , a(2)q ) f(a(1)p |s)g(a(2)q |s)

∀ s, s′ ∈ S, while the average immediate reward r(s, f ,g) equals

r(s, f ,g) =

m1(s)∑

p=1

m2(s)∑

q=1

r(s, a(1)p , a(2)q ) f(a(1)p |s) g(a(2)q |s)

Let β ∈ [0; 1) be the discount factor and ρ be the interest rate such that
β(1 + ρ) = 1. Note that when β ↑ 1, then ρ ↓ 0. We define Φ(β̄)(f ,g) as a
column vector of length N such that its i-th component equals the expected
β-discounted reward when the initial state of the Competitive MDP is si:

Φ(β̄)(f ,g) =

∞∑

t=0

β
t
Pt(f ,g)r(f ,g)

where P(f ,g) and r(f ,g) are the N -by-N transition probability matrix and
the N -by-1 average reward vector associated to the couple of strategies (f ,g)
respectively.

Definition 1. The β-discounted value of the game Γ is such that

Φ(β̄)(Γ) = sup
f

inf
g

Φ(β̄)(f ,g) = inf
g

sup
f

Φ(β̄)(f ,g). (2.1)

Definition 2. An optimal strategy f∗
(β̄)

for player 1 assures to him a reward

which is at least Φ(β̄)(Γ)

Φ(β̄)(f
∗
(β̄),g) ≥ Φ(β̄)(Γ) ∀g ∈ G

while g∗
(β̄)

is optimal for player 2 iff

Φ(β̄)(f ,g
∗
(β̄)) ≤ Φ(β̄)(Γ) ∀ f ∈ F.
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Let Φ(f ,g) be the long term average value of the game Γ associated to
the couple of strategies (f ,g):

Φ(f ,g) = lim
T→∞

1

T + 1

T∑

t=0

Pt(f ,g)r(f ,g)

and Φ(Γ) be the value vector for the long term average criterion of the game
Γ, defined in an analogous way to expression (2.1).

The existence of optimal strategies in discounted Competitive MDPs is
guaranteed by the following theorem (Filar and Vrieze, 1997 [32]):

Theorem 2.1.1. Under the hypothesis of discounted pay-off, Competitive
MDPs possess a value, the optimal strategies (f∗

(β̄)
,g∗

(β̄)
) exist among station-

ary strategies and moreover Φ(β̄)(Γ) = Φ(β̄)(f
∗
(β̄)

,g∗
(β̄)

).

Definition 3. A stationary strategy h is said to be uniformly discount op-
timal for a player if h is optimal for every β close enough to 1 (or, equiva-
lently, for all ρ close enough to 0).

In the present Chapter we deal with perfect information Competitive
MDPs.

Definition 4. Under the hypothesis of perfect information, in each state at
most one player has more than one action available.

Let S1 = {s1, . . . , st1} be the set of states controlled by player 1 and
S2 = {st1+1, . . . , st1+t2} be the set controlled by player 2, with t1+t2≤N .

2.1.3 The ordered field of rational functions with real coef-
ficients

Let P (R) be the ring of all the polynomials with real coefficients.

Definition 5. The dominating coefficient of a polynomial f = a0 + a1x +
· · ·+ anx

n is the coefficient ak, where k = min{i : ai 6= 0} and we denote it
with D(f).

Let F (R) be the non-archimedean ordered field of fractions of polyno-
mials with coefficients in R:

f(x) =
c0 + c1x+ · · · + cnx

n

d0 + d1x+ · · ·+ dmxm
f ∈ F (R)

where the operations of sum and product are defined in the usual way (see
Hordijk, Dekker and Kallenberg, 1985 [41]). Two rational functions h/g, p/q
are identical (and we say h/g =l p/q) if and only if h(x)q(x) = p(x)g(x) ∀x ∈
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R.

The following lemma (Hordijk et al., 1985 [41]) introduces the ordering
in the field F (R):

Lemma 2.1.2. A complete ordering in F (R) is obtained by the rule

p

q
>l 0 ⇐⇒ D(p)D(q) > 0 p, q ∈ P (R)

In the same way, we can also define the operations of maximum (max
l
)

and minimum (min
l
) in F (R).

The ordering law defined above is useful when one wants to compare the
behavior of rational functions whose indipendent variable is positive and
approaches to 0 (see Hordijk et al., 1985 [41]).

Lemma 2.1.3. The rational function p/q is positive (p/q >l 0) if and only
if there exists x0 > 0 such that p(x)/q(x) > 0 for every x ∈ (0;x0].

Application to Competitive MDPs

From the next theorems the reader will start perceiving the importance of
dealing with the field F (R) in Competitive MDPs.

Theorem 2.1.4. Let f ,g be two stationary strategies respectively for players
1 and 2 and Φ(ρ)(f ,g) : R → R

N be the discounted reward associated to
the couple of strategies (f,g) expressed as a variable of ρ. Then, Φ(ρ)(f ,g) ∈
F (R).

Proof. For any couple of stationary strategies (f ,g), we can write

N∑

s′=1

[(1 + ρ)δs,s′ − p(s′|s, f ,g)]Φ(ρ)(f ,g, s
′) = (1 + ρ)r(s, f ,g) s ∈ [1;N ]

(2.2)
where ρ is a variable. By solving the above system of equations in the
unknown Φ(ρ) by Cramer rule, it is evident that Φ(ρ)(f ,g) ∈ F (R).

Generally, the discounted value of a Competitive MDP for all the interest
rates close enough to 0 belongs to the field of real Puiseux series (see Filar
and Vrieze, 1997 [32]). From Theorems 2.1.1 and 2.1.4 it is straightforward
to obtain the following important Lemma.

Lemma 2.1.5. Let Γ be a zero-sum Competitive MDP which possesses uni-
form discount optimal strategies for both players. Then, there exist ρ∗ > 0
and Φ∗

(ρ)(Γ) ∈ F (R) such that Φ∗
(ρ̄)(Γ) is the discounted optimal value for

all the interest rates ρ ∈ (0; ρ∗].
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Proof. Let (f∗,g∗) be a couple of uniformly discount optimal strategies for
players 1 and 2 respectively. Then, by definition, there exists ρ∗>0 such that
(f∗,g∗) are discounted optimal for all the interest rates ρ ∈ (0; ρ∗]. From
Theorem 2.1.4 we know that Φ(ρ)(f

∗,g∗) ∈ F (R) and, from Theorem 2.1.1,
the optimum uniform discounted value Φ(ρ̄)(Γ) = Φ(ρ̄)(f

∗,g∗) ∀ ρ ∈ (0; ρ∗].
So, Φ∗

(ρ)(Γ) ∈ F (R) represents the discounted value of Γ for all the interest
rates sufficiently close to 0.

Lemma 2.1.6. Let Γ be a zero-sum Competitive MDP which possesses uni-
form discount optimal strategies f∗,g∗ for players 1 and 2 respectively. Then,

Φ(ρ)(f ,g
∗) ≤l Φ(ρ)(f

∗,g∗) =l Φ
∗
(ρ)(Γ) ≤l Φ(ρ)(f

∗,g) ∀ f ,g (2.3)

where

Φ∗
(ρ)(Γ) =l max

l
f

min
l

g

Φ(ρ)(f ,g) =l min
l

g

max
l

f

Φ(ρ)(f ,g). (2.4)

Proof. From Theorem 2.1.1 and by the definition of uniform discount opti-
mal strategy, we assert that

∃ ρ∗ > 0 : ∀ ρ ∈ (0; ρ∗] ⇒ Φ(ρ̄)(f ,g
∗) ≤ Φ(ρ̄)(f

∗,g∗) ≤ Φ(ρ̄)(f
∗,g) ∀ f ,g

which coincides with (2.3) for Lemma 2.1.3. The equation (2.4) is a direct
consequence of (2.3).

Definition 6. Φ∗
(ρ)(Γ), defined as in (2.4), is the uniform discount value of

the Competitive MDP Γ.

2.1.4 Computation of Blackwell optimum policy in MDPs

In this section we will discuss about some concepts of linear programming,
which can be easily found on any book on linear optimization (e.g. see Lu-
enberger and Ye, 2008 [51]).

Let Ψ be a Markov Decision Process, which can be seen as a two-player
Competitive MDP in which one of the two players either fixes his own strat-
egy or has only one available action in each state. We call Φ(ρ)(f) the value
of the discounted MDP associated to the strategy f with interest rate vari-
able ρ.

It is known (Puterman, 1994 [77]) that the interval of interest rate (0;∞)
can be broken into a finite number n of subintervals, say (0 ≡ α0;α1],(α1;α2],
. . . ,(αn−1;∞) in such a way that for each one there exists an optimal pure
strategy.

A Blackwell optimal policy is an optimal strategy associated to the first
sub-interval.
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Definition 7. We say that the strategy f∗ is Blackwell optimal iff there
exists ρ̄∗>0 such that f∗ is optimal in the (1/ρ̄− 1)-discounted MDP for all
the interest rates ρ̄ ∈ (0; ρ̄∗].

Since for Theorem 2.1.4 Φ(ρ)(f)∈F (R) for any f ∈FS, we can say

Φ(ρ)(f
∗) ≥l Φ(ρ)(f) ∀ f ∈ F

where F is the set of all possible strategies.
Hordijk, Dekker, and Kallenberg (1985, [41]) provided a useful algorithm to
compute the Blackwell optimum policy in MDPs. It consists in solving the
following parametric linear programming problem:





max
x l

∑N
s=1

∑m(s)
a=1 xsa(ρ)r(s, a)

∑N
s=1

∑m(s)
a=1 [(1 + ρ)δs,s′ − p(s′|s, a)]xs,a(ρ) =l 1, s′ ∈ S

xs,a(ρ) ≥l 0, s ∈ S, a ∈ A(s)

(2.5)

in the ordered field of rational functions with real coefficients F (R). This
means that

i) ρ is the variable of polynoms;

ii) all the elements of the related simplex tableau belong to F (R);

iii) all the algebraic and ordering operations required by the simplex method
are carried out in the field F (R).

The practical technique to solve the linear optimization problem (2.5) pro-
posed by Hordijk et al. (1985, [41]) is the so-called two-phases method.
In the first phase the artificial variables z1, . . . , zN are introduced as basic
variables and the tableau of the following linear programming problem





max
x l

∑N
s=1

∑m(s)
a=1 xsa(ρ)r(s, a)

∑N
s=1

∑m(s)
a=1 [(1 + ρ)δs,s′ − p(s′|s, a)]xs,a(ρ) + zs′(ρ) =l 1, s′ ∈ S

xs,a(ρ) ≥l 0, s ∈ S, a ∈ A(s)

(2.6)

is built. Then, N successive pivot operations on all the artificial variables
are carried out so that the feasibility of the solution is preserved. We call
entering variables the basic variables of the tableau at the end of the first
phase. In the second phase the columns of the tableau associated to the
artificial variables z1, . . . , zN (which are now all non-basic) are removed and
the simplex method is performed in the ordered field F (R) on the obtained
tableau.

We note that another approach for the solution of the parametric linear
program (2.5) is given by simplex method in the field of Laurent series (see
Filar, Altman and Avrachenkov, 2002 [33]).
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The optimal Blackwell stationary pure strategy f∗ is computed as:

f∗(a|s) =
x∗s,a(ρ)

∑m(s)
a=1 x∗s,a(ρ)

∀ s ∈ S, a ∈ A(s) (2.7)

where {x∗s,a(ρ) ∀ s, a} is the solution of the optimization problem. The sim-
plex method guarantees that the optimum strategy f∗ is well-defined and
pure (see Filar and Vrieze 1997 [32]).

2.1.5 Uniform optimality in perfect information games

As we said before, in a perfect information game in each state at most one
player has more than one action available. A stationary strategy for the
player i = 1, 2 is a function fi : S → ⋃N

k=1Ai(sk) with fi(.|st) ∈ Ai(st).

Theorem 2.1.7. For a Competitive MDP with perfect information, both
players possess uniform discount optimal pure stationary strategies, which
are optimal for the average criterion as well.

The Theorem 2.1.7 (see Filar and Vrieze, 1997 [32]) guarantees the ex-
istence of the optimal strategies for both players in the average criterion for
games with perfect information. Moreover, it suggests that in order to find
the optimal strategies for the average criterion one has to find the optimal
strategies in the discounted criterion for a discount factor sufficiently close
to 1.

Definition 8. We call two pure stationary strategies adjacent if and only if
they differ only in one state.

Then the following property holds, which proof is analogous to the one
in the field of real numbers.

Lemma 2.1.8. Let g be a strategy for player 2 and f , f1 be two adjacent
strategies for player 1. Then either Φ(ρ)(f1,g) ≥l Φ(ρ)(f ,g) or Φ(ρ)(f1,g) ≤l

Φ(ρ)(f ,g), which means that the two vectors are partially ordered.

The property above allows us to give the following definition.

Definition 9. Let (f ,g) be a pair of pure stationary strategy respectively for
player 1 and 2. We call f1 (g1) a uniform adjacent improvement for player
1 (2) in state st if and only if f1 (g1) is a pure stationary strategy which
differs from f (g) only in state st and Φ(ρ)(f1,g) ≥l Φ(ρ)(f ,g) (Φ(ρ)(f ,g1) ≤l

Φ(ρ)(f ,g)) where the strict inequality holds in at least one component.

As in the case in which the discount interest rate is fixed, we achieve the
following results.
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Lemma 2.1.9. Let Γ be a perfect information Competitive MDP. A couple
of pure stationary strategies (f∗,g∗) is uniform discount optimal if and only
if no uniform adjacent improvement is possible for both players.

Proof. The only if implication is obvious. If the strategies (f∗,g∗) are such
that no uniform adjacent improvements are possible for both players, then
no improvements are possible also for the first stage of the game too, that
is

f∗(s) = argmax
l

a∈A1(s)

{
r(s, a) + (1 + ρ)−1

N∑

s′=1

p(s′|s, a)Φ(ρ)(s
′, f∗,g∗)

}
s ∈ S1

g∗(s) = argmin
l

a∈A2(s)

{
r(s, a) + (1 + ρ)−1

N∑

s′=1

p(s′|s, a)Φ(ρ)(s
′, f∗,g∗)

}
s ∈ S2

It is known (see Filar and Vrieze, 1997 [32]) that if the strategies (f∗,g∗)
satisfy such equations then they are uniform discount optimal.

In perfect information games, the following result (see Raghavan and
Syed, 2002 [78]) holds

Lemma 2.1.10. In a zero-sum, perfect information, two-player discounted
Competitive MDP Γ with interest rate ρ > 0, a pair of pure stationary
strategies (f∗,g∗) is optimal if and only if Φ(ρ̄)(f

∗,g∗) = Φ(ρ̄)(Γ), the value
of the discounted Competitive MDP Γ.

From the above result we can easily derive the analogous property in the
ordered field F (R).

Lemma 2.1.11. In a zero-sum, two-player Competitive MDP Γ with perfect
information, a pair of pure stationary strategies (f∗,g∗) are uniform discount
optimal if and only if Φ(ρ)(f

∗,g∗) =l Φ
∗
(ρ)(Γ) ∈ F (R), where Φ∗

(ρ)(Γ) is the
uniform discount value of Γ.

Proof. The only if statement coincides with the assertion of Theorem 2.1.1.
The if condition is less obvious. If a pair of strategies (f∗,g∗) has the
property Φ(ρ)(f

∗,g∗) =l Φ
∗
(ρ)(Γ), then there exists ρ∗ > 0 such that ∀ ρ ∈

(0; ρ∗], Φ(ρ̄)(f
∗,g∗) coincides with the value of the game Γ, ∀ ρ ∈ (0; ρ∗].

Then, thanks to Lemma 2.1.10, we can say that ∀ ρ ∈ (0; ρ∗] the strategies
f∗,g∗ are optimal in the discounted game Γ, which means that they are
discount optimal.

Let st be a state controlled by player i (i=1, 2) and X⊂Ai(st). Let us
call Γt

X the Competitive MDP which is equivalent to Γ except in state st,
where player i has only the actions X available. Analogously to the result
of Raghavan and Syed (2002, [78]), we propose the following Lemma.
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Lemma 2.1.12. Let i=1, 2 and st ∈ Si, X⊂Ai(st), Y ⊂Ai(st), X∩Y = ∅.
Then Φ∗

(ρ)(Γ
t
X∪Y ) ∈ F (R), which is the uniform value of the game Γt

X∪Y ,
equals

Φ∗
(ρ)(Γ

t
X∪Y ) = max

l
{Φ∗

(ρ)(Γ
t
X),Φ∗

(ρ)(Γ
t
Y )} if i = 1

Φ∗
(ρ)(Γ

t
X∪Y ) = min

l
{Φ∗

(ρ)(Γ
t
X),Φ∗

(ρ)(Γ
t
Y )} if i = 2.

Proof. Let us suppose that the state st is controlled by player 2. We indicate
with Gt

X the set of pure stationary strategies in which the choice in state st
is restricted to the set X. We note that the restriction in state st does not
affect player 1. Thus, Ft

X = F.
If it is possible to find optimal strategies for player 2 both in Gt

X and in
Gt

Y , then Φ∗
(ρ)(Γ

t
X) =l Φ

∗
(ρ)(Γ

t
Y ) =l Φ

∗
(ρ)(Γ

t
X∪Y ) for Lemma 2.1.11.

Otherwise, the uniform discount pure strategy of game Γt
X∪Y for player 2

belongs either toGt
X or toGt

Y . For example, let us suppose that the optimal
discount strategy in the Competitive MDP Γt

X∪Y for player 2 is found in Y .
Then we have

Φ∗
(ρ)(Γ

t
Y ) =l Φ

∗
(ρ)(Γ

t
X∪Y )

=l min
l

g∈G

max
l

f∈F

Φ(ρ)(f ,g)

≤l min
l

g∈Gt

X

max
l

f∈F

Φ(ρ)(f ,g)

=l Φ
∗
(ρ)(Γ

t
X)

The proof for the situation in which st∈S1 is analogous.

2.1.6 Algorithm description

Our task is to find an algorithm which allows to find the uniform discount
optimal strategies for both players in a perfect information Competitive
MDP Γ, which coincide with the optimal strategies for the long term av-
erage criterion for Theorem 2.1.7. Following the lines of the algorithm of
Raghavan and Syed (2002, [78]) for optimal discount strategy, we propose
an algorithm suitable to the ordered field F (R).

Let Γ be a zero-sum two-player Competitive MDP with perfect information.

Algorithm 2.1.13.

Step 1 Choose randomly a stationary deterministic pure strategy g for player
2.
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Step 2 Find the Blackwell optimal strategy for player 1 in the MDP Γ1(g) by
solving within the field F (R) the following linear programming:





max
x l

∑N
s=1

∑m1(s)
a=1 xs,a(ρ)r(s, a,g)

∑N
s=1

∑m1(s)
a=1 [(1 + ρ)δs,s′ − p(s′|s, a,g)]xs,a(ρ) =l 1, s′ ∈ S

xs,a(ρ) ≥l 0, s ∈ S, a ∈ A1(s)

(2.8)

and compute the pure strategy f as

f(a|s) =
x∗s,a(ρ)

∑m1(s)
a=1 x∗s,a(ρ)

∀ s ∈ S, a ∈ A1(s) (2.9)

where {x∗s,a(ρ), ∀s, a} is the solution of (2.8).

Step 3 Find the minimum k such that in st1+k ∈ {st1+1, . . . , st1+t2} there
exists an adjacent improvement g′ for player 2, with the help of the
simplex tableau associated to the following linear programming:





max
x l

−∑N
s=1

∑m2(s)
a=1 xs,a(ρ)r(s, f , a)

∑N
s=1

∑m2(s)
a=1 [(1 + ρ)δs,s′ − p(s′|s, f , a)]xs,a(ρ) =l 1, s′ ∈ S

xs,a(ρ) ≥l 0, s ∈ S, a ∈ A2(s)
(2.10)

where the entering variables are {xs,a : g(a|s) = 1, ∀s}.
If no such improvement for player 2 is possible then go to step 4,
otherwise set g :=g′ and go to step 2.

Step 4 Set (f∗,g∗) := (f ,g) and stop. The strategies (f∗,g∗) are uniform
discount and long term average optimal in the Competitive MDP Γ
respectively for player 1 and player 2.

�

Note that all the algebraic operations and the order signs (<,>) are to
be intended in the field F (R).

Remark 1. Unlike Raghavan and Syed’s solution, the algorithm 2.1.13 does
not require the strategy search for player 1 to be lexicographic. Player 1, in
fact, faces in step 2 a classic Blackwell optimization.

Remark 2. Obviously, the roles of player 1 and 2 can be swapped in the
algorithm 2.1.13. For simplicity, the player 1 will be assigned to step 2.

Remark 3. In step 3, once the state st1+k is found, the adjacent improve-
ment involves the pivoting of any of the non basic variable xst1+k,a to which
corresponds a reduced cost cst1+k,a ≤l 0.
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Now, we prove the appropriateness of the algorithm 2.1.13. The proof is
analogous to the one by Raghavan and Syed (2002, [78]).

Theorem 2.1.14. The algorithm stops in a finite time and the couple of
strategies (f∗,g∗) are uniform discount optimal in the Competitive MDP Γ.

Proof. We assume that the overall number of actions

µ=

t1∑

k=1

m1(sk)+

t2∑

k=1

m2(sk+t1)

is finite.
Without loss of generality, let us reorder the states so that in the first t1
states player 1 has more than one action and the second t2 states are con-
trolled by player 2. Of course, t1+t2≤N .

We can proceed by induction on µ. Trivially µ≥2N , because µ=2N is
equivalent to the situation t1 = t2 =0. In this case the algorithm finds the
average optimal couple of strategies because it is the only existing.

Now we suppose by induction that the algorithm finds without cycling
(that is, all pure stationary strategies are visited at most once) the couple of
uniform optimal strategies when the number of actions is µ≥2N . We have
to prove that the thesis is valid when the number of actions equals µ+1.

If t2=0, then again there is nothing to prove, because, as we showed in
section 2.1.4, the step 1 of our algorithm finds the Blackwell optimal policy
f∗ for player 1 in the MDP Γ1(g).

If t2≥0, then we focus on the state st1+t2 = sτ , which is the last exam-
ined by our algorithm. The actions available in state sτ are A2(sτ )≡X ∪ai,
where X = {a1 . . . ai−1, ai+1 . . . an} and n ≥ 2 by hypothesis. By induction
hypothesis, we suppose that the algorithm finds the uniform discount opti-
mal strategies for both players in the game Γτ

X without cycling. Since no
uniform improvements are possible in Γτ

X by definition of uniform optimal
strategies, then the algorithm looks for an uniform adjacent improvement
g′, where g′(ai|sτ )=1. There are now two possibilities.

If the uniform optimal strategy g for player 2 found in Γt
X is also optimal

in Γ, then the algorithm terminates because still no adjacent improvements
are possible for player 2 in st.

Otherwise, any uniform optimal strategy g∗ for player 2 in Γ includes the
action aτ and the algorithm necessarily finds an adjacent improvement in
state sτ for Theorem 2.1.9 and it finds by induction hypothesis the uniform
discount optimal strategies in the game Γt

an . So we have

Φ(ρ)(Γ) =l min
l
{Φ(ρ)(Γ

t
X),Φ(ρ)(Γ

t
an)} =l Φ(ρ)(Γ

t
an)

where the second equality holds because otherwise the optimal strategies of
Γt
X would be uniform optimal in the game Γ for Lemma 2.1.11. Again thanks
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to Lemma 2.1.11, we can assert that the uniform discount optimal strategies
(f∗,g∗) found in Γt

an are optimal also for Γ, because Φ(ρ)(f
∗,g∗)=Φ∗

(ρ)(Γ),
which is the uniform discount value of the game.
Moreover, the algorithm terminates because for Theorem 2.1.9 no improve-
ments are available to both players.

We gave a constructive proof of the fact that the algorithm passes through
a path of pure strategies, it never cycles and it finds the uniform discount
optimal strategies for both players. Since the overall number of actions is
finite, then also the cardinality of pure strategies is finite; hence, the algo-
rithm must terminate in a finite time and the strategies (f∗,g∗) are uniform
discount optimal, and for Theorem 2.1.7 they are long term average optimal
as well.

Computing the optimality range factor

The algorithm presented in section 2.1.6 suggests a way to determine the
range of discount factor in which the long term average optimal strategies
(f∗,g∗) are also optimal in the discounted game. Before, we report the anal-
ogous result to Lemma 2.1.9 when the discount factor is fixed (see Raghavan
and Syed, 2002 [78]).

Lemma 2.1.15. Let Γ be a perfect information Competitive MDP and β∈
[0; 1). The pure stationary strategies (f∗,g∗) are β-discount optimal if and
only if no uniform adjacent improvements are possible for both players in
the β-discounted Competitive MDP Γ.

Let us define with ζ(f(ρ)), where f(ρ)∈F (R), the set of positive roots of

f(ρ) such that
df(ρ)
dρ |ρ=u < 0 , ∀u ∈ ζ(f(ρ)). Now we are ready to state the

following Lemma.

Lemma 2.1.16. Let C be the set of the reduced costs associated to the two
optimal tableaux obtained at the step 2 and 3 of the last iteration of the
algorithm 2.1.13 and

ρ∗ = min
c

ζ(c), c ∈ C.

Then, β
∗
=(1 + ρ∗)−1 is the smallest value such that the strategies (f∗,g∗)

are β-discount optimal in the game Γ, ∀ β∈ [β
∗
; 1).

Proof. The existence of such ρ∗ is guaranteed by Theorem 2.1.7. For all the
value of the interest factor ρ∈ (0; ρ∗], the reduced costs are positive, hence
no adjacent improvements are possible for both players. So, for Lemma
2.1.15 they are discounted optimal. If ρ > ρ∗ and ρ∗ < ∞, then at least one
reduced cost is negative, hence at least an adjacent improvement is possible
and (f∗,g∗) are not β-discount optimal, where β=(1 + ρ)−1.
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Round-off errors sensitivity

The role of the first non-null coefficients of the polynomials (numerator and
denominator) of the tableaux obtained throughout the algorithm unfolding
is essential: they determine the positiveness of the elements of the tableaux
themselves in the field F (R). This knowledge is fundamental to choose the
most suitable pivot elements.
The reader can easily understand that the algorithm is highly sensitive to
the round-off errors that affect the null coefficients.

If the data of the problem (rewards and transition probabilities for each
strategy) are rational, then it is possible to work in the exact arithmetic and
such unconveniences are completely avoided. In fact, if all the input data
are rational, they will stay rational after the algorithm execution.

Instead, if the data are irrational, a simple way to circumvent the round-
off errors is to fix a tolerance value ǫ, and set to 0 all the polynomial coef-
ficients of the tableaux obtained throughout the algorithm whose absolute
value is smaller than ǫ.

2.1.7 An example

Here we present a run of our algorithm 2.1.13, where the input data are
taken from Raghavan and Syed (2002, [78]). There are 5 states, the first
two are controlled by player 1 and states 3 and 4 are for player 2; in the
final state both players have no action choice. The immediate rewards and
the probability transitions for every couple (state,action) for both players
are shown in table 2.1.

We choose the initial strategy (g(a2|s3) = 1, g(a3|s4) = 1) for player 2.
We report the optimum tableau obtained by player 1 at the end of step 2
of the first iteration of our algorithm (tab.2.4) and the tableau of player 2
after the first improvement at step 3 (tab.2.5). Analogously, the tableaux
2.6 and 2.7 are associated to the second and last iteration of our algorithm.
It is known (see Hordijk et al. 1985, [41]) that all the elements of simplex
tableaux have a common denominator, stored in the top left-hand box. The
last column of each tableau contains the numerator of the value of the basic
variables, which are listed in the first column. The last row indicates the
numerator of the reduced costs.

The optimum long term average strategy for player 1 is f∗(a1|s1) =
1, f∗(a2|s2) = 1, and for player 2 is g∗(a2|s3) = 1, g∗(a1|s4) = 1.

By computing the first positive root of the reduced costs of the two last
optimal tableaux we find that the strategies (f∗,g∗) are also β-discount op-
timal for all the discount factor β ∈ [β

∗
; 1), where β

∗ ∼= 0.74458.
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Table 2.1: Immediate rewards and transition probabilities for each player,
state and strategy.

(s, a) r p(s1|s) p(s2|s) p(s3|s) p(s4|s) p(s5|s)

pl. 1

(1,1) 5 0 0 0 0 1

(1,2) 4 0 0 0.2 0 0.8

(1,3) 3 0 0 0.6 0 0.4

(2,1) 6 0 0 0 0 0.1

(2,2) 1 1 0 0 0 0

(2,3) 0 0 0 0.1 0 0

pl. 2

(3,1) 4 0 0 0 0.9 0.1

(3,2) 2 0.1 0 0 0 0

(3,3) 0 0.3 0 0.2 0.5 0

(4,1) 2 0 0.1 0.6 0.3 0

(4,2) 2 0.2 0 0.4 0.4 0

(4,3) 3 0 0 0 0.9 0.1

5 0 0 0.1 0.2 0.3 0.4

Note that the optimal strategies differ from the ones of Raghavan and Syed
(2002, [78]), in which the discount factor is set to 0.999. We suspect that
this is due to some clerical errors.

2.1.8 A lower complexity algorithm

Let Γ be a zero-sum two-player Competitive MDP with perfect information.
Consider the following algorithm:

Algorithm 2.1.17.

Step 1 Choose a stationary pure strategy g0 for player 2. Set k :=0.

Step 2 Find the Blackwell optimal strategy fk for player 1 in the MDP Γ1(gk).

Step 3 If gk is Blackwell optimal in Γ2(fk), then set (f∗,g∗) := (fk,gk) and
stop. Otherwise, find the Blackwell optimal strategy gk+1 for player 2
in the MDP Γ2(fk), set k :=k + 1 and go to step 2.

This is essentially a best reponse algorithm, in which at each step each
player alternatively looks for his own Blackwell optimal strategy.
Obviously, if the above algorithm stops, (f∗,g∗) forms a couple of uniform
discount and long term average optimal strategies, since they are both Black-
well optimal in the respective MDPs, Γ1(g

∗) and Γ2(f
∗).

The proof that the algorithm 2.1.17 never cycles is still an open problem. It
is quite natural to try to prove that Φ(ρ)(fk+1,gk+1) ≤l Φ(ρ)(fk,gk), but it
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is not difficult to find a counterexample.
Raghavan and Syed (2002, [78]) conjecture as follows:

Conjecture 2.1.1. Let Γ be a two-player zero-sum Competitive MDP with
perfect information and α = (f ,g) a couple of pure stationary strategies for
the 2 players. For every discount factor β ∈ [0; 1), there are no sequences
α0, α1, . . . , αk such that Φ(β̄)(αk) = Φ(β̄)(α0), where αi is an adjacent im-

provement with respect to αi−1 in the β-discounted Competitive MDP Γ for
only one player for any i>0.

If Conjecture 2.1.1 were valid, then we could conclude that the algorithm
2.1.17 terminates in finite time.

Complexity

In our first algorithm 2.1.13, player 1 faces at each step an MDP optimization
problem in the field of rational functions with real coefficients, which is
solvable in polynomial time. Player 2, instead, is involved in a lexicographic
search throughout the algorithm unfolding, whose complexity is at worst
exponential in time.

Player 2 lexicographically expands his search of his optimum strategy,
and at the k-th iteration the two players find the solution of a subgame Γk

which monotonically tends to the entire Competitive MDP Γ.

Analogously to what Raghavan and Syed (2002, [78]) remark, we can
assert that the efficiency of our algorithm 2.1.13 is mostly due to the fact
that most of the actions dominate totally other actions. In other words,
it occurs very often that the optimum action a∗ ∈ A(s), s ∈ S, found in
an iteration k such that A(s) ⊂ Γk, is optimum also in Γ, and consequently
remains the same in all the remaining iterations. This exponentially reduces
the policy space in which the algorithm needs to search.

Remark 4. As discussed in section 2.1.6, in the algorithm 2.1.13 players’
roles are interchangeble. Since most of the actions dominate totally other
actions, we suggest to assign the step 2 of the algorithm to the player whose
total number of available actions is greater.

Differently from Raghavan and Syed (2002, [78]), the search for player
1 does not need to be lexicographic, and player 1 is left totally free to opti-
mize the MDP that he faces at each iteration of the algorithm in the most
efficient way.

Let us compare in terms of number of pivoting the following three algo-
rithms:
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M1: Algorithm 2.1.13, in which in step 2 player 1 pivots with respect to
the variable with the minimum reduced cost until he finds his own
Blackwell optimal strategy.

M2: Algorithm 2.1.13, in which in step 2 player 1 pursues a lexicographic
search, pivoting iteratively with respect to the first non-basic variable
with a negative (in the field F (R)) reduced cost. This method is
analogous to the one shown by Raghavan and Syed (2002, [78]), but
in the field F (R).

M3: Algorithm 2.1.17.

The results are shown in tables 2.2 and 2.3. The simulations were carried
out on 10000 randomly generated Competitive MDPs with 4 states, 2 for
player 1 and 2 for player 2. In each state 5 actions are available for the
controlling player.

Table 2.2: Average number of pivotings for the 3 methods.

n. pivoting

M1 40.59

M2 41.87

M3 24.93

Table 2.3: Mi > Mj when, fixing the game, the number of pivotings in Mi

is strictly smaller than the number of pivoting in Mj.

> (%) M1 M2 M3

M1 - 52.85 18.57

M2 42.18 - 15.26

M3 80.05 82.75 -

It is evident that the algorithm M3 is much faster than the other two, but
unfortunately its convergence is not proven yet. However, in our numerical
experiment with 10000 randomly generated Competitive MDPs, it never
cycles. The difference between M1 and M2 is due to the more efficient
simplex method used by player 1 in M1.

2.2 Transient games

Let pt(s
′|s) be the probability that the process is in state s′ at time t given

that s is the initial state. Let us give the definition of transient games.

Definition 1. A stochastic game is transient if and only if
∑∞

t=0

∑
s′∈S pt(s

′|s, f ,g)
is finite for all s ∈ S and for any pair of stationary strategies (f ,g).
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Here we present the result of this section.

Theorem 2.2.1. The uniform optimal strategies (f∗,g∗) for a transient
stochastic game with perfect information are optimal in the undiscounted
criterion, i.e. β=1, as well.

Proof. The uniform optimal strategies are still optimal when ρ ↓ 0, since
the reduced costs of the tableaux built at the end of Algorithm 2.1.13 are
non-negative when ρ ↓ 0. We know from [32] that, for transient stochastic
games, the reward associated to each pair of stationary strategies (f ,g) is
finite. By invoking Abel’s Theorem on power series [46], we claim that the
reward associated to any stationary (f ,g) tends to the undiscounted reward
when ρ ↓ 0. Hence, the saddle-point relation (2.3) is still valid when ρ=0
and (f∗,g∗) are optimal in the undiscounted criterion as well.

2.3 Conclusions

In this section we dealt with zero-sum Competitive Markov Decision Pro-
cesses with two players and perfect information, i.e. each state is either of
nature or controlled by only one player. A finite set of states and actions is
considered. There exist strategies for both players which are uniform opti-
mal, i.e. at the Nash equilibrium for all β sufficiently close to 1. Hence, the
optimal value belongs to the non-Archimedean ordered field F (R) of ratio-
nal functions with real coefficients. According to this ordering, a rational
function f ∈ F (R) is said to be not smaller than f ′ when f(x) ≥ f ′(x) for
all x sufficiently close to 0. We proposed Algorithm 2.1.13 to compute the
uniform optimal strategies for both players by extending an approach by
Raghavan and Syed (2002, [78]) for fixed discount factor to the field F (R).
This new method exploits linear programming techniques for MDPs devel-
oped by Hordijk, Dekker, and Kallenberg (1985, [41]). Algorithm 2.1.13 is
proven to converge to the uniform optimal strategies in a finite time. We
then developed Algorithm 2.1.17, which is a best response one. According
to extensive simulations, Algorithm 2.1.17 requires a smaller number of piv-
oting operations to reach the optimal solution than Algorithm 2.1.13 does.
Nevertheless, we could only conjecture that Algorithm 2.1.17 does not cy-
cle. As a by-product, both proposed algorithms also produce the range of
optimality of uniform optimal strategies, i.e. the interval of discount factors
β in which such strategies are at Nash equilibrium. The uniform optimal
strategies are also optimal in the average criterion. In transient games, they
are optimal in the undiscounted criterion as well, i.e. when β = 1.
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Table 2.4: Optimum tableau for player 1 at the first iteration.

0.018+0.658ρ+

3.07ρ2+

5.13ρ3+3.7ρ4+

ρ5

x1,2 x1,3 x2,1 x2,3

x1,1 0.0198+

0.6698ρ+

3.06ρ2+

5.11ρ3+3.7ρ4+

ρ5

0.0234+

0.6934ρ+

3.04ρ2+

5.07ρ3+3.7ρ4+

ρ5

0.0288+

0.7468ρ+

2.418ρ2+

2.7ρ3+ρ4

0.0297+

0.7527ρ+

2.413ρ2+

2.69ρ3+ρ4

0.087+1.707ρ+

4.42ρ2+3.8ρ3+

ρ4

x2,2 0.0018+

0.022ρ+

0.042ρ2+

0.02ρ3

0.0054+

0.066ρ+

0.126ρ2+

0.06ρ3

0.027+0.756ρ+

3.149ρ2+

5.12ρ3+3.7ρ4+

1ρ5

0.0279+

0.767ρ+

3.17ρ2+

5.13ρ3+3.7ρ4+

1ρ5

0.059+ρ+

2.75ρ2+2.8ρ3+

ρ4

x3,1 −0.084ρ−

0.402ρ2−

0.5ρ3−0.2ρ4

−0.252ρ−

1.206ρ2−

1.5ρ3−0.6ρ4

0.018+0.196ρ+

0.158ρ2−

0.02ρ3

0.018+0.154ρ−

0.043ρ2−

0.27ρ3−0.1ρ4

0.1+1.36ρ+

3.07ρ2+2.9ρ3+

ρ4

x4,1 0.054+0.174ρ+

0.18ρ2+0.06ρ3

0.162+0.522ρ+

0.54ρ2+0.18ρ3

0.27+0.51ρ+

0.21ρ2−0.03ρ3

0.297+0.597ρ+

0.3ρ2

1.41+4.51ρ+

6ρ2+3.9ρ3+

1ρ4

x5,1 0.018+0.238ρ+

0.64ρ2+

0.62ρ3+0.2ρ4

0.054+0.714ρ+

1.92ρ2+

1.86ρ3+0.6ρ4

0.09+1.07ρ+

1.77ρ2+

0.69ρ3−0.1ρ4

0.099+1.189ρ+

2.09ρ2+ρ3

0.41+4.01ρ+

6.8ρ2+4.2ρ3+

ρ4

0.1908+

1.2838ρ+

3.891ρ2+

7.028ρ3+

7.53ρ4+4.3ρ5+

1ρ6

0.5544+

3.1754ρ+

7.945ρ2+

12.884ρ3+

13.76ρ4+

8.2ρ5+2ρ6

0.909+3.373ρ+

0.229ρ2−

14.525ρ3−

25.79ρ4−

18.5ρ5−5ρ6

1.1034+

7.7329ρ+

22.6785ρ2+

34.089ρ3+

26.54ρ4+

9.5ρ5+1ρ6

4.924+

30.709ρ+

74.775ρ2+

88.29ρ3+

50.3ρ4+11ρ5
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Table 2.5: Optimum tableau for player 2 at the first iteration.

0.288+2.308ρ+

6.04ρ2+

7.32ρ3+4.3ρ4+

ρ5

x3,1 x3,3 x4,3 x4,2

x1,1 −0.0576−

0.0416ρ+

0.246ρ2+

0.33ρ3+0.1ρ4

−0.1404−

0.5904ρ−

0.93ρ2−

0.68ρ3−0.2ρ4

−0.0036+

0.0964ρ+

0.26ρ2+0.16ρ3

−0.0432−

0.2472ρ−

0.544ρ2−

0.54ρ3−0.2ρ4

1.11+4.54ρ+

6.83ρ2+4.4ρ3+

1ρ4

x2,1 −0.0576−

0.208ρ−

0.254ρ2−0.1ρ3

−0.054−

0.152ρ−

0.15ρ2−0.05ρ3

−0.0036+

0.056ρ+

0.216ρ2+

0.26ρ3+0.1ρ4

0.0144+

0.152ρ+

0.356ρ2+

0.32ρ3+0.1ρ4

0.662+2.85ρ+

4.68ρ2+3.5ρ3+

ρ4

x3,2 1.088ρ+

4.584ρ2+

6.76ρ3+4.3ρ4+

1ρ5

1.136ρ+

4.416ρ2+

6.36ρ3+4.1ρ4+

1ρ5

0.368ρ+

1.404ρ2+

1.6ρ3+0.6ρ4

0.192ρ+

0.608ρ2+

0.6ρ3+0.2ρ4

1.6+4.92ρ+

6.5ρ2+4.1ρ3+

ρ4

x4,1 −0.432−

2.442ρ−

4.38ρ2−

3.27ρ3−0.9ρ4

−0.306−

1.466ρ−

2.46ρ2−1.8ρ3−

0.5ρ4

0.018+0.658ρ+

3.07ρ2+

5.13ρ3+3.7ρ4+

ρ5

0.216+1.956ρ+

5.5ρ2+6.96ρ3+

4.2ρ4+ρ5

1.41+4.51ρ+

6ρ2+3.9ρ3+ρ4

x5,1 −0.144−

0.214ρ−

0.24ρ2−

0.27ρ3−0.1ρ4

−0.234−

0.594ρ−

0.56ρ2−0.2ρ3

−0.054−

0.134ρ−

0.35ρ2−

0.37ρ3−0.1ρ4

−0.072−

0.292ρ−

0.42ρ2−0.2ρ3

2.33+7.53ρ+

8.9ρ2+4.7ρ3+

1ρ4

2.3616+

14.7176ρ+

35.132ρ2+

43.526ρ3+

30.65ρ4+

11.9ρ5+2ρ6

1.368+5.132ρ+

4.652ρ2−

4.782ρ3−

11.87ρ4−

8.2ρ5−2ρ6

0.8496+

5.1836ρ+

11.99ρ2+

15.096ρ3+

11.64ρ4+

5.2ρ5+1ρ6

0.3456+

1.7496ρ+

3.632ρ2+

4.128ρ3+

2.6ρ4+0.7ρ5+

2.3008e−006ρ6

−12.232−

56.642ρ−

108.24ρ2−

105.33ρ3−

51.5ρ4−10ρ5
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Table 2.6: Optimum tableau for player 1 at the second iteration.

0.288+2.308ρ+

6.04ρ2+

7.32ρ3+4.3ρ4+

ρ5

x1,2 x1,3 x2,1 x2,3

x1,1 0.306+2.324ρ+

6.018ρ2+

7.3ρ3+4.3ρ4+

ρ5

0.342+2.356ρ+

5.974ρ2+

7.26ρ3+4.3ρ4+

ρ5

0.4068+

2.1148ρ+

4.008ρ2+

3.3ρ3+ρ4

0.4158+

2.1228ρ+

3.997ρ2+

3.29ρ3+ρ4

1.11+4.54ρ+

6.83ρ2+4.4ρ3+

ρ4

x2,2 0.018+0.058ρ+

0.06ρ2+0.02ρ3

0.054+0.174ρ+

0.18ρ2+0.06ρ3

0.378+2.478ρ+

6.11ρ2+

7.31ρ3+4.3ρ4+

ρ5

0.387+2.507ρ+

6.14ρ2+

7.32ρ3+4.3ρ4+

ρ5

0.662+2.85ρ+

4.68ρ2+3.5ρ3+

ρ4

x3,1 −0.24ρ−

0.66ρ2−

0.62ρ3−0.2ρ4

−0.72ρ−

1.98ρ2−

1.86ρ3−0.6ρ4

0.288+0.436ρ+

0.128ρ2−

0.02ρ3

0.288+0.316ρ−

0.202ρ2−

0.33ρ3−0.1ρ4

1.6+4.92ρ+

6.5ρ2+4.1ρ3+

ρ4

x4,1 0.054+0.174ρ+

0.18ρ2+0.06ρ3

0.162+0.522ρ+

0.54ρ2+0.18ρ3

0.27+0.51ρ+

0.21ρ2−0.03ρ3

0.297+0.597ρ+

0.3ρ2

1.41+4.51ρ+

6ρ2+3.9ρ3+ρ4

x5,1 0.126+0.586ρ+

ρ2+0.74ρ3+

0.2ρ4

0.378+1.758ρ+

3ρ2+2.22ρ3+

0.6ρ4

0.63+2.09ρ+

2.19ρ2+

0.63ρ3−0.1ρ4

0.693+2.383ρ+

2.69ρ2+ρ3

2.33+7.53ρ+

8.9ρ2+4.7ρ3+

ρ4

0.504+2.818ρ+

7.344ρ2+

11.15ρ3+

10.02ρ4+

4.9ρ5+ρ6

1.224+5.858ρ+

13.684ρ2+

20.09ρ3+

18.44ρ4+

9.4ρ5+2ρ6

1.8+2.896ρ−

8.318ρ2−

29.624ρ3−

36.71ρ4−

21.5ρ5−5ρ6

3.636+

18.583ρ+

41.268ρ2+

49.431ρ3+

32.21ρ4+

10.1ρ5+ρ6

12.232+

56.642ρ+

108.24ρ2+

105.33ρ3+

51.5ρ4+10ρ5
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Table 2.7: Optimum tableau for player 2 at the second iteration.

0.288+2.308ρ+

6.04ρ2+

7.32ρ3+4.3ρ4+

ρ5

x3,1 x3,3 x4,2 x4,3

x1,1 −0.0576−

0.0416ρ+

0.246ρ2+

0.33ρ3+0.1ρ4

−0.1404−

0.5904ρ−

0.93ρ2−

0.68ρ3−0.2ρ4

−0.0432−

0.2472ρ−

0.544ρ2−

0.54ρ3−0.2ρ4

−0.0036+

0.0964ρ+

0.26ρ2+0.16ρ3

1.11+4.54ρ+

6.83ρ2+4.4ρ3+

ρ4

x2,1 −0.0576−

0.208ρ−

0.254ρ2−0.1ρ3

−0.054−

0.152ρ−

0.15ρ2−0.05ρ3

0.0144+

0.152ρ+

0.356ρ2+

0.32ρ3+0.1ρ4

−0.0036+

0.056ρ+

0.216ρ2+

0.26ρ3+0.1ρ4

0.662+2.85ρ+

4.68ρ2+3.5ρ3+

ρ4

x3,2 1.088ρ+

4.584ρ2+

6.76ρ3+4.3ρ4+

ρ5

1.136ρ+

4.416ρ2+

6.36ρ3+4.1ρ4+

ρ5

0.192ρ+

0.608ρ2+

0.6ρ3+0.2ρ4

0.368ρ+

1.404ρ2+

1.6ρ3+0.6ρ4

1.6+4.92ρ+

6.5ρ2+4.1ρ3+

ρ4

x4,1 −0.432−

2.442ρ−

4.38ρ2−

3.27ρ3−0.9ρ4

−0.306−

1.466ρ−

2.46ρ2−1.8ρ3−

0.5ρ4

0.216+1.956ρ+

5.5ρ2+6.96ρ3+

4.2ρ4+ρ5

0.018+0.658ρ+

3.07ρ2+

5.13ρ3+3.7ρ4+

ρ5

1.41+4.51ρ+

6ρ2+3.9ρ3+ρ4

x5,1 −0.144−

0.214ρ−

0.24ρ2−

0.27ρ3−0.1ρ4

−0.234−

0.594ρ−

0.56ρ2−0.2ρ3

−0.072−

0.292ρ−

0.42ρ2−0.2ρ3

−0.054−

0.134ρ−

0.35ρ2−

0.37ρ3−0.1ρ4

2.33+7.53ρ+

8.9ρ2+4.7ρ3+

ρ4

2.3616+

14.7176ρ+

35.132ρ2+

43.526ρ3+

30.65ρ4+

11.9ρ5+2ρ6

1.368+5.132ρ+

4.652ρ2−

4.782ρ3−

11.87ρ4−

8.2ρ5−2ρ6

0.3456+

1.7496ρ+

3.632ρ2+

4.128ρ3+

2.6ρ4+0.7ρ5

0.8496+

5.1836ρ+

11.99ρ2+

15.096ρ3+

11.64ρ4+

5.2ρ5+ρ6

−12.232−

56.642ρ−

108.24ρ2−

105.33ρ3−

51.5ρ4−10ρ5
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2.4 Stochastic Games for Cooperative Network
Routing and Epidemic Spread

We consider a system where several providers share the same network and
control the routing in disjoint sets of nodes. They provide connection to-
ward a unique server (destination) to their customers. Our objective is to
facilitate the design the available network links and their costs such that
all the network providers are interested in cooperating and none of them
withdraw from the coalition. More specifically, we establish the framework
of a coalition game and we apply Algorithm 2.1.13 proposed in Section 2.1
to compute the transferable coalition values. As by-product, we apply the
proposed algorithm to two-player games both in networks subject to hacker
attacks and in epidemic networks.

2.4.1 Introduction

Sharing resources among competitive operators is a fundamental issue in 4G
wireless systems. Cooperation enables a better exploitation of the resources
and promises higher revenues to network providers. However, cooperation
among competitive entities is complicated by the sensitive issue of conflict-
ing interests. Thus, it becomes imperative to motivate and guarantee a
fair cooperation among these entities. This can be achieved by a careful
distribution of the costs or the incremental revenues obtained by cooperat-
ing. Coalition games offer a suitable theoretical framework to address this
problem.

Several providers share a network to provide connection towards a unique
common destination to their customers. We provide a framework of a coali-
tion game to facilitate the design of the available network links and their
costs such that there exists an optimum routing strategy and a cost sharing
satisfying all the subsets of providers. More specifically, we provide algo-
rithms to compute the coalition values, i.e. the minimum costs that each
coalition can ensure for itself. The proposed algorithm is based on some
results for two-player zero-sum Competitive MDPs with perfect information
in Section 2.1.

It is worth noticing that the analysed problem differs substantially from
the noncooperative routing games thoroughly studied in literature (for addi-
tional details see e.g. Nisan et al. 2007, [65] and references therein). At the
best of the authors’ knowledge, this work is the first one applying coalition
games to determine an optimum routing solution and cost allocation in a
shared network.
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2.4.2 Routing model

We consider a network consisting of a set of nodes V ={1, . . . , N}. P service
providers (SPs) share the network to offer their customers connection toward
a single destination nodeN . The customers’ traffic is injected in the network
at n ≤ N −1 nodes, called sources, located in nodes T = {v1, . . . , vn} ⊆
V/{N}. There is only one destination, in node N . We assume that all the
sources transmit at the same rate the packets of a provider k, for all possible
k. Let ck(i, j) > 0 represent the cost per unit time that provider k has to
sustain to convey its own packets, sent by any of the sources in T , through
the link i→j.

The k-th SP controls the routing, i.e. the activation of outgoing links,
in the set of nodes Vk. We suppose that a node is controlled at most by
one SP, i.e., Vi ∩ Vj = ∅, ∀ i 6= j and

⋃
i Vi ⊆ V . Each node i is assigned a

subset αi⊆V , such that the directed link i→j can be activated if and only if
j ∈ αi. In the generic node i ∈ Vk, SP k can assign a probability distribution
fk to the each node j ∈ αi such that the probability that the network link
(i, j) is utilized for routing is fk(i, j) at any routing decision moment. The
destination node is a “sink”, and it does not route the incoming packets
to any of the other nodes. We remark that all the nodes {1, . . . , N − 1},
included the sources, serve as routing nodes.

Let Φ
(β)
k , with β ∈ [0; 1], be a N -by-1 vector whose i-th component is

the expected β-discounted sum of costs for a path originating in node i, i.e.

Φ
(β)
k (i) = Ef1,...,fP



∑

t≥0

βtck(Vt, Vt+1)
∣∣∣V0 = i


 ,

where Vt is the t-th node crossed by the packets. It is worth noticing that,

for β = 1, Φ
(1)
k is a plain sum of costs and Φ

(1)
k (vi) is the cost per unit time

that SP k incurs for the stream of packets going from the i-th source, vi, to
the destination.

2.4.3 Routing Long-run Cooperative game

In this section we tackle the problem of cost distribution among the SPs
by adopting a cooperative game theory approach. First, let us provide
some preliminary notions and notations. Let P = {1, . . . , P} be the grand
coalition of SPs. Let C ⊆ P be a coalition of players. Let us define, for any
β ∈ [0; 1], the expected β-discounted sum

Φ
(β)
C (fP/C , fC) =

∑

{k}∈C

Φ
(β)
k (fP/C , fC)

Here we are interested in the case β = 1, since the quantity
∑n

i=1 Φ
(β=1)
C (vi)

is the total cost per unit time that C incurs to sustain its n|C| information
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RX

2

3
4

5

6

7

8

11
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[1,2,1]

[2,3,3]

[1,5,3]

[4,5,8] [6,5,4]

[2,1,2]

[1,1,3]
[2,1,1]

[1,3,3]

[3,5,6]

[3,2,1]

[1,1,2]

[4,2,4]

[1,3,3]

[2,2,2]

[1,2,1]

[2,4,3]

[2,1,3]

[3,4,4] [1,3,6]

[1,2,4]

9

1st provider

2nd provider

3rd provider

Φ(1)(f1, f2, f3) = [8 9 12 . . .]T

10

f1, f2, f3: routing policies for providers 1,2,3 resp.

Φ(2)(f1, f2, f3) = [6 9 17 . . .]T

Φ(3)(f1, f2, f3) = [8 9 16 . . .]T

Cost Tx → Rx

cost of path
initiated in node 1

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

1

[c1(4, 8), c2(4, 8), c3(4, 8)]
=

[3,1,1]

for providers:

Figure 2.1: Example of routing policy with 3 service providers, 3 transmit-
ters, 13 nodes.

streams. We actually assume that all providers cooperate with each other,
and coordinate their routing decisions in order to minimize the overall costs
for the network. We define the value for coalition P, v(P), as the minimum
global transmission cost:

v(P) =

n∑

i=1

Φ
(1)
P (vi,F

o) = min
fP∈FP

n∑

i=1

Φ
(1)
P (vi, fP )

where FP is the set of strategies available to the grand coalition P and
Fo is the optimum global routing strategy. Under the Transferable Utility
(TU) assumption, the total cost v(P) can be shared in any manner among
the SPs, thanks to a binding agreement the members of P. A Cooperative
Game Theory approach (see Peleg and Sudhölter, 2007 [69]) suggests to
assign first a value v to each coalition C ⊂ P of SPs. All the cooperative
solutions, like Shapley value, Core, Nucleoulus etc. (see Chapter 1), sharing
v(P) among the SPs according to different criteria, are indeed a function of
{v(C)}C⊆P .

In this section we will focus on the computation of the coalition values.
In the literature, there are several ways to compute the value of a coalition.
One of the most utilized is arguably the minimax one, by von Neumann and
Morgenstern (1944, [96]), suggesting that the value of a coalition C of SPs
should be computed as the minimum cost that C can guarantee against any
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routing strategy of the anti-coalition P\C, i.e.

v(C) = min
fC∈FC

max
fP/C∈FP/C

n∑

i=1

Φ
(1)
C (vi, fP/C , fC), ∀ C ⊂ P. (2.11)

Hence, v(C) can be interpreted as the value of the zero-sum game between C
and the remaining SPs P\C, which adopt an antagonistic behaviour towards
C. The coalition value v(C) is a measure of the power of a coalition of
SPs, rather than a depiction of a real antagonistic scenario. We point out
the minimax approach is important because it ensures the superadditivity
property of the characteristic function v:

v(C1) + v(C2) ≥ v(C1 ∪ C2), ∀ C1, C2 ⊂ P, C1 ∩ C2 = ∅.

In the Appendix we show that Algorithm 2.1.13, developed in Section 2.1,
can be utilized to compute the minimax coalition values {v(C)}C⊆P . In
Section 2.4.3 we show its adaptation to the transient case, for which no
loops in the network can occur.

Remark 5. We dub the Cooperative game described above long-run since
the interaction among the SPs is to be meant as one-shot: the costs are
shared among SPs at the beginning of the transmission, once for all, and
any chance of a renegotiation is ruled out. In contrast, in Chapter 3 we will
deal with a more dynamic situation, in which the payoff are distributed to
the players along the game, and coalitions are allowed to form throughout
the game.

Algorithm for computing coalition values

The coalition values v(C) may be infinite. If v(C) = +∞, then the optimal
strategies for the players, i.e. the strategies at Nash equilibrium, impede
at least one source-destination path by causing a loop in the network. In
practice, v(C) = +∞ is not the cost that coalition C has to bear; anyway, it
indicates that any service provider cannot accept to lose its own packets.
In order to avoid infinities in the computation of coalition values, the idea is
to compute the optimal strategies (f∗P/C , f

∗
C ), for coalitions P/C and C respec-

tively, for all the discount factors sufficiently close to 1. Then, we adopt the
strategy that is still optimal in the limit for β → 1 to compute the coalition
value.

In the Appendix, Lemma 2.4.7, we show that we are legitimated to utilize
Algorithm 2.1.13 to compute v(C), for all C ⊆ P, as the limit for β ↑ 1 of
the uniform value of the zero-sum game between C and P\C.

Before showing the algorithm, let us refresh the reader’s memory about
some useful definitions. Let fP/C be a pure strategy for coalition P/C. We
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say that the pure strategy f ′C is an improvement for coalition C with respect
to fC for the discount factor β if and only if

Φ
(β)
C (fP/C , f

′
C) ≤ Φ

(β)
C (fP/C , fC)

where the relation ≤ is component-wise and < is valid for at least one node
in V . Let ΓP/C(fC) be the optimization problem that P/C faces when C
fixes its own strategy fC . Then, the optimum strategy for P/C in ΓP/C(fC)

maximizes Φ
(β)
C (fP/C , fC) component-wisely.

Algorithm 2.4.1. Set C ⊆ P. Consider only pure routing strategy, i.e.
only strategies fk such that, for all i ∈ Vk, ∃ j : fk(i, j) = 1.

1. Pick a pure routing strategy fC for coalition C.

2. Find the best strategy fP/C for coalition P/C in the optimization prob-
lem ΓP/C(fC), for all the discount factors close enough to 1.

3. Find the first node controlled by coalition C in which a change of strat-
egy f ′C is an improvement for coalition C for all the discount factors
close enough to 1. If it does not exists, then set (f∗P/C , f

∗
C ) := (fP/C , fC)

and go to step 4. Otherwise, set fC := f ′C and go to step 2.

4. Compute the coalition value

v(C) = lim
β→1

n∑

i=1

Φ
(β)
C (vi, f

∗
P/C , f

∗
C ).

We remark that the optimal strategy in step 2 and the strategy refine-
ment in step 3 are found with the help of simplex tableaux in the non-
Archimedean ordered field F (R) of rational functions with real polynomial
coefficients (for any detail, see Section 2.1).

Transient case

Under the assumption that no loops can be ever be present in the network,
Algorithm 2.4.1 can be simplified by considering directly β = 1. In other
words, in this section we suppose that the following assumption holds.

Assumption 1. For any couple of pure strategies (fP/C , fC) for P/C and C
respectively, and for all i ∈ V , there exists a path1 τi(fP/C , fC) of finite length

2

Li(fP/C , fC) and without loops linking node i to the destination node N .

The following result shows that the assumption above ensures Φ
(1)
C to

be finite, for any couple of strategies.

1a path is a sequence of connected nodes
2the length of the path is the number of edges that it is composed of.
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Figure 2.2: Value of singleton coalition {1}, in the routing model in Figure
2.1. The continuous arrows are the activated links. The costs are specified
next to each arrow.

Proposition 2.4.2. Suppose that assumption 1 holds. Then, for all the
pure strategies fP/C ∈ FP/C , fC ∈ FC:

(i) the path τi(fP/C , fC) is unique;

(ii) Φ
(1)
C (fP/C , fC) < +∞.

Proof. Let τi(fP/C , fC) = {V0 = i, V1, . . . , VLi =N} be the nodes crossed by
the path τi when fP/C , fC are fixed. If there existed more than one path
linking two nodes then there would exist at least one node in which more
than one arc go out of it. This is impossible since the strategies are pure.
Then, (i) is proved. Therefore, we can say that

{
pt(j|V0 = i, fP/C , fC) = 1I(j=Vt), ∀ t ∈ [1;Li(fP/C , fC)]

pt(j|V0 = i, fP/C , fC) = 0, ∀ t > Li(fP/C , fC)

where pt(j|V0) is the probability that the t-th node crossed by the packets

starting in node V0 is j. Thus, ∀ i ∈ V , the i-th component of Φ
(1)
C (fP/C , fC)

is bounded by

Li(fP/C , fC) | C | max
k,i,j

ck(i, j) < +∞

If Assumption 1 holds, then Algorithm 2.4.1 can be adapted as follows
(see Lemma 2.4.8).

Algorithm 2.4.3. Set C ⊆ P.
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1. Pick a pure routing strategy fC for coalition C.

2. Find the best strategy fP/C for coalition P/C in the optimization prob-
lem ΓP/C(fC), for β = 1.

3. Find the first node controlled by coalition C in which a change of strat-
egy f ′C is an improvement for coalition C, for β = 1. If it does not
exists, then set (f∗P/C , f

∗
C ) := (fP/C , fC) and go to step 4. Otherwise, set

fC := f ′C and go to step 2.

4. Set v(C) =∑n
i=1 Φ

(1)
C (vi, f

∗
P/C , f

∗
C ).

We remark that the algorithm 2.4.3 is analogous to the one described
by Raghavan and Syed (2002, [78]) when β =1 and restricted to the tran-
sient case, with the difference that in step 2 the search is not necessarily
lexicographic for coalition P/C. Indeed, at each iteration P/C is allowed to
find its own temporarily optimal strategy with any Markov Decision Process
solving method.

2.4.4 Network design

Although the network design is not our purpose, we suggest which steps
could be followed in this direction.

A network designer should aim at devising both the routing decisions
αi available to each provider in each node i ∈ V and the cost of the links
ck(i, j), in order to ensure that each coalition of providers has an interest
in not deviating from the global optimum policy Fo. Formally, a network
designer should ensure the non-emptiness of the Core of the TU (transferable
utility) coalition game (P, v), i.e. that set of cost g ∈ Co that providers can
share among themselves through binding agreements, such that

{∑P
k=1 gk = v(P)∑
{k}∈C gk ≤ v(C), ∀ C ⊂ P.

We see from the former equation that the Core is globally efficient for the
network and from the latter that it is also stable with respect to the forma-
tion of greedy coalitions.

In the following sections we adapt the competitive game between coali-
tion C and the anti-coalition P\C, examined just to compute the coalition
value C, to three other different scenarios.

2.4.5 Hacker-Provider routing game

The routing competitive game between two conflicting coalitions described
in Section 2.4.2 can also be re-interpreted in the framework of the conflicts
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between one service provider and one hacker.
There is a set V1 ⊆ V of vulnerable nodes, where the routing control may be
got hold by a hacker. V0 is the set of nodes in which the routing is handled
by a service provider. The set V2 = V0/V1 is the set of unattackable nodes
among the ones controlled by the service provider. Each link i→ j is as-
signed c(i, j) > 0, that in this case can be also interpreted as a delay, i.e. the
time that a packet of provider k spends to go from node i to node j. In such
a case, let us assume that the nodes are capable to re-direct all the incoming
packets as soon as they receive them, without any additional delay due to
the buffering. The service provider here wants to find the routing rule that
jointly minimizes the packet delay Φ(1) for all the sources; conversely, the
hacker wants to slow down the network.

As in Section 2.4.2, there may be some couple of strategies for the two
players for which there exist loops in the network, that cause the packet
delay from some sources to be infinite. Note that the hacker can also disrupt
some nodes, by forcing a loop on them. Hence, here we deal with the general
case of undiscounted Competitive MDPs described in the Appendix. The
undiscounted optimal strategies can be computed by the algorithm 2.4.1, in
which player 1 is now the hacker which controls nodes V1, and player 2 is
the service provider, which controls nodes V2.

Note that in this case, in contrast with the coalition game, we are more
interested in the computation of the optimal strategies, than in the value of
the game at the Nash equilibrium. Indeed, the optimal strategy for the ser-
vice provider is the pure routing policy it should adopt in order to minimize
the source-wise packet delay in the worst case scenario. The worst situation
for the provider is when the hacker is able to control all the vulnerable nodes
V1 and has at its disposal as many routing policies as possible. Note that
the optimal strategies for both players are pure, i.e. the routing policy is
deterministic in each node.

2.4.6 Natural disaster

Let us reformulate the model described in Section 2.4.5, where player 1 is
now a natural agent that can put out of order some nodes V1 ⊂ V of the
network, independently of the routing action taken by the service provider
in such nodes. This addresses the practical situation in which nodes V1 are
located in areas subject to catastrophic natural phenomena. It is straight-
forward to see that the computation of the optimal strategies for the service
provider boils down to the calculation of a Markov Decision Process uniform
optimal solution (see Hordijk at al., 1985 [41]), in which the set of nodes of
interest is reduced to V2, that is the collection of nodes controlled by the
service provider.
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2.4.7 Epidemic network

In this section we describe our third and last competitive game scenario,
inspired by the routing game between conflicting coalitions. We model an
epidemic network with N nodes; N − 1 possibly infected individuals are
located in nodes {1, . . . , N − 1} respectively. Each individual can infect,
with some probability, only one among a subset of other individuals in its
neighbourhood. There is a probability µi that the infection process starts
from the i-th individual. The infection spread terminates when the virus
reaches the healer, located in node N . Hence, there is a probability µN that
the epidemic spread is averted. There are two player: player 2, the “good”
one, wants to design and force the connections among the individuals such
that the lowest expected number of individuals are infected, while player 1
has the opposite goal. The assumption of perfect information still holds, i.e.
the set of nodes in which player 1 and player 2 have more than one action
available are disjoint.

The formulation of the problem is analogous to the two-player game
described in Section 2.4.2, in which the cost of the link (i, j) is 1 for all nodes
i, j. The nodes are substituted by the individuals, the destination with the
healer, the sources become the first infected entity, the packet routing is
replaced by the virus transmission. In this context, we wish

∑N
i=1 µiΦ

(1)(i)
to represent the average number of infected individuals. Therefore, for each
couple of routing strategies, no loops in the network are allowed, i.e. we
suppose that the Assumption 1 holds. Hence, thanks to Proposition 2.4.2,
for every couple of pure stationary strategies (f ,g),

N∑

i=1

µiΦ
(1)(i, f ,g) (2.12)

is actually the expected number of infected individuals.

We can use the algorithm 2.4.3 to find the optimal strategy for the
“good” player, who is interested in minimizing the objective function (2.12).
If (f∗,g∗) are the undiscounted optimal strategies, then the value

N∑

i=1

µiΦ
(1)(i, f∗,g∗)

is the worst-case estimate for player 2 for the expected number of infected
individuals.

2.4.8 Conclusions

Several providers share the same network and control the routing in disjoint
sets of nodes. There are several information sources and one destination.
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By using the framework of Competitive MDPs, we provided algorithms to
compute the minimum costs that each coalition of providers can ensure for
itself. This helps the optimum design of a network, which should guarantee
the existence of an efficient and stable costs partition among the providers.
We also modelled situations in which there are two players with conflict-
ing interests, like a hacker against a service provider, or in which a service
provider wants to reduce the damages to the network caused by a natural
disaster. An epidemic spread network model was shown as well. From a the-
oretical perspective, we extended some results on uniform optimal strategies
in Competitive MDP to the case of undiscounted criterion.

2.4.9 Appendix

Minimax routing game as a Competitive MDP

Indeed, our routing game between C ⊂ P and P\C can be interpreted as
a zero-sum Competitive MDP with 2 players and perfect information. For
this purpose we adopt the same notation utilized in Section 2.1. Player
2 is the coalition C ⊂ P, while player 1 is the rest of the providers P/C.
There exist a bijective association between the network nodes V and the
states S. Let S1 and S2 be the set of states associated to the set of nodes⋃

{k}∈P/C Vk and to
⋃

{k}∈C Vk, respectively. The network link i → j is ac-

tivated if and only if player k selects the action a
(k)
j (si), where j ∈ αi,

k : si ∈ Sk. The instantaneous reward r(si, a
(k)
j (si)) =

∑
{p}∈C cp(i, j),

where k is the player that controls the node i. The transition probability

is p(sw|si, a(k)j (si))=1I(w= j), where 1I is the indicator function. Note that∑
s′∈S p(s′|s, f ,g)=1, ∀ s ∈ S/{sN} and for each couple of stationary strate-

gies (f ,g). The destination node is a “sink”, i.e. p(si|sN )=0, ∀ i ∈ [1;N ],
and no actions are available in it for both players.

Undiscounted criterion with positive rewards

We want to prove that Algorithm 2.4.1 actually computes the value of any
coalition. Before, let us state two important Theorems.

Theorem 2.4.4 (Abel’s Theorem on power series). Let the power series
h(x)=

∑∞
n=0 anx

n have radius of convergence r and still converge for x=r.
Then, limx↑r h(x) = h(r).

Theorem 2.4.5 ( [46]). Let
∑

k≥0 ck be a divergent series of positive terms.
Then

lim
x↑1

∑

k≥0

xkck = +∞

Now we can we state as follows.
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Corollary 2.4.6. Let
∑

k≥0 ck be a series of positive terms and ξ ∈ R.
Then {

limx↑1
∑

k≥0 x
kck = ξ ⇐⇒ ∑

k≥0 ck = ξ

limx↑1
∑

k≥0 x
kck = +∞ ⇐⇒ ∑

k≥0 ck = +∞
Proof. For the if conditions, see Theorems 2.4.4, 2.4.5.
About the only if conditions, we know (see Knopp, 1990 [46]) that a positive
term series either converges or diverges to +∞. If

∑
k≥0 ck = ξ1 6= ξ, then

limx↑1
∑

k≥0 x
kck=ξ1 for Theorem 2.4.4. Hence, both the (⇐) relations are

proved by contradiction.

Now we are ready to state the following result.

Lemma 2.4.7. Suppose that all the instantaneous rewards are non-negative.
Let us utilize the extended line of real numbers, i.e. treat ±∞ as a number
(±∞ = ±∞, −∞ < a ∈ R < +∞). Then, the uniform optimal strategies
are optimal in the undiscounted criterion as well, i.e.

Φ(1)(f ,g∗) ≤ Φ(1)(f∗,g∗) ≤ Φ(1)(f∗,g) ∀ f ,g (2.13)

Hence, Algorithm 2.4.1 actually computes the value of any coalition.

Proof. By definition, the saddle point relation (2.13) is valid ∀ β ∈ [β; 1) and
hence also for the limit β ↑ 1. Then, it is still valid for β = 1 for Corollary
2.4.6.

Transient games

Definition 2. Let pt(.|s) be the transition probability from state s after t
steps. A Competitive MDP transient if

∞∑

t=0

∑

s′∈S

pt(s
′|s, f ,g) < +∞ (2.14)

for each s ∈ S and all pure stationary strategies f and g.

Note that the Competitive MDP in Section 2.4.3 is transient.

Lemma 2.4.8. Algorithm 2.4.3 provides the undiscounted optimal strategies
for transient Competitive MDPs.

Proof. In transient Competitive MDPs with bounded instantaneous pay-
offs, the undiscounted reward is also bounded, for each couple of stationary
strategies (see Filar and Vrieze, 1997 [32]). Furthermore, under the tran-
sient condition, the uniform optimal strategies are optimal under the undis-
counted criterion as well (see Section 2.1). It is straightforward to prove that
all the elements, belonging to F (R), of the simplex tableaux built through-
out the algorithm 2.4.1 are right continuous in ρ=0 (or, equivalently, left
continuous in β=1). Therefore, we are allowed to shift the ordered field on
which the algorithm works from F (R) to R, with β=1.
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Dynamic Cooperative MDPs

3.1 Cooperative MDPs: Time Consistency, Greedy

Players Satisfaction, and Cooperation Mainte-
nance

We deal with multi-agent Markov Decision Processes (MDPs) in which co-
operation among players is allowed. Unlike Section 2.4, coalitions may form
throughout the game, and a payoff needs to be assigned to the players during
the game. We find a Cooperative Payoff Distribution Procedure on MDPs
(MDP-CPDP) that distributes in the course of the game the payoff that
players would earn in the long run game. We show under which conditions
such a MDP-CPDP fulfills a time consistency property, contents greedy
players, and strengthen the coalition cohesiveness throughout the game. Fi-
nally we refine the concept of Core for Cooperative MDPs, by utilizing the
notion of Cooperation Maintenance.

3.1.1 Introduction

In static cooperative game theory, in which only one static game is played,
the main challenge is to devise a procedure that shares the total reward
earned by the whole community of players among the players themselves,
and that complies with an agreeable definition of “fairness” (e.g. Peleg and
Sudhölter 2007, [69]). When the interaction among the players is reiterated
over time, it is reasonable to assume that the players demand to be rewarded
in the course of the game, and the issue of designing such an allocation pro-

65
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cedure has drawn much attention in the last few decades, especially in the
field of cooperative differential games. Such games address the realistic sit-
uation in which the interaction among several players (e.g. countries, firms,
business partners etc.) spans a certain period of time, and the environment
in which the players operate (commonly called “state”) changes according
to a differential equation. A contract signed by all the players dictates how
to share a certain payoff among the participants during the game. Bulk of
the literature on cooperative differential games deals with the design of a
payoff distribution procedure fulfilling a sensible time consistency property,
under which no coalition of players is enticed to breach the agreement at any
of the stage of the game (see Zaccour, 2008 [102] and references therein).

A different situation is considered by repeated cooperative games, which
model situations in which the same game is repeatedly played over time and
players can cooperate and form coalitions throughout the duration of the
game. The papers by Oviedo (2000, [66]) and by Kranich, Perea, and Peters
(2001, [47]) are the two independent pioneering works in this field.

While the theory of competitive Markov Decision Processes (MDPs),
otherwise called non-cooperative stochastic games, has been thoroughly
studied (Filar and Vrieze, 1997 [32] for an extensive survey), to the best
of the authors’ knowledge, there is very little work on cooperative MDPs
in the literature. Unlike classic repeated games, in which the same game
is played repeatedly over time, in cooperative MDPs several different static
games follow one another. Unlike differential games, in our model the static
games follow a discrete-time Markov chain, whose transition probabilities
depend on the players’ actions in each state. Players can decide whether to
join the grand coalition or, throughout the game, to form coalitions. The
payoff earned by a coalition is, under the transferable utility (TU) assump-
tion, shared among its participants. Once a group of players has withdrawn
from the grand coalition, it cannot rejoin it later on.

Petrosjan (2006, [73]), in his pioneering work, proposed a time consistent
cooperative payoff distribution procedure (CPDP) in cooperative games on
finite trees. In this paper we deal with discount cooperative MDPs, in which
the payoffs at each stage are multiplied by a discount factor and summed up
over time. Our game model is in fact more general than the one by Petros-
jan (2006, [73]), since we allow for cycles on the state space and we do not
impose the finiteness of the game horizon. We also point out that our model
is different from the one proposed by Predtetchinski (2007, [75]), since we
assume that the utility of the coalitions is transferable and the probability
transitions among the static games does depend on the players’ actions in
each stage.

The paper is organized as follows. Section 3.1.2 is a short survey on
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non-cooperative and cooperative multi-agent MDPs. Following the lines of
Petrosjan’s work, in Section 3.1.3 we propose a stationary stage-wise CPDP
for cooperative discounted MDPs (MDP-CPDP). In Section 3.1.4 we prove
that the MDP-CPDP satisfies what we call the “terminal fairness property”,
i.e. the expected discounted sum of payoff allocations belongs to a coopera-
tive solution (i.e. Shapley Value, Core, etc.) of the whole discounted game.
In Section 3.1.5 we show that the MDP-CPDP fulfills the time consistency
property, which is a crucial one in repeated games theory (e.g. Filar and
Petrosjan, 2000 [31]): it suggests that a payoff distribution procedure should
respect the terminal fairness property in a sub-game starting from any state,
at any time step. In Section 3.1.6 we show that, under some conditions, for
all discount factors small enough, also the greedy players having a myopic
perspective of the game are satisfied with the MDP-CPDP. In Section 3.1.7
we deal with perhaps the most meaningful attribute for a CPDP, which is
the n-tuple step cooperation maintenance property. It claims that, at each
stage of the game, the long run reward that each group of players expects
to gain by withdrawing from the grand coalition after n step should be less
than what it would earn by sticking to the grand coalition forever. In some
sense, if such a condition is fulfilled for all integers n’s, then no players are
enticed to withdraw from the grand coalition. We find that the single step
cooperation maintenance property, earliest introduced in a deterministic set-
ting by Mazalov and Rettieva (2010, [59]), is the strongest one among all
n’s. Furthermore, we give a necessary and sufficient condition, inspired by
the celebrated Bondareva-Shapley Theorem (Bondareva, 1963 [22]; Shapley
1967, [83]), for the existence of an MDP-CPDP satisfying the n-tuple step
cooperation maintenance property, for any integer n. Inspired by this prop-
erty, we propose a refinement of the Core solution concept for cooperative
MDPs, dubbed as “Cooperation Maintaining solution”. Finally, Section
3.1.9 deals with a special case of our model, entailing that the transition
probabilities among the states do not depend on the players’ strategies.

A lexical remark. We define the “stage” of the game at time t as the
random state that the game finds itself in at time t.

Some notation remarks. The ordering relations <,>, if referred to vec-
tors, are component-wise, as well as the max and min operators. The entry
that lies in the i-th row and in the j-th column of matrixA is written asAi,j.
An equivalent notation for the n-by-m matrix A is [Ai,j]

n,m
i=1,j=1. The i-th

element of column vector a is denoted by ai. The expression val(A) stands
for the value (e.g. Filar and Vrieze, 1997 [32]) of the matrix A. Let {Ci}i
be a collection of sets; we define the sum set

∑
iCi as {

∑
i ci : ci ∈ Ci, ∀ i}.

3.1.2 Discounted Cooperative MDPs

In a multi-agent Markov Decision Process (MDP) Γ with P >1 players there
is a finite set of states S := {s1, s2, . . . , sN}, and for each state s the set of



68 Chapter 3: Dynamic Cooperative MDPs

actions available to the i-th player is denoted by Ai(s), i = 1, . . . , P , and
|Ai(s)| := mi(s). To each (P + 1)-tuple (s, a1, . . . , aP ), with ai ∈ Ai(s), an
immediate reward ri(s, a1, . . . , aP ) for player i = 1, . . . , P and a transition
probability distribution p(.|s, a1, . . . , aP ) on the state space S are assigned.
Hence, in each state s the static game Ωs ≡ (P, Ai(s), ri(s, .)) is played, and
the states succeed one another following a Markov chain controlled by the
players’ actions.

Let P := {1, . . . , P} be the grand coalition. We assume that any subset
of players Λ ⊆ P can withdraw from the grand coalition and form a coalition
at stage of the game, and all the players are compelled to play throughout
the whole duration of the game. Moreover, once a coalition is formed, it can
no longer rejoin the grand coalition in the future.

Let AΛ(s) :=
∏

i∈ΛAi(s) be the set of actions available to coalition Λ
in state s, for all s ∈ S. A stationary strategy fΛ for the coalition Λ is
a probability distribution on AΛ(s), such that fΛ(a|s) is the probability
that the coalition Λ chooses the action a ∈ AΛ(s) in state s. We define
FΛ as the set of stationary strategies for coalition Λ ⊆ P. Let Λ1,Λ2 two
disjoint nonempty coalitions. Then, FΛ1 ∪FΛ2 ⊂ FΛ1∪Λ2 . If for every s ∈ S
there exists a(s) such that fΛ(a(s)|s) = 1, then the stationary strategy fΛ is
dubbed “pure”.
Let us define the transition probability distribution on the state space S,
given the independent strategies fΛ ∈ FΛ, fP\Λ ∈ FP\Λ, as

p(s′|s, fΛ, fP\Λ) :=
∑

aΛ∈AΛ(s)

∑

aP\Λ∈AP\Λ(s)

p(s′|s, aΛ, aP\Λ) fΛ(aΛ|s) fP\Λ(aP\Λ|s),

for all s, s′ ∈ S. Analogously, let ri(s, fΛ, fP\Λ) be the expected instanta-
neous reward for player i in state s. Let

rΛ(s, fΛ, fP\Λ) :=
∑

i∈Λ

ri(s, fΛ, fP\Λ)

be the bounded and deterministic reward gained by the coalition Λ in state
s. We assume that the rewards are geometrically discounted over time, and

β ∈ [0; 1) is the discount factor. We define Φ
(β)
Λ (s, .) as the expected β-

discounted long run reward for coalition Λ ⊆ P when the initial state of the
game is sk:

Φ
(β)
Λ (s, fΛ, fP\Λ) := E

(
∞∑

t=0

βtrΛ(St, fΛ, fP\Λ)
∣∣S0 = s

)
∀ s ∈ S,

where St is the stage of the game at time t. Hence, we can write the vector
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Φ
(β)
Λ (.) := [ΦΛ(s1, .), . . . ,ΦΛ(sN , .)]T as

Φ
(β)
Λ (fΛ, fP\Λ) =

∞∑

t=0

βtPt(fΛ, fP\Λ) rΛ(fΛ, fP\Λ)

=
[
I− βPt(fΛ, fP\Λ)

]−1
rΛ(fΛ, fP\Λ), (3.1)

where P(fΛ, fP\Λ) is the N -by-N transition probability matrix and rΛ(.) :=

[rΛ(s1, .), . . . , rΛ(sN , .)]T . Let f
(β)∗
P be the global optimum strategy for the

grand coalition P, i.e.

f
(β)∗
P = argmax

fP∈FP

Φ
(β)
P (fP), ∀ β ∈ [0; 1), (3.2)

where the maximization is component-wise. For simplicity of notation, we

will denote P∗(β) := P(f
(β)∗
P ), which is the transition probability matrix as-

sociated to the global optimal stationary strategy f
(β)∗
P , whose (i, j) element

is p(sj|si, f (β)∗P ).

Let Γs be the long run game Γ starting in state s ∈ S. For any β ∈ [0; 1)
and for every state s, we assign to each coalition Λ a value v(β)(Λ,Γs) ∈ R.
Under the transferable utility (TU) condition, the value of a coalition can be
shared in any manner among the members of the coalition itself. Hence, the
set of feasible allocations for coalition Λ ⊆ P in the game Γs is V(β)(Λ,Γs),
where

V(β)(Λ,Γs) :=

{
x ∈ R

|Λ| :
∑

i∈Λ

xi ≤ v(β)(Λ,Γs)

}
.

It is widely accepted to assign to the empty coalition a null utility, i.e.

v(β)({∅},Γs) = 0.

Throughout the paper, if not specified, we always consider nonempty coali-
tions. We consider the value associated to the grand coalition v(β)(P,Γs) to
be the biggest achievable discounted sum of reward in the game Γs:

v(β)(P,Γs) = Φ
(β)
Λ (s, f

(β)∗
P ).

In many applications it makes sense to define the coalition value v(β)(Λ,Γs)
as the maximum total reward that coalition Λ can ensure for itself in the
β-discounted long run game Γs (von Neumann and Morgenstern, 1944 [96]),
i.e.

v(β)(Λ,Γs) := max
fΛ∈FΛ

min
fP\Λ∈FP\Λ

Φ
(β)
Λ (s, fΛ, fP\Λ) (3.3)

Nevertheless, we will consider the specific value formulation in (3.3) solely
in Sections 3.1.6 and 3.1.8. Next we provide some useful definitions and
preliminary results.
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Definition 3 (Linear combination of games). Let V(∆i,Λ) be the set of
feasible allocations for the coalition Λ ⊆ P in the game ∆i, for i = 1, . . . , N .
The linear combination

∑
i bi∆i is a game in which the set of feasible alloca-

tions for the coalition Λ, V(∑i bi∆i,Λ), equals the Minkowski sum
∑

i biV(∆i,Λ).

Proposition 3.1.1. Let ∆1, . . . ,∆N be N games with transferable utilities.
Let v(Λ,∆i) be the value of coalition Λ ⊆ P in the game ∆i. Let bi ≥ 0,
for all i = 1, . . . , N . Then,

∑
i bi∆i is a TU game in which the value of the

coalition Λ ⊆ P is

v

(
Λ,

N∑

i=1

bi∆i

)
=
∑

i

biv(Λ,∆i).

Proof. Let

Ṽ(Λ) :=



x ∈ R

P :
∑

i:{i}∈Λ

xi ≤
∑

i

biv(Λ,∆i)



 .

We have to prove that, for all Λ ⊆ P, V(∑i bi∆i,Λ) =
∑

i biV(∆i,Λ) =

Ṽ(Λ). Let the real |Λ|-tuple c(i) ∈ V(∆i,Λ), for all i. It is straightforward
to see that

∑
i bic(i) ∈ Ṽ(Λ). Then,

∑
i biV(∆i,Λ) ⊆ Ṽ(Λ). Let us fix the

real P -tuple c̃ ∈ Ṽ(Λ). We define I := {i : bi > 0}. We need to find
{c′(i) ∈ V(∆i,Λ)}i∈I such that

∑
i∈I bic

′(i) = c̃. Let c′j(i) = c̃j/(|I|bi)
for all j such that {j} /∈ Λ. To determine the remaining |I||Λ| elements
{c′j(i), ∀ i ∈ I, j : {j} ∈ Λ}, we introduce the following set of inequalities:

{∑
i∈I bic

′
j(i) = c̃j ∀ j : {j} ∈ Λ∑

j:{j}∈Λ c′j(i) ≤ v(Λ,∆i) ∀ i ∈ I
(3.4)

Let us prove that (3.4) admits a solution. Let ǫi ≥ 0, for all i ∈ I, be such
that ∑

i∈I

ǫi =
∑

i∈I

biv(Λ,∆i)−
∑

j:{j}∈Λ

c̃j ≥ 0 (3.5)

We write the following linear system

{∑
i∈I bic

′
j(i) = c̃j ∀ j : {j} ∈ Λ

bi
∑

j:{j}∈Λ c′j(i) = biv(Λ,∆i)− ǫi ∀ i ∈ I
(3.6)

Evidently, any solution to (3.6) is also a solution to (3.4). Thanks to (3.5),
the sum of the first |Λ| equations of (3.6) equals the sum of the remaining |I|
equations. By discarding the last equation of (3.6) we obtain a linear system
with |Λ| + |I| − 1 linearly independent equations in |Λ||I| > |Λ| + |I| − 1
unknowns. Hence, a solution to (3.6) exists and

∑
i biV(∆i,Λ) ⊇ Ṽ (Λ).

Then,
∑

i biV(∆i,Λ) = Ṽ(Λ) and the thesis is proven.
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Still, we could consider the long run game Γs as a classic static coop-
erative game, solely characterized by the set of players P and the coalition
values v(β). Therefore we can still assign to it a classic solution concept.

Definition 4 (Terminal cooperative solution). Set β ∈ [0; 1). The termi-
nal cooperative solution T(β)(Γs) is a set-valued function which represents a
static cooperative solution (e.g. Shapley value, Core, etc.) of the long run
game Γs starting in state s, i.e.

T(β)(Γs) : {v(β)(Λ,Γs)}Λ⊆P → R
P , ∀ s ∈ S.

Analogously, we define T(β)(
∑

i biΓsi) as the terminal cooperative solu-
tion of the cooperative game with coalition values {v(β)(Λ,∑i biΓsi)}Λ⊆P .

The terminal cooperative solution T(β) can represent any of the classical
cooperative solutions. For example, T ≡ Co represents the Core of the
β-discounted game Γs, that is the set, possibly empty, of the real P -tuples
x satisfying {∑

i∈P xi = v(β)(P,Γs)∑
i∈Λ xi ≥ v(β)(Λ,Γs), ∀Λ ⊂ P.

(3.7)

A game with nonempty Core is said to be balanced. The strict Core
sCo(β)(Γs) is defined as in (3.7), but with the strict inequality signs.
The terminal cooperative solution T ≡ Sh(β)(Γs) stands for the Shapley
value of the β-discounted game Γs, i.e. for all i = 1, . . . , P ,

Sh(β)i (Γs) =
∑

Λ⊆P/{i}

|Λ|! (P−|Λ|−1)!

P !

[
v(β)(Λ ∪ {i},Γs)− v(β)(Λ,Γs)

]
.

We finally present a linearity property of the Core and Shapley value.

Proposition 3.1.2. Let ∆1, . . . ,∆N be games with transferable utilities with
non empty Cores Co(∆1), . . . ,Co(∆N ), respectively. Let b1, . . . , bN be non
negative coefficients. Then,

∑N
i=1 biCo(∆i) ⊆ Co(

∑N
i=1 bi∆i).

Proof. Let x1(i), . . . , xP (i) be an allocation belonging to the Core Co(∆i).
Thanks to the linearity property of coalition values shown in Proposition
3.1.1, we can write

N∑

i=1

∑

k∈P

bixk(i) =

N∑

i=1

biv(P,∆i) = v

(
P,

N∑

i=1

bi∆i

)

N∑

i=1

∑

k∈Λ

bixk(i) ≥
N∑

i=1

biv(Λ,∆i) = v

(
Λ,

N∑

i=1

bi∆i

)
, ∀Λ ⊂ P.

Hence, the thesis is proven.
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Corollary 3.1.3. For all β ∈ [0; 1),
∑N

i=1 biSh(β)(Γsi) = Sh(β)(∑N
i=1 biΓsi),

where bi ≥ 0, ∀ i.

Proof. The proof follows straightforward from Proposition 3.1.1 and from
the linearity property of the Shapley value.

3.1.3 Cooperative Payoff Distribution Procedure

In cooperative MDPs, different static games follow one another in time. If
we conceive the dynamic game as a whole, the payoff allocation issue boils
down to the computation of the terminal cooperative solution T(β)(Γs), and

the players are rewarded a certain amount T
(β)

(Γs) ∈ T(β)(Γs) at the end
the game. Of course, if the length of game is not finite, the players need to
be rewarded throughout the game. Even if the game has a limited duration,
though, the players may not be willing to wait until its conclusion before
receiving a payoff (e.g. wage earners). Our goal is then to build a connection
between static and dynamic cooperative game theory on Markov Decision
Processes, by devising a procedure which distributes the terminal solution

T
(β)

(Γs) throughout the game, in each of its stages. With respect to static
cooperative game theory, an additional complication here lies in satisfying,
or at least being fair with, all the players at each stage of the game, since
coalitions are allowed to form throughout the game unfolding. Moreover we
assume that, once a coalition has formed, it cannot rejoin the grand coalition
later on.

Remark 6. All the results presented in the current section, as well as the
ones in Sections 3.1.4, 3.1.5, 3.1.7, 3.1.9 can be easily extended to undis-
counted transient MDPs, i.e. games for which β = 1 and

∞∑

t=0

∑

s′∈S

pt(s
′|s, fP ) < ∞, ∀ s ∈ S, fP ∈ FP . (3.8)

where pt(s
′|s) = p(St = s′|S0 = s) is the probability of being in state s′

at the t-th step, knowing that the starting state was s. In fact the reader
should notice that, mathematically speaking, introducing a discount factor
β ∈ [0; 1) is equivalent to multiplying each transition probability by β, which
automatically ensures the transient condition (3.8).

Let us now define the concept of cooperative payoff distribution proce-
dure, which is crucial in this paper.

Definition 5 (CPDP). The cooperative payoff distribution procedure (CPDP)

g(β) := [g
(β)
1 , . . . , g

(β)
P ] is a recursive function that, for each time step t≥ 0,

associates a real P -tuple g(β)(ht) to the past history ht = [S0, g
(β)(h0), S1, . . . ,

g(β)(ht−1), St] of states succession and stage-wise allocations up to time t.
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The following are two alternative interpretations for g
(β)
i :

i) βtg
(β)
i (ht) is the payoff that player i ∈ P gains at the stage t of the

game, when ht is the history of the process;

ii) g
(β)
i (ht) is the payoff that player i obtains at time t when the transition
probabilities are discounted by a factor β, i.e. we consider a new

distribution p′(s′|s, f (β)∗P ) = βp(s′|s, f (β)∗P ), for all s, s′ ∈ S. Hence,
1− β is the stopping probability in each state.

Next we provide a definition of stationary CPDP’s. Let Ht the class of state
and allocation histories up to time t.

Definition 6 (Stationarity). Set β ∈ [0; 1). A CPDP g(β) is stationary
whenever g(β)(ht) = g(β)(St=s) := g(β)(s), for all t ≥ 0 and ht ∈ Ht.

Hence, a stationary CPDP g(β) : S → R
P is a stage-wise payoff distri-

bution law that does not depend on the whole history, but only on the last
observable state of the process.

In his pioneering work, Petrosjan (2006, [73]) introduced a CPDP for games
on finite trees. Following his lines, we now propose a stationary CPDP
for cooperative MDPs (MDP-CPDP) with β-discounted criterion, with β ∈
[0; 1) fixed a priori.

Definition 7 (MDP-CPDP). Set β ∈ [0; 1). Select the a terminal coopera-

tive solution T
(β)

(Γs) ∈ T(β)(Γs), ∀ s ∈ S. The cooperative payoff distribu-

tion procedure γ(β) on MDP (MDP-CPDP) associated to T
(β)

(Γs) is defined
as

γ(β)(s,T) :=
∑

s′∈S

[
δs,s′ − β p(s′|s, f (β)∗P )

]
T

(β)
(Γs′), ∀ s ∈ S. (3.9)

Throughout the paper, we will not specify the dependence of γ(β) on

T
(β)

(Γs) when this is clear from the context.
In Section 3.1.4 it will be clear to the reader that not all the stationary
CPDP are MDP-CPDP, but only those whose expected β-discounted long
run summation is actually a terminal cooperative solution. In the next
sections we will study some appealing properties of the MDP-CPDP, defined
as in (3.9).

3.1.4 Terminal Fairness

In this section, we let the terminal cooperative solution T be any of the
classic cooperative solution (Core, Shapley value, Nucleolus, etc.). In the
following we will propose two desirable properties for a CPDP and we prove
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that the MDP-CPDP defined in (3.9) fulfills both of them.

Firstly, we wish to guarantee a natural continuity between static coop-
erative game theory and dynamic payoff allocation. Hence, we require the
expected discounted sum of the stage-wise allocations to equal the terminal
cooperative solution of the game, as formalized in the following.

Property 1 (Terminal fairness). Set β ∈ [0; 1). The CPDP g(β) is said

to be terminal fair w.r.t. the terminal cooperative solution T
(β)

whenever

T
(β)

(Γs) is stage-wisely distributed in the course of the game, i.e.

E

[∑

t≥0

βtg(β)(ht)|S0 = s
]
∈ T(β)(Γs), ∀ s ∈ S.

Now we show that the proposed MDP-CPDP can be defined axiomat-
ically, as the only stationary allocation that fulfills the terminal fairness
property. Hence, γ(β)(.,T) establishes a bijective relation between a termi-
nal cooperative solution T and a stage-wise allocation procedure γ(β).

Theorem 3.1.4. The MDP-CPDP γ(β)(s,T) ∈ R
P , defined in (3.9) is the

unique stationary CPDP that satisfies the terminal fairness property w.r.t.

T
(β)

, for all β ∈ [0; 1).

Proof. We know that, for all i ∈ P,




E[
∑

t≥0 β
tγ

(β)
i (St)|S0 = s1]
...

E[
∑

t≥0 β
tγ

(β)
i (St)|S0 = sN ]


 =

[
I− βP∗(β)

]−1



γ
(β)
i (s1)

...

γ
(β)
i (sN )


 .

If we substitute (3.9) in the equation above, we find that γ
(β)
i defined in

(3.9) satisfies the relation:

E

[∑

t≥0

βtγ(β)(St)|S0 = s
]
= T

(β)
(Γs), ∀ s ∈ S, i ∈ P.

Since the matrix
∑

t≥0[βP
∗(β)]t = [I−βP∗(β)]−1 is invertible, then such γ(β)

is also unique. Hence, the thesis is proven.

In each state s of the game, the grand coalition receives a total payoff

rP(s, f
(β)∗
P ). In principle, only a portion of it could be shared among the

players, and accordingly the remaining part is allocated in the following
stages of the game. We point out that this procedure would require the
presence of an external “regulator” agent, managing the payoff stream. In
this work we want to rule out this possibility, thus we demand that, in each

state s, the whole amount rP(s, f
(β)∗
P ) is shared among the players. We call
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this property stage-wise efficiency. In order to ensure such a property surely,
we also have to ensure that the instantaneous rewards are deterministic.
This is straightforward to obtain, since f

(β)∗
P can be found in the class of

pure policies.

Property 2 (Stage-wise efficiency). Set β ∈ [0; 1). The CPDP g(β) is stage-

wise efficient whenever
∑

i∈P g
(β)
i (s) =

∑
i∈P ri(s, f

(β)∗
P ) for all s ∈ S, where

f
(β)∗
P is the global optimum pure stationary strategy.

Theorem 3.1.5. The MDP-CPDP γ(β), defined in (3.9), fulfills the stage-
wise efficiency property, for all β ∈ [0; 1).

Proof. The global optimum strategy f
(β)∗
P is pure, since the optimization

problem (3.2) that it solves can be formulated as a Markov Decision Process

(Puterman, 1994 [77]). Hence, ri(s, f
(β)∗
P ) is also deterministic, for all i ∈ P.

Let us sum (3.9) over all possible i ∈ P, for all s ∈ S, and we obtain:

v(β)(P,Γs) =
∑

i∈P

γ
(β)
i (s) + β

∑

s′∈S

p(s′|s, f (β)∗P ) v(β)(P,Γs′).

Since the following is also valid for all s ∈ S from the definition of v(β):

v(β)(P,Γs) =
∑

i∈P

ri(s, f
(β)∗
P ) + β

∑

s′∈S

p(s′|s, f (β)∗P ) v(β)(P,Γs′),

then,
∑

i∈P γ
(β)
i (s) =

∑
i∈P ri(s, f

(β)∗
P ), surely.

It is straightforward to verify that the MDP-CPDP γ(β) defined in (3.9)
also fulfills a terminal efficiency property, i.e.

∑

i∈P

E

[∑

t≥0

βtγ
(β)
i (St|S0 = s)

]
= v(β)(P,Γs), ∀ s ∈ S.

3.1.5 Time Consistency

Time consistency is a well known concept in dynamic cooperative theory
(Filar and Petrosjan, 2000 [31], Zaccour, 2008 [102] and references therein).
It captures the idea that the stage-wise allocation must respect the terminal
fairness property even from a later starting time of the game, for any possible
trajectory of the game up to that instant. In other words, players are never
enticed to renegotiate the agreement on CPDP at any intermediate time
step, because even if they did, assuming that cooperation has prevailed from
the initial date until that instant, then the payoff distribution procedure
would remain the same. Let us adopt the convention h−1 = ∅. The time
consistency property can be formalized as follows.
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Property 3 (Time consistency). Set β ∈ [0; 1). A CPDP g(β) is time
consistent w.r.t. a terminal cooperative solution T(β) whenever, for all t ≥ 0
and for all possible allocation/state histories ht ∈ Ht,

E

[
∞∑

k=t

βkg(β)(Sk,hk−1)
∣∣∣ht

]
∈ βtT(β)(Γs̄), (3.10)

where s̄ is the state at time t of history ht.

Note that the time consistency property boils down to the terminal fair-
ness property when t = 0. In particular, if we choose T ≡ Co, then the time
consistency properties entails that, if a coalition forms at time t, then the
expected long run payoff that it receives from time t onwards is not larger
than the one it would earn by cooperating, for any t. Formally, for all t ≥ 0,

∑

i∈Λ

E

[
∞∑

k=t

βkg
(β)
i (Sk,hk−1)

∣∣∣ht

]
≥ βtv(β)(Λ,Γs̄), ∀Λ ⊂ P, ht ∈ Ht.

In other words, when T ≡ Co, the time consistency property clears up any
coalition’s dilemma “Shall we stick to the grand coalition forever or withdraw
now?” in favor of the first alternative. We will extend further this concept
in Section 3.1.7.

Next we extend the definition of time consistency by suggesting that, at
any instant t, the expected payoff obtained by the players from time t + n
onwards should belong to the terminal solution associated to the stage of
the game at time t+ n.

Property 4 (n-tuple step time consistency). Set β ∈ [0; 1) and let n ∈ N0.
A CPDP g(β) is n-tuple step time consistent w.r.t. a terminal cooperative
solution T(β) whenever, for all t ≥ 0, ht ∈ Ht,

E

[
∞∑

k=t+n

βkg(β)(Sk,hk−1)
∣∣∣ht

]
∈ βt+nT(β)

(
∑

s′∈S

pn(s
′|St= s̄, f

(β)∗
P )Γs′

)
,

where pn is the n-step transition probability and s̄ is the state at time t of
history ht.

The reader should notice that Property 4 reduces to Property 3 when
n = 0. Now we are ready to show that the MDP-CPDP fulfills the n-tuple
step time consistency property for any value of n. The proof follows from
the stationarity of the allocation, the terminal fairness property, and two
linearity properties of the Core and of the Shapley value, respectively.

Theorem 3.1.6. Let T represent the Shapley Value, or the Core if we
suppose that Co(β)(Γs) is nonempty for any s ∈ S. The stationary MDP-
CPDP γ(β)(.,T) is time consistent w.r.t. T(β) for all β ∈ [0; 1). Moreover,
it satisfies the n-tuple step time consistency property for all n ∈ N0 and
β ∈ [0; 1).
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Proof. Since γ(β) is stationary, we can rewrite (3.10) as

E

[
∞∑

k=0

βkγ(β)(St+k)
∣∣∣St = s̄

]
∈ T(β)(Γs̄). (3.11)

Thanks to Theorem 3.1.4, (3.11) holds, hence γ(β) is time consistent. It is
easy to verify that

E

[
∞∑

k=t+n

βkg(β)(Sk,hk−1)
∣∣∣ht

]
= βt+n

∑

s′∈S

pn(s
′|St= s̄, f

(β)∗
P )T(β)(Γs′).

Therefore, from Proposition 3.1.2 we claim that, if T ≡ Co, then

E

[
∞∑

k=t+n

βkg(β)(Sk,hk−1)
∣∣∣ht

]
∈ βt+nCo(β)

(
∑

s′∈S

pn(s
′|St= s̄, f

(β)∗
P )Γs′

)
.

Moreover, for Corollary 3.1.3 we claim that, if T ≡ Sh, then

E

[
∞∑

k=t+n

βkg(β)(Sk,hk−1)
∣∣∣ht

]
= βt+nSh(β)

(
∑

s′∈S

pn(s
′|St= s̄, f

(β)∗
P )Γs′

)
.

Thus (3.11) is verified for T ≡ Co and T ≡ Sh, and the thesis is proven.

3.1.6 Greedy Players Satisfaction

In this section we allow for the presence of greedy players, i.e. players having
a myopic perspective of the game and who only look to receive the highest
reward in the static game played in the current state. From an allocation
procedure design point of view, the most conservative approach is to expect
that all the players might manifest a greedy behavior, and to construct a
CPDP that contents all of them. The most natural way to formalize this
property is requiring that the payoff allocation in each state belongs to the
Core of its respective static game.

Property 5 (Greedy players satisfaction). Set β ∈ [0; 1). For all s ∈ S,
the CPDP g(β)(s) belongs to Core of the stage-wise game Ωs, i.e. g(β)(s) ∈
Co(Ωs).

By demanding that MDP-CPDP should fulfill Property 5, we seek to
accommodate two apparently contrasting needs. On the one hand, we are
trying to allocate a payoff which is globally optimum and in some sense
“fair” in the long run game. On the other hand, we need to satisfy potential
greedy players, hence the allocation needs to be globally optimum and stable
in each static game Ω. The theory of MDPs claims that, in general, our goal
cannot be reached for any value of β ∈ [0; 1), since the myopic strategy for
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the grand coalition P is not in general global optimum when β is sufficiently
close to 1. Nevertheless, by letting the discount factor β be sufficiently close
to 0, we will show a sufficient condition under which Property 5 holds. For
this purpose, in the current section we consider the Shapley value as terminal
fair solution, i.e. T ≡ Sh.
Let us assume in the current section that the static game in state s, Ωs, is
a cooperative TU game, for all s ∈ S. Moreover, in this section we suppose
that the coalition values v(β)(Λ,Γs), v

(β)(Λ,Ωs) are the β-discounted values
of the two player zero-sum game of coalition Λ against P\Λ in the games Γs

and Ωs respectively. This classic formulation was originally devised by von
Neumann and Morgenstern (1944, [96]). Of course, v(0)(Λ,Γs) = v(Λ,Ωs).

Condition 1 (max-min coalition values). The coalition value v(β)(Λ,Γs) is
computed as the max-min expression in (3.3), for all Λ ⊆ P, s ∈ S. The
analogous expression holds for v(Λ,Ωs).

Lemma 3.1.7. There exists a pure strategy f∗P ∈ FP and β∗ > 0 such that
f∗P is optimal for all β ∈ [0;β∗).

Proof. The global optimization problem is a Markov Decision Process (MDP)

having Φ
(β)
P as discounted reward. Take a strictly decreasing sequence {βk}

such that limk→∞ βk = 0. Since both the actions and the states have a finite
cardinality, then there exists a pure strategy f∗P and an infinite subsequence
of {βk}, namely {βnk

}, with nk < nk+1 ∀ k, such that f∗P is optimal for all
the discount factors {βnk

}. Fix a pure strategy fP ∈ FP . Then

y(βnk
)(s, fP ) := Φ

(βnk
)

P (s, f ∗P)− Φ
(βnk

)

P (s, fP) ≥ 0, ∀ k ∈ N. (3.12)

It is easy to see that y(β) is a continuous rational function in β ∈ (0; 1). Then,
either it is identically zero for all β ∈ (0; 1) or y(β) = 0 in a finite number of
points in the interval (0; 1). Hence, for (3.12), there exists β∗(s, fP) > 0 such
that y(β)(s, fP ) ≥ 0, for all β ∈ (0;β∗(s, fP )). Take β∗ = mins,fP β∗(s, fP) >
0.
Since Φ

(β)
P (s, f∗P) is also right-continuous in β at β = 0, then f∗P is also

optimal for β = 0. Hence the thesis is proven.

Let us define Θs as the affine space:

Θs :

{
x ∈ R

P :
∑

i∈P

xi =
∑

i∈P

ri(s, f
∗
P)

}
, (3.13)

where f∗P is the global optimal strategy for all discount factors sufficiently
close to 0, i.e.

∃ β∗ > 0 : f∗P = argmax
fP∈FP

Φ
(β)
P (fP) ∀ β ∈ [0;β∗). (3.14)
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Corollary 3.1.8. For any s ∈ S, γ(β)(s) belongs to the affine space Θs, for
all β sufficiently close to 0.

Proof. The proof follows straightforward from Theorem 3.1.5 and from Lemma
3.1.7.

Next we present a useful result.

Lemma 3.1.9. Let T ≡ Sh. Under Condition 1, limβ↓0 γ
(β)(s) = Sh(0)(Γs) ≡

Sh(Ωs).

Proof. Let us rewrite (3.9) as

γ(β)(s,Sh) =
∑

s′∈S

[
δs,s′ − β p(s′|s, f (β)∗P )

]
Sh(β)(Γs′), ∀ s ∈ S.

It is sufficient to prove that limβ↓0 Sh(β)(Γs) = Sh(0)(Γs), ∀ s ∈ S. Since
each component of the vector Sh(β)(Γs) is a linear combination of the dis-
counted values {v(β)(Λ,Γs)}Λ⊆P , then we only need to show that

lim
β↓0

v(β)(Λ,Γs) = v(0)(Λ,Γs) = v(Λ,Ωs), ∀ s ∈ S, Λ ⊆ P.

Firstly, let us recall the relation (Filar and Vrieze, 1997 [32])

| val(B)− val(C)| ≤ max
i,j

|Bi,j −Ci,j| (3.15)

where B,C are matrices with the same size. We know from Filar and Vrieze
(1997, [32]) that

v(β)(Λ,Γs) = val

([∑

i∈Λ

ri(s, aΛ, aP\Λ) + . . .

+β
∑

s′∈S

p(s′|s, aΛ, aP\Λ) v
(β)(Λ,Γs′)

]mΛ(s),mP\Λ(s)

aΛ=1,aP\Λ=1

)
, (3.16)

where aΛ ∈ AΛ(s) and aP\Λ ∈ AP\Λ(s). Thus, from (3.15,3.16) we can say
that, for all Λ ⊆ P,

|v(β)(Λ,Γs)− v(0)(Λ,Γs)| ≤ max
aΛ,aP\Λ

∣∣∣β
∑

s′∈S

p(s′|s, aΛ, aP\Λ) v
(β)(Λ,Γs′)

∣∣∣

≤ β

1− β
M

where M = maxs,aΛ,aP\Λ
|rΛ(s, aΛ, aP\Λ)|. Fix ǫ > 0. Set δ = ǫ/(M + ǫ).

Then, for all β ∈ [0; δ) we have |v(β)(Λ,Γs) − v(0)(Λ,Γs)| < ǫ. Hence,
v(β)(Λ,Γs) is right-continuous in β at β = 0 for all s ∈ S, Λ ⊆ P.
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Let us formulate an additional condition, on the strict convexity of static
games, which holds only in the current section.

Condition 2 (Stage-wise strict convexity). The static games {Ωs}s∈S are
strictly convex, i.e. v(Λ1 ∪Λ2,Ωs) + v(Λ1 ∩Λ2,Ωs) > v(Λ1,Ωs) + v(Λ2,Ωs),
for all Λ1,Λ2 ⊆ P, s ∈ S.

We know from Shapley (1971, [84]) that, if Condition 2 holds, then the
Core of Ωs is (P−1)-dimensional for any s ∈ S, i.e. the affine hull of Co(Ωs)
coincides with Θs in (3.13). Note that, in general, the affine hull of Co(Ωs)
could be a proper subset of Θs.

Corollary 3.1.10. Suppose that the stage-wise strict convexity Condition 2
holds. Then, for all s ∈ S,

i) the Shapley value of Ωs lies in the relative interior of Co(Ωs);

ii) the interior of Co(Ωs) relative to Θs coincides with the strict Core
sCo(Ωs).

Proof. For the proof of i), see Shapley (1971, [84]). The proof of ii) is
straightforward.

Sh(Ωs)
Co(Ωs)

γ(β)(s)

β↓0

Θs

Player 1

Player 2

Player 3

Figure 3.1: γ(β)(s) when β ↓ 0, for a 3-player stochastic game in which Ωs

is strictly convex. Note that, in order to ensure Property 5, the affine hull
of Co(Ωs) must coincide with Θs.

Finally, we are ready to show under which conditions the MDP-CPDP fulfills
the greedy players satisfaction property.
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Theorem 3.1.11. Under Conditions 1 and 2, the greedy players satisfaction
property is verified by γ(β)(Sh(β)) for all discount factors β sufficiently close
to 0.

Proof. Fix s ∈ S. We know from Corollary 3.1.10 that Sh(Ωs) lies in the
relative interior of Co(Ωs). The affine hull of Co(Ωs) coincides with the
hyperplane Θs for Condition 2. Moreover, from Corollary 3.1.8 we know
that, for all s ∈ S, γ(β)(s) belongs to the affine space Θs for all β ∈ [0, β∗),
where β∗ is defined as in (3.14). Hence, for Lemma 3.1.9 we can say that
for all ǫ > 0 there exists δs ∈ (0, β∗) such that

∀ β ∈ [0; δs), γ(β)(s) ∈ [Bδs ∩Θs] ⊆ Co(Ωs),

where Bδs is the ball belonging to R
P having radius of δs. Take δ =

mins∈S δs. The thesis is proven.

Hence, under Condition 2, for all β ∈ [0; δ), all the greedy players are
content with payoff allocation procedure, since the MDP-CPDP belongs to
the Core of each static game Ωs, for all s ∈ S.

3.1.7 Cooperation Maintenance

The (single step) cooperation maintenance property was first introduced by
Mazalov and Rettieva (2010, [59]), who employed it in a deterministic fish
war setting. Such a property is very desirable, since it helps to preserve the
cooperation agreement throughout the game. Indeed it suggests that the
long run payoff that each coalition expects to earn by deviating in the next
stage of the game should be not smaller than the payoff that the coalition
receives by deviating in the current stage. In this section we will adapt
and apply this property to our cooperative MDP model. For simplicity, we
restrict the following definitions to stationary CPDP’s.

Property 6 (Single step cooperation maintenance). Set β ∈ [0; 1). The
stationary CPDP g(β) satisfies, in any state s ∈ S and for each coalition
Λ ⊂ P,

∑

i∈Λ

g
(β)
i (s) + βv(β)

(
Λ,
∑

s′∈S

p(s′|s, f (β)∗P ) Γs′

)
≥ v(β)(Λ,Γs). (3.17)

In other words, Property 6 claims that each coalition has always an in-
centive to postpone the moment in which it will withdraw from the grand
coalition, under the condition that, once a coalition Λ ⊂ P is formed, it
can no longer rejoin the grand coalition in the future. By induction, we can
say that the cooperation maintenance property enforces the grand coalition
agreement throughout the game.
We point out that the transition probabilities in (3.17) are invariant with re-
spect to a change of strategy by Λ, which can only withdraw at the following
time step.
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n-tuple step cooperation maintenance

Intuitively, Property 6 sorts out a coalition’s dilemma “Shall we withdraw
from the grand coalition in one time step or now?” in favor of the first
option, at any stage of the game. It is natural to extend this property to a
setting in which a coalition investigates the benefit of withdrawing in a later
stage of the game. In other words, if a coalition faces the dilemma “Shall
we withdraw from the grand coalition in n time steps or now?”, we suggest
that a CPDP should always persuade the coalition to defer the decision of
defecting, for any integer n.

Property 7 (n-tuple step cooperation maintenance). Set β ∈ [0; 1). Let
n ∈ N0. The stationary CPDP g(β) satisfies the n-tuple step cooperation
maintenance property whenever, for any initial state s ∈ S and for each
coalition Λ ⊂ P,

n−1∑

t=0

βtpt(s
′|s,f (β)∗P )

∑

i∈Λ

g
(β)
i (s′) + . . .

βnv(β)

(
Λ,
∑

s′∈S

pn(s
′|s, f (β)∗P )Γs′

)
≥ v(β)(Λ,Γs).

Next we show a necessary and sufficient condition for the existence of an
MDP-CPDP γ(β) satisfying the n-tuple step cooperation maintenance prop-
erty, for n ≥ 1. Before this, a notation remark. We denote v(β)(Λ,Γ) as

v(β)(Λ,Γ) :=
[
v(β)(Λ,Γs1), . . . , v(β)(Λ,ΓsN )

]T
, ∀Λ ⊆ P.

Theorem 3.1.12. Let n ∈ N0, β ∈ [0; 1). The set of MDP-CPDP’s satis-
fying the n-tuple step cooperation maintenance property is nonempty if and
only if the vectors

[
I−

[
βP∗(β)

]n]
v(β)(Λ,Γ) := ṽ(β,n)(Λ,Γ), Λ ⊆ P (3.18)

are component-wisely balanced, i.e. for every function α : 2P /{∅} → [0; 1]
such that:

∀ i ∈ P :
∑

Λ⊆P:
Λ∋i

α(Λ) = 1,

the following condition holds:

∑

Λ⊆P

α(Λ)ṽ
(β,n)
k (Λ,Γ) ≤ ṽ

(β,n)
k (P,Γ), 1 ≤ k ≤ N,

where ṽ
(β,n)
k (Λ,Γ) is the k-th component of ṽ(β,n)(Λ,Γ).
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Proof. Let us rewrite (3.9) as:

γ
(β)
i (T) =

[
I− βP∗(β)

]
T

(β)
i , ∀ i ∈ P (3.19)

where γ
(β)
i (.) = [γ

(β)
i (s1, .), . . . , γ

(β)
i (sN , .)]T andT

(β)
i = [T

(β)
i (Γs1), . . . ,T

(β)
i (ΓsN )]

T .
Thanks to Proposition 3.1.1, by applying twice the well known formula for
matrix geometric series:

n−1∑

k=0

[
βP∗(β)

]k
=
[
I− βP∗(β)

]−1 [
I−

[
βP∗(β)

]n]
,

we can reformulate Property 7 as

{[
I−

[
βP∗(β)

]n]∑
i∈ΛT

(β)
i ≥

[
I−

[
βP∗(β)

]n]
v(β)(Λ,Γ), ∀Λ ⊂ P

∑
i∈P T

(β)
i = v(β)(P,Γ).

(3.20)
Since the matrix I − [βP∗(β)]n is invertible for any n ∈ N, then we can
equivalently rewrite (3.20) as





∑
i∈Λ T̃

(β,n)

i ≥ ṽ(β,n)(Λ,Γ), ∀Λ ⊂ P
∑

i∈P T̃
(β,n)

i = ṽ(β,n)(P,Γ)
(3.21)

where

T̃
(β,n)

i =
[
I−

[
βP∗(β)

]n]
T

(β)
i .

Since the relations in the systems of inequalities in (3.21) are component-
wise, for the Bondareva-Shapley Theorem (Bondareva, 1963 [22]; Shapley
1967, [83]) the thesis is proven.

The reader should notice that, in the limit for n → ∞, the result of
Theorem 3.1.12 coincides (component-wisely) with the Bondareva-Shapley
Theorem for static cooperative games.

Next we show an intuitive result which reinforces the importance of the
single step cooperation maintenance property. If an MDP-CPDP satisfies
the n-tuple step property for n = 1, then it also fulfills it for all integers n.
In this case, for any coalition, the worst decision between defecting at the
current stage and at any future stage happens to be the former one.

Theorem 3.1.13. Let β ∈ [0; 1). If the MDP-CPDP γ(β)(.,T) satisfies the
single step cooperation maintenance property, then it satisfies the n-tuple
step cooperation maintenance property, for all n > 1.
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Proof. Since γ(β)(.,T) satisfies the single step cooperation maintenance prop-
erty, then we can write
{
βP∗(β)

[∑
i∈ΛT

(β)
i − v(β)(Λ,Γ)

]
≥ ∑

i∈Λ T
(β)
i − v(β)(Λ,Γ), ∀Λ ⊂ P

∑
i∈P T

(β)
i = v(β)(P,Γ).

(3.22)
By iteratively left multiplying by the nonnegative matrix βP∗(β) both sides
of the first expression in (3.22), then we obtain for each coalition Λ ⊂ P:

∑

i∈Λ

T
(β)
i − v(β)(Λ,Γ) ≤ βP∗(β)

[
∑

i∈Λ

T
(β)
i − v(β)(Λ,Γ)

]
≤

[
βP∗(β)

]2
[
∑

i∈Λ

T
(β)
i − v(β)(Λ,Γ)

]
≤ . . .

Hence, the thesis is proven.

Cooperation Maintaining solution

In the following we prove that if an MDP-CPDP γ(β) fulfills the single step
cooperation maintenance property, then the discounted sum of allocations
for each player, when s is the initial state, belongs to the Core of the game

Γs, i.e. T
(β)

(Γs) ∈ Co(β)(Γs), for all s ∈ S.
Corollary 3.1.14. Set β ∈ [0; 1). If an MDP-CPDP γ(β)(.,T) satisfies the
single step cooperation maintenance property, then

E


∑

t≥0

βtγ(β)(St)
∣∣S0 = s


 ∈ Co(β)(Γs), ∀ s ∈ S. (3.23)

Proof. Since γ(β) satisfies Property 6, then (3.20) is verified, with n = 1. By
left multiplying each set of inequalities in (3.20) by the nonnegative matrix
(I− βP∗(β))−1, we obtain the following expressions:

{∑
i∈ΛT

(β)
i ≤ v(β)(Λ,Γ), ∀Λ ⊂ P,

∑
i∈P T

(β)
i = v(β)(P,Γ).

(3.24)

Thanks to Theorem 3.1.4, we can say that the relations in (3.24) are equiv-
alent to (3.23), hence the thesis is proven.

Interestingly, Corollary 3.1.14 suggests that the cooperation maintenance
property might be considered as a refinement of the concept of the Core of
a long run game. In Section 3.1.7 we will show that it is actually a proper
refinement. Therefore, it is worth coining a new terminal cooperative solu-
tion for cooperative MDPs, that we dub Cooperation Maintaining solution,
grounded on the cooperation maintenance property.
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Definition 8 (Cooperation Maintaining solution). Let β ∈ [0; 1). The Co-
operation Maintaining solution CM(β)(Γ) is the set of long run allocations
{xi ∈ R

N}i=1,...,P such that

{[
I− βP∗(β)

]∑
i∈Λ xi ≥

[
I− βP∗(β)

]
v(β)(Λ,Γ), ∀Λ ⊂ P∑

i∈P x
(β)
i = v(β)(P,Γ).

We point out that a classic terminal cooperative solution, such as Core,
Shapley value etc., can be defined just for a specific a long run game Γs, for
some s ∈ S, by computing the coalition values v(β)(.,Γs). Therefore, a classic
terminal solution is a vector in R

P . Instead, the Cooperation Maintaining
solution involves the computation of all coalition values v(β)(.,Γs), for all
s ∈ S, and a solution point is a collection of P vectors belonging to R

N .
Of course, a Cooperation Maintaining solution point can be expressed as a
collection of N vectors in R

P , and either of the two definitions can be used,
at one’s convenience.

By collecting the results of this section, we enumerate the properties of
the Cooperation Maintaining solution in the following Corollaries.

Corollary 3.1.15. The Cooperation Maintaining solution CM(β)(Γ) is a

nonempty set if and only if the modified coalition values {ṽ(β,1)
k (Λ,Γ)}Λ⊆P ,

defined as in (3.18), are balanced, for k = 1, . . . , N .

Corollary 3.1.16. Let us assume that CM(β)(Γ) is nonempty. Then ∪s∈ST
(β)

(Γs) ∈
CM(β)(Γ) if and only if the MDP-CPDP γ(β)(.,T) satisfies the n-tuple step
cooperation maintenance property, for all n ∈ N.

Corollary 3.1.17. For all β ∈ [0, 1), CM(β)(Γ) ⊆ ∪s∈SCo(β)(Γs).

The Cooperation Maintaining solution is a proper refinement of
the Core

It is natural to ask whether the converse of Corollary 3.1.17 is true, i.e.
whether trivially CM(β)(Γ) ≡ ∪s∈SCo(β)(Γs) or the Cooperation maintain-
ing concept is a proper refinement of the Core. In this section we will show

that CM(β)(Γ) 6= ∪s∈SCo(β)(Γs), by finding an allocation T
(β)

such that

T
(β)

(Γs) ∈ Co(β)(Γs) for all s ∈ S, but ∪s∈ST
(β)

(Γs) /∈ CM(β)(Γs). Hence,
the Cooperation maintaining solution is a proper refinement of the Core
solution concept for cooperative MDPs.

Let us devise the counterexample. We consider a cooperative MDP with
two players (P = 2), four states (N = 4), and with perfect information, i.e.
in each state at most one player has more than one action available. Player
1 controls states (s1, s2), and the remaining states (s3, s4) are controlled by
player 2. Let the discount factor β = 0.8. The immediate rewards for each
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player and the transition probabilities for each state/action pair are shown
in Table 3.1.7.

(s, a) r1 r2 p(s1|s, a) p(s2|s, a) p(s3|s, a) p(s4|s, a)

pl. 1

(s1,a1) 1 3 0.1 0.4 0.1 0.4
(s1,a2) 2 1 0.4 0.1 0.1 0.3
(s1,a3) 1 0 0.4 0.2 0.4 0.1
(s2,a4) 2 1 0.1 0 0.4 0.4
(s2,a5) 3 1 0.2 0.2 0.2 0.5
(s2,a6) 4 3 0.2 0 0.2 0.3

pl. 2

(s3,a7) 5 1 0.3 0.6 0.4 0.1
(s3,a8) 1 3 0.3 0.4 0.2 0
(s3,a9) 2 6 0.3 0.3 0.1 0
(s4,a10) 0 1 0.5 0 0.1 0.1
(s4,a11) 2 2 0.1 0.3 0.5 0.2
(s4,a12) 3 0 0.1 0.5 0.3 0.6

Table 3.1: Immediate rewards and transition probabilities for each player,
state, and strategy.

In this case, the vector values of the coalitions {1}, {2} and P = {1, 2},
rounded off to the second decimal, are

v(0.8)({1}) ≈




8.73
10.03
7.34
7.16


 , v(0.8)({2}) ≈




9.57
8.65
10.93
11.23


 , v(0.8)({1, 2}) ≈




33.08
30.78
33.77
30.83


 .

where for simplicity of notation we write v(β)(.) instead of v(β)(.,Γ). Since
the coalition values are component-wisely superadditive by construction,
then Co(0.8)(Γs) for the two-player case always exists, for all s ∈ S. Let us
select:

T
(0.8)
1 = v(0.8)({1}) +




0.7 0 0 0
0 0.4 0 0
0 0 0.2 0
0 0 0 1



[
v(0.8)({1, 2}) − [v(0.8)({1}) + v(0.8)({2})]

]

T
(0.8)
2 = v(0.8)({2}) +




0.3 0 0 0
0 0.6 0 0
0 0 0.8 0
0 0 0 0



[
v(0.8)({1, 2}) − [v(0.8)({1}) + v(0.8)({2})]

]
.

Thus, we obtain

T
(0.8)
1 ≈

[
19.07 14.87 10.44 19.60

]T

T
(0.8)
2 ≈

[
14.01 15.91 23.32 11.23

]T
.
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We find that:

T̃
(0.8)

1 (s2) ≈ 2.92 < ṽ
(0.8,1)
2 ({1}) ≈ 3.65

T̃
(0.8)

1 (s3) ≈ −0.75 < ṽ
(0.8,1)
3 ({1}) ≈ 0.51

T̃
(0.8)

2 (s1) ≈ 0.48 < ṽ
(0.8,1)
1 ({2}) ≈ 1.61

T̃
(0.8)

2 (s4) ≈ 0.90 < ṽ
(0.8,1)
4 ({2}) ≈ 3.00.

Therefore, the converse of Corollary 3.1.17 is not true,CM(β)(Γ) 6= ∪s∈SCo(β)(Γs),
and the Cooperation Maintaining solution is a proper refinement of the Core.
On the other hand, it is interesting to observe that in this example, by ran-

domly generating vectors T
(0.8)

(Γs) ∈ Co(0.8)(Γs), in about the 99.45% of

the cases T
(0.8)

(Γs) ∈ CM(0.8)(Γs) as well, for all s ∈ S.

3.1.8 Strictly convex static games

In the same spirit of Section 3.1.6, we now show that the sole strict convexity
Condition 2 on the static games ensures the existence of an MDP-CPDP
satisfying the cooperation maintenance property for all discount factors β
small enough. As in Section 3.1.6, we assume that Condition 1 holds, i.e.
the coalition values are computed ‘a la von Neumann and Morgenstern.

Theorem 3.1.18. Suppose that Conditions 1,2 hold. Then, γ(β)(.,Sh) sat-
isfies the single step cooperation maintenance property for all β close enough
to 0.

Proof. Thanks to the linearity property of coalition values (see Proposition
3.1.1) we can reformulate Property 6 as
∑

i∈Λ

γ
(β)
i (s,Sh) ≥

∑

s′∈S

[
δs,s′ − βp(s′|s, f (β)∗P )

]
v(β)(Λ,Γs′), ∀Λ ⊂ P, s ∈ S.

From (3.9), considering T ≡ Sh,
∑

i∈Λ

γ
(β)
i (s,Sh) =

∑

s′∈S

[
δs,s′ − βp(s′|s, f (β)∗P )

]∑

i∈Λ

Sh(β)i (Γs′).

By hypothesis, for all s ∈ S the Shapley value Sh(Ωs) = Sh(0)(Γs) belongs
to the strict Core sCo(Ωs) for all β sufficiently close to 0. Hence, by right
continuity of the Shapley value and of coalition values in β = 0 (see proof
of Lemma 3.1.9), we conclude that, for all β sufficiently close to 0,

∑

s′∈S

[
δs,s′ − βp(s′|s, f∗P)

] [∑

i∈Λ

Sh(β)i (Γs′)− v(β)(Λ,Γs′)

]
≥ 0, ∀ s ∈ S,

where f∗P is the optimal strategy for grand coalition for all β sufficiently
small, as in (3.14). Hence, the thesis is proven.
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3.1.9 Transition probabilities not depending on the actions

In this final section we deal with a special case of our model, entailing that
the Markov process among the states is endogenous, i.e. players’ strate-
gies do not influence the transition probabilities among the states. This is
formalized as follows.

Condition 3. The probabilities of transition among the states do not depend
on the players’ actions, i.e. p(s′|s, a1, . . . , aP ) = p(s′|s), for all ai ∈ Ai(s)
and for each s, s′ ∈ S.

As in Sections 3.1.6 and 3.1.8, we consider the static games {Ωs}s to
possess transferable utilities {v(Λ,Ωs)}s∈S,Λ⊆P . Nevertheless, we no longer
impose the max-min Condition 1 on the coalition values. This model is
equivalent to the one of Predtetchinski (2007, [75]), except for the TU as-
sumption.
Now we show that, under Condition 3, the allocation problem simplifies
considerably. In fact, the balancedness of each static game is a sufficient
condition to ensure the existence of an MDP-CPDP satisfying Properties 5,
6, and 7.

Theorem 3.1.19. Suppose that the static games {Ωs}s∈S are balanced.
Then, for all β ∈ [0; 1), there exists an MDP-CPDP γ(β)(.,T) such that
the following properties are jointly met:

i) T
(β)

(Γs) ∈ Co(β)(Γs), for all s ∈ S;

ii) γ(β)(.,T) fulfills the greedy player satisfaction property;

iii) ∪s∈ST
(β)

(Γs) ∈ CM(β)(Γ), i.e. γ(β)(.,T) fulfills the n-tuple step co-
operation maintenance property, for n ∈ N.

Proof. From the hypothesis, there exists {γ(β)
i ∈ R

N}i=1,...,P such that

{∑
i∈Λ γ

(β)
i ≥ v(Λ,Ω) ∀Λ ⊂ P∑

i∈P γ
(β)
i = v(P,Ω).

(3.25)

From the linearity property of coalition values (see Proposition 3.1.1) we
claim that

v(β)(Λ,Γ) =
[
I− βP

]−1
v(Λ,Ω) ∀Λ ⊆ P, (3.26)

where v(Λ,Ω) := [v(Λ,Ωs1), . . . , v(Λ,ΩsN )]
T . Thus, by left multiplying the

expressions in (3.25) by the nonnegative matrix (I − βP)−1 we obtain

{∑
i∈ΛTi ≥ v(β)(Λ,Γ) ∀Λ ⊂ P∑
i∈P Ti = v(β)(P,Γ)
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Hence, i) and ii) are proven by the construction of γ(β)(.,T). By plugging
(3.26) in (3.25), we can write

{∑
i∈Λ γ

(β)
i ≥

[
I− βP

]
v(β)(Λ,Γ) ∀Λ ⊂ P∑

i∈P γ
(β)
i =

[
I− βP

]
v(β)(P,Γ).

which coincides with the definition of the single step cooperation mainte-
nance property. For Theorem 3.1.13, iii) is proven. Thus the thesis fol-
lows.

Not surprisingly, Condition 3 simplifies considerably the allocation pro-
cedure issue at hand. Indeed, it is sufficient to prove the balancedness of
the static games to ensure both the cooperation maintenance property and
the greedy players satisfaction property. We recall that, in the general case
in which the transition probabilities do depend on the players’ actions, the
hypothesis of stage-wise balancedness does not even imply property ii) of
Theorem 3.1.19 for β sufficiently high, as pointed out in Section 3.1.6.
Moreover, Theorem 3.1.19 suggests that, under Condition 3 and if the static
games are balanced, it is convenient to devise a stage-wise allocation in a
bottom-up fashion, i.e. by first allocating γ(β)(s) ∈ Co(Ωs) in each state s,

and then computing the terminal solution T
(β)

, which turns out to belong
to Co(β)(Γs), in all states.

We also remark that the converse of property i) of Theorem 3.1.19 is not

true. Indeed, it is possible to find a terminal cooperative solution T
(β)

be-
longing to the Core of the long run games Γs, for all s ∈ S, whose associated
MDP-CPDP γ(β)(.,T) lies outside the Core of at least one static games Ωs.

We conclude by providing a result for the Shapley value allocation pro-
cedure. The proof follows straightforward from Corollary 3.1.3 and equation
(3.26).

Corollary 3.1.20. Let β ∈ [0; 1). Let T
(β)

(Γs) ∈ R
P be a terminal cooper-

ative solution, for all s ∈ S. Under Condition 3, γ(β)(s,T) = Sh(Ωs), for

all s ∈ S, if and only if T
(β)

(Γs) = Sh(β)(Γs), for all s ∈ S.

3.1.10 Conclusions

This paper deals with Cooperative Markov Decision Processes (MDPs), in
which sub-coalition of players may form throughout the game. Thus it is
crucial to enforce at the beginning of the game an agreement that no player
has interest to breach at any time step. Hence we proposed a payoff allo-
cation procedure, called MDP-CPDP, distributing a cooperative solution,
associated with the long run game, in each state of the MDP. Such an
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MDP-CPDP is the only stationary allocation fulfilling a terminal fairness
property, it is stage-wise efficient, and it is time consistent, i.e. the agree-
ment stipulated at the beginning of the game holds throughout the game.
We found sufficient conditions under which the MDP-CPDP also contents
greedy players, having a myopic perspective of the game, for all discount
factors sufficiently small. We studied a cooperation maintenance property,
which is crucial since it enforces the cohesiveness of the grand coalition
throughout the game. This property allowed us to define a new cooperative
solution, dubbed Cooperation Maintaining solution, which is a refinement
of the concept of Core for MDPs. We finally considered a simpler model
with an endogenous Markov chain, in which the MDP-CPDP satisfies all
the cited properties under more relaxed constraints.
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3.2 Dynamic Rate Allocation in Markovian Quasi-
Static Multiple Access Channels

We deal with multiple access channels in which the channel coefficients follow
a quasi-static Markov process on a finite set of states. In the corresponding
MDP model, the transition probabilities among the (channel) states do not
depend on the players (users). Hence, under this perspective, the model
is simpler than the one in Section 3.1. On the other hand, the rewards
(rates) cannot be distributed in any manner in each state, but only within
a feasibility (capacity) region. In other words, we drop the TU assumption
of Section 3.1 and we deal with Non Transferable Utility (NTU) games.
We first show how to allocate the rates in a global optimal fashion, in each
state of the process. We give a sufficient condition under which the optimal
rates adhere to some fairness criteria, holding in a time consistent fashion.
Then, we borrow two concepts from dynamic cooperative game theory, i.e.
the Time Consistent Core and the Cooperation Maintaining sets, which
measure users’ satisfaction with the assigned rate. We show that the sets of
rates fulfilling these properties coincide, and they also coincide with the set
of global optimal rate allocations.

3.2.1 Introduction

The concepts of user fairness and satisfaction have received significant at-
tention in previous years. These notions will play an increasingly crucial role
in future networks, due to the paradigm shift that we are witnessing, from
fully centralized with dumb terminals to distributed networks with rational
users able to pool resources with each other.
In the literature, the notion of fair and satisfactory rate allocation has been
dealt with under manifold perspectives in static Gaussian or ergodically fad-
ing Multiple Access Channels (MAC). In (Shum and Sung, 2006 [86]), the
fairness of a rate allocation in a Gaussian MAC is related to the economical
concept of Lorenz order, used for measuring disparity in income distribu-
tions. Such fair allocation always exists, it is Pareto optimal, and also
solution of a Nash bargaining problem with zero disagreement pay-off allo-
cation. In the following (Shum and Sung, 2006 [87]), the authors show the
existence of a unique rate allocation which is max-min and proportional fair.
The results in [86, 87] are extended to the general framework of α-fairness
(Mo and Walrand, 2000 [62]) in (Altman et al., 2009 [5]). For MAC’s with
polymatroid regions, all α-fair rate allocations collapse into a single point,
which is max-min and proportional fair, too. An analysis of rate allocations
in the context of constrained games points out that the normal Nash equi-
librium (Rosen, 1965 [79]) also coincides with the α-fair and Pareto optimal
allocations.
On the other hand, the issue of users satisfaction is addressed by Cooper-
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ative Game Theory (CGT) with non-transferable utility (NTU) (see Peleg
and Sudhölter, 2007 [69] for an overview), which provides powerful tools to
derive efficient and stable allocations in a setting in which the users can coop-
erate to reach a common goal. In (Madiman, 2008 [54]), a Gaussian MAC is
studied with an approach not strictly game-theoretical, but some tools bor-
rowed from CGT are utilized to characterize the capacity region. In (La and
Anantharam, 2004 [50]), the authors expressed the rate allocation problem
in static Gaussian MAC with jamming in a cooperative game-theoretical
setting.They found a satisfactory rate allocation fulfilling the newly intro-
duced concept of envy-free. The envy-free allocation exists, is unique and
Pareto optimal, but in general it does not coincide with the α-fair solution.
In this contribution we study and extend for the first time the concepts
of optimal, fair, and satisfactory rate allocations to a dynamic scenario,
described by a Gaussian MAC where the channel evolves quasi-statically,
according to a Homogeneous Markov Chain (HMC) on a finite state space.
The structure of the paper ramifies into two main sections. The former is
Section 3.2.3, in which we discuss the design of optimal and fair allocations
in the dynamic process. The latter is Section 3.2.4, in which we find the
rate allocations which are satisfactory throughout the process, according
to a Dynamic Cooperative Game Theory (DCGT) formulation. We study
a bottom-up (Section 3.2.3) and a top-down procedure (Section 3.2.3) to
allocate a global optimal rate in each state of the HMC. The former pre-
scribes to allocate first the static allocations and derive next the long-run
ones; conversely, the latter suggests to select first the long-run rate alloca-
tions. Though the top-down procedure would be more useful since the user
have a long-run perspective, it is not always feasible, and we offer a remedy
to this. In Section 3.2.4 we provide a sufficient condition under which it
there exists a rate allocation which is fair, i.e. max-min, proportional, and
α-fair, both state-wisely and in the long-run process. Most importantly, the
fairness property of such allocation is Time Consistent, i.e. it is fair through-
out the process, from each of its intermediate steps onwards. Conversely,
a fair allocation always exists in the static case (Altman et al., 2009 [5]),
(Maddah-Ali, 2009 [53]). In Section 3.2.4 we introduce a game formulation
with jamming users similar to the one in (La and Anantharam, 2004 [50]),
but in a dynamic scenario. We then characterize the set of global optimal
allocations as satisfactory too, since it coincides with the set of rates for
which two crucial DCGT properties hold. These properties are the (Time
Consistent) Core, introduced in (Petrosjan, 1977 [72]), and the Cooperation
Maintenance property (Mazalov and Rettieva, 2010 [59]). Such concepts
formulate in two different, but equally appealing, manners the concept for
which all users should find the allocation, in a sense, acceptable throughout
the game.
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3.2.2 System Model

We consider a wireless system in which K terminals attempt to send infor-
mation to a single receiver or base station. Let P = {1, . . . ,K} be the set
of all users. Each user k has a power constraint Pk. We assume a quasi-
static channel, i.e. the channel coefficients can be considered constant for
the whole duration of a codeword. Thus, the t-th signal block received by
the unique receiver, for t ∈ N0, can be written as

y[t] =
K∑

k=1

h(k)[t]x(k)[t] +w[t]

where x(k)[t] is the codeword of user k, h(k)[t] is the complex channel co-
efficient for user k at time step t, and w[t] is zero mean white Gaussian
noise with variance N0. We assume that the set of channel coefficients
{h(1), h(2), . . . , h(K)} is finite and it follows a discrete time Homogeneous
Markov chain (HMC), which can change state at every new codeword. In
other words, if St is the channel state at time step t, where

St :=
[
h(1)[t], . . . , h(K)[t]

]
,

then the random process {St, t ≥ 0} is a HMC. We define S as the set
of all the N possible states of the HMC. Let P be its N -by-N transition
probability matrix, such that

Pi,j = prob (St+1 = sj |St = si) , ∀ t ≥ 0, si, sj ∈ S.

We point out that the codeword length is supposed to be very long, such
that the conditions of applicability of the Shannon Capacity (i.e. infinite
codeword) are practically satisfied. This assumption is widely applied in
quasi-static channels (see e.g. Katz and Shamai, 2005 [44]).

Markovian feasibility region

In each channel state, we consider a Gaussian MAC scenario, in which K
users communicate with a single receiver. By relying on the classic quasi-
static approximation assumption (see e.g. Katz and Shamai, 2005 [44]),
we can compute the capacity rate region for all users in state s as the
polymatroidR(P, s) with rank function g(P) (Tse and Viswanath, 2004 [94]):

R(P, s) =

{
r ∈ R

K :
∑

k∈T

rk ≤ g(P)(T , s), ∀ T ⊆ P
}

g(P)(T , s) := C

(∑

k∈T

|h(k)(s)|2Pk, N0

)
, ∀ T ⊆ P,
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where C(a, b) = log2(1 + a/b). When considering the channel dynamics,
an HMC evolves on a finite set of channel states S = {s1, . . . , sN}. Since
we consider the channel to be constant during a codeword, the transition
among states occurs at the end of each coherence period of the channel.
We allocate a rate to each user in each of the state of the Markov chain. We
assume that the rate assigned in state at time t, St ∈ S, depends only on
the value of St, and not on the past history of state/allocations up to time
t. In this sense, we say that the dynamic allocation is stationary, and we
call rk(s) the rate assigned to user k in state s. We also assume that the
length of the communication is finite, but of unknown duration. Typically
(e.g. Section 3.1), this situation is dealt with by considering a probability
1 − β that, at any time step, the communication terminates. Then, the
expected sum of the rates assigned to user k over the sequence of channel
states equals

rk(Γs) = E

(
∞∑

t=0

βt rk(St)

)
, (3.27)

where Γs is the Markov process starting at time 0 in state s. We anticipate
that the choice of β is irrelevant to all our results. By recalling the relation∑

t≥0 β
tPt = (I−βP)−1, we can write (3.27) in the following matricial form:



r(Γs1)

...
r(ΓsN )


 = (I− βP)−1



r(s1)
...

r(sN )


 , (3.28)

where r(s) := [r1(s), r2(s), . . . , rK(s)] and r(Γs) is defined similarly. By
defining Ψ := (I−βP)−1 and utilizing a compact matrix notation, we rewrite
(3.28) as

[r(Γs)]s∈S = Ψ [r(s)]s∈S (3.29)

Remark 7. Expression (3.29) defines an application from the set of sta-
tionary state-wise rate allocations to the set of feasible long-run rates. In
Section 3.2.3 we will show that, in general, the application is not invert-
ible, since multiplying a set of long-run allocations by Ψ−1 does not always
produce feasible state-wise allocations. �

It is natural to define the long-run rate region R(P,Γs) as the set of all
rates r(Γs) that can be written as the long-run expected sum of stationary
state-wise rate allocations, as in (3.28). We now give a convenient expres-
sion for R(P,Γs), which follows from (Herzog and Hibi, 2010 [39]), p. 241,
Theorem 12.1.5, claiming that the sum of polymatroids is still a polyma-
troids whose rank function is the sum of the rank functions of the summands.
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Lemma 3.2.1. For any sj ∈ S, the long-run rate feasibility region R(P,Γsj )
is a polymatroid with rank function:

g(P)(T ,Γsj) =

N∑

n=1

νn(sj) g(P)(T , sn), ∀ T ⊆ P,

where ν(sj) is the j-th row of the matrix Ψ. �

Relevance to LTE systems

In LTE systems, the statistics of the channel are estimated at regular in-
tervals and used for resource allocation. Under the common assumption
of fast fading Gaussian channel in additive Gaussian noise, in each period
t the state of the HMC is given by the channel distribution, completely
characterized by its second-order statistics. The rate region in absence of
instantaneous knowledge of the channel at the transmitter is still a polyma-
troid, with rank function Eh[g(P)(T , s)], as shown in [80]. Since the results
presented in the following strongly rely on the polymatroid structure of the
rate region in each state of the HMC, then they also hold for LTE systems.
Hence, our general results in particular address the issue of allocating the
rate to users in a MAC LTE system at each feed-back time interval, so that
optimality, fairness, and the users’ satisfaction is preserved throughout the
communication.

3.2.3 Optimal and fair rate allocation design

In this section we address the issue of allocating the rate to all users during
the transmission process, in each state of the channel Markov chain. For
a classic result on polymatroids (see e.g. Herzog and Hibi, 2010 [39]), we
know that the dominant facet, or simply facet, M(R(P, s)) of the rate region
R(P, s) is maximum sum-rate, i.e.

M(P, s) := M(R(P, s)) = argmax
r∈R(P,s)

∑

k∈P

rk. (3.30)

Similarly, the facet M(P,Γs) is maximum sum-rate in the long-run process
Γs. Hence, the global optimum rate design solution would be that both the
state-wise and the long-run rate allocations belong to the facets M(P, s)
and M(P,Γs), for all s ∈ S. So, we will restrict our focus on the allocations
inside M, defined in the following.

Definition 10 (M). M is the set of stationary state-wise allocations belong-
ing to the dominant facets of both state-wise and long-run feasibility regions,
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i.e.

M :=
{
{r(s)}s∈S : r(s) ∈ M(P, s),

r(Γs) ∈ M(P,Γs), ∀ s ∈ S
}
,

where [r(Γs)]s∈S = Ψ [r(s)]s∈S . �

Now, we will investigate two different approaches to select an allocation
in M. The first, called bottom-up procedure (Section 3.2.3), is the most nat-
ural one, and it prescribes to select a set of state-wise allocations inM(P, s),
for all s ∈ S, and then to derive the set of associated long-run allocations
via multiplication by Ψ. Conversely, the second approach, dubbed top-down
(Section 3.2.3), would be more useful, but unfortunately it is not always fea-
sible. It suggests to select first the long-run allocations, in M(P,Γs), for
all s ∈ S, and then to multiply by Ψ−1 to obtain the state-wise allocations.
Clearly, the choice over the adopted procedure depends on the priority that
the designer gives to the state-wise/long-run allocation. By adopting the
top-down procedure, one embraces a long-run perspective of the process, by
preferring to adhere to a specific fairness selection criterion in the long-run
process, rather than in the state-wise one. Clearly, the best scenario would
consist in being fair in each state, in the long-run process, and from each
intermediate step onwards. A sufficient condition to attain this will be pro-
vided in Section 3.2.3.

BOTTOM-UP DESIGN: From single-stage to long-run allocations

In this section we investigate the feasibility of our first procedure to select an
allocation in M. It is called bottom-up rate allocation approach, and it con-
sists in selecting a set of stage-wise allocations belonging to the dominant
facet of each state-wise feasibility region. Then, we need to compute the
respective long-run allocations and check whether they belong to the domi-
nant facets of the feasibility region of the respective long-run processes. By
a linearity argument, it is easy to see that the facet M(P,Γs) is obtained
as the Minkowski sum

∑N
n=1 νn(s)M(P, sn). Therefore, if the state-wise

allocations all belong to the dominant facet in the respective states, then
their expected long-run sum also lies in the dominant facet of the long-run
process. Then, the bottom-up procedure always produces stationary alloca-
tions belonging to M.

Proposition 3.2.2 (Bottom-up allocation procedure). Select s set of state-
wise rate allocations {r(s) ∈ M(P, s)}s∈S . Then, their associated long-
run allocations [r(Γs)]s∈S = Ψ[r(s)]s∈S belong to the respective long-run
dominant facets, i.e. r(Γs) ∈ M(P,Γs), for all s ∈ S. �
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Then, the first positive result of Proposition 3.2.2 is that there exist
allocations belonging to the dominant facet of both state-wise and long-run
processes, jointly, i.e. M is non-empty. Secondly, it is easy to find them,
since it suffices to select a rate allocation on the dominant facet of R(P, s),
for all s ∈ S. Finally, as a by-product of Proposition 3.2.2, we are allowed
to simplify the definition of M as:

M ≡
{
{r(s)}s∈S s.t. r(s) ∈ M(P, s), ∀ s ∈ S

}
.

TOP-DOWN DESIGN: From long-run to single-stage allocations

The bottom-up procedure always produces feasible allocations, but it is not
what really concerns us. Indeed, the users are endowed with a long-term
perspective of the communication process, hence one may wish to select first
a set of long-run allocations in {M(P,Γs)}s∈S which adhere to a certain cri-
terion in the respective long-run processes (e.g. a fairness criterion, as in
Section 3.2.3). Then, the state-wise rate allocations {r(s)}s∈S are obtained
via multiplication by Ψ−1. Unfortunately this method, dubbed top-down,
does not always produces feasible stationary state-wise allocations. We in-
terpret this fact by saying that the linear application defined by Ψ in (3.29)
is not always invertible in the space of feasible stationary allocations. In
Example 3.2.1 we show an instance of the described scenario.

Example 3.2.1. Set β = 0.8, N0 = 0.1W . Consider two users, with power
constraints P1 = P2 = 2W . Consider two states. In s1, |h(1)(s1)|2 = 0.1,
|h(2)(s1)|2 = 0.2. In s2, |h(1)(s2)|2 = 0.15, |h(2)(s2)|2 = 0.15. The transition
probability matrix is P = [0.8 0.2; 0.3 0.7]. Choose the optimal allocations
in the long-run process

r(Γs1) = [0.5843; 1.1109] ∈ M(P,Γs1) bits/s/Hz

r(Γs2) = [0.8270; 0.8682] ∈ M(P,Γs2) bits/s/Hz.

The corresponding state-wise allocations, through Ψ−1, are both not feasible,
because

r(s1) ∼= [0.0780; 0.2610] /∈ R(P, s1)

r(s2) ∼= [0.2236; 0.1154] /∈ R(P, s2) �

Remark 8. One may argue that there is no need to select the whole set of
long-run allocations {r(Γs)}s∈S , but only the one corresponding to the actual
initial state. Indeed, since the channel state S0 at time 0 is known, one could
select r(ΓS0) according to the desired criterion and then compute the state-
wise allocations by choosing one solutions among the infinite possible of the
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equation

r(ΓS0) =

N∑

n=1

νn(S0) r(sn).

Finally, the remaining long-run allocations are automatically computed by
re-inverting the relation, as Ψ[r(s)]s∈S . Of course, in this way there is no
control over the long-run allocations r(Γs), with s 6= S0.
On the other hand, thanks to the stationarity of the pay-off allocation, the
long-run sub-process starting at time T > 0 is precisely the βT -scaled version
of ΓST

, i.e.

E

(
∞∑

t=T

βtr(St)
∣∣∣ h(T )

)
= βT r(ΓST

),

where h(T ) is the history of state/allocations from time 0 up to time T .
Therefore, jointly choosing the long-run allocations r(Γs) for all states s ∈ S
is equivalent to assign the long-run allocations that each user obtains in each
sub-process from any intermediate time step T ≥ 0 onwards. �
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Figure 3.2: Example 3.2.1. r(Γs) ∈ M(P,Γs), for s = s1, s2, but r(s) /∈
R(P, s), for s = s1, s2, where [r(s)]s∈S = Ψ−1[r(Γs)]s∈S .

Example 3.2.1 seems to discourage a top-down allocation procedure. In-
deed in general, if one chooses a set of long-run allocations, there is no guar-
antee that the allocation is actually feasible, since the associated stationary
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state-wise allocation might be not feasible. Of course, this does not rule out
the possibility to carry out a top-down allocation procedure successfully. In-
deed, in Theorem 3.2.4 we will present a top-down procedure guaranteeing
the feasibility of the associated state-wise rate allocations. Before, let us
introduce a classic result on polymatroids (see Edmonds, 2003 [30]). Let R
be a polymatroid on the ground set {1, . . . ,K}, with rank function g. Let
Π(K) be the set of permutations of {1, . . . ,K}. The facet M(R) has at most
K! extreme points, and each of them has an explicit characterization as a
function of the rank function g. Indeed, w is a vertex of M(R) if and only
if there exists a permutation π of {1, . . . ,K} such that, for all k = 1, . . . ,K,

wk = g({π1, . . . , πk−1, πk})− g({π1, . . . , πk−1}) := wk(π).

Proposition 3.2.3. Let an ≥ 0, for n = 1, . . . , N . Let R1, . . . ,RN be
N polymatroids on the ground set {1, . . . ,K}. Let R =

∑N
n=1 anRn. Let

w(π)(n) be the vertex of the facet M(Rn) associated to the permutation
π ∈ Π(K). Let w(π) be a vertex of M(R). Then,

w(π) =

N∑

n=1

anw(π)(n), ∀π ∈ Π(N). �

Proposition 3.2.3 claims that the vertex of the facet M(R) associated to
the permutation π can be decomposed into the sum of the vertices associ-
ated to the same π of each facet M(Rn), n = 1, . . . , N . Then, our idea is to
choose one set of convex coefficients, valid for any s ∈ S, and to define the
set of long-run allocations {r(Γs) ∈ M(P,Γs)}s∈S as the same convex com-
bination of the vertices of the respective dominant facets. The associated
state-wise allocations are then obtained as the same convex combination
of the vertices of the respective state-wise dominant facets, hence they are
feasible and optimal.

Theorem 3.2.4 (Top-down allocation procedure). Choose a set of convex
coefficients {c(π)}π∈Π(K), such that c(π) ≥ 0 and

∑
π∈Π(K) c(π) = 1. Let

w(π)(Γs) be the vertex of M(P,Γs) associated to the permutation π. Com-
pute the set of long-run allocations as

r(Γs) =
∑

π∈Π(K)

c(π)w(π)(Γs), ∀ s ∈ S.

Then,

[r(s)]s∈S = Ψ−1 [r(Γs)]s∈S

is a set of feasible state-wise rate allocations, and moreover r(s) ∈ M(P, s),
for all s ∈ S. �
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Proof. Let us write



r(s1)
...

r(sN )


 = Ψ−1




∑
π∈Π(K) c(π)w(π)(Γs1)

...∑
π∈Π(K) c(π)w(π)(ΓsN )




=
∑

π∈Π(K)

c(π)Ψ−1



w(π)(Γs1)

...
w(π)(ΓsN )


 .

For Proposition 3.2.3, we can say that



r(s1)
...

r(sN )


 =

∑

π∈Π(K)

c(π)



w(π)(s1)

...
w(π)(sN )


 .

Hence, the thesis is proven.

The top-down allocation procedure provided in Theorem 3.2.4 is not the
only possible of course, but it leads to an intuitive remark. Each vertex
w(π)(s) can be achieved by letting the receiver decode sequentially, in the
reverse order of π, the signals coming from each user in channel state s ∈ S,
and by considering the signals not decoded yet as Gaussian noise (e.g. see
Tse and Viswanath, 2004 [94]). Therefore, any rate allocation on M(P, s)
can be achieved by time sharing such decoding configurations, and the time-
sharing procedure is independent of the state s.
We suggest an interesting future research, which may study how to optimize
the convex coefficients c(π) to make the resulting long-run allocations glob-
ally close to the set of long-run allocations fulfilling a certain criterion, e.g.
the fairness criterion that we will present in the next section.

FAIR ALLOCATION DESIGN: being fair throughout the process

In this section we deal with a fairness criterion to select an allocation rate
inside M. In the static channel case, it is possible to find rate allocations
which are fair, under plenty of different criteria (see the Introduction). In
the dynamic case, the definition of fairness is much more demanding, and
not always there exist allocations fulfilling it. Firstly, we demand an al-
location to be fair in the long-run process, since users are endowed with
a long-term perspective of the transmission process. Then, the top-down
procedure would be best, because it would guarantee the rate allocations to
be fair in the long-run. On the other hand, in Section 3.2.3 we showed that
this approach not always produces feasible stationary rate allocations. Sec-
ondly, we demand that an allocation respects the fairness criterion not only
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from the beginning of the transmission onwards, but throughout it, i.e. it
should be Time Consistent. Thirdly, we wish that the rate allocation is also
fair in each state of the HMC. We will see that these three conditions are
not generally satisfied, however we provide a sufficient condition for them
to hold.

Fairness criteria: a review Let us first introduce the fairness criteria
that we will utilize in the next section. In the literature, three fair alloca-
tions have been extensively studied: α-fair, max-min fair, and proportional
fair allocations. We now provide their general definition, by considering a
general rate feasibility region R.

Definition 11 (max-min fairness). An allocation r(MM) is max-min fair

whenever no user j with rate r
(MM)
j can yield resources to a user i with

r
(MM)
i < r

(MM)
j without violating feasibility in R. �

Definition 12 (α-fairness). Let us assume that each user k possesses a
utility function on rate, u(α)(rk) = r1−α

k /[1−α]. The α-fair allocation r(αF),
with α ≥ 0, is defined as

r(αF) = argmax
r∈R

K∑

k=1

u(α)(rk). �

Definition 13 (proportional fairness). The proportional fair allocation r(PF)

coincides with the α-fair allocation when α → 1, i.e.

r(PF) = argmax
r∈R

K∏

k=1

rk. �

We point out that, in general, the α-fair allocation is also max-min fair
for α ↑ ∞ and proportional fair for α → 1.
If we consider the long-run process Γs, then in Definitions 11, 12, and 13 we
should interpret R ≡ R(P,Γs), while in channel state s, R ≡ R(P, s).
In the special case in which the feasibility region is a polymatroid, which is
our case both in Γs and in state s, for all s ∈ S, then the three fair alloca-
tions coincide.

Theorem 3.2.5 ( [5]). If the feasibility region is a polymatroid R, then
max-min, proportional, and α-fair allocations coincide for all α ≥ 0, and
moreover belong to the facet M(R) i.e.

r(MM) = r(PF) = r(αF) := r(F) ∈ M(R). �
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For Theorem 3.2.5, the three mentioned fair solutions coincide both in
the long-run process Γs and in state s, for all s ∈ S. Therefore, we can
generally refer to them as fair allocations, and we call r(F)(Γs) the fair allo-
cation in the long-run process Γs, and r(F)(s) the fair allocation in state s.
Moreover, a fair allocation belongs to the dominant facet of the associated
feasibility region, hence it is a proper criterion to select a set of allocations
in M.

Fair allocation design Finally, we are ready to deal with the design of
fair rate allocations on quasi-static channels. We will show under which
conditions it is possible to allocate a rate which is fair (i.e. max-min, pro-
portional, and α-fair at the same time) both in each state and in the long-run
process, and which is fair throughout the game, from each intermediate step,
i.e. it is Time Consistent. More formally, we look for a sufficient condition
for which the following holds:

{
Ψ−1 [r(F)(Γs)]s∈S = [r(F)(s)]s∈S
Ψ [r(F)(s)]s∈S = [r(F)(Γs)]s∈S .

(3.31)

We stress that property (3.31) is crucial, mainly for three reasons, that
we list below.

• The top-down procedure may fail, hence if we choose {r(F)(Γs)}s∈S ,
not necessarily it is feasible among the stationary allocations, i.e. in
general it may happen that

∃ s ∈ S : r(s) /∈ R(P, s),

with [r(s)]s∈S = Ψ−1 [r(F)(Γs)]s∈S .

• Though the bottom-up procedure always produces feasible allocations,
if the allocation is fair in each state, then not necessarily it is also fair
in the long-run processes. Indeed, it may happen that

∃ s ∈ S : r(Γs) 6= r(F)(Γs),

with [r(Γs)]s∈S = Ψ [r(F)(s)]s∈S (3.32)

As an example, in Figure 3.3 we show an instance in which (3.32) is
verified.

• Most importantly, if relation (3.31) holds, then the fairness property
of the rate allocation is Time Consistent (see Theorem 3.2.6).

The Time Consistency of fair allocations claims that the fairness criteria
that induces to enforce a certain rate allocation at time 0 should be consis-
tent in time, at steps T > 0 as well. More formally, at each time step T , the
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β-discounted sum of allocations that each user obtains from time T onwards
should be fair in the long-run process ΓST

.

Theorem 3.2.6. If condition (3.31) holds, then the fairness of the station-
ary rate allocation {r(F)(s)}s∈S is Time Consistent, i.e. for all T ∈ N0,

E

(
∞∑

t=T

βtr(F)(St)
∣∣∣ h(T )

)
= βT r(F)(ΓST

),

where h(T ) is the history of states/rate allocations up to time T . �

Proof. Thanks to the stationarity of the rate allocations, we claim

E

(
∞∑

t=T

βtr(F)(St)
∣∣∣ h(T )

)
= E

(
∞∑

t=T

βtr(F)(St)
∣∣∣ ST

)

= βT
E

(
∞∑

t=0

βtr(F)(St+T )
∣∣∣ ST

)

= βT r(F)(ΓST
). (3.33)

where (3.33) comes from condition (3.31). Hence, the thesis is proven.

After presenting the appealing properties of condition (3.31), we wish to
find a sufficient condition for (3.31) to hold. For this purpose, it is useful
to present first an algorithm, first studied in (Maddah-Ali, 2009 [53]), that
produces the fair allocation in a general polymatroid R with rank function
g. Of course, it can be utilized to compute the fair allocation in any state-
wise and long-run process.

Algorithm 3.2.7 ( [53]). Set q := 1. Set P ′ := P, g′ := g.

1) Compute

T ∗
(q) = argmin

T ⊆P ′

g′(T )

|T | , r
(F)
k =

g′(T ∗
(q))

|T ∗
(q)|

, ∀ k ∈ T ∗
(q).

2) If T ∗
(q) = P ′, then stop. The rate allocation rF is fair for R. Otherwise,

set q := q + 1, P ′ := P ′\T ∗
(q),

g′(T ) := g′(T ∪ T ∗
(q))− g′(T ∗

(q)), ∀ T ⊆ P ′,

and return to step 1) . �
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Figure 3.3: Example of situation in (3.32) with two users and two states,
in which the state-wise allocations are fair in the respective channel states
but the relative long-run allocations are not fair in the respective long-run
processes. The allocations indicated with the asterisk are fair, while the
circle describes the actual computed allocations.

Finally, we are ready to show a condition that ensures the existence of a
rate allocation design which is fair both in each state and in every long-run
process, as described in (3.31), and for which the fairness criterion is Time
Consistent, as shown in Theorem 3.2.6.

Theorem 3.2.8 (SC existence fair allocations). Let T (s) = [T ∗
(1)(s),. . . ,T ∗

(q(s))(s)]
be the sequence computed in the iterations of step 1, Algorithm 3.2.7, applied
to channel state s. Suppose that

∃ T = T (s), ∀ s ∈ S,

i.e. T (s) does not depend on s. Then, condition (3.31) holds. �

Proof. At step 1 of the first iteration of Algorithm 3.2.7 applied to the
process Γs, we obtain

T ∗
(1)(Γs) = argmin

T ⊆P

∑N
n=1 νn(s) g(P)(T , sn)

|T | = T ∗
(1).

Hence, we can compute the fair allocation for the set of users T ∗
(1) as r

F
k (Γs) =∑N

n=1 νn(s)r
F
k (sn), for all k ∈ T ∗

(1). Then, at step 2, the update of the rank
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function:

g′(P)(T ,Γs) =

N∑

n=1

νn(s) g
′
(P)(T , sn), ∀ T ⊆ P\T ∗

(1)

preserves the linearity property of the rank function also in the next itera-
tion. Hence, by induction, the thesis is proven.

3.2.4 Optimal and Satisfactory allocations:
A game-theoretical approach

In (3.30) we have defined the set of global optimum rate region M, as the set
of stationary state-wise allocations belonging to the dominant facets of both
state-wise and long-run feasible rate regions. In this section we are going to
provide two further characterizations of M, in cooperative game-theoretical
terms. We will show indeed that M, besides being global optimum, also
“satisfies” all the users throughout the game. Hence, in our case, CGT is
utilized as a mathematical tool which allows us to define and quantify the
users’ satisfaction with the assigned rate allocation.

CORE characterization of M

Generally speaking, Static Cooperative Game Theory (SCGT) with non-
transferable utility (NTU) studies one-shot interactions among different
players who can collaborate with each other by coordinating the respective
strategies. It is assumed that grand coalition P, composed by all the players,
is formed, and the main challenge consists in devising a pay-off allocation
for each player, according to some pre-defined criteria. To this aim, the typ-
ical procedure in SCGT consists in investigating the potential scenario in
which a sub-coalition (or simply, coalition) C ⊂ P of players withdraws from
the grand coalition and no longer coordinates its actions with the excluded
players; then, the set of pay-off allocations that C can earn on its own is
computed (see Peleg and Sudhölter, 2007 [69] for a thorough survey).
Let us then translate these preliminary few concepts into our scenario. We
first consider the static process in state s, that we call static game. For
the static game case we adopt the same model as in (La and Anantharam,
2004 [50]). In our situation, the players are the users, and the grand coali-
tion is the set of transmitting users P. We say that a coalition of users
CJ := P\J ⊂ P forms when its members share the respective codes with
the receiver, which can then decode the signals transmitted by CJ . For us,
the pay-off for a player is the assigned transmission rate. The SCGT litera-
ture provides several ways to compute the set of rate allocations achievable
by each subset of users CJ . One of the most utilized is the max-min method,
originally introduced by von Neumann and Morgenstern (1944) in [96], sug-
gesting that the set of feasible allocations R(CJ , s) should be defined as
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the set of rate allocations that CJ can achieve whatever is the transmission
strategy employed by the remaining user J . Then, we need to take into
account the worst possible scenario for CJ , i.e. when the users in J do not
allow joint decoding and jam the network, and investigate the set of rates
R(CJ , s) that the users in CJ can achieve in this hypothetical worst-case
scenario. When the users in J jam, they sum coherently the respective
signals and transmit with an overall power:

Λ(J , s) =

(
∑

k∈J

|h(k)(s)|
√

Pk

)2

.

In this worst-case scenario, in (La and Anantharam, 2004 [50]) it is shown
that, among CJ , only the users ÂJ whose associated received power level is
high enough to overwhelm the jamming signal can communicate, i.e.

ÂJ (s) :=
{
k ∈ CJ : |h(k)(s)|2Pk > Λ(J , s)

}
.

Then, R(CJ , s) is a polymatroid with rank function (La and Anantharam,
2004 [50]):

g(CJ )(T , s) := C

(∑

k∈T

|h(k)(s)|2P̃k,Λ(J , s) +N0

)
,

where P̃k = Pk for k ∈ ĈJ (s) and P̃k = 0 for all k ∈ CJ \ĈJ (s).
Now, let us consider the feasibility region R(CJ ,Γs) for a coalition CJ in
the long-run process (or game) Γs. Similarly to the static case, it is still
defined in the max-min fashion, as the set of long-run rate allocations that
the users CJ can guarantee, whatever is the transmission strategy adopted
by J , throughout the process. Therefore, we have to consider the worst-case
scenario in which J jams during the whole process Γs and, analogously to
Lemma 3.2.1, we claim that R(CJ ,Γs) is a polymatroid with rank function:

g(CJ )(T ,Γsj) =
N∑

n=1

νn(sj) g(CJ )(T , sn), ∀ T ⊆ CJ .

Our goal is now to further characterize M, and we achieve this via the
definition of the Core set for NTU cooperative games. The Core is the set
of rate allocations that no coalition CJ ⊂ P can improve upon when the
remaining users J jam. Let us define formally the Core in the static game
in state s. We say that a rate allocation for the grand coalition r ∈ R(P, s)
is blocked by the coalition CJ ⊆ P whenever there exists r′ ∈ R(CJ , s) such
that r′k > rk for all k ∈ CJ . In other words, the rate allocation r is unac-
ceptable by the set of users in CJ .
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Definition 14. The Core Co(s) is the set of unblocked rate allocations in
R(P, s).

Remark 9. We can intuitively define the Core as the set of all “acceptable”
rates for all users: indeed, if an allocation does not belong to the Core, at
least a subset of users is dissatisfied with it, because they can all attain a
better rate allocation even when the remaining users do not participate to
the transmission and jam. �

Additionally, please note that an allocation in Co(s) is also not blocked
by the grand coalition P, and since R(P, s) is a polymatroid, it follows that
it is a region with maximum sum-rate, i.e. Co(s) ⊆ M(P, s), for all s ∈ S.

The Core Co(Γs) in the long-run game Γs is defined analogously to the
static case. We remark that it coincides with the set of long-run allocations
that are acceptable for each subset of users at the beginning of the long-run
game. This definition of Co(Γs) relates to SCGT, in which the coalition
structure holds steady throughout the game and players do not change their
preference over the rate allocations over time. This is a näıve perspective
though, since the channel is dynamic. Hence, we demand that a stationary
rate allocations is not only “acceptable” for each coalition at the beginning
of the game, but also throughout the game. This property is called, in
dynamic CGT, Time Consistency of the Core (Petrosjan, 1977 [72]). The
philosophy behind this definition is analogous to the Time Consistency of
Fair allocations, in Theorem 3.2.6. Hence, if the Core property of an allo-
cation is Time Consistent, then at each time step, if any coalition faces the
dilemma “do we withdraw now or we cooperate forever?”, it always prefers
the second option. Therefore, we will focus our attention on the allocations
in Co, defined as follows, and we will prove that Co = M.

Definition 15 (Co). Co is the set of stationary state-wise allocations be-
longing to the Core of each static game, and that belong to the Core of
long-run games in a Time Consistent fashion throughout the game, i.e.

Co :=

{
{r(s)}s∈S : r(s) ∈ Co(s),

E

(
∞∑

t=T

βtr(St)
∣∣∣ h(T )

)
∈ βTCo(ΓST

), ∀T ∈ N0

}
,

where h(T ) be the history of states/rate allocations up to time T . �

Hence, Co is the set of stationary allocations that are maximum sum-
rate, hence optimum for the global network, and that are “acceptable” for
each subset of users, in both static and long-run games, throughout the
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game. Hence, we can already claim that Co ⊆ M. Let us show that
Co = M.

In [50], La and Anatharam computed the Core of the static game by
relying on SCGT with transferable utilities (TU). Their approach is not
completely rigorous, since the rate cannot be shared in any manner among
the users, but only within the capacity region. Nevertheless, NTU coopera-
tive game theory yields the same result as (La and Anantharam, 2004 [50]),
as we show next.

Theorem 3.2.9. The Core Co(s) coincides with the facet M(P, s) of the
feasibility region R(P, s) for the grand coalition. �

Proof. Is is known (e.g. Edmonds, 2003 [30]) that all the points in M(P, s)
solve the linear program maxr∈R(P,s)

∑
k∈P rk. Hence, all the points in

M(P, s) are efficient for P. Moreover, in (La and Anantharam, 2004 [50])
it is shown that, for all r ∈ M(P, s),

∑

k∈CJ

rk ≥ g(CJ )(CJ , s), ∀ CJ ⊂ P.

Hence, we can say that, for all r ∈ M(P, s), there exists no allocation be-
longing to M(CJ , s) that dominates r for coalition CJ . Since any rate allo-
cations belonging to R(CJ , s) is dominated by a rate allocation in M(CJ , s),
then M(P, s) ⊆ Co(s). If r /∈ M(P, s), either it is not feasible or it is not
efficient for P. Then, M(P, s) = Co(s).

In the light of Theorem 3.2.9 and Lemma 3.2.1, we can easily provide an
expression for Co(Γs) as well.

Corollary 3.2.10. The Core Co(Γs) of the long-run game Γs coincides
with the facet M(P,Γs). �

Now, we are ready to prove that M = Co.

Theorem 3.2.11. The set of stationary state-wise rate allocations M co-
incides with Co, i.e. M = Co. �

Proof. We know that Co ⊆ M. We have to prove that M ⊆ Co. For
Theorem 3.2.9, if {r(s)}s∈S ∈ M, then {r(s) ∈ Co(s)}s∈S . Then, we just
need to prove that, if {r(s)}s∈S ∈ M, then the Core is Time Consistent in
the long-run game. Similarly to the proof of Theorem 3.2.6, we claim that
for all T ∈ N0,

E

(
∞∑

t=T

βtr(St)
∣∣∣ h(T )

)
= βT r(ΓST

),
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where [r(Γs)]s∈S = Ψ[r(s)]s∈S is the set of the associated long-run alloca-
tions. Thanks to Proposition 3.2.2, r(ΓST

) ∈ Co(ΓST
). Hence, the thesis is

proven.

Thanks to Theorem 3.2.11, the set of stationary state-wise rate alloca-
tions M gains further significance. Not only M is the maximal sum-rate
region, but it also coincides with the set of rates which are “acceptable”
both in the long-run and in the static games, under the definition of Core.
Moreover, the Core criterion is Time Consistent, hence such rates are ac-
ceptable throughout the game.
In the next section we provide a second characterization of M, based on a
Cooperation Maintenance property.

COOPERATION MAINTENANCE characterization of M

In this section we show that, by exploiting a crucial concept in DCGT,
called Cooperation Maintenance property, we are able to provide a further
characterization to the set M of the maximum sum-rate stationary state-
wise allocations. The property that we are going to define is an adaptation
to our NTU scenario of the Cooperation Maintenance property defined in
(Mazalov and Rettieva, 2010 [59]) and in Section 3.1. It claims that, at each
time step, the maximum sum-rate that coalition CJ expects to obtain if it
withdraws (without any chance of joining back) from the grand coalition in
one step should be not smaller than what CJ obtains if it withdraws (still,
without a second thought) at the current step.

Remark 10. When we say, in a game-theoretical jargon, that a coalition
CJ is enticed to withdraw from the grand coalition, we actually mean that it
is dissatisfied with its assigned rate, because, even in the worst-case scenario
in which J jams, CJ could achieve a better allocation. Hence, like in Section
3.2.4, we will utilize Game Theory as a tool to measure users’ satisfaction
with the assigned rate. �

The set of allocations for which the Cooperation Maintenance property
holds is called CM.

Definition 16 (CM). The set of (first step) Cooperation Maintaining al-
locations CM is the set of stationary state-wise rate allocations {r(s) ∈
M(P, s)}s∈S such that, for all coalitions CJ ⊆ P and at each time step
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T ∈ N0,

∑

k∈CJ

rk(ST )+β
∑

s′∈S

p(s′|ST )
[

max
r(Γs′ )∈R(CJ ,Γs′)

∑

k∈CJ

rk(Γs′)
]
≥

max
r(ΓST

)∈R(CJ ,ΓST
)

∑

k∈CJ

rk(ΓST
). (3.34)

�

The intuition behind the definition of CM is that, if a coalition faces the
dilemma “do we withdraw now or in one step?”, it should prefer the second
option, at any instant. In this way, by induction, no coalition is ever enticed
to withdraw and the grand coalition is cohesive throughout the game.

It follows from Definition 16 that CM ⊆ Co. Also, it is not difficult
to show that, if the (first step) Cooperation Maintenance property holds,
then the n-tuple step Cooperation Maintenance property also holds (see
Section 3.1 for a more general case), i.e. if a coalition faces the dilemma
“do we withdraw now or in n steps?”, it prefers the second option. For
n ↑ ∞, such property suggests that whenever a coalition faces the dilemma
“do we withdraw now or cooperate forever?”, then it prefers to stick with
the grand coalition forever. Not surprisingly, this notion coincides with the
Time Consistency property of the Core that any allocation in M possesses,
as illustrated in Theorem 3.2.11.
We remark that, in more general settings, CM is smaller than the set of the
stationary distributions belonging to the Core of long-run games (see Sec-
tion 3.1). So, the definition of CM requires a “higher level of satisfaction”
for the players than the Core. We now state that actually, in our scenario,
M = CM. Through this result, we provide a second dynamic characteriza-
tion of the set M.

Theorem 3.2.12. The maximum sum-rate set of stationary state-wise al-
locations M coincides with the Cooperation Maintaining set CM, i.e. M =
CM. �

Proof. For Proposition 3.2.2, CM ⊆ M. Conversely, if an allocation {r(s)}s∈S ∈
M, then it also belongs to Co. So,

∑
k∈CJ

rk(s) ≥ g(CJ )(CJ , s), for all
CJ ⊆ P, s ∈ S. Then, thanks to Lemma 3.2.1, we can say that for all
CJ ⊆ P, s ∈ S:

∑

k∈CJ



rk(s1)

...
rk(sN )


 ≥ Ψ−1



g(CJ )(CJ ,Γs1)

...
g(CJ )(CJ ,ΓsN )


 ,

which is an expression equivalent to (3.34). Hence, M ⊆ CM and the thesis
is proven.
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Therefore, in this section we have provided two game-theoretical char-
acterizations for the global optimal set of allocations M, i.e.

M = Co = CM.

Hence, M coincides with the set of rates Co which are acceptable for all
coalitions throughout the game, and with the set of rates CM that make
the grand coalition cohesive at every step of the game.

3.2.5 Conclusions

In this paper we considered a quasi-static Markovian multiple access chan-
nel. We allocate the rate for each user in each channel state. We focus
on the set M of allocations which are maximum sum-rate, both in each
state and in the long run process. In Section 3.2.3 we investigate two allo-
cation procedures, namely bottom-up and top-down. Though the latter is
more useful under a long-run perspective, it does not always produce feasi-
ble allocations. Theorem 3.2.4 offers a remedy for this. In Section 3.2.3 we
demand the existence of an allocation which is fair both in each state and in
the long-run process. Moreover, we ask that the fairness property is Time
Consistent. Theorem 3.2.8 provides a sufficient condition for this.
In Section 3.2.4 we provide two further characterizations of M, by utilizing
two different concepts in dynamic cooperative game theory, which can be
considered as a measure of users’ satisfaction. Firstly, in Theorem 3.2.11 we
claim that M coincides with the Core set Co of allocations which are, in a
sense, “acceptable” for all the users, both in the static and in the long run
game, in a time consistency fashion. Secondly, in Theorem 3.2.12 we state
that M also coincides with the set of Cooperation Maintaining allocations
CM that makes the coalition of all players cohesive throughout the game.
Therefore, all allocations in CM are both global optimal and satisfy the
users throughout the process, according to the criteria defined by Co and
CM.
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3.3 Confidence intervals for the Shapley-Shubik
power index in Markovian games

We consider a simple Markovian game, in which several states succeed each
other over time, following an exogenous discrete-time Markov chain. In each
state, a different simple static game is played by the same set of players. We
investigate the approximation of the Shapley-Shubik power index in the
Markovian game (SSM). We prove that an exponential number of queries
on coalition values is necessary for any deterministic algorithm even to ap-
proximate SSM with polynomial accuracy. Motivated by this, we propose
and study three randomized approaches to compute a confidence interval for
SSM. They rest upon two different assumptions, static and dynamic, about
the process through which the estimator agent learns the coalition values.
Such approaches can also be utilized to compute confidence intervals for the
Shapley value in any Markovian game. The proposed methods require a
number of queries which is polynomial in the number of players in order to
achieve a polynomial accuracy.

3.3.1 Introduction

Cooperative game theory is a powerful tool to analyse, predict, and influ-
ence the interactions among several players capable to stipulate deals and
form subcoalitions in order to pursue a common interest. Under the as-
sumption that the grand coalition, comprising all the players, is formed, it
is a delicate issue to share the payoff earned by the grand coalition among
its participants.

Introduced by Lloyd S. Shapley in his seminal paper [82], the Shapley
value is one of the best known payoff allocation rules in a cooperative game
with transferable utility (TU). It is the only allocation procedure fulfill-
ing three reasonable conditions of symmetry, additivity and dummy player
compensation (see [82] for details), under a superadditive assumption on the
coalition values. The significance of the Shapley value is witnessed by the
breadth of its applications, spanning from pure economics [9] to Internet
economics [13,52,89], politics [10], and telecommunications [43].

The concept of Shapley value was successfully applied to simple games
[85], in which the coalition values are binary. In this case, the Shapley value
is commonly referred to as Shapley-Shubik power index. A specific instance
of simple games are weighted voting games, in which each player possesses
a different amount of resources and a coalition is effective, i.e. its value is 1,
whenever the sum of the resources shared by its participants is higher than
a certain quota; otherwise, its value is 0. The Shapley-Shubik index proves
to be particularly suitable to assess a priori the power of the members of a
legislation committee, and has many applications to politics (see [91] for an
overview).
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The computation of the Shapley value for each player j = 1, . . . , P in-
volves the assessment of the increment of the value of a coalition brought
on by the presence of player j, over all 2P−1 possible coalitions. Hence, it
is clear that the complexity of Shapley value in the number of players P is
a crucial issue. Mann and Shapley himself [56] were the first to suggest to
adopt a Monte-Carlo procedure to approximate the Shapley-Shubik index.
They first proposed a very simple algorithm, randomly generating a succes-
sion of players’ permutations and evaluate the incremental value of player j
with respect to the coalition formed by its preceding players in each permu-
tation. The Shapley-Shubik index is approximated as the average of such
increments. Then they empirically showed that the “cycling scheme” de-
scribed below is characterized by a smaller variance. First, a target player is
singled out, and the remaining players are placed in a random order. Then,
this order is put through all of its cyclic permutations, and the target player
is inserted in each position in each permutation. Thus, P (P − 1) permuta-
tions are generated, and for each of them the incremental value of player j
with respect to the coalition formed by its preceding players is assessed. For
this cycling approach, deriving a confidence interval for the Shapley-Shubik
index seems to be a hard task. Hence, Bachrach et al. adopted in [14] the
first Monte-Carlo procedure described above to compute a confidence inter-
val. This approximation method, presented for simple games, can be easily
generalized to any game.

The bulk of the literature on cooperative games focuses on static games.
However, politics or economics is more like a process of continuing negoti-
ation and bargaining. This motivates the introduction of dynamic cooper-
ative game theory (see e.g. [31], [48]). In this work we consider that the
game is not played one-shot but rather over an infinite horizon: there exists
a finite set of static cooperative games that come one after the other, follow-
ing a discrete-time homogeneous Markov process. We call this interaction
model repeated over time as Markovian game. Our Markovian game model
arises naturally in all situations in which several individuals keep interact-
ing and cooperating over time, and an exogenous Markov process influences
the value of each coalition, and consequently also the power of each player
within coalitions. A very similar model, but with non transferable utilities,
was considered in [75]. Our model can also be viewed as a particular case
of the cooperative Markov decision process described in [11], or in [73], in
which the transition probabilities among the states do not depend on the
players’ actions.

We take into account the average and the discount criterion to com-
pute the payoff earned by each player in the long-run Markovian game. In
this article we extend the approach by Bachrach et al. in [14] to compute
a confidence interval for Shapley value in Markovian games. In [14], the
authors considered a simple static game and proved that any deterministic
algorithm which approximates one component of the Banzhaf index with
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accuracy better than c/
√
P , where c > 0 and P is the number of players,

needs Ω(2P /
√
P ) queries. Hence, when P grows large, it is crucial to find

a suitable way to approximate the power index with a manageable num-
ber of queries. Hence, in [14] a confidence interval for Banzhaf index and
Shapley-Shubik power index in simple games has been developed, based on
Hoeffding’s inequality. In this article we assume that the estimator agent
knows the transition probabilities among the states. We first show that it is
still beneficial to utilize a randomized approach to approximate the Shapley-
Shubik index in simple Markovian games (SSM) for a number of players P
sufficiently high. Then, we propose three methods to compute a confidence
interval for the SSM, that also apply to the Shapley value of any Marko-
vian game. Then, we will essentially demonstrate that, asymptotically in
the number of steps of the Markov chain and by exploiting the Hoeffding’s
inequality, the estimator agent does not need to have access to the coalition
values in all the states at the same time. Indeed, it suffices for the estimator
agent to learn the coalition values in each state along the course of the game
to “well” approximate SSM.

Let us overview the content of this article. We provide some useful
definitions, background results, and motivations of our dynamic model in
Section 3.3.2. In Section 3.3.3 we motivate the significance of our Marko-
vian model. In Section 3.3.4 we study the trade-off between complexity and
accuracy of deterministic algorithms approximating SSM. An exponential
number of queries is necessary for any deterministic algorithm even to ap-
proximate SSM with polynomial accuracy. Motivated by this, we propose
three different randomized approaches to compute a confidence interval for
SSM. Their complexity does not even depend on the number of players.
Such approaches also hold for the classic Shapley value of any cooperative
Markovian game (ShM). In Section 3.3.5 we provide the expression of our
first confidence interval, SCI, which relies on the static assumption that the
estimator agent has access to the coalition values in all the states at the
same time, even before the Markov process initiates. Although SCI relies on
an impractical assumption, it is still a valid benchmark for the performance
of the approaches yielding the confidence intervals described in Sections
3.3.6 and 3.3.6, dubbed DCI1 and DCI2 respectively. DCI1 and DCI2 also
hold under the more realistic dynamic assumption that the estimator agent
learns the value of coalitions along the course of the game. In Section 3.3.6
we propose a straightforward way to optimize the tightness of DCI1. In Sec-
tion 3.3.7 we compare the three proposed approaches in terms of tightness
of the confidence interval. Finally, in Section 3.3.8 we provide a trade-off
between complexity and accuracy of our randomized algorithm, holding for
any cooperative Markovian game.

We remark that the extension of our approaches to Banzhaf index [16]
is straightforward.
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Some notation remarks. If a is a vector, then ai is its i-th component.
If A is a random variable (r.v.), then At is its t-th realization. Given a
set S, |S| is its cardinality. The expression b(s) indicates that the quan-
tity b, standing possibly for Shapley value, Shapley-Shubik index, coalition
value, feasibility region etc., is related to the static game played in state s.
The expression Pr(B) stands for the probability of event B. The indicator
function is written as 1I(.). With some abuse of terminology, we will refer
to a confidence interval or to the approach utilized to compute it without
distinction.

3.3.2 Markovian Model and Background results

In this article we consider cooperative Markovian games with transferable
utility (TU). Let P be the number of players and let P = {1, . . . , P} be the
grand coalition of all players. We have a finite set of states S = {s1, . . . , s|S|}.
In state s, each coalition Λ ⊆ P can ensure for itself the value v(s)(Λ), that
can be shared in any manner among the players under the TU assumption.
Hence, in each state s ∈ S the game Ψ(s) ≡ (P, v(s)) is played. Let V(s)(Λ)
be the half-space of all feasible allocations for coalition Λ in the TU game

Ψ(s), i.e. the set of real |Λ|-tuple a ∈ R
|Λ| such that

∑|Λ|
i=1 ai ≤ v(s)(Λ). We

suppose that the coalition values are superadditive, i.e.

v(s)(Λ1 ∪ Λ2) ≥ v(s)(Λ1) + v(s)(Λ2), ∀Λ1,Λ2 ⊆ P, Λ1 ∩ Λ2 = ∅.

The succession of the states follows a discrete-time homogeneous Markov
chain, whose transition probability matrix is P. Let x(s) ∈ R

P be a pay-
off allocation among the players in the single stage game Ψ(s). Under the
β-discounted criterion, where β ∈ [0; 1), the discounted allocation in the
Markovian dynamic game Γsk , starting from state sk, can be expressed as

∞∑

t=0

βt
E

(
x(St)

)
=

|S|∑

i=1

ν
(β)
i (sk)x

(si)

where St is the state of Markov chain at time t and ν(β)(sk) is the k-th row
of the nonnegative matrix (I− βP)−1. We stress that β can be interpreted
as the probability that the game terminates, at any step. Under the aver-
age criterion, if the transition probability matrix P is irreducible, then the
allocation in the long-run game Γsk can be written as

lim sup
T→∞

1

T + 1

T∑

t=0

E

(
x(St)

)
=

|S|∑

i=1

πi x
(si)

where π is the stationary distribution of the matrix P.
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We define V(Λ,Γs) as the set of feasible allocations in the long-run game
Γs for coalition Λ, coinciding with the Minkowski sum:

V(Λ,Γs) ≡
|S|∑

i=1

σi(s)V(si)(Λ).

where σi(s) ≡ ν
(β)
i (s) if the β-discounted criterion is adopted, and σi(s) ≡

πi under the average criterion.

Proposition 3.3.1 ( [11]). V(Λ,Γs) is equivalent to the set A of real R|Λ|-

tuples a such that
∑|Λ|

i=1 ai ≤ v(Λ,Γs), where v(Λ,Γs) =
∑|S|

i=1 σi(s) v
(si)(Λ),

for all s ∈ S, Λ ⊆ P.

Thanks to Proposition 3.3.1, it is legitimate to define v(Λ,Γs) as the
value of coalition Λ ⊆ P in the long-run game Γs. Let us define the Shapley
value in static games [82].

Definition 17. The Shapley value Sh(s) in the static game played in state
s ∈ S is a real P -tuple whose j-th component is the payoff allocation to
player j:

Sh(s)j =
∑

Λ⊆P/{j}

|Λ|!(P−|Λ|−1)!

P !

[
v(s)(Λ∪{j}) − v(s)(Λ)

]
.

Now, we are ready to define the Shapley value in the Markovian game
Γs, ShM(Γs), that can be expressed, thanks to Proposition 3.3.1 and to the
standard linearity property of the Shapley value, as

ShMj(Γs) =

|S|∑

i=1

σi(s)Sh(si)j , ∀ s ∈ S, 1 ≤ j ≤ P. (3.35)

In the next sections we will exploit Hoeffding’s inequality [40] to derive
basic confidence intervals for the Shapley value of Markovian games.

Theorem 3.3.2 (Hoeffding’s inequality). Let A1, . . . , An be n independent
random variables, where Ai ∈ [ai, bi] almost surely. Then, for all ǫ > 0,

Pr

(
n∑

i=1

Ai − E

[
n∑

i=1

Ai

]
≥ n ǫ

)
≤ 2 exp

(
− 2n2 ǫ2∑n

i=1(bi − ai)2

)
.

In this work, several results are shown in the case of simple Markovian
games. They are Markovian games with transferable utility in which the
value of each coalition in each state can only take on binary values, i.e. 0
and 1. Simple games model winning/losing situations, in which winning
coalitions have unitary value. The Shapley value applied to simple static
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games is commonly referred to as Shapley-Shubik power index (SS). We
define SSM as the Shapley value in simple Markovian games. Of course, the
relation between SS and SSM is analogous to expression (3.35).

We say that player i is critical for coalition Λ ⊆ P\{i} in state s if
v(s)(Λ ∪ {i}) − v(s)(Λ) = 1.

3.3.3 Motivations of the Markovian model

Many interaction situations among different individuals are not one-shot,
but continue over time. Moreover, the environment in which interactions
take place is dynamic, and this may influence the negotiation power of each
individual. Under these assumptions, the value of each coalition varies over
time. In economics, clear examples of this situation are the continuing
bargaining among countries, firms, or management unions. This pragmatic
reasoning spurred the research on dynamic cooperative games in the last
decade (see e.g. [31], [48]). Our Markovian model is a specific instance of
a dynamic cooperative game, in which the evolution of the coalition values
over time follows an exogenous Markov chain on a finite state space. A
concrete example of our model, in which the coalition values are not bound
to be binary though, can be found in [12], where a wireless multiple access
channel is considered, and several users attempt to transmit to a single
receiver. The value of a coalition of users is computed as the maximum
sum-rate achievable by the coalition when the remaining players threaten
to jam the network. The state of the system is represented by the channel
coefficients, whose evolution over time follows a Markov chain, a classic
assumption in wireless communications.

Our Markovian scenario can be seen as a natural extension to a dynamic
context of static situations with some uncertainty in the model. For exam-
ple, let us consider games with agent failure (see e.g. [60, 70, 71]), in which
each player may withdraw from the game with a certain probability. The
dynamic version of this game can be modelled via a very simple Markov
chain, where the probability of reaching a state where a certain subset Λ of
players survives only depends on Λ and not on the current state. Interest-
ingly, the approach utilized in [14] to approximate the Shapley value in static
games has been adapted to a cooperative game with failures in [15]. In [25],
a coalition formation scenario with uncertainty is considered, in which the
state of the system accounts for the stochastic outcome of the collaboration
among agents. Though our model does not consider coalition formation, a
simple Markov chain can still be used to extend the scenario in [25] to a
dynamic context, in which the transition probabilities still do not depend
on the starting state.

It is also worth clarifying the meaning of the Shapley value ShM on
Markovian games, defined as in (3.35). Classically, in static games the
Shapley value has a two-fold interpretation. It can be thought of either



118 Chapter 3: Dynamic Cooperative MDPs

as a measure of agents’ power or as a binding agreement the agents make
regarding the sharing of the revenue earned by the grand coalition. The
first interpretation still holds in Markovian games, where ShMj(Γs) is the
expected power of agent j in the long-run game Γs. The second interpreta-
tion is sensible only when the value of the grand coalition is deterministic;
since v(P,Γs) is an expected revenue, this second interpretation fails to hold
in the Markovian game. Nevertheless, we can still view ShM under a rev-
enue sharing perspective. Suppose indeed that the rewards at each state
are deterministic. We see from (3.35) that ShMj(Γs) equals the long-run
expected payoff for player j, if in each state s the deterministic revenue

Sh(s)j is assigned to player j. Therefore, {Sh(s)j }s∈S can be seen as the de-
terministic distribution of ShM(Γs) along the course of the dynamic game,
for any initial state s ∈ S. Moreover, it is straightforward to see that such
distribution procedure is time consistent, i.e. if the state at time t ≥ 0 is St,
then βtShMj(ΓSt) is the long-run expected revenue for player j from time t
onwards. For a detailed discussion on this topic, in a more complex model
in which the transition probabilities depend on the players’ actions, we refer
to [11].

3.3.4 Complexity of deterministic algorithms

Since the exact computation of the Shapley value - or, equivalently, of the
Shapley-Shubik index - involves the calculation of the incremental asset
brought by a player to each coalition, then its complexity is proportional
to the number of such coalitions, i.e. 2P−1, under oracle access to the
characteristic function. In this section we evaluate the complexity of any
deterministic algorithm which approximates the Shapley-Shubik index in a
simple Markovian game.
Before starting our analysis, let us introduce some ancillary concepts. We
mean by game instance a specific Markovian game. In this paper, we implic-
itly assume that all the algorithms considered - deterministic or randomized
- aim at approximating the Shapley value for player j, without loss of gen-
erality. Let us clarify our notion of “query”.

Definition 18. A query of an algorithm - deterministic or randomized -
consists in the evaluation of the marginal contribution of player j to a coali-
tion Λ ⊆ P\{i}, i.e. v(Λ ∪ {i})− v(Λ).

Now we define the accuracy of a deterministic algorithm.

Definition 19. Let us assume that the Shapley-Shubik index for player j in
the simple Markovian game Γs is SSMj(Γs) = a. Let ALG be a deterministic
algorithm employing q queries. We say that ALG has an accuracy of at
least d > 0 with q queries whenever, for all the game instances, ALG always
answers SSMj(Γs) ∈ [a− d; a+ d].
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We will first show that an exponential number of queries is necessary
in order to achieve a polynomial accuracy for any deterministic algorithm
aiming to approximate the Shapley-Shubik index in the static case. This
is an extension of Theorem 3 in [14] to the Shapley-Shubik index, and its
proof is in Appendix 3.3.10.

Theorem 3.3.3. Any deterministic algorithm computing one component of
the Shapley-Shubik index in simple static game in state s requires Ω(2P /

√
P )

queries to achieve an accuracy of at least 1/(2P ), for all s ∈ S.

We remark that Theorem 2 does not apply to weighted voting games,
for which it is possible to exploit the weight/quota structure to achieve a
lower complexity (e.g. see [20,45,57,58,74,90]).

Finally, we are ready to derive a trade-off between the accuracy and the
complexity of a deterministic algorithm approximating the Shapley-Shubik
index in a simple Markovian game, as a function of the number of players
P .

Corollary 3.3.4. There exists c > 0 such that any deterministic algorithm
approximating one component of the Shapley-Shubik index in the simple
Markovian game Γs requires Ω(2P /

√
P ) queries to achieve an accuracy of

at least c/P , for all s ∈ S.

The results of the current section clearly discourage from computing
exactly or even approximating SSM with a deterministic algorithm when
the number of players P is large. Motivated by this, in the next sections
we will direct our attention towards randomized approaches to construct
confidence intervals for SSM, whose complexity does not even depend on P .

3.3.5 Randomized static approach

In this section we will propose our first approach to compute a confidence
interval for the Shapley value in Markovian games. The expression of the
confidence interval that we will propose holds for the Shapley value of any
Markovian game (ShM). Nevertheless, in the following sections we will pro-
vide some results holding specifically for the Shapley-Shubik index in the
particular case of simple Markovian games (SSM). Let us first define our
performance evaluator for a randomized algorithm.

Definition 20. Let 1− δ be the probability of confidence. The accuracy of
a randomized algorithm is the length of the confidence interval produced by
the randomized algorithm to approximate SSM.

In parallel, the reader learns the notion of accuracy of a deterministic
algorithm from Definition 19. Throughout the paper we suppose that the
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transition probability matrix P is known by the estimator agent. In this
section we also assume that the value of all coalitions in each single stage
games are available off-line to the estimator agent.

Assumption 2. The estimator agent has access to all the coalition values
in each state:

{v(s)(Λ), ∀Λ ⊆ P, s ∈ S}

at the same time, before the Markovian game starts.

It is clear that, under Assumption 2, the estimator agent can perform
an off-line randomized algorithm to approximate ShM.

Remark 11. Assumption 2 seems to be impractical for the intrinsic dynam-
ics of the model we consider. Nevertheless, the randomized approach based
on Assumption 2 that we propose next (SCI) will prove to be an insight-
ful performance benchmark for two methods (DCI1 and DCI2) described in
Section 3.3.6, based on a more realistic dynamic assumption.

First, let us find a formulation of the Shapley value in the Markovian
game which is suitable for our purpose. Let X be the set of all the permuta-
tions of {1, . . . , P}. Let Cχ(j) be the coalition of all the players whose index
precedes j in the permutation χ ∈ X, i.e.

Cχ(j) ≡ {i : χ(i) < χ(j)}. (3.36)

We can write the Shapley value of the Markovian game Γs, both for the
discount and for the average criterion, as

ShMj(Γs) =

|S|∑

i=1

σi(s)Sh(si)j

=
1

P !

∑

χ∈X

|S|∑

i=1

σi(s)
[
v(si)(Cχ(j) ∪ {j}) − v(si)(Cχ(j))

]

= Eχ

[ |S|∑

i=1

σi(s)
[
v(si)(Cχ(j) ∪ {j}) − v(si)(Cχ(j))

]
]
,

where Eχ is the expectation over all the permutations χ ∈ X, each having
the same probability 1/P !.

We now propose our first algorithm to compute a confidence interval for
ShMj(Γs), for each player j and initial state s. For each query, labeled by the
index k = 1, . . . ,m, let us select independently over a uniform distribution
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on X a permutation χk of {1, . . . , P}. Let us define Z(j) as the random
(over χ ∈ X) variable

Z(j) ≡
|S|∑

i=1

σi(s)
[
v(si)(Cχ(j) ∪ {j}) − v(si)(Cχ(j))

]
(3.37)

= v(Cχ(j) ∪ {j},Γs)− v(Cχ(j),Γs)

and let Zk(j) be the k-th realization of Z(j). We remark that Z(j) implies
the computation of |S| queries, one in each state. Thanks to Hoeffding’s
inequality, we can write that, for all ǫ > 0,

Pr

(∣∣∣∣∣
1

m

m∑

k=1

Zk(j) − ShMj(Γs)

∣∣∣∣∣ ≥ ǫ

)
≤ 2 exp

(
− 2mǫ2

[y − y]2

)

where

y = max
C⊆P

|S|∑

i=1

σi(s)
[
v(si)(C ∪ {j}) − v(si)(C)

]
,

y = min
C⊆P

|S|∑

i=1

σi(s)
[
v(si)(C ∪ {j}) − v(si)(C)

]
.

We remark that, in the case of simple games,
[
y−y

]2 ≤
[∑|S|

i=1 σi(s)
]2
. Now

we are ready to propose our first confidence interval, based on Assumption
2.

Static Confidence Interval 1 (SCI). Let 1 ≤ j ≤ P , s ∈ S. Fix an
integer n and set δ ∈ (0; 1). Then, with probability of confidence 1 − δ,
ShMj(Γs) belongs to the confidence interval

[
1

m

m∑

k=1

Zk(j) − ǫ(m, δ) ;
1

m

n∑

k=1

Zk(j) + ǫ(m, δ)

]
,

where

ǫ(m, δ) =

√
[y − y]2 log(2/δ)

2m
. (3.38)

In the case of simple games, (3.38) becomes

ǫ(m, δ) =

√√√√
[∑|S|

i=1 σi(s)
]2

log(2/δ)

2m
. (3.39)
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Under the average criterion, (3.39) can be written as ǫ(m, δ) =
√

log(2/δ)/[2m].

Not surprisingly, the confidence interval SCI is analogous to the one
found in [14] for static games. Indeed, the intrinsic dynamics of the game is
surpassed by Assumption 2, for which the estimator has global knowledge
of all the coalition values, even before the Markov process initiates. There-
fore, from the estimator agent’s point of view, there exists no conceptual
difference between the approach in [14] and SCI, except for the complexity,
which increases by a factor |S| in the dynamic game.

3.3.6 Randomized dynamic approaches

In this section we will propose two methods to compute a confidence interval
for SSM, for which Assumption 2 on global knowledge of coalition values is
no longer necessary. Indeed, the reader will notice that their conception
naturally arises from the assumption that the estimator agent learns the
coalition values in each single stage game while the Markov chain process
unfolds, as formalized below.

Assumption 3. The state in which the estimator agent finds itself at each
time step follows the same Markov chain process of the Markovian game
itself. The estimator agent has local knowledge of the game that is being
played, i.e. at step t ≥ 0 the estimator agent has access only to the coalition
values associated to the static game in the current state St.

Remark 12. The approaches described in this section can also be employed
under Assumption 2. Indeed, any algorithm requiring the query on coalition
values separately in each state can also be run under a static assumption.

In the following we still assume that the transition probability matrix
P is known by the estimator agent. As in Section 3.3.5, the randomized
approaches that we are going to introduce hold for the Shapley value of any
Markovian game.

First dynamic approach

We propose our first randomized approach to compute a confidence interval
for ShM, holding both under the static Assumption 2 and under the dynamic
Assumption 3. Let χ ∈ X be, as in Section 3.3.5, a random permutation
uniformly distributed on the set {1, . . . , P}. Let us define Y (si)(j) as the
random (over χ ∈ X) variable associated to state si:

Y (si)(j) ≡ v(si)(Cχ(j) ∪ {j}) − v(si)(Cχ(j)). (3.40)

Our dynamic approach suggests to sample the r.v. Y (si)(j) ni times in state

si. Let n =
∑|S|

i=1 ni be the total number of queries. We can still exploit
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Hoeffding’s inequality to say that, for all ǫ′ > 0,

Pr

(∣∣∣∣∣

|S|∑

i=1

σi(s)

ni

ni∑

t=1

Y
(si)
t (j)− ShMj(Γs)

∣∣∣∣∣ ≥ n ǫ′

)
≤ . . .

2 exp

(
− 2[n ǫ′]2

∑|S|
i=1 σ

2
i (s)[x(i)− x(i)]2/ni

)

where, for all i = 1, . . . , |S|,

x(i) = max
C⊆P

v(si)(C ∪ {j}) − v(si)(C)

x(i) = min
C⊆P

v(si)(C ∪ {j}) − v(si)(C)

We notice that, in the case of simple games, x(i) = 1 and x(i) = 0 for all
i = 1, . . . , |S|. Now set ǫ̃ = n ǫ′. Now we are ready to propose our second
confidence interval for ShMj(Γs), the first one holding under Assumption 3.

Dynamic Confidence Interval 1 (DCI1). Let 1 ≤ j ≤ P , s ∈ S. Fix the
number of queries n and set δ ∈ (0; 1). Then, with probability of confidence
1− δ, ShMj(Γs) belongs to the confidence interval




|S|∑

i=1

σi(s)

ni

ni∑

t=1

Y
(si)
t (j) − ǫ̃(n, δ) ;

|S|∑

i=1

σi(s)

ni

ni∑

t=1

Y
(si)
t (j) + ǫ̃(n, δ)


 ,

where

ǫ̃(n, δ) =

√√√√ log(2/δ)

2

|S|∑

i=1

σ2
i (s)

ni
[x(i)− x(i)]2. (3.41)

In the case of simple games, (3.41) becomes

ǫ̃(n, δ) =

√√√√ log(2/δ)

2

|S|∑

i=1

σ2
i (s)

ni
. (3.42)

Optimal sampling strategy In this section we focus exclusively on sim-
ple Markovian games. It is interesting to investigate the optimum number
of times n∗

i that the variable Y (si)(j) should be sampled in each state si,
in order to minimize the length of the confidence interval DCI1, keeping
the confidence probability fixed. We notice that, by fixing 1 − δ, we can
find the optimal values for n1, . . . , n|S| by setting up the following integer
programming problem:





min
n1,...,n|S|

∑|S|
i=1 σ

2
i (s)[x

2(i)− x2(i)]/ni

∑|S|
i=1 ni = n, ni ∈ N

(3.43)
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Remark 13. If the static Assumption 2 holds, then the computation of the
optimum values n∗

1, . . . , n
∗
|S| in (3.43) is the only information we need to

maximize the accuracy of DCI1, since the sampling is done off-line. Oth-
erwise, if Assumption 3 holds, the estimator does not know in advance the
succession of states hit by the process, hence it is crucial to plan a sam-
pling strategy of the variable Y (si)(j) along the Markov chain. Of course,
a possible strategy would be, when n is fixed, to sample n∗

i times the vari-
able Y (si)(j) only the first time the state si is hit, until all the states are
hit. Nevertheless, this approach is clearly not efficient, since in several time
steps the estimator is forced to remain idle.

Motivated by Remark 13, now we devise an efficient and straightforward
sampling strategy, consisting in sampling Y (si)(j), each time the state si
is hit, an equal number of times over all i = 1, . . . , |S|. Let us first show
a useful classical result for Markov chains. Let η be the number of steps
performed by the Markov chain. Let ηi be the number of visits to state si,
i.e.

ηi =

η−1∑

t=0

1I(St = si).

Theorem 3.3.5 ( [8]). Let {St, t ≥ 1} be an ergodic Markov chain. Let

π̂
(η)
i ≡ ηi/η. Then, for any distribution on the initial state and for all

i = 1, . . . , |S|,
π̂
(η)
i

η↑∞−→ πi with probability 1,

where π is the stationary distribution of the Markov chain.

It is evident from (3.41) that ǫ̃(n, δ) ∈ Θ(n−1/2). Now we will show un-
der which conditions the straightforward sampling strategy described above
allows to achieve asymptotically for n ↑ ∞ the best rate of convergence of
ǫ̃(n, δ), for δ fixed. The reader can find the proof of the next Theorem in
Appendix 3.3.10.

Theorem 3.3.6. Suppose that Assumption 3 holds. Let the Markov chain
of the simple Markovian game be ergodic. Fix the confidence probability
1 − δ. Under the average criterion, if each time the state si is hit then the
estimator agent samples the r.v. Y (si)(j) a constant number of times not
depending on i (e.g. 1), then with probability 1:

√
n ǫ̃(n, δ)

n↑∞−→ inf
n∈N

min
n1,...,n|S|:∑

i ni=n

√
n ǫ̃(n, δ) =

√
log(2/δ)

2
.

Second dynamic approach

Since Hoeffding’s inequality has a very general applicability and does not
refer to any particular probability distribution of the random variables at
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issue, it is natural to look for confidence intervals especially suited to par-
ticular instances of games. In this section we will show a third confidence
interval for the Shapley value of the Markovian game Γ which is tighter i)
the higher the confidence probability 1 − δ is and ii) the tighter the confi-
dence intervals [li; ri] are. As an example, in section 3.3.6 we will show a
tight confidence interval for simple Markovian games.

We still assume that the estimator agent samples the r.v. Y (si)(j) ni

times, in each state si. Here we suppose to know beforehand that Sh(si)j

lies in the confidence interval [li; ri] with probability of at least 1 − δi. In

general, the extrema li and ri may depend on ni,
∑ni

t=1 Y
(si)
t (j), and δi.

As in the case of DCI1, the randomized approach proposed in this section
also holds both under the static Assumption 2 and under the dynamic As-
sumption 3. It is based on the following Lemma, whose proof is in Appendix
3.3.10.

Lemma 3.3.7. Let A1, . . . , Ak be k random variables such that Pr(Ai ∈
[li; ri]) ≥ 1− δi. Let ci ≥ 0, for i = 1, . . . , k. Then,

Pr

(
k∑

i=1

ci Ai ∈
[

k∑

i=1

cili ;
k∑

i=1

ciri

])
≥

k∏

i=1

[1− δi]

The reader should keep in mind that, the smaller the single confidence
levels δ1, . . . , δk are, the tighter the lower bound on the confidence proba-
bility

∏k
i=1(1 − δi) is. Now we are ready to present our second dynamic

approach. Let the r.v. Y (si)(j) be defined as in (3.40).

Dynamic Confidence Interval 2 (DCI2). Set δi ∈ (0; 1), for all i =
1, . . . , |S|. Let

[
l(si)

(
ni,

n∑

t=1

Y
(si)
t (j), δi

)
; r(si)

(
ni,

n∑

t=1

Y
(si)
t (j), δi

)]
(3.44)

be the confidence interval for Sh(si), with probability of confidence 1− δi, for
all i = 1, . . . , |S|. Let 1 ≤ j ≤ P , s ∈ S. Then, with probability of confidence∏|S|

i=1(1− δi), ShMj(Γs) belongs to the confidence interval




|S|∑

i=1

σi(s) l
(si)

(
ni,

ni∑

t=1

Y
(si)
t (j), δi

)
;

|S|∑

i=1

σi(s) r
(si)

(
ni,

ni∑

t=1

Y
(si)
t (j), δi

)
 .

We notice that the confidence interval DCI2 reveals the most natural
connection between the issue of computing confidence intervals of Shapley
value in static games, already addressed in [14], and in Markovian games
under the dynamic Assumption 3.
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We already saw in Section 3.3.6 that the accuracy of DCI1 can be max-
imized by adjusting the number of queries n1, . . . , n|S| in each state. Here,
in addition, we could optimize DCI2 also over the set of confidence levels
δ1, . . . , δ|S|, under the nonlinear constraint:

|S|∏

i=1

[1− δi] = 1− δ .

Simple Markovian games The aim of this section is twofold. Firstly,
we suggest methods to compute a confidence interval for the Shapley-Shubik
index in simple static games, as a complement of the study in [14]. Secondly,
we stress that such methods can be utilized to compute efficiently the confi-
dence interval DCI2 for SSM, as it is clear from the definition of DCI2 itself.
In [14], the authors derived a confidence interval for the Shapley value of a
single stage game, based on Hoeffding’s inequality. Nevertheless, for simple
static games, a tighter confidence interval can be obtained, by applying the
following approach. Let χ ∈ X be a random permutation of {1, . . . , P}. Let
us assume that {χk ∈ X}, k ≥ 1, are uniform and independent. Let us
define the Bernoulli variable Y (s)(j) as in (3.40). As pointed out in [14], we

can interpret the Shapley-Shubik index SS
(s)
j as

SS
(s)
j = Pr

(
Y (s)(j) = 1

)
.

Let Y
(s)
1 (j), . . . , Y

(s)
n (j) be independent realization of Y (s)(j). It is evident

that
n∑

k=1

Y
(s)
k (j) ∼ B(n,SS(s)j ),

where B(a, b) is the binomial distribution with parameters a, b. Hence, com-

puting a confidence interval for SS
(s)
j boils down to the computation of

confidence intervals of the probability of success of the Bernoulli variable

Y (s)(j) given the proportion of successes
∑n

k=1 Y
(s)
k (j)/n, which is a well

know problem in literature. Of course, this might be accomplished by using
the general Hoeffding’s inequality as in [14], but over the last decades some
more efficient methods have been proposed, like the Chernoff bound [26],
the Wilson’s score interval [101], the Wald interval [97], the adjusted Wald
interval [1], and the “exact” Clopper-Pearson interval [27].

3.3.7 Comparison among the proposed approaches

In this section we focus on simple Markovian games, and we compare the
accuracy of the proposed randomized approaches. We know that, under
the static Assumption 2, we are allowed to use any of the three methods
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presented in this article, SCI, DCI1, and DCI2, to compute a confidence
interval for the Shapley-Shubik index in simple Markovian games. In fact,
DCI1 and DCI2 involve independent queries over the different states, and
this can also be done under Assumptions 2. Therefore, it makes sense to
compare the tightness of the two confidence intervals SCI and DCI1.

Lemma 3.3.8. Consider simple Markovian games. Let 2ǫ(n, δ) be the ac-
curacy of SCI (see eq. (3.39)). Let 2ǫ̃(n, δ) be the accuracy of DCI1 (see eq.
3.42). Then, for any integer n and for any confidence probability 1− δ,

ǫ(n, δ) ≤ ǫ̃(n, δ).

An interested reader can find the proof of Lemma 3.3.8 in Appendix
3.3.10.

Remark 14. The reader should not be misled by the result in Lemma 3.3.8.
In fact, n being equal in the two cases, the number of queries needed for
confidence interval SCI is |S| times bigger than for DCI1, since each sam-
pling of the variable Z(j), defined in (3.37), requires |S| queries, one per
each state. The comparison between the two confidence interval would be
fair only if the estimator agent knew beforehand the coalition values of the
long-run game {v(Λ,Γs)}s,Λ.

According to Remark 14, we should compare the length of the confidence
interval for the static case, 2 ǫ(n, δ), with the one for the dynamic case,
2 ǫ̃(|S|n, δ), calculated with |S| times many queries. Intriguingly, the relation
between the tightness of SCI and DCI is now, for a suitable query strategy,
reversed, as we show next.

Theorem 3.3.9. In the case of simple Markovian games, for any integer
n,

min
n′
1
,...,n′

|S|
:

∑
i n

′
i=|S|n

ǫ̃(|S|n, δ) ≤ ǫ(n, δ).

Proof. We can write

min
n′
1
,...,n′

|S|
:

∑
i n

′
i=|S|n

|S|∑

i=1

σ2
i (s)

n′
i

≤
|S|∑

i=1

σ2
i (s)∑|S|

k=1 n
′
k/|S|

=

|S|∑

i=1

σ2
i (s)

n
≤

[∑|S|
i=1 σi(s)

]2

n
,

(3.45)

where the last inequality holds since σi(s) ≥ 0. Hence, by inspection over
the expressions (3.39) and (3.42), the thesis is proved.

Theorem 3.3.9 clarifies the relation between the confidence intervals SCI
and DCI1, under the condition of simple Markovian games. We highlight
its significance in the next two remarks.
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Remark 15. Theorem 3.3.9 claims that the approach DCI1 is more ac-
curate than SCI for a suitable choice of n′

1, . . . , n
′
|S|, when the number of

queries is equal for the two methods. In essence, this occurs because the
dynamic approach allows us to tune the number of queries in the coalition
values according to the weight σi(s) of each state si in the long-run game.
Moreover, the queries on coalition values are independent among the states,
hence providing more diversity to the statistics.

Remark 16. As we already remarked, the dynamic Assumption 3 is more
pragmatic and less restrictive than the static Assumption 2. Let us now give
some insights on the accuracy that can be achieved by the approaches SCI and
DCI1 under Assumptions 2 and 3. The approach DCI1 can be also utilized
under static Assumption 2, and in finite time DCI1 is more accurate under
Assumption 2 than under Assumption 3. Indeed, for a fixed n and under the
static Assumption 2, the value of n′

1, . . . , n
′
|S| in (3.45) can always be set to

the optimum value, since the algorithm DCI1 is run off-line. Instead, under
the dynamic Assumption 3, the sequence of states over time S0, S1, S2, . . . is
unknown a priori by the estimator agent, hence n′

1, . . . , n
′
|S| cannot be opti-

mized for a finite n. Hence, in finite time, the static Assumption 2 has still
an edge over the dynamic Assumption 3 for the implementation of DCI1.
Nevertheless, we know from Theorem 3.3.6 that, for the average criterion in
ergodic Markov chains, there exists a query strategy enabling to achieve an
optimum rate of convergence for DCI1’s accuracy. Therefore we can con-
clude with the following consideration. Under the average criterion, DCI1,
when employed under the dynamic Assumption 3, can be asymptotically as
accurate as DCI1 itself and more accurate than SCI, when both these ap-
proaches are employed under the stronger static Assumption 2.

In addition to what has just been discussed, simulations showed that,
when the number of queries n and the confidence level δ are equal for the
two methods, then the effective confidence probability for SCI is generally
higher than for DCI1, i.e. the lower bound 1 − δ is loose. We explain
this by reminding that the centers of the confidence intervals SCI and DC1,
respectively

1

m

m∑

k=1

Zk(j) ,

|S|∑

i=1

σi(s)

ni

ni∑

t=1

Y
(si)
t

are already two estimators for SSM(Γs), and the former possesses a smaller
variance than the second one.

About the performance of confidence interval DCI2, the simulations con-
firmed our intuitions. We utilized the Clopper-Pearson interval to compute
a confidence interval for the Shapley-Shubik index in simple static games,
and we saw that the tightness of DCI2 increases when the confidence prob-
ability approaches 1. Let a2≻1 be the percentage of simple Markovian game
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1− δ a2≻1 (%)

.97 100

.95 99.9
.9 87.5
.8 57.7

Table 3.2: Percentage a2≻1 of cases in which the confidence interval DCI2 is
narrower than confidence interval DCI1, at different confidence probabilities.
The Clopper-Pearson interval is considered for DCI2.

instances, generated randomly, in which the confidence interval DCI2 is nar-
rower than confidence interval DCI1. In Table 3.2 we show, for each value of
confidence probability 1 − δ, the values of a2≻1 obtained from simulations.
We see that, for 1− δ < 0.8, the two confidence interval have a comparable
length. For 1 − δ ≥ 0.8, the confidence interval DCI2 is apparently tighter
than DCI1 under these settings.

3.3.8 Complexity of confidence intervals

In Section 3.3.4 we motivated the importance of devising an algorithm that
approximates SSM with a polynomial accuracy in the number of players
P without the need of an exponential number of queries. In this section
we show that the proposed randomized approaches SCI and DCI1 fulfill this
requirement, since they only require a polynomial number of queries to reach
an accuracy which is polynomial in P . Interestingly, the number of queries
required by SCI and DCI1 does not even depend on the number of players
P .

Proposition 3.3.10. Fix the confidence level δ and the length of confidence
interval 2 ǫ. Then n queries are required to compute the confidence interval
SCI, where

n =

[
y − y

]2
log(2/δ)

2 ǫ2
.

Proof. The proof follows straightforward from the expression of confidence
interval SCI.

Proposition 3.3.11. Fix the confidence level δ and the length of confidence
interval 2 ǫ̃. Then, there exist values of n1, . . . , n|S|, with

∑
i ni = n, such

that n queries are required to compute the confidence interval DCI1, where

n ≤
|S|
[
y − y

]2
log(2/δ)

2 ǫ̃2
.

Proof. The proof follows straightforward from Theorem 3.3.9.
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From Propositions 3.3.10 and 3.3.11 we derive the following fundamental
result on the complexity of SCI and DCI1.

Theorem 3.3.12. Let p(P ) be a polynomial in the variable P . The number
of queries required to achieve an accuracy of 1/p(P ) is O(p2(P )), for both
the confidence intervals SCI and DCI1.

Since we did not provide an explicit expression for the confidence inter-
val DCI2, then we can not provide a result analogous to Theorem 3.3.12 for
DCI2 all the same. Anyway, we notice that the expression (3.44) of confi-
dence interval DCI2 does not depend on the number of players P . Moreover,
if the Hoeffding’s inequality is used to compute the confidence interval for
the Shapley value in the static games, then a result similar to Theorem
3.3.12 can be derived for DCI2.

Remark 17. Corollary 3.3.4 and Theorem 3.3.12 explain in what sense the
proposed randomized approaches SCI and DCI1 are better than any deter-
ministic approach, according to our Definitions 19 and 20 of “accuracy”.
E.g., in order to achieve an accuracy in the order of P−1, for a number of
players P sufficiently high, the number of queries needed by SCI and DCI1
is always smaller than the number of queries employed by any deterministic
algorithm.

3.3.9 Conclusions

In Section 3.3.4 we proved that an exponential number of queries is necessary
for any deterministic algorithm even to approximate SSM with polynomial
accuracy. Hence, we directed our attention to randomized algorithms and
we proposed three different methods to compute a confidence interval for
SSM. The first one, described in Section 3.3.5 and called SCI, assumes that
the coalition values in each state are available off-line to the estimator agent.
SCI can be seen as a benchmark for the performance of the other two meth-
ods, DCI1 in Sections 3.3.6 and DCI2 in Section 3.3.6. The last two methods
can be utilized also if we pragmatically assume that the estimator learns the
coalition values in each static game while the Markov chain process unfolds.
DCI2 reveals the most natural connection between confidence intervals of
Shapley value in static games, presented in [14], and in Markovian games.
As a by-product of the study of DCI2, we provided confidence intervals for
the Shapley-Shubik index in static games, which are tighter than the one
proposed in [14]. In Section 3.3.6 we proposed a straightforward way to opti-
mize the tightness of DCI1. In Section 3.3.7 we compared the three proposed
approaches in terms of tightness of the confidence interval. We proved that
DCI1 is tighter than SCI, with an equal number of queries and for a suitable
choice of the number of queries on coalition values in each state. This occurs
essentially because DCI1 allows us to tune the number of samples accord-
ing to the weight of the state. Hence we showed that, asymptotically, the
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dynamic Assumption 3 is not restrictive with respect to the much stronger
static Assumption 2, under the average criterion and for what concerns SCI
and DCI1. The simulations confirmed that DCI2 is more accurate than the
SCI and DCI1 when both the confidence probability is close to 1 and a tight
confidence interval for the Shapley-Shubik index of static games is available,
like the Clopper-Pearson interval. Finally, in Section 3.3.8 we showed that a
polynomial number of queries is sufficient to achieve a polynomial accuracy
for the proposed algorithms. Hence, in order to compute SSM, the proposed
randomized approaches are more accurate than any deterministic approach
for a number of players sufficiently high. The three proposed randomized
approaches can be utilized to compute confidence intervals for the Shapley
value in any cooperative Markovian game, too. In Table 3.3 we summa-
rize the features of the three proposed confidence intervals, SCI, DCI1, and
DCI2.

3.3.10 Appendix

Proof of Theorem 3.3.3

Proof. We will prove that there exists a class F of game instances for

which any deterministic algorithm computing SS
(s)
j with accuracy of at least

1/(2P ) must utilize Ω(2P /
√
P ) queries. Similarly to [14], let us construct

F when P is odd. Let Λ ⊆ P\{j}. There exists a set Do of
( P−1
[P−1]/2

)
/2

coalitions of cardinality [P − 1]/2 such that player j is critical only for Do.
In particular, for |Λ| ≤ [P − 1]/2, v(s)(Λ) = 0; if |Λ| = [P − 1]/2, then, if
Λ ∈ Do, v

(s)(Λ ∪ {j}) = 1, otherwise v(s)(Λ ∪ {j}) = 0. The values of the
remaining coalitions are 1 if and only if they contain a winning coalition
among the ones constructed so far. The Shapley value for player j is thus:

SS
(s)
j =

([P − 1]/2)! ([P − 1]/2)!

2(P )!

(
P − 1

[P − 1]/2

)
=

1

2P

Hence, for any deterministic algorithm ALGo employing a number of queries
smaller than µo(P ), where

µo(P ) =
1

2

(
P − 1

[P − 1]/2

)
,

there always exists an instance belonging to F for which ALGo would answer

SS
(s)
j = 0. By Stirling’s approximation, we can say that µo(P ) ∈ Ω(2P /

√
P ).

Let us now construct the class F of instances when P is even and P > 2.
Let De be a set of

( P−2
[P−2]/2

)
coalitions of cardinality [P − 2]/2, belonging to

C\{j}, such that player j is critical only for De. Then,

SS
(s)
j =

(P/2− 1)! (P/2)!

(P )!

(
P − 2

[P − 2]/2

)
=

1

2[P − 1]
>

1

2P
.
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Similarly to before, for any deterministic algorithm ALGe using a number
of queries smaller than

µe(P ) =

(
P − 1

[P − 2]/2

)
−
(

P − 2

[P − 2]/2

)
=

P − 2

P

(
P − 2

[P − 2]/2

)
,

there always exists an instance belonging to F for which ALGe would answer

SS
(s)
j = 0. By Stirling approximation, we can say that µe(P ) ∈ Ω(2P /

√
P ).

Hence, a number of samples µ ∈ Ω(2P /
√
P ) is needed to achieve an accuracy

of at least 1/(2P ). Hence, the thesis is proved.

Proof of Corollary 3.3.4

Proof. Any deterministic algorithm employs a certain number of queries in

each state s in order to compute SSMj(Γs) =
∑|S|

i=1 σi(s)SS
(si)
j . Let I0 be

a game instance in which player j is a dummy player in all the single stage

games {v(s)}s∈S , i.e. SS(s)j = 0 for all s ∈ S. Let I1 be a game instance such

that SS
(s)
j = 0 for all s except for sk, for which σ(sk) 6= 0, and such that

the game Ψ(sk) belongs to the class F of instances described in the proof of
Theorem 3.3.3. Therefore,

SSMj(Γs) =
σk(s)

2P

in the case that P is odd and

SSMj(Γs) =
σk(s)

2[P − 1]

if P is even. Hence, any deterministic algorithm needs Ω(2P /
√
P ) queries

in state sk to achieve an accuracy better than σk(s)/(2P ). Set c = σk(s)/2.
Hence, the thesis is proved.

Proof of Lemma 3.3.7

Proof. We will provide the proof for continuous random variables; the proof
for the discrete case is totally similar. By induction, it is sufficient to prove
that, if Pr(A1 ∈ [l1; r1]) ≥ 1− δ1 and Pr(A2 ∈ [l2; r2]) ≥ 1− δ2, then

Pr (A1 +A2 ∈ [l1 + l2 ; r1; r2]) ≥ (1− δ1)(1 − δ2).
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Let fA be the probability density function of the r.v. A. Let fAi
(x) =

fAi(x)1I(x ∈ [li; ri]), i = 1, 2. Then,

Pr
(
A1 +A2 ∈ [l1 + l2; r1; r2]

)
=

∫ r1+r2

l1+l2

fA1+A2(x)dx

=

∫ r1+r2

l1+l2

∫

R

fA1(x− τ) fA2(τ) dτ dx

≥
∫ r1+r2

l1+l2

∫

R

fA1
(x− τ) fA2

(τ) dτ dx

=

∫

R

∫

R

fA1
(x− τ) fA2

(τ) dτ dx

=

∫

R

fA1
(x) dx

∫

R

fA2
(x) dx

= Pr(A1 ∈ [l1; r1]) Pr(A2 ∈ [l2; r2])

≥ (1− δ1)(1− δ2).

Hence, the thesis is proved.

Proof of Theorem 3.3.6

Proof. Let us consider the following constrained minimization problem over
the reals:





min
ω1,...,ω|S|

∑|S|
i=1 σ

2
i (s)/ωi

∑|S|
i=1 ωi = n, ωi ∈ R.

(3.46)

By using, e.g., the Lagrangian multiplier technique, it is easy to see that the
optimum value for ωi is

ω∗
i =

σi(s)n∑|S|
k=1 σk(s)

and that the minimum value of the objective function is

ξ∗ =

[∑|S|
i=1 σi(s)

]2

n
. (3.47)

The value ξ∗ clearly represents a lower bound for the optimization problem
over the integers in the case of simple games. Since we deal with the average
criterion, let σi(s) ≡ πi. Now we can find a lower bound for

√
n ǫ̃(n, δ) over
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n that does not depend on the number of queries n:

inf
n∈N

min
n1,...,n|S|:∑

i ni=n

√
n ǫ̃(n, δ) =

= inf
n∈N

min
n1,...,n|S|∈N:
∑

i ni=n

√√√√n log(2/δ)

2

|S|∑

i=1

π2
i

ni

= inf
q1,...,q|S|∈Q+:

∑
i qi=1

√√√√ log(2/δ)

2

|S|∑

i=1

π2
i

qi

= min
x1,...,x|S|∈R+:

∑
i xi=1

√√√√ log(2/δ)

2

|S|∑

i=1

π2
i

xi
(3.48)

=

√
log(2/δ)

2

and the optimum value of xi in (3.48) is

x∗i =
πi∑|S|
k=1 πk

= πi .

For Theorem 3.3.5,

ni/n
n↑∞−→ πi with probability 1.

Hence, ni/n converges with probability 1 to the optimum value x∗i and, by
continuity, the thesis is proved.

Proof of Lemma 3.3.8

Proof. In the case of simple Markovian games, the optimization problem
(3.43) turns into 




min
n1,...,n|S|

∑|S|
i=1 σ

2
i (s)/ni

∑|S|
i=1 ni = n, ni ∈ N.

(3.49)

Let us consider the constrained minimization problem over the reals in
(3.46). Since evidently ξ∗, defined in (3.47), is not greater than the minimum
value of the objective function in (3.49), then by straightforward inspection
over the expressions (3.39) and (3.42) the thesis is proved.
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SCI Confidence interval based on Hoeffding’s inequal-
ity. Valid under static Assumption 2. Its general
formulation in (3.38) holds for Shapley value in
any Markovian game, as well. Polynomial number
of queries required to obtain a polynomial accu-
racy (Theorem 3.3.12).

DCI1 Confidence interval based on Hoeffding’s inequal-
ity. Valid under both static Assumption 2 and
dynamic Assumption 3. Its general formulation in
(3.41) holds for Shapley value in any Markovian
game, as well. Theorem 3.3.6 provides a sampling
strategy maximizing its accuracy, applicable un-
der dynamic Assumption 3. Polynomial number
of queries required to obtain a polynomial accu-
racy (Theorem 3.3.12).

DCI2 Confidence interval valid under both static As-
sumption 2 and dynamic Assumption 3. Its for-
mulation holds for Shapley value in any Marko-
vian game, as well.

SCI vs. DCI1 Under the static Assumption 2, there exists a sam-
pling strategy for which DCI1 is at least as tight as
SCI, for any number of sampling n (see Theorem
3.3.9). Under dynamic Assumption 3 and aver-
age criterion, DCI1 can be made at least as tight
as SCI asymptotically, for n ↑ ∞ (see Theorem
3.3.6).

DCI1 vs. DCI2 By utilizing Clopper-Pearson intervals, DCI2 is
tighter than DCI1 for all 1− δ > 0.8, simulations
suggest (see Table 3.2).

Table 3.3: Summary of results for the three proposed approaches to compute
confidence intervals for Shapley-Shubik power index in Markovian games, i.e.
SCI, DCI1, and DCI2.
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Chapter 4

Restless Bandits for
Dynamic Channel Section:
An MDP formulation

In this chapter we utilize an MDP formulation with uncountable state space
to model a Restless Multi-Armed Bandit problem. We deal with a multi-
access wireless network in which transmitters dynamically select a frequency
band to communicate on. The slow fading channel attenuations follow an au-
toregressive model. In the single user case, we formulate this selection prob-
lem as a restless multi-armed bandit problem and we propose two strategies
to dynamically select a band at each time slot. Our objective is to maximize
the SNR in the long run. Each of these strategies is close to the optimal
strategy in different regimes. In the general case with several users, we for-
mulate the problem as a Competitive MDP with uncountable state space,
where the objective is the SINR. Then we propose two strategies to approx-
imate the best response policy for one user when the other users’ strategy
is fixed.
We remark that our approach can be applied to any Restless Multi-Armed
Bandit with autoregressive arms of order 1.

4.0.11 Introduction

Next generation of wireless networks is expected to be characterized by a
high decentralization/distribution of control functions among nodes to sup-
port self-organizing and self-healing capabilities. Network devices shall be
able to monitor and sense the surroundings, learn from their monitoring
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and smartly and dynamically allocate resources. This perspective scenario
is attracting a considerable amount of research efforts to develop learning
techniques able to optimize the trade-off between exploration and exploita-
tion of environment and resources. A relevant class of learning algorithms
is the Multi-Armed Bandit (MAB) one. In the classic MAB problem there
exist several “arms” that offer a reward when pulled (in analogy with gam-
bling on bandits in casinos). Each arm is associated with a Markov process,
and the reward of an arm is a function of its state. Gittins provided a
dynamic allocation procedure (see Gittins et al., 1989 [37]), then dubbed
Gittins index, which is optimal if the arms that are not pulled do not evolve
over time. The more general case when the arms that are not pulled keep
evolving in time is known as Restless MAB. It was proven by Papadimitriou
and Tsitsiklis (1999, [67]) that restless MAB are PSPACE-hard in general.
Whittle (1989, [100]) proposed to adopt a heuristic Lagrangian relaxation
to extend the Gittins index to the restless case, which is asymptotically op-
timal under certain limiting regime (Weber and Weiss, 1990 [98]).
In this work, we consider a wireless network where transmitters can select
a frequency band from a shared pool to communicate on. The evolution of
the slow fading channel attenuation associated to each frequency band and
each transmitter is a random process that can be well approximated by an
autoregressive process (Aguero et al., [2]). We assume that all such random
processes are independent of each other. The goal of each transmitter is to
maximize its average Signal to Interference and Noise Ratio (SINR) in the
long run.
To get insight into this problem, first we focus on a single transmitter sys-
tem to investigate the exploration-exploitation trade-off for the randomness
introduced in the system by the autoregressive channel attenuations. Then,
we consider the multi-transmitter case where the problem is further compli-
cated by the randomness introduced by the autonomous band selections of
multiple transmitters. For the single terminal case, the problem of dynamic
frequency allocation for SNR maximization can be modeled as a restless
Multi Armed Bandit (MAB) since the transmitter only knows the instan-
taneous attenuations on the bands utilized in the past and they evolve also
when not utilized. To the best of the authors’ knowledge, there are no avail-
able results on the MAB problem for autoregressive processes. We propose
two heuristic frequency allocation strategies, one called “myopic” and the
other “randomized”. When the AR processes possess similar autocorrelation
functions, we suggest to use the myopic strategy. Instead, when there is one
AR process having a much higher autocorrelation, we suggest to use the ran-
domized strategy. In the scenario with multiple transmitters the problem is
formulated as a Competitive MDP with uncountable state space. We focus
on a two-user system and we assume that user 1 is oblivious of the presence
of user 2 and follows a plain single-user myopic approach. Then we propose
two strategies for user 2 to approximate its best response against user 1’s
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strategy. Again, one strategy is myopic and the other is randomized, with
respect to the SINR objective function.
A lexical remark. We say that we “sample” a frequency band when we
utilize it for the communication in a certain time slot.

4.0.12 Model

In Section 4.0.13 we consider one transmitters and one receiver, while in
Section 4.0.14 we deal with a model with two transmitters. Time is divided
into slots and, at the beginning of a time slot, each transmitter (or user)
selects a frequency band, out of a pool of M different ones, to transmit.
At the receiver, a single-user decoder per transmitter is deployed. In the
two-transmitter case, when a both users access the same frequency band
i at time slot t, they interfere with each other, and the SINR (Signal to
Interference plus Noise Ratio) for user j = 1, 2 at time t is

SINRi,j[t] =
Pj |hi,j [t]|2

N0 +
∑

q 6=j Pq|hi,q[t]|2

where Pj is the transmit power of user j, hi,j [t] ∈ C is the i-th channel
coefficient of user j at time t and N0 is the variance of the additive white
Gaussian noise at the receiver. When only one user is present, the SINR
definition boils down to the classic SNR. For simplicity of notation, hence-
forth we will denote the channel attenuation coefficient |hi,j [t]|2 as gi,j[t].
Let us describe now our channel model. In (Aguero et al., 2007 [2]) it is
shown that, under slow fading conditions, the SNR (Signal to Noise Ratio)
of indoor wireless channels can be well approximated by an autoregressive
(AR) model. This means that, under such conditions, we can model the
channel attenuations as

gi,j [t] =

pi,j∑

k=1

a
(k)
i,j gi,j[t− k] + ci,j + ǫi,j[t]

where ai,j ∈ R, {ǫi,j [t]}t is an i.i.d. Gaussian process with zero mean and
variance σ2

i,j, ci,j > 0, and pi,j is the order of the model. Moreover, all the
channels considered are independent of each other, i.e. ǫi1,j1 [t] is independent
of ǫi2,j2 [t] when either i1 6= i2 or j1 6= j2.
We assume the AR process to be wide sense stationary (WSS), i.e. the roots

of the polynomial zp −∑p
k=1 a

(k)
i,j z

p−k must lie inside the unit circle.

4.0.13 Single user: MDP formulation

In this section we consider the single user case. In order to simplify the
notation, we drop the user index. In our study we consider an AR(1) channel
attenuation model, i.e.

gi[t] = ai gi[t− 1] + ci + ǫi[t]
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For |ai| < 1, the process is WSS, and the (unconditioned) expected value of
channel attenuation gi[t] at any time instant t can be expressed as

mi = E(gi[t]) =
ci

1− ai
∀ t.

Therefore we can say that E(SNRi[t]) = Pmi/N0, for all t. Straightfor-
ward computations show that the autocovariance function of the channel
attenuation can be written as

E
(
(gi[t]−mi)(gi[t− n]−mi)

)
= a

|n|
i

σ2
i

1− a2i
. (4.1)

We now illustrate the two fundamental assumptions of this paper. First,
the coefficients ai and σi are known by the transmitter, which might have
estimated them during a training phase. Second, the transmitter, at time
t, only knows the instantaneous attenuations of the frequency bands utilized
up to time t − 1. Indeed, we assume that the receiver estimates gi,j and
broadcast this information on the channel along with an identifier for the
transmitter and the frequency band. The goal of the user is to dynami-
cally switch among the channels at each time slot in order to maximize the
expected average SNR over an infinite horizon. Equivalently, it wants to
maximize the expected average over time of channel attenuations, denoted
by Φ(av)(f):

maxf

{
Φ(av)(f) = lim

T→∞

1

T

T−1∑

t=0

Ef (gf(t)[t])
}

(4.2)

where f is a dynamic sampling strategies over the channels 1, . . . ,M . The
reader should notice that a channel sampling strategy f at time tmay depend
on the whole history of the observed channels and of the sampling decisions
up to time t. This class also includes static strategies, that choose one
channel once for all. Intuitively, when there exists a channel i with much
lower unconditioned expected attenuation, i.e. mi ≫ mk for all k 6= i, a
static selection of the channel i is the nearly optimal strategy, since with
high probability gi[t] > gk[t] for all k 6= i for almost all t.
In this section, we want to study how to dynamically select the band on
which to transmit when, a priori, all of them are nearly equivalent, i.e.
there exists m ≈ mk, for all k. At each time slot, there is always one channel
better than the others, hence we wish to track dynamically the evolution
over time of the best channel.
Intuitively, the sampling choice at each instant has to be a trade-off between
exploration and exploitation. To give a hint, the most natural policy, that we
will call myopic, at each time step t aims at maximizing the expected value
of SNR[t], given all the previous channel observations. On the other hand,
the statical information about channels that are not used becomes more and
more obsolete, therefore in some cases it might be better to explore different
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channels with a randomized strategy.
We can formulate the optimization problem (4.2) as a restless Multi Armed
Bandit problem (MAB for short), in which a user at each time instant t
selects an arm (here, frequency band) which gives a reward (here, the SNR)
and all the arms, including the ones that have not been selected, evolve
according to a certain stochastic process (here, an autoregressive process).
More specifically, we can describe the decision problem at hand as a Markov
Decision Process (MDP) with an uncountable set of states S or, equivalently,
as a Partially Observable MDP. Let us describe it in detail. At time t, we
call ni(t) the number of steps ago in which channel i has been last used.
The attenuation of channel i at time t conditioned on its last observation
is a Gaussian r.v., and we denote its mean and variance as µi(t) and νi(t),
respectively:

µi(t) = E
(
gi[t]

∣∣ gi[t− ni(t)]
)

= a
ni(t)
i gi[t− ni(t)] + ci

1− a
ni(t)
i

1− ai
(4.3)

νi(t) = Var
(
gi[t]

∣∣ gi[t− ni(t)]
)
= σ2

i

1− a
2ni(t)
i

1− a2i
(4.4)

where gi[t−ni(t)] is the attenuation of channel i during its last utilization. At
time step t, thanks to the Markov property of the AR(1) process, the whole
statistical information about channel i is hence contained in (µi(t), νi(t)).
We observe that µi ∈ R, while νi is bounded between [σ2

i ;σ
2
i /(1− a2i )]. The

decision on which channel to utilize at time t hinges on the set St:

St = {µ1(t), ν1(t), µ2(t), ν2(t), . . . , µM (t), νM (t)}. (4.5)

By utilizing the MDP jargon, we call by St the state of the decision problem
at time t. The state space S is the uncountable collection of all the possible
states. In each state S ∈ S, a set of actions A = {1, 2, . . . ,M} is available
to the transmitter, which represents the collection of channels that can be
selected at time slot t. If channel i is selected, then we map the “reward” for
the user in state St to the expected channel attenuation at time t conditioned
on the last observation of channel i itself, i.e. µi(t). The state of the system
at time t + 1 evolves stochastically, according to the following Markovian
rule. If channel i is selected at time t, then at time t+ 1,

µi(t+ 1) = aiY + ci, where Y ∼ N
(
µi(t), νi(t)

)

νi(t+ 1) = σ2
i .

Instead if channel i is not selected at time t,

µi(t+ 1) = aiµi(t) + ci

νi(t+ 1) = a2i νi(t) + σ2
i .
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Heuristic algorithms

The theory of MDP allows us to claim that there exists an optimal stationary
strategy fO for the problem (4.2). Unfortunately, the computation of fO

turns out to be a difficult task. Indeed the solution to a Markov Decision
Problem with uncountable state can only be approximated by means of
discretization algorithms (Bäuerle and Rieder, 2011 [17], see also Section
1.3.2), and even in this case the curse of dimensionality entails that the size of
the discretized state space increases exponentially with the number of arms.
A different approach would be to compute the Whittle index (Whittle, 1989
[100]) of each channel, but this approach is not guaranteed to be optimal.
Hence, it becomes crucial to devise a simple policy whose performance is
reasonably close to the optimal Φ(av)(fO).

In the following we propose the most natural stationary strategy one can
think of, i.e. the myopic policy fM that aims at maximizing the instanta-
neous expected SNR in each state. Such a policy does not take into account
that the statistics of the channel that have not been selected for a long pe-
riod might become too stale. First, we need to initialize the algorithm, and
we choose to sample the coefficient of each channel once.

Algorithm 4.0.13. Myopic policy fM .
For 0 ≤ t ≤ M − 1 select channel t, i.e. fM (St) = t+ 1. For t ≥ M ,

fM(St) = argmax
i∈{1,...,M}

µi(t).

We intend to compare the performance of the myopic policy with a more
sophisticated one, that we call randomized strategy and is inspired by the
Thompson sampling strategy for Bayesian Multi Armed Bandit problems
(Thompson, 1933 [92]). We suggests to draw, in each state St, one re-
alization of the random variable ξi = gi[t]

∣∣gi[t − ni(t)], for each channel
i = 1, . . . ,M . Then, the arm corresponding to the highest realization of ξ
is chosen. This procedure does not always follow the myopic rule, but with
a certain probability explore the arms that, though possessing a lower µ,
might be optimal since their last observation is too stale.

Algorithm 4.0.14. Randomized policy fR.
For 0 ≤ t ≤ M − 1 select channel t, i.e. fR(St) = t+ 1. For t ≥ M , draw a
realization of the Gaussian variable ξi ∼ N (µi(t), νi(i)) for all i = 1, . . . ,M .
Select

fR(St) = argmax
i=1,...,M

ξi.

Simulations

In this section we show the results of some simulations, giving a hint about
the performance of the myopic and the randomized policies, described re-
spectively in Algorithm 4.0.13 and 4.0.14. Given a stationary policy f , we
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want to assess its average reward Φ(av)(f). We compare the myopic and ran-
domized policies with i) the optimal policy fO, approximated by means of a
state discretization technique (see Section 1.3.2), with ii) the upper bound
for the performance of any strategy, computed by selecting the channel with
the highest coefficient g at each time step:

fU(t) = argmax
i=1,...,M

gi[t], ∀ t ≥ 0 (4.6)

and with iii) the static policy fS , that selects off-line the arm with the
highest expected value, and no longer switches to other channels, i.e.

fSt = argmax
i=1,...,M

mi, ∀ t ≥ 0.

Of course, the strategy fU is not applicable, since it is not causal. In theory,
its performance is achievable only when the channels are deterministic hence
perfectly predictable, i.e. σi = 0 for all i = 1, . . . ,M . We now show the per-
formance of the five policies under scrutiny, the myopic fM , the randomized
fR, the static fS , the optimal fO, and the upper bound policy fU , under
different channel conditions.
First, we consider 3 arms, where arms 2,3 are statistically equivalent, and
a2 = a3 = 0.3, σ2

2 = σ2
3 = 1, and m2 = m3 = 8. Arm 1 has the same

coefficients a1 = 0.3, σ2
1 = 1 as arms 2,3. In Figure 4.1 we show the perfor-

mance of the five policies when m1 varies within [7; 9]. We see that, under
these conditions, the myopic policy outperforms the randomized one since
the latter wastes too much time in exploring arms that are not optimal. As
intuition confirms, the static policy fS performs as well as the myopic fM

when arm 1 has the highest expected value m1 > m2 = m = 3. Instead, for
m1 < m2 = m3, dynamically switching between the arms 2,3 is beneficial
with respect to statically selecting one of the two.
As we see in Figure 4.1, when all the arms are characterized by the same
unconditioned expectation, i.e. mi = 8, for i = 1, 2, 3, the static policy fS

is outperformed by both the myopic and the randomized strategies. It is
indeed better to switch among the channels to attempt to track the best
instantaneous channel at each time instant, based on the previous observa-
tions. Remarkably, the performance of the myopic policy fM is close to the
optimal fO.

Hence, we evaluate our algorithms in a different scenario, in which the
value m’s are the same for all the channels, but there exists one channel (say,
1) whose autocovariance function (4.1) decays considerably more slowly than
the others. It is clear from Figure 4.2 that there are lapses in which chan-
nel 1 is by far the best, and some others in which its channel coefficient g1
plummets below the others. From Figure 4.2 we observe that the myopic
strategy often fails to track channel 1 when it is the best. The reason is
quite intuitive: during the lapse in which channel 1 is the worst one, the
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Figure 4.1: Performance of myopic and randomized algorithm with 3 arms
(channels). Arms 2 and 3 are statistically equivalents, with a2 = a3 = 0.3,
σ2
2 = σ2

3 = 1, and m2 = m3 = 8. Arm 1 has the same a1 = 0.3, σ2
1 = 1

as arms 2,3, while the performance of the proposed algorithms are assessed
when m1 varies within [7; 9].

myopic strategy does not choose it, then its last observation become ob-
solete, and consequently the prediction µ1(t) tends to m1 = 10. Thus, it
is highly probable (and this probability increases with M) that one of the
other, suboptimal, channels, having a fresher observation, offers a higher
prediction. It easily follows that, for its inherent features, the randomized
policy is more suitable to such kind of situations, as results in Figure 4.3
confirm. We considered 3 arms (frequency bands). Arms 2 and 3 are sta-
tistically equivalents, with a2 = a3 = 0.3, σ2

2 = σ2
3 = 1, c2 = c3 = 10. Arm

1 has the same coefficients c1 = 10, σ2
1 = 1 as arms 2,3, while the perfor-

mance of the proposed algorithms are assessed when the coefficient a1 varies
within [0.3; 0.98]. As we intuitively explained before, when the coefficient a1
is sufficiently high, i.e. a > 0.85, the randomized strategy outperforms the
myopic one. Notably, the myopic policy is quasi-optimal for a1 < 0.6, while
the the randomized one is nearly optimal for a1 > 0.9.

4.0.14 Multi user: Competitive MDP formulation

In this section we discuss the more general scenario described in Section
4.0.12, in which two transmitters dynamically select one among M chan-
nels at each time slot. If some users choose the same channel in one time
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Figure 4.2: Channel (or arm) selection when ci = 10 for all i, a1 = 0.9, a2 =
a3 = 0.3, σ2

1 = 1.5, σ2
2 = σ2

3 = 0.5. The randomized strategy succeeds in
tracking the first channel with higher autocorrelation, when it is the best
one.

slot, they interfere with each other. Therefore, the objective function for
each user is its SINR, and no longer its SNR. Since in the single user case
the decision process can be described as an MDP, then the scenario with
two users can be formalized as a Competitive MDP, also called competitive
MDP (Filar and Vrieze, 1997 [32]), with uncountable state space.
In our case, the set of channels h1,j , . . . , hM,j for player j evolve indepen-
dently from the ones available to any other player k 6= j, and the action
space for each player is still A = {1, . . . ,M}, i.e. the channel indices to be
selected at each slot. Therefore, we are allowed to formulate the game as a
Competitive MDP in which each user j controls its own Markov chain on
the state space Sj . As in the single user case Sj is the set of all the possible
states (4.5). Formally, the state space of the Competitive MDP at hand is
the Cartesian product S∗ = S1 × S2.
Let us denote by fj a sampling strategy for user j and by f−j the one for
the other users. Possibly, fj , f−j are randomized policies. We define the
instantaneous reward for user j in state S∗

t ∈ S∗ as the expected reward

E
(
SINRj[t]

∣∣S∗
t , fi, f−i

)
.

Thus, the interaction on the players occurs only on the instantaneous re-
wards gained in each state, through the SINR expression. Thus we can say
that our model is a reward-coupled Competitive MDP. This model is very
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similar with the one dealt with in (Altman at al., 2008 [4]), except that here
the state space is uncountable and there are no constraints on the rewards.

Heuristic Best Response

We now propose a heuristic best response policy for user 2. Suppose that
user 1 is oblivious of the presence of user 2 and performs a myopic policy fM1
to maximize the expected average of channel attenuations over time, as in
the single user case. On the other hand, user 2 knows the parameters of the
channels, the current state, and the strategy of user 1. Thus, user 2 still faces
an MDP with uncountable states, which is equivalent to the Competitive
MDP described before, when user 1 fixes its own stationary strategy. Let
us give an insight on a possible strategy for user 2. Assume that, for user 2,
channel i1 presents at time t the highest coefficient gi1,2[t], but the expected
SINR guaranteed by channel i2 with suboptimal attenuation is higher, since
the interference is much weaker. Then, it is in general not clear what user
2 should do. A myopic solution would suggest to switch to the free channel
i2, but on the other hand, in such a way the information about channel i1
becomes stale, and moreover channel i1 itself might become free in a near
future. Then, in analogy with the single player case, we propose two strate-
gies, one myopic and one randomized, to approximate the best response for
user 2 against a myopic policy fM1 that user 1 implements regardless of user
2’s behaviour. We suppose the algorithms are initialized by sampling each
channel once.

Algorithm 4.0.15. SINR myopic policy fMS
2 for user 2, against myopic

policy fM1 for user 1.

fMS
2 (S∗

t , f
M
1 ) = argmax

i∈{1,...,M}
E(SINRi,2[t]

∣∣S∗
t , f

M
1 , i).

Algorithm 4.0.16. Randomized policy fRS
2 for user 2, against myopic pol-

icy fM1 for user 1.
Draw a realization of the random variable ξi = SINRi,2[t]

∣∣(S∗
t , f

M
1 , i), for all

i = 1, . . . ,M . Select
fRS
2 (S∗

t , f
M
1 ) = argmax

i=1,...,M
ξi.

About the performance of policies fMS , fRS , we can do similar considera-
tions to the one made for the myopic and randomized algorithms in the single
user case. Let us explain the results illustrated in Figure 4.4. We considered
2 users and 2 channels. The noise variance is N0 = 1 and P1 = P2 = 1.
The channels for user 1 are almost deterministic, i.e. σ2

1,1 = σ2
2,1 = 0.1 and

a1,1 = a2,1 = 0.3, m1,1 = 2, m2,1 = 0.5. Thus user 1, that is unaware of the
presence of user 2 and adopts a myopic policy fM1 , selects channel 1 almost
always. For user 2, σ2

1,2 = 0.8, σ2
2,2 = 0.4, m1,2 = 8,m2,2 = 3, a2,2 = 0.3.
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Figure 4.3: Performance of myopic and randomized algorithm with 3 arms
(frequency bands). Arms 2 and 3 are statistically equivalents, with a2 =
a3 = 0.3, σ2

2 = σ2
3 = 1, c2 = c3 = 10. Arm 1 has the same coefficients

c1 = 10, σ2
1 = 1 as arms 2,3. a1 varies within [0.3; 0.98].

Hence, a static strategy for user 2 would suggest not to collide and to select
channel 2. Anyway, sometimes it is beneficial for user 2 to select channel
1 when this is good enough. Indeed, for values of a1,2 approaching 1, the
autocorrelation of channel 1 for user 2 increases, and the randomized policy
fRS succeeds in tracking channel 1 in the time slots in which its coefficient
g is large enough to overwhelm the interference caused by user 1.

4.0.15 Conclusions

We proposed two strategies to dynamically select one out of a pool of M
slow fading channels, modelled as autoregressive processes of order 1. The
decision process is modelled as a restless bandit, or equivalently as a Markov
Decision Process. The myopic channel selection strategy is nearly optimal
when the channels are similarly correlated. Instead we suggest to adopt a
randomized strategy when one channel shows higher autocorrelation. When
two users are present, they interfere with each other, and we model the
competitive learning process as a Competitive MDP. We finally propose two
ways to approximate a best response selection strategy for the transmitters.

We remark that, of course, our approach can be applied to any Restless
Multi-Armed Bandit process with independent AR(1) arms. This is seem-
ingly a promising research field. We believe indeed that AR(1) processes are
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Figure 4.4: Best response strategy of user 2 against a myopic policy for user
1. For user 1, σ2

1,1 = σ2
2,1 = 0.1 and a1,1 = a2,1 = 0.3, m1,1 = 2, m2,1 = 0.5.

For user 2, σ2
1,2 = 0.8, σ2

2,2 = 0.4, m1,2 = 8,m2,2 = 3, a2,2 = 0.3. a1,2 varies

within [0.8; 0.98]. Φ
(av)
2 (fM1 , f2) is the expected long run average SINR for

user 2 when user 1 adopts strategy fM1 .
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easy enough to provide nice analytical formulations, and at the same time
they are a widely used paradigm for correlated time-series.
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Conclusions and future
perspectives

In this dissertation we mainly studied Competitive and Cooperative Game
Theory on Markov Decision Processes (MDPs). MDPs are controlled Markov
process. The actions taken by a set of players influences both the rewards for
each player in each state and the transition probabilities among the states.

In Chapter 2, Section 2.1, we investigated zero-sum Competitive MDPs
with two players and perfect information, i.e. in each state at most one
player has more than one action available. We considered the discounted
criterion and we provided two algorithms to compute the optimal strategies
at the Nash equilibrium, for both players, for all discount factors sufficiently
close to 1. We adopted a linear programming technique in the field of
rational functions with real coefficients. We proved the convergence in finite
time for one algorithm. Our algorithms also produce the range of discount
factors in which the strategies are optimal.
In Section 2.4 we utilized the techniques developed in Section 2.1 to analyze
a routing game in which several service providers (SPs) share the same
network and provide connection toward a unique server (destination) to
their customers. In each node of the network, one SP controls the routing
of the incoming packets. Each link between adjacent nodes has a different
cost for each SP. SPs must cooperate to carry out the transmission of the
packets successfully. We utilized a long-run cooperative game approach to
distribute the costs of the transmission among the SPs. We proposed to
adopt the algorithms developed in Section 2.4 to compute the value of each
coalition of SPs, by following a max-min methodology.

In Chapter 3 we dealt with Dynamic Cooperative Games on MDPs. The
main difference with respect to Section 2.4 lies in the fact that coalitions
are allowed to form throughout the game, and it is necessary to allocate
a payoff to each player in each state. In Section 3.1 a Transferable Utility
(TU) MDP cooperative game is considered. we devised a Cooperative Payoff
Distribution Procedure on MDPs (MDP-CPDP) which satisfies a time con-
sistency property. We then studied under which conditions the MDP-CPDP
contents the greedy players, having a myopic perspective of the game. Most
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importantly, we investigated a Cooperation Maintenance property, and we
found that it is a refinement of the concept of Core on MDPs. Such prop-
erty strengthen the cohesiveness of the grand coalition throughout the game.
Indeed, at each time step, each coalition is always enticed to postpone the
decision of withdrawing from the grand coalition, which is cohesive by in-
duction.
In Section 3.2 we applied some concepts developed in Section 3.1 to a mul-
tiple access channel with Markovian quasi-static channel coefficient. We
allocated the rate to each user in each channel state. In the corresponding
MDP model, the transition probabilities among the (channel) states do not
depend on the players (users). Hence, under this perspective, the model
is simpler than the one in Section 3.1. On the other hand, the rewards
(rates) cannot be distributed in any manner in each state, but only within
a feasibility (capacity) region. We first studied how to obtain a maximum
sum-rate allocation both in each state and in the long-run process. Then,
we found a sufficient condition ensuring the existence of an allocation which
is fair throughout the game, from each intermediate step onwards. Finally,
we found that the set of global optimum rates coincides with both the time
consistent Core set and the Cooperation Maintaining set.
In Section 3.3 we dealt with Cooperative MDPs under the TU assumption
and by considering an endogenous Markov chain on the state space. We call
them Markovian games. We propose three procedures to compute a confi-
dence interval for the Shapley value in the long-run game. One of them relies
on the assumption that all coalition values in all states are known off-line,
while the other two are also valid under the more realistic assumption that
the coalition values are learned during the game. Afterwards we provided
some results on the accuracy of the proposed methods in the specific case of
simple games, i.e. the coalition values in each state take on binary values,
i.e. 0 and 1. These games are appropriate to assess the power of members
within a committee. We proposed these three randomized approaches to
overcome complexity issues. Indeed, in order to achieve a polynomial ac-
curacy in the number of players, an exponential number of queries on the
coalition values is needed even to approximate the Shapley value with poly-
nomial accuracy. Instead, our methods only require a polynomial number
of queries to achieve a polynomial accuracy.

Finally, in Chapter 4 we utilize an MDP formulation with uncountable
state space to tackle a problem of optimal dynamic selection of slow fading
channels. Our approach can be generalized to any Restless Multi-Armed
Bandit (MAB) problem with independent autoregressive AR(1) arms. Only
one frequency can be utilized at a time, and the instantaneous value of the
associated attenuation coefficient is revealed. We propose two strategies to
maximize the average SNR in the long-run. The first strategy is myopic,
i.e. it prescribes to choose the channel with the lowest expected attenuation,
conditioned on the previous observations. The second one is randomized and
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suggests to explore with a certain probability the seemingly worse channels,
still based on the previous observations. Almost counter-intuitively, when
one channel shows much higher correlation than the others, the randomized
strategy outperforms the myopic one and it is quasi-optimal. Indeed, under
the myopic policy, the highly correlated channel is rarely utilized and its
statistics tend to become stale. Hence, in the periods in which it is better
than the other channels, it is not detected.

Future perspectives I feel that the Cooperative MDP model, described
in Section 3.1, can be extended in several directions.

First of all, in the Cooperative MDP model the probability of transition
from a state s to a state s′ only depends on the strategy adopted by each
player, or agent, in state s, hence disregarding the fashion in which the play-
off, earned by the grand coalition as a “reward” of their joint strategies, is
shared among the players in state s. More formally, the stochastic kernel
T of the process, governing the transition law between state at state t and
t+ 1, St and St+1 respectively, is described by the following relation:

St+1 = T (St, fP(St)),

where fP(St) is the strategy of the grand coalition P. On the other hand,
each state of the Markov process can be considered as a “snapshot” of the rel-
ative power of each player inside a coalition, which reasonably also depends
on the previous allocations. Hence, it would be interesting to introduce the
dependency of the transition probabilities among the states on the payoff
allocation in each state. In order to make the model even more versatile, one
could also assume that each player will consume a certain portion δ of the
assigned pay-off, and invest the remainder in order to boost its power inside
a coalition in the next step. More formally, one could define the stochastic
kernel T of the process as

St+1 = T (St, fP(St),γ(St), δ(St)),

where γ(St) is the CPDP, and δ(St) is the investment policy for all players,
in state St. The objective is devising a pay-off allocation in each state which
enforces an agreement among all the players, which is both stable over time
and social optimum. I expect that this task is considerably more challeng-
ing than the one dealt with in Section 3.1, due to the further complications
brought in the model.

In my opinion, another promising research direction consists in examin-
ing the case of imperfect monitoring of players’ strategies in a MDP game,
that has been studied only in the case of repeated games (see Mailath and
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Samuelson, 2006 [55], for a survey). The grand coalition is seen as a meta-
agent, i.e. it does not simply coincide with the union of all the single agents,
but it is rather an external entity whose duty is to impose the strategy that
each agent should implement - but not necessarily actually does - in order to
attain a social optimum solution. As a näıve example, one can identify the
grand coalition with a Union of countries, and the players with the single
countries belonging to it. The Union imposes restrictions on the policy of
each country, which sometimes are not respected. In classic Cooperative
Game Theory, the only way such a coalition has to stand out against the
grand coalition is breaching the agreement and not cooperate, or even not
signing the cooperation contract in the first place. Here one could study an
intermediate situation, in which each unsatisfied subset of agents can “take
the law into their own hands” and deviate from the strategy recommended
by the grand coalition. By assuming the imperfect monitoring condition, one
may further assume that the grand coalition has not a direct monitoring of
the implemented strategies, but rather indirect, through the observation of
the sequence of visited states S1, S2, . . . . Indeed, the sequence of states vis-
ited by the stochastic process now depends on the implemented strategy,
and the grand coalition can acquire some statistical knowledge by inferring
on its observation. Nevertheless, this is a “noisy” observation, since the
transition rule is not deterministic.
The optimal CPDP for the grand coalition should take into account some
form of punishment for those agent which deviated from the recommended
strategy with a sufficiently high probability. This procedure should act as a
deterrent for future deviations.

As to the work on uniform optimal strategies, developed in Section 2.1,
I would like to extend the linear programming approach on the field F (R)
to the value iteration algorithm, that works for fixed discount factors.

Finally, I believe that the work on Multi-Armed Bandits with autore-
gressive arms, dealt with in Chapter 4, is a very insightful and interesting
model. In order to be able to provide some analytical results, I am consid-
ering to discretize the state space and assume a Markov chain on it. Note
that the original AR model can be approximated when the discretization is
fine enough and the transition probability are chosen ad hoc. I am confident
about the possibility to well approximate the dynamic allocation problem
through an MDP formulation on a reduced state space, whose dimension is
polynomial (and no longer exponential, as in the exact case) in the number
of players.
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