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Abstract—As RFID applications are entering our daily life,
many new security and privacy challenges arise. However, cur-
rent research in RFID security focuses mainly on simple authen-
tication and privacy-preserving identification. In this paper, we
discuss the possibility of widening the scope of RFID security and
privacy by introducing a new application scenario. The suggested
application consists of computing statistics on private properties
of individuals stored in RFID tags. The main requirement is
to compute global statistics while preserving the privacy of
individual readings. PPS assures the privacy of properties stored
in each tag through the combination of homomorphic encryption
and aggregation at the readers. Re-encryption is used to prevent
tracking of users. The readers scan tags and forward the
aggregate of their encrypted readings to the back-end server.
The back-end server then decrypts the aggregates it receives and
updates the global statistics accordingly. PPS is provably privacy-
preserving. Moreover, tags can be very simple as they are not
required to perform any computation, but only to store data.

I. INTRODUCTION

Radio Frequency Identification tags are low cost wireless
devices that were aimed to identify products along the dif-
ferent steps of the supply chain without the need for line
of sight. Due to its cost and time effectiveness, RFID tags
have gained more and more popularity in many applications,
such as access control, product tracking, item identification,
and counterfeiting detection. Most of the work on RFID
security and privacy has focused on lightweight authentication,
identification, and formal security and privacy models in RFID
settings [2, 4, 5, 8, 18, 21–23].

The paper at hand focuses on a new RFID application
scenario which raises new requirements beyond the authen-
tication and identification issues. We focus on the problem of
collecting statistics over private properties of a population of
individuals while assuring the privacy of these individuals with
respect to their properties. A typical real-world application
example of this problem is the computation of customer
statistics using special RFID-based membership or loyalty
cards. A main requirement is the protection of the customer’s
identity and privacy during computation.

To tackle this problem, we present a new protocol called
PPS (“Privacy-Preserving Statistics”). In PPS, each RFID
tag stores the properties of its holder in an encrypted form.
Intermediate parties called readers collect encrypted proper-
ties from tags, compute aggregates over encrypted readings
without decrypting them, and periodically forward the result
of such aggregation operations to the back-end server. The
server is then able to derive the global statistics by decrypting
the aggregates it receives from the readers. PPS involves the
following entities:
• Issuer I: the issuer initializes each tag by writing into the

tag’s memory an encrypted representation of the properties of
the tag holder.

• Tags {Ti}: each tag stores an encrypted representation
of different properties of the tag holder. More precisely,
the encrypted representation of p different properties Pi ∈
{true, false}, 1 ≤ i ≤ p, is stored in the tag, where Pi is set
to “true”, if the tag holder possesses the property Pi.
• Readers {Ri}: readers are in charge of collecting proper-

ties stored on tags. They read the data stored on each tag and
forward the result of these readings to the back-end server.
• A back-end server S: S processes the aggregate data

received from readers and derives some global statistics such
as distribution of attendance rate with respect to event types
and population characteristics.

The main requirement for S is to count the number of
tag holders satisfying each property Pi for all the properties.
The main concern is to gather statistics while preserving
the privacy of tag holders. Neither readers nor the back-end
server should be able to disclose the values of a tag holder’s
properties. The main intuition to ensure privacy in PPS is to
combine both encryption and aggregation. The list ωi of the
tag holder properties are encrypted as E(ωi) and stored on
the tag. Through subsequent readings of tags in its range, the
reader computes the aggregate of the ciphertexts received from
the tags,

∑
E(ωi), and periodically forwards the encrypted

aggregate value to the back-end server.
Since the back-end server S can decrypt, readers must

aggregate the ciphertexts received from the tags in their range
before forwarding the encrypted data to S. Note that for-
warding each individual reading to the server would strongly
overload typically embedded, low capacity readers.

Even though the privacy of properties is assured through
encryption, unlinkability of tags, as defined by Chatmon et al.
[7], has to be assured, too. Unlinkability prevents the readers
or eavesdropping adversaries from tracking tags over different
sessions; an adversary should never be able to link two
responses of the same tag over different sessions. Therefore,
data sent by the tags should be different at each reading. Re-
encryption is used to that effect. In Section II-B, we formally
define the notion of unlinkability.

The major contributions of PPS are:
1.) contrary to related work on RFID tag identification, PPS

provides an RFID-based mechanism to collect statistics over
a set of properties in a privacy-preserving manner.

2.) formal proofs of privacy and unlinkability against eaves-
droppers, malicious readers, and curious back-end servers.

3.) minimal hardware requirements resulting in cheap tags:
PPS does not require tags to do any cryptographic computa-
tion, tags are passive, i.e., battery-less and only require data
storage functions. Contrary to related work, PPS’ storage-only
requirements enable implementations on today’s available EPC
class1 Gen2 tags.



4.) data integrity: PPS can detect tag tampering.

II. ADVERSARY & PRIVACY MODELS

In this section, we introduce the adversary model and define
formally the notions of privacy and unlinkability.

A. Adversary model

PPS protects against two different categories of adversaries
ADV1 represents external adversaries and malicious read-

ers. We assume an active adversary who can not only eaves-
drop messages, but also intercept, modify, and even initiate
communication. He might even replace a tag’s content by re-
writing it. (Re-writing tags has some special implications on
security, and we discuss this issue separately in Section V.)
ADV2 represents a malicious back-end server. A back-end

server is passive in the sense that it only receives aggregates
from readers. It cannot initiate communication with tags.
ADV1 does not collude with ADV2. Note that in scenarios

where the readers and the back-end server collude, PPS will
not provide privacy.

As motivated in the introduction, the primary goal of
ADV1 or ADV2 is to gain some knowledge about sensitive
information, in this case individual tag holders’ properties. We
formalize this below.

B. Privacy Models

PPS borrows privacy notions for storage-only tags as orig-
inally proposed by Ateniese et al. [1], Golle et al. [11], and
experiment-based definitions by Juels and Weis [13].

At the end of a protocol execution, PPS is said to be
privacy-preserving, if ADV1 and ADV2 can neither decide
which properties a given tag satisfies nor link tags to previous
protocol executions. In conclusion, an adversary should not
have a higher chance in breaking privacy or unlinkability than
simple guessing. The following oracle-like constructions exist:
Opick is an oracle that randomly selects a tag Ti from all

the n tags in the system.
Oselect is an oracle that randomly returns a tag Ti from all

the n tags in the system along the list Si of properties Pj Ti
is satisfying.
Oflip is an oracle that, provided with two tags T0, T1,

randomly chooses b ∈ {0, 1} and returns Tb.
Oaggregate computes a total of s aggregates Agg1, Agg2,

. . . , Aggs, each time by randomly choosing a set of γ
tags: Agg1 is computed using tags (T 1

1 , T
2
1 , . . . , T

γ
1 ), Agg2

is computed using (T 1
2 , T

2
2 , . . . , T

γ
2 ), . . ., Aggs is computed

using (T 1
s , T

2
s , . . . , T

γ
s ). The sets of tags are chosen randomly,

but there is at least one tag that is an element of two different
sets, i.e., used in the computation of two different aggregates.
Finally, Oaggregate returns Agg1, Agg2, . . . , Aggs.

1) Privacy against ADV1: An adversary breaks the privacy
of PPS, if given a tag T and a property Pi, he can decide if
a tag T satisfies the property Pi or not.

To that effect, an adversary ADV1 has access to tags in two
phases. In a learning phase (Algorithm 1), ADV1 is provided
with a challenge tag Tc from the oracle Opick. He can read
from Tc for a maximum of t times. Oselect gives r−1 tags to
ADV1 along with the list Si of properties Pj that each tag Ti

Tc ← Opick;
for i := 1 to t do

READ(Tc);
EXECUTE(Tc);

end
for i := 1 to r − 1 do

(Ti, Si)← Oselect;
for j := 1 to s do

READ(Ti);
WRITE(Ti);
EXECUTE(Ti);

end
end

Algorithm 1: Learning

Pi ← PICKPROPERTY;
OUPUT b;

Algorithm 2: Challenge

satisfies. ADV1 can read and write into Ti for a maximum of
s times. After each read or write access to a tag in the learning
phase, the tag is allowed to interact with a legitimate reader
by a normal PPS protocol run (“EXECUTE”).

In the second phase, a challenge phase (Algorithm 2),
ADV1 picks a property Pi by calling a function PICKPROP-
ERTY. Given the results of the different readings and Tc,
ADV1 outputs a bit b, such that b = 1 if he guesses that
Tc satisfies Pi, and b = 0 otherwise.
ADV1 succeeds, if his guess is right.

Definition 1. PPS is said to be privacy-preserving with
respect to ADV1, if for all adversaries of category ADV1,
Pr[ADV1 succeeds] ≤ 1

2 + ε, such that ε is negligible.

2) Privacy against ADV2: As assumed above, ADV2,
i.e., a malicious back-end server, only receives aggregates
from readers. In any case, there is no relation between tags,
and therewith tag holders, and ADV2. In conclusion, ADV2

simply cannot learn anything about properties of tags.
While we do not target a formal proof, privacy against

ADV2 is furthermore discussed and additional reasoning is
given in the according security analysis section IV-A2.

3) Unlinkability against ADV1: The tags targeted in this
paper only feature storage capabilities. Hence, tags cannot
update the content of their memory themselves after a read
and, therefore, the content of a tag’s memory does not
change between two protocol executions. In the face of an
overwhelmingly powerful adversary who can eavesdrop all
communications between tags and readers, tags would be
trivially linkable. However, we conjecture that it is fair to
assume that an adversary in the real world cannot continuously
monitor tags and that there is at least one protocol execution
that is “un-observed” by the adversary. Once a tag T is re-
written outside the range of the adversary, the adversary should
not be able to link the previous interactions he has seen
to tag T . In accordance with notions of related work such
as: insubvertible encryption by Ateniese et al. [1], backward
security by Dimitrou [8], and privacy against anonymizers by
Sadeghi et al. [19], we assume that there is at least one protocol
execution that takes place outside the range of the adversary.
Under this assumption, neither external adversaries nor readers
are be able to link two responses from the same tag once it is
re-written outside their range.

More formally, in a learning phase (Algorithm 3), ADV1 is
provided with r random tags fromOpick.ADV1 can read from
and write into the r tags for a maximum of s times. After each



for i := 1 to r do
Ti ← Opick;
for j := 1 to s do

READ(Ti);
WRITE(Ti);
EXECUTE(Ti);

end
end

Algorithm 3: Learning

T0 ← Opick;
T1 ← Opick;
for i := 0 to 1 do

for j := 1 to t do
READ(Ti);
WRITE(Ti);
EXECUTE(Ti);

end
end
(T0, T1)→ Oflip;
Tb ← Oflip;
OUTPUTb;

Algorithm 4: Challenge

read or write access, the tags interact with legitimate readers
by a PPS execution (“EXECUTE”).

In the challenge phase (Algorithm 4), ADV1 is provided
with two challenge tags T0, T1 that he is allowed to write into
and read from for a maximum of t times. After each access
to T0 and T1 by ADV1, T0 and T1 interacts with a legitimate
reader (EXECUTE).

Then, Oflip is queried with T0 and T1, Oflip provides ADV1

with Tb. Given the results of the readings and Tb, the adversary
ADV1 guesses the value of b ∈ {0, 1}. He succeeds, if his
guess is right.

Definition 2. PPS is said to provide unlinkability with re-
spect to ADV1, if for all adversaries of category ADV1,
Pr[ADV1 succeeds] ≤ 1

2 + ε, such that ε is negligible.

4) Unlinkability against ADV2: An adversary ADV2

should not be able to link aggregates to aggregates it has
received before. More precisely, a malicious back-end server
should not tell, whether a received aggregate involves a tag
that was involved in another aggregate received earlier. ADV2

has access to the system in two phases. During learning
(Algorithm 5), Oaggregate provides ADV2 with s aggregates
Agg1, . . . , Aggs that he could decrypt.

In the challenge phase (Algorithm 6), ADV2 outputs a pair
b, b′ ∈ {1, . . . , s} and therewith Aggb and Aggb′ .

for i := 1 to s do
Aggi ← Oaggregate;

end
Algorithm 5: Learning

OUTPUT (b, b′)
Algorithm 6: Challenge

ADV2 succeeds, if Aggb and Aggb′ have been computed
by Oaggregate with at least one tag in both aggregates.

Definition 3. PPS is said to provide unlinkability with re-
spect to ADV2, if for all adversaries of category ADV2,
Pr[ADV2 succeeds] ≤ 1

s(s−1) + ε, such that ε is negligible.

III. PPS

To encrypt the properties in PPS, we use Elgamal [9].
Elgamal is a multiplicatively homomorphic encryption and
therefore allows ciphertexts aggregation at the readers. Being
probabilistic, Elgamal allows readers to re-encrypt the data
sent from the tags and hence counters linking attacks. How-
ever, the target scenario of our application calls for an additive
homomorphism, and thus Elgamal alone falls short of suiting
the target application. Therefore, we use Gödel encoding [10]

to encode the tag properties into one message and to adapt
Elgamal to our application1.

A. Elgamal Cryptosystem

1) Setup: the system outputs two large prime P and Q. Let
G be a subgroup of Z∗P of order Q, and g be a generator of
G. All arithmetic operations will be performed mod P .

2) Key generation: the secret key sk is x ∈ ZQ. The public
key pk is y = gx.

3) Encryption: to encrypt a message m ∈ Z∗P, select r ∈ ZQ
and compute c = (u, v) = (gr, yrm).

4) Decryption: to decrypt c = (u, v), compute m = v
ux .

To adapt Elgamal to our scheme, we encode the properties
using Gödel encoding before encryption as follows.

B. Gödel Property Encoding

To efficiently encode the tag holder properties, we assign
to each property Pi a prime number pi. Both, properties Pi
and primes pi are publicly known.
• Setup: let Pi, 1 ≤ i ≤ p, be the p properties the back-

end server is interested in, and pi are p different primes. Each
property Pi is mapped to one pi.
• Encoding: let m be the vector (ν1, ..., νp) such that νi =

1, if the tag T fulfills the property Pi, otherwise νi = 0.
The encoding of the properties of the tag T is defined as
Ω(m) =

∏p
i=1 p

νi
i . Note that this encoding is homomorphic:

∀m1,m2 ∈ {0, 1}p, Ω(m1 +m2) = Ω(m1)Ω(m2).
• Decoding: factorization of Ω(m) yields the p different

factors pνii and therewith properties Pi.

C. Protocol

Overview: In PPS, the tags are initialized once by the issuer.
Whenever a tag T is read by a reader R, the reader aggregates
the ciphertext c = (u, v) it receives from T , then it re-
encrypts the ciphertext c and writes the new ciphertext into T .
Periodically, readers in the system forward their aggregates
to the back-end server. The latter decrypts and decodes the
aggregates and computes the statistics it is interested in.

We assume that the system comprises, for ease of under-
standing, a single reader, and it has γ tags in its range.
• System setup: the output of the setup operation is a pair

of keys (pk, sk): (y = gx, x), x ∈ ZQ, and p primes pi such
that the property Pi corresponds to prime number pi. Elgamal
secret key sk = x is known by both the issuer and the back-
end server. Generator g, the public key pk = y and the p
primes are made public.
• Tag initialization: the input comprises vector m =

(ν1, ..., νp), public key y, p primes pi, and random number
r ∈ ZQ. Issuer I encodes the vector m following the Gödel
encoding and computes ω = Ω(m). The output of the
initialization operation is a ciphertext (u, v) = (gr, yrω).
• Aggregation: provided with a set of γ ciphertexts (ui, vi),

1 ≤ i ≤ γ received from tags in its range. The reader outputs
the aggregate (U, V ) = (

∏γ
i=1 ui,

∏γ
i=1 vi).

1Note that additively homomorphic encryptions such as Paillier [17] or
Naccache-Stern [16] may appear to be suitable. However, these schemes do
not support an efficient and compact encoding of multiple tag properties,
rendering them impractical.



TABLE I
SAMPLE PROPERTIES AND THEIR ENCODING

Properties Gödel encoding
Male 2
under 25 3
Student 5
Employee 7
European union citizen 11
Disabled 13
Aggregate size γ 68

• Re-encryption: upon receiving a ciphertext (u, v) =
(gr, yrω) from a tag T , the reader picks a random num-
ber r′ ∈ ZQ and computes a new ciphertext (u′, v′) =
(g(r+r′), y(r+r′)ω). Note that a value y(r+r′)ω = 0 mod P is
considered “forbidden”. When a reader reads a tag that stores
0, it discards the tag. This means that the reader does not
aggregate or re-encrypt the tag.
• Decryption and decoding: upon receiving the ciphertext

(U, V ) = (
∏γ
i=1 ui,

∏γ
i=1 vi) from the reader. The back-end

server computes W = V
Ux and factorizes W =

∏p
i=1 p

νi
i . This

factorization is easily feasible, as the back-end server knows
the primes pi. Given this factorization, the back-end server
gets Ω−1(W ) = (ν1, ..., νp). The respective νi corresponds to
the number of tags satisfying the property Pi that have been
read by the reader.

To get the total number of tags satisfying a property Pi in
the case of multiple readers, the back-end server sums the νi
for all the readers in the system.

Aggregation under restrictions: To ensure the correctness of
statistics obtained by the back-end server, we cannot allow the
readers to aggregate an infinite number of ciphertexts. They
can only aggregate up to a threshold γ of ciphertexts ci =
E(ωi) at a time, such that

∏γ
i=1 ωi < P .

Evaluation: Given p properties Pi and p primes pi, the
threshold γ is defined as |P |

log2(
∏p

i=1 pi)
, typically |P | = 1024

bits. Furthermore, if readers send to the back-end server the
number of tags they read, we can reduce the number of primes
used in the Gödel encoding to represent the different proper-
ties. For example, this applies in the case with complementary
properties, such as (P1, P2) = (male, female). A sample
Gödel encoding of a card holder’s private properties for an
imaginary loyalty card is presented in Table I. Given the total
number of tags read and the number of tag holders satisfying
P1, we deduce the number of tag holders satisfying P2. This
leads to a more efficient property encoding and thus a larger
aggregate size γ which improves the privacy of PPS against
ADV2 as discussed in Section IV-B2.

IV. PRIVACY ANALYSIS

This section provides formal proofs for PPS’s privacy and
unlinkability as defined in the models of Section II-B.

In this section, we use two additional oracles:
Osemantic is provided with two plaintexts ω0, ω1, randomly

chooses b ∈ {0, 1}, encrypts ωb using Elgamal and public key
pk, and returns the resulting ciphertext cb.
Osemantic−re is provided with two Elgamal ciphertexts

c0, c1, randomly chooses b ∈ {0, 1}, re-encrypts cb using
public key pk, and returns the resulting ciphertext c′b.

A. Privacy

1) Privacy against ADV1:

Theorem 1. PPS is privacy-preserving with respect to ADV1

under the DDH assumption over G.

Proof: Assume we have an adversary A ∈ ADV1 who
breaks the privacy experiment. We build an adversary A′ that
executes A as a subroutine and breaks the semantic security
of Elgamal which leads to a contradiction under DDH. In this
proof, we make use of the fact that a tag T satisfies a property
Pi, iff the corresponding prime number pi divides the plaintext
underlying the ciphertext stored on T .
− A′ picks p properties Pi that he maps to p distinct

primes pi. Then, A′ computes n Gödel encodings ωj using
the primes pi. Finally, he encrypts ωj using Elgamal and gets
n ciphertexts that he stores on the tags.
− A′ specifies two plaintexts ω0 =

∏
p
ν0,i
i ≤ P − 1 and

ω1 =
∏
p
ν1,i
i ≤ P − 1, such that ∀i, 1 ≤ i ≤ p, and b′ ∈

{0, 1}: νb′,i ∈ {0, 1} and ν0,i+ν1,i = 1. In terms of properties
Pi, this means that tag T0, storing plaintext ω0, and tag T1,
storing ω1, do not have a property in common.

The adversary A′ should specify ω0 and ω1 such that ν0,i+
ν1,i = 1. Otherwise, A could choose a challenge property Pi
that both ω0 and ω1 encode. In this case, the output of A
about Pi will not provide the necessary information to A′ to
break the semantic security of Elgamal. The same holds if A
chooses a property Pi that neither ω0 nor ω1 encode.
− A′ transmits {ω0, ω1} to the oracle Osemantic.
− Osemantic returns the encryption cb of one of the plain-

texts ω0, ω1 to A′.
− A′ writes cb into a challenge tag Tc. Then, A′ calls

the adversary A that enters the learning phase. Simulating
Oselect, A′ provides A with r − 1 tags along with the list
of properties they are satisfying. A is allowed to read and
write into these tags for a maximum of s times. A′ provides
A as well with the challenge tag Tc. A has only read access
to Tc and he is allowed to read it for a maximum of t times.
Tags are required to interact with a legitimate reader through
the function EXECUTE after being read or written into. As pk
is public, A′ can simulate successfully EXECUTE.
− A selects a property Pi and outputs 1, if Tc satisfies Pi

and 0 otherwise.
If A outputs 1, this implies that the prime number pi

corresponding to Pi divides ωb. By construction, ω0 and ω1

do not have any prime divisor in common, and therefore, ωb
is the plaintext dividable by pi.

If A outputs 0, this implies that pi does not divide ωb and
by construction pi divides ω1−b. Therefore, ωb is the plaintext
that is not dividable by pi.
A′ can tell which plaintext ωb corresponds to cb. This breaks

the semantic security of Elgamal ensured under the DDH
assumption [20], which leads to a contradiction.

2) Privacy against ADV2: As stated in Section II-A,
ADV2 receives only aggregated ciphertexts. Still, given the
aggregates, ADV2 can learn some information about the
properties of tags read by readers, but is never able to tell
which tag, and therewith which holder satisfies which property.



For instance, if ADV2 receives an encrypted aggregate from
a reader R, and decrypts it to Agg =

∏p
i=1 p

νi
i , and ∃j such

that νj = 0 after factorization, ADV2 can learn that all the
tags that were read by R do not satisfy the property Pj .

However, as ADV1 and ADV2 do not collude, ADV2

cannot tell which tag satisfies or does not satisfy a certain
property Pi.

B. Unlinkability

1) Unlinkability against ADV1:

Theorem 2. PPS provides tag unlinkability against ADV1

under the DDH assumption over G.

Proof: The semantic security property of Elgamal encryp-
tion can be extended to the semantic security of Elgamal under
re-encryption [11]. Let A′ be an adversary that chooses two
ciphertexts c0 and c1, A′ then sends {c0, c1} to Osemantic−re.
Osemantic−re flips a coin b, re-encrypts cb to c′b and returns c′b
to A′. The semantic security of Elgamal under re-encryption
entails that guessing the value of b is as difficult as DDH, see
Golle et al. [11].

Now, assume we have an adversary A ∈ ADV1 whose ad-
vantage to break the unlinkability experiment is not negligible.
We construct a new adversary A′ that executes A and breaks
Elgamal’s semantic security under re-encryption.
− A′ picks p properties pi, 1 ≤ i ≤ p that he maps to p

distinct primes pi, 1 ≤ i ≤ p. Then, he initializes n tags.
− A′ calls the adversary A that enters the learning phase.

A′ simulates Opick and provides A with r tags. A is allowed
to read and write into these tags for a maximum of s times.
After each reading, A′ simulates EXECUTE and re-encrypts
the ciphertexts, as pk is public.
− A enters the challenge phase: A′ simulates Opick and

submits tags T0 and T1 to the adversary A. A writes into
and reads from T0 and T1 for a maximum of t times. A′ can
simulate successfully the function EXECUTE as pk is public.
− A′ reads the data stored on T0 and T1. Without loss

of generality, let c0 (c1 resp.) denotes the ciphertext stored
on T0 (T1 resp.). Then, A′ transmits c0 and c1 to the oracle
Osemantic−re.
− Osemantic−re returns the result c′b of re-encrypting one of

the two ciphertexts to A′. A′ writes c′b into a tag T .
− A′ calls A and provides him with T , simulating Oflip.

Then, A outputs his guess for the value of b.
Since A’s advantage in the unlinkability experiment is not

negligible, A can tell which tag corresponds to the new
ciphertext c′b. IfA outputs 0, this means that c′b is re-encryption
of c0, otherwise c′b is a re-encryption of c1. Therefore, A′ can
break the semantic security under re-encryption of Elgamal
that is ensured under the DDH assumption [11], again leading
to a contradiction.

2) Unlinkability against ADV2:

Theorem 3. PPS provides unlinkability of tags against ADV2

for large γ.

Sketch: An aggregate Agg =
∏p
i=1p

νi
i is called com-

pletely blinded, iff ∀i, 1 ≤ i ≤ p : νi > 0. Now, given a

sufficiently large γ, the aggregates received by the back-end
server will be completely blinded with high probability.

Therefore, the back-end server cannot distinguish between
the tags involved in the aggregates. Moreover, using a large s
in the learning phase would not give the adversary ADV2 a
greater advantage in guessing (b, b′).

In the following, we compute an upper bound of the
advantage ε of ADV2 in the unlinkability experiment.
Let E be the event that aggregate Agg is completely blinded,
so ∀i, 1 ≤ i ≤ p : νi > 0. Let γ be the number of ciphertexts
participating in the aggregate, and πi is the probability that
a tag holder satisfies property Pi. Without loss of generality,
we assume π1 ≤ π2 ≤ . . . ≤ πp. Then, the probability that
νi = 0 is Pr(νi = 0) = (1− πi)γ ≤ (1− π1)γ .

Let E be the complementary event of E. Therefore,
Pr(E) = Pr(ν1 = 0 ∨ ν2 = 0 . . . ∨ νp = 0)
Pr(E) ≤

∑p
i=1 Pr(νi = 0) ≤ p(1− π1)γ .

ε = Pr(E) is the advantage of ADV2 in the unlinkability
experiment which is negligible in γ. Therefore, we say that
PPS is ε-unlinkable against ADV2, such that ε ≤ p(1− π1)γ .

Note that the advantage of ADV2 heavily depends on
the probability π1. If π1 is very small, i.e., representing a
rare property such as being disabled, PPS cannot provide
unlinkability against ADV2. In such a case, the back-end
server can link tags to aggregates. For instance, if the back-
end server sees two aggregates where the property “disabled”
is satisfied, it can guess with a non negligible probability that
these two aggregates have one tag in common.

V. SECURITY ANALYSIS

Tags in our scheme only feature (re-)writable memory. As
there is no access control on tags to check the authenticity of
readers re-writing their memory, such a setup is vulnerable to
“malicious writing”. Malicious writing affects the correctness
of the results obtained at the back-end server. Given that access
control is not feasible in our read-write only tags, this attack
cannot be prevented. We can divide malicious writing attacks
into two categories:
• Writing an invalid ciphertext (“garbage”) into the

tag: this attack can be detected at the back-end server, as
decryption and Gödel decoding will not succeed. Moreover,
if the adversary writes the value 0 into the tag, this will be
detected at the next honest reader to read the tag.
• Writing a valid ciphertext into the tag: a malicious

reader could try to alter statistics. The simplest way to im-
plement such an attack is by copying the content of a tag
into another one (“cloning”). Since the ciphertext written into
the tag is a valid one, this type of attack cannot directly be
detected at decryption, and we will tackle it in the following.

Instead of one ciphertext, each tag stores two ciphertexts
(c, cID). The first ciphertext c encrypts the properties of the
tag holder as described in the previous section. The second
ciphertext cID encrypts a unique ID of the tag using standard
Elgamal encryption. After a tag is scanned by a reader, the
reader re-encrypts both ciphertexts c and cID and writes the
new ciphertexts into the tag. The reader aggregates c and keeps
a record of cID. During decryption at the back-end server, if



the back-end server suspects that a received aggregate is not
correct, he contacts a “trusted third party”. This trusted third
party (TTP) checks the records cID stored at the readers. TTP
decrypts these ciphertexts and gets the IDs of the tags that
were scanned along with the corresponding properties of their
holders. In this manner, the TTP detects tag cloning as the ID
of the cloned tag will be repeated several times.

Furthermore, in order to detect tag tampering, the tag issuer
should keep a database of the tag IDs and their corresponding
properties and reveal it to the TTP. Therewith, the TTP can
compare the decrypted properties and the actual properties
stored in the issuer database. If there is a discrepancy between
the properties corresponding to the same tag ID, the TTP
reports a fraud. Meanwhile, the TTP does not reveal the
records of the IDs stored on the readers either to the back-
end server or to the readers.

VI. RELATED WORK

Juels et al. [14] utilize re-encryption to protect privacy
of RFID-enabled banknotes. Each time a banknote is spent,
the readers in shops or banks re-encrypt the encrypted serial
number of the banknote stored on the tag. The main drawback
of this scheme is that the authorized readers have access to
the plaintext underlying the ciphertext spoiling unlinkability.
Similarly, Golle et al. [11] introduce universal re-encryption
allowing special re-encryption without knowing the public key
initially used to encrypt the plaintexts. While this protocol
provides key privacy, it fails at providing unlinkability after
malicious writing. An adversary can write his own message
m into a tag and encrypt it under its public key. Therewith,
the adversary can always link the tag.

Ateniese et al. [1] tackle the above problems by proposing
insubvertible encryption, i.e., universal re-encryption and ran-
domized certificates. If the certificate is valid, the ciphertext
stored on the tag will be re-encrypted. Otherwise, it will be
replaced by a dummy encryption. Ateniese et al. [1] aim at
privacy preserving identification, but not privacy preserving
statistics collection which is the focus of PPS. Also, Ateniese
et al. [1], as well as the results presented by Blundo et al. [3],
require special message encodings to map messages to points
on elliptic curves. However, currently known efficient encod-
ing schemes fail at preserving the homomorphic properties that
are the essential prerequisite for PPS.

Camenisch and Groß [6] propose an attribute encoding for
anonymous credentials. The scheme allows users to prove the
possession of an attribute with a given value while preserving
the privacy of the users. While such an approach could be
used to “emulate” privacy-preserving computation of statistics,
the main drawback is the requirement for complex interactive
proofs between tags and readers– infeasible in our setting with
storage-only tags.

Han et al. [12] present a protocol to estimate the total
number of tags in the vicinity of a reader. The main idea
is to infer this number by examining the number of empty
and collision slots in the framed slotted Aloha protocol used
for communication. Although [12] enables estimating the total
number of tags anonymously, it does not lend itself to collect
statistics on tag properties as targeted in the paper at hand.

Kerschbaum et al. [15] propose to privately compute perfor-
mance properties of an RFID supply chain using data stored on
tags. However, this work focuses on computing these metrics
without leaking sensitive information of the supply-chain’s
parties. Kerschbaum et al. [15] use additive homomorphic en-
cryption that does not support collecting statistics on multiple
properties and consequently cannot be as efficient as PPS.

REFERENCES

[1] G. Ateniese, J. Camenisch, and B. de Medeiros. Untraceable rfid tags
via insubvertible encryption. In 12th ACM conference on Computer and
communications security, pages 92–101, New York, USA, 2005.

[2] E.-O. Blass, A. Kurmus, R. Molva, G. Noubir, and A. Shikfa. The
Ff -family of protocols for rfid-privacy and authentication. IEEE Trans-
actions on Dependable and Secure Computing, 8(3):466–480, 2011.

[3] C. Blundo, A. De Caro, and G. Persiano. Untraceable tags based on
mild assumptions. Cryptology ePrint Archive, Report 2009/380, 2009.
http://eprint.iacr.org/.

[4] J. Bringer and H. Chabanne. Trusted-HB: A low-cost version of
HB+ secure against man-in-the-middle attacks. IEEE Transactions on
Information Theory, 54(9):4339–4342, 2008.

[5] J. Bringer, H. Chabanne, and E. Dottax. HB++: a lightweight authenti-
cation protocol secure against some attacks. In SecPerU, pages 28–33,
2006.

[6] J. Camenisch and T. Groß. Efficient attributes for anonymous credentials.
In 15th ACM conference on Computer and communications security,
pages 345–356, New York, USA, 2008.

[7] C. Chatmon, T. van Le, and M. Burmester. Secure anonymous RFID
authentication protcols. Technical report, Florida State University,
Department of Computer Science, Tallahassee, Florida, USA, 2006.
http://www.cs.fsu.edu/∼burmeste/TR-060112.pdf.

[8] T. Dimitrou. rfidDOT: RFID delegation and ownership transfer made
simple. In International Conference on Security and privacy in Com-
munication Networks, Istanbul, Turkey, 2008.

[9] T. El Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In CRYPTO 84 on Advances in cryptology, pages
10–18, New York, USA, 1985. Springer New York, Inc.
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