
Robust and Secure Password and Key Change

Method

Ralf Hauser1, Philippe Janson1, Re�k Molva2,

Gene Tsudik1, Els Van Herreweghen1

1 IBM Research Laboratory, CH-8803 R�uschlikon, Switzerland.

frah,pj,gts,evhg@zurich.ibm.com

2 EURECOM Institute, Sophia Antipolis, 06560 Valbonne, France.

molva@eurecom.fr

Abstract. This paper discusses issues and idiosyncrasies associated

with changing passwords and keys in distributed computer systems.
Current approaches are often complicated and fail to provide the desired

level of security and fault tolerance. A novel and very simple approach to

changing passwords/keys is presented and analyzed. It provides a means
for human users and service programs to change passwords and keys in

a robust and secure fashion.

1 Introduction: Changing One's Password

Much e�ort has recently gone into securing user access to computer systems over

insecure communication lines from untrusted (or partially-trusted) workstations

and other end-user devices. In a distributed and dynamic network environment,

solutions are often based on the use of a highly-secure and trusted entity called

an Authentication Server (AS). An AS processes authentication requests by

acting as a trustworthy intermediary. As such, the AS has access to and control

over the authenticating secrets of all its principals, be they human users or

service programs. (Hereafter, we use the term principal to refer to both human

users and service programs.)

Typically, a principal's password is a fairly long-term secret, i.e., most prin-

cipals are not required to change their passwords more often than, say, once a

month. When a principal wishes to change its password, an appropriately au-

thenticated exchange with the AS must take place. Obviously, any such exchange

must meet some basic security requirements such as resistance to guessing at-

tacks and replays of change-password requests. Another desirable feature is the

correctness of the change-password protocol. We say that a change-password

protocol is correct if it provides a guarantee of state synchronization between

the two parties involved (AS and principal) in the presence of possible crashes

and network failures.

This last issue is not directly relevant to the protocol security and is thus

frequently overlooked or not given enough consideration. However, it has to do

with the robustness and usability of the protocol which is, in the end, an issue

of great importance to the end-users.

Supposing that a principal would like to change its password from Kold to

Knew, six outcomes of the password change protocol are possible:

Principal believes AS believes

its secret is principal's secret is

1 Knew Knew

2 Kold Kold

3 Kold Knew

4 Knew Kold

5 Kold Kunk

6 Knew Kunk

The �rst two outcomes are considered normal and desirable. In the �rst case,

a successful password change takes place, i.e., the AS records the new password

and the principal receives the change con�rmation. In the second case, the new

password is rejected for some reason and the principal is informed.

The rest of the cases represent anomalous situations and must be avoided at

all costs. Case 3 may occur when a change acknowledgement is lost or when the

AS crashes after making a change but before sending out the acknowledgement.

The next situation (case 4) may take place if the acknowledgement is somehow

spoofed, i.e., an adversary is able to compose a fake con�rmation message.3 Case

5 is the result of an adversary successfully manipulating the protocol in such

a way that the AS changes the principal's key to some value (Kunk) unknown

to or, at least, not intended by, the principal. In fact, case 5 can occur without

any activity on the part of the principal; the adversary may simply concoct

the entire protocol. Finally, case 6 is very similar to case 5 except that here

the principal is actually trying to run the protocol and the adversary not only

succeeds in convincing the AS to change the principal's password to someKunk,

but also manages to convince the principal that the AS accepted Knew.

In the rest of this paper we review the current state-of-the-art (exempli�ed

by Kerberos) and go on to develop a protocol that is at the same time simple,

robust and secure. The protocol is explicitly constructed to handle anomalous

behavior (i.e., events that can lead to cases 3-6 above) of the network and

arbitrary failures of the components involved.

2 The Kerberos Approach

One of the most popular network security solutions in use today is the Kerberos

Authentication and Key Distribution Server originated at MIT[2] and later in-

tegrated in the OSF DCE product[3]. Among its multitude of features, Kerberos

3 We do not consider the case when an AS fails to make the change but acknowledges it
nonetheless.

includes a change password (CPW) protocol implemented by the kpasswd com-

mand which is part of the standard Kerberos distribution package. The actual

protocol varies slightly between successive versions of Kerberos. The CPW pro-

tocol for Kerberos versions 4 and 5, is illustrated in Fig. 2.

The general course of events in Kerberos CPW protocols is as follows (unless

noted otherwise, the following description applies to both versions):

1. Initially, the requesting principal engages in an authentication exchange

with the AS to obtain credentials for the Admin server. An Admin server,

in Kerberos parlance, is a logically distinct entity which is responsible for

the maintenance of all information about principals. (In practice, Admin

server is almost always co-located with an AS).

This initial exchange with the AS requires the principal to provide its

current password. The credentials obtained consist of a temporary key

Kcpw to be shared with the Admin server and a special CHANGEPW

ticket (Tcpw) with a reasonably short lifetime, typically set to one minute.

2. The second part of the protocol consists of an exchange between the prin-

cipal and the Admin server. In the course of this exchange, the principal

authenticates itself to Admin and sends along the new password, encrypted

with the shared key Kcpw. In the version 5 protocol, a complete mutual

authentication between principal and Admin takes place before the prin-

cipal sends its encrypted password; while in the version 4 protocol, the

same message carries the principal's authentication and the (encrypted)

new password.

3 Discussion

The Kerberos CPW protocol is, essentially, capability-based. The capability is

embodied in the CHANGEPW ticket which gives the principal the right to

change its password. It does not restrict the number of times a principal may

do so using the same capability. Thus, in general, a principal can use the same

ticket multiple times (of course, as long as the ticket does not expire.) This

feature is not a drawback in and of itself but it separates two important events

that should ideally go hand-in-hand:

{ The veri�cation of the previous state of the principal (i.e., making sure

that the principal knows the old key/password)

and

{ The veri�cation of the new state of the principal (i.e., making sure that the

new password is actually supplied by the true principal and is acceptable

to the Admin server) plus the actual database change.

PRINCIPAL AS ADMIN

-

�

-

�

(1)

(2)

(3)

(4)

P;CPW; Np

Tcpw;fKcpw;CPW; Np; lifetimegKold

Tcpw; ftime;PgKcpw ; fKnew
p gKcpw

f\OK"; timegKcpw

KRB V.4

KRB V.5

PRINCIPAL AS ADMIN

-

�

-

�

-

�

(1)

(2)

(3)

(4)

(5)

(6)

P;CPW; Np

Tcpw; fKcpw; CPW; Np; lifetimegKold

Tcpw; ftime; PgKcpw

ftimegKcpw

fKnewgKcpw

f\OK"gKcpw

Legend:

ADMIN administration server (separate process co-located with the AS)

P principal's name

Np nonce issued by principal

Kcpw session key (between principal and ADMIN)
Kold old key or password shared between principal and AS

Knew new key or password to be shared between principal and AS

Tcpw fKcpw; P; lifetimegKadmin

fYgX message Y encrypted under key X.

Before encryption, a sequence

number as well as a checksum are added to the message, to
prevent undetected replay or corruption of the message.

Fig. 1. The Kerberos CPW protocols

As is typical with capability-based approaches, revocation is very di�cult

if not impossible and is the source of many problems. Of course, a capability

tightly bound by time (i.e., one minute in Kerberos) is not as dangerous, but on

the other hand, the usual approach of using black-lists to provide for revocation

is also not very e�ective because the assembly and distribution of such a list

already might take a signi�cant fraction of this short time.

The existence of the capability-like CHANGEPW ticket itself is danger-

ous because Kerberos stores its tickets in special cache �les on disk. Within

the lifetime of a CHANGEPW ticket (which is by default a minute) a trojan

horse program could create an additional message changing the password to

a value unknown to the principal but known to an adversary controlling the

trojan horse. A similar problem could occur if the principal left the terminal

unattended just after changing the password. Then, an adversary could walk

by and, on the victim's behalf, run kpasswd. Since there can still be a valid

CHANGEPW ticket cached locally, kpasswd could bypass prompting the prin-

cipal (actually, the adversary) for the old password and use the CHANGEPW

ticket to change the principal's password to anything the adversary chooses. It

should be noted, that, in practice, the Kerberos kpasswd command promptly

destroys the CHANGEPW ticket upon the completion of the protocol so that

the described attack is mainly theoretical.

More often than not, a principal wanting to change its password already

obtained a Ticket-Granting-Ticket (TGT) from the AS by going through the

initial login procedure. Therefore, a principal already has a strong key that can

be used to protect all subsequent communication from, among other things,

password-guessing attacks. The Kerberos approach doesn't take advantage of

this. Consequently, the Kerberos protocol is susceptible to password-guessing

attacks: an adversary, having intercepted the second message of the protocol, can

verify a password guess by decrypting the message with the candidate password

(Kold).

Another concern with the Kerberos approach is the number of protocol mes-

sages involved. As mentioned earlier, fault tolerance is of utmost importance

when it comes to changing one's password. Therefore it is bene�cial to mini-

mize the number of protocol exchanges. In Kerberos, four (in version 4) or six (in

version 5) messages are needed between the AS/Admin and the principal's end-

system. This is a direct consequence of the Kerberos AS and the Admin server

being logically distinct entities: the principal has to �rst authenticate itself to

the AS before requesting the actual password change from Admin. As will be

described below, it is possible and desirable to reduce the number of messages

to just two, by authenticating the CPW request directly with the principal's

password (or key) instead of a short-term key.

Perhaps one of the main issues is that in case of a loss of one of the (4 or 6)

protocol messages, no algorithm is given to allow for automatic recovery without

resorting to o�-line means. In particular, if the last (number 4 or 6 depending

on the version) protocol message is lost or if the Admin server crashes right

before sending out the last message, the protocol terminates in a state without

automatic recovery. In other words, one has to resort to extra-protocol means

such as trying to log in anew with, say, the old key and, if that fails, with the

new key. Alternatively, one can try to change password once again and hope

that the change has not gone through.

Despite the above criticism, Kerberos provides a reasonably workable and

secure solution. However, there are several undesirable characteristics where

improvement is possible:

{ Too many protocol messages

{ No provisions for graceful recovery in case of message loss and/or compo-

nent failures

{ Vulnerability to password-guessing attacks.

In the next section we try to address these issues. The protocol presented consists

of only two messages (request and reply) and allows for automatic recovery

from message loss or system failures during execution of the protocol. The basic

protocol o�ers the same degree of security against password-guessing attacks

as its Kerberos counterpart. Additionally, a strong key shared between the two

parties (e.g. obtained during initial login) can be used to increase the protocol's

resistance against this type of attack.

4 Solution

NOTE: For the sake of uniformity, the term key is used in reference to both

passwords and keys.

Our approach addresses the following requirements:

{ The change request should contain authentication of the sender. In case

when the request originates with a human user at a remote workstation,

the user must provide old (current) password in order to prevent fraudulent

password changes when a workstation is left unattended.

{ The request itself must be authenticated, i.e. the AS must be able to

establish the integrity of the new key (Knew) de�ned in the request.

{ The AS has to con�rm the outcome of the password change to the re-

questing principal. The acknowledgement itself must be authenticated.

{ The AS must be able to identify retransmissions of previously processed

requests and to issue acknowledgments for such retransmissions. This is

necessary whenever the original acknowledgement is lost and the principal

resubmits the change request. (There is no danger in that as long as the

acknowledgements remain identical.)

{ An adversary should not be able to gather any useful information from

replaying a stale request message. This should hold even in the event that

the principal makes a serious error of reusing passwords.

4.1 Assumptions

The following assumptions are made hereafter:

1. The principal does not start "believing" in Knew until successful comple-

tion of the CPW protocol. Of course, Knew is also not used if a negative

acknowledgement rejecting Knew is received (e.g., because it is trivial,

predictable, or otherwise unacceptable to the AS.)

2. If the CPW protocol does not terminate normally, the principal is capable

of remembering the new and old password until the next attempt, i.e.,

the resumption of CPW protocol. In other words, if something abnormal

takes place and the protocol does not complete, the principal does not

abandon the change; instead the procedure is re-tried at some later time.

3. The AS needs to be no more than single-state. In other words, it only

has to remember one (current) password per principal and does not have

to keep any password history. Furthermore, it has a fairly accurate clock.

Fairly accurate means that it is accurate with respect to the frequency of

CPWs which happen infrequently, i.e., daily, weekly or monthly, but not

every minute or hour.

4. The hosts or workstations (where CPW requests originate) also possess

fairly accurate clocks. If not, the principal's wristwatch or wall-clock read-

ings are good enough.

5. It is not taken for granted that the principal shares a strong key with the

AS. (Such a key could be obtained during initial login by the principal,

and cached locally). However, if such a strong key (Ksso) is present, it

may be used to increase the security of the change-password protocol.

4.2 Basics

The basic idea of the protocol is to construct an atomic "ip-op" request in such

a way that a change-key request from principal P to change its key (password)

from Kold to Knew can be veri�ed and honored by the AS independent of

whether the AS knows only Kold or onlyKnew. In other words, the AS is able to

recognize, authenticate and acknowledge a retransmission of the CPW request,

even after having discarded Kold and replaced it withKnew. This feature enables

the AS and P to resynchronize even in case a positive acknowledgment from the

AS is lost or the AS has crashed at an inopportune moment.

If the initial request goes unacknowledged, the principal simply retransmits

the request. In this case, the AS knows either Kold or Knew depending on

whether it was the request or the acknowledgement that was lost. In any case,

the ip-op construction of the request enables the AS to process the request

message correctly regardless of the current state.

As soon as the AS receives a well-formed authentic request, it replies with

an acknowledgement. If the AS receives the same request again, the acknowl-

edgement must have been lost, thus the database is left untouched and another

acknowledgement (the exact copy of the original one) is re-generated.

The result of this simple protocol is that there may be a temporary uncer-

tainty on the side of the principal as to the current state of the AS, but this

requires no action by the principal beyond retransmitting the original request.

The principal may do so ad nauseum but, eventually, when communication is

re-established, the �rst acknowledgement re-synchronizes the two sides.

4.3 Protocol Description

The actual protocol is depicted in Fig. 2. It consists of only two messages.

In the �rst message (REQ CPW), P transmits two tickets to the AS: a ticket

T(Knew)Kold containing the new key Knew, and sealed with Kold; and a \sanity

check" ticket T(Kold)Knew sealed with Knew, and containing Kold . The ticket

expressions are similar to those used in the KryptoKnight Authentication and

Key Distribution Service [9]. (See also [7, 8, 6].)

If the request is well-formed and authentic, AS replies with an authenticated

acknowledgment REP CPW which can take on two avors: ACK (accept) or

NACK (reject). The AS generates a NACK if only if Knew is not acceptable for

some reason (e.g., predictable password). However, Knew must still satisfy the

"ip-op" property of the REQ CPW. In other words, AS replies (be it with an

ACK or a NACK) only if REQ CPW is genuine.

4.3.1 Details of the REQ CPW Message.

As shown in the ticket expression of T(Kold)Knew in Fig. 2, the function "g"

provides for asymmetry between the two tickets in such a way that an adversary

cannot swap the two tickets and convince a server to switch back to the old key.

We note that "g" must be asymmetric, otherwise manipulation of the plaintext

N2 (e.g. reciprocal value or XOR with N1) would re-enable the above swapping

attack.

With the above requirement in mind, one possibility is g=(x+1). Another

one is g=fN2gKnew.

If the principal already obtained a strong keyKsso (perhaps during the initial

login) then "g" could depend onKsso. For example we can set g=fN2gKsso. This

increases the resistance of the protocol against password-guessing attacks (since

PRINCIPAL AS

-

�

(1)

(2)

REQ CPW = fN1;N2; P; T (Knew)Kold; T (Kold)Knewg

REP CPW = MACfaccept; REQ CPWgKold

or REP CPW = MACfreject; REQ CPWgKold

T(Knew)Kold = MACfN1;N2;P;ASgKold

L
Knew

T(Kold)Knew = MACfN1; g(N2);P;ASgKnew

L
Kold

Legend:

MACfYgX DES-like Message Authentication Code (MAC) of Y with key X
X � Y exclusive-OR (XOR)

N1, N2 nonces
AS name of the AS

T(X)Y ticket containing key X sealed with key Y

Fig. 2. Secure and fault-tolerant CPW protocol

an adversary would have to break Ksso before attacking Kold and/or Knew).

Resistance against this type of attack is discussed in more detail in section 5.

The �rst nonce N1 is chosen at random. In contrast, N2 is set to the current

time. This does not require synchronized clocks because the maximum work-

station clock-skew is assumed to be smaller than the frequency of key changes.

An adversary could still set a workstation's clock to some random time in the

future. The AS would reject the REQ CPW because of the wrong timestamp,

but the adversary could replay it later when the timestamp becomes ripe. How-

ever, according to the second assumption (in Section 4.1), the principal does

not abandon the change but retries at a later time. Eventually, a re-try will be

acknowledged by the AS.

All in all, two items provide for AS-principal synchronization: Kold and N2

which represents a timestamp.

4.3.2 Processing REQ CPW.

1. Having received a REQ CPW, the AS �rst extracts K0

new
fromT(Knew)Kold,

using Kas { the principal's key currently in the database. (Assuming, so

far, that Kas = Kold.)

2. Then, using K0

new
, the AS extracts K0

old
from T(Kold)Knew.

3. If K0

old
= Kas, the AS is assured that it still has the principal's old key

and K0

new
is the new key intended. AS then stores Knew in the database

and sends back a positive acknowledgement, i.e., REP CPW(accept) the

format of which is described below.

4. If K0

old
<> Kas, the message could still be a re-try from a principal who

didn't receive the original REP CPW(accept) message for a successful

key-change. In this case, Kas would already be the same as Knew.

(a) Using Kas, the AS extracts K0

old
from T(Kold)Knew.

(b) Using K0

old
, the AS extracts K0

new
from T(Knew)Kold .

(c) If K0

new
= Kas, the AS is assured that it already has the new key

stored in the database; it then generates REP CPW(accept) for re-

questing principal.

4.3.3 Acknowledgements.

Acknowledgments for the following cases must be provided:

{ key successfully changed to Knew as a result of either this or some pre-

vious REQ CPW. (In the latter case, the present REQ CPW is a re-

transmission.)

{ Knew is unacceptable but REQ CPW is well-formed, i.e., its token struc-

ture is correct.

The acknowledgement message has the following form:

REP CPW = token(Kold) containing [accept/reject, REQ CPW]

This token is an integrity check of the above two components of REP CPW.

An incorrect or malformed REQ CPW is one where:

{ Kold/Knew do not satisfy the "ip-op" structure described above,

or

{ the timestamp represented by N2 is unacceptable, i.e., outside the limits

of maximum acceptable clock skew.

Malformed (not authentic) REQ CPWs are not acknowledged at all. A clear-

text error message is a possible alternative. However, any kind of authenticated

acknowledgment in response to an incorrect REQ CPW is out of the question.

This is because doing so would require using the principal's current stored key

which would present an opportunity for a known plaintext attack (the AS would

become an oracle, see [4]). Therefore, the mechanism on the principal's side must

at least provide for an error message which after a certain number of unanswered

REQ CPW (timeout) checks for the general availability of the AS and suggests

resorting to o�-line means for re-synchronization.

Obviously, the acknowledgment (REP CPW) must be protected. If it is not

protected by a strong integrity check, an adversary could trap the original

REQ CPW, prevent it from reaching the AS and convince the principal that

the change has taken place. The key used to protect REP CPW can be any of:

Knew, Kold or Ksso. However, if Ksso is used, the previous ow, REQ CPW,

must additionally contain the ticket with Ksso. One problem with using Knew

is when the AS rejects Knew for some reason (e.g., weak key) it cannot very

well use the same key it just rejected to compute the integrity check. Therefore,

Kold must be used in this case. Alternatively, for the sake of uniformity and

simplicity,Kold can be used in all cases (i.e., ACK or NACK).

5 Some Remarks on the Security of the Pro-

posed Protocol

In addition to the threats already addressed in the protocol description above,

the following possible attack on the basic protocol must be considered: if the

adversary eavesdrops on a REQ CPW, the "ip-op" feature allows for an o�-

line key-search attack. This attack is possible because the very same structure

of REQ CPW that allows the AS to verify Knew and Kold allows the adversary

to verify its guesses by iterating through the key space. While less of a concern

when changing a strong key (e.g. a server master key), the exposure is especially

a problem when Kold and Knew are (weak) user passwords.

The protocol can be made more secure by involving Ksso in the function

\g": an attacker would have to break Ksso before attacking Knew and/or Kold.

Clearly, if the initial login itself is vulnerable to password-guessing attacks,

this enhancement only closes the smaller of two holes (login, which is executed

far more often, being the bigger one), and thus hardly increases the overall

security of a user's password.

However, whether or not the password was exposed at login, it is not exposed

in addition by a Ksso-protected password change. This feature can provide sig-

ni�cant additional security when combined with a login method which itself is

secure against password-guessing attacks (e.g. [5]).

6 Protocol Correctness

In this section we analyze the correctness of the proposed protocol.

6.1 Assumptions

To aid in our analysis, the following assumptions are made:

{ Assumption 1: The principal generates a di�erent key at every execu-

tion of the change password protocol. Therefore the password history has

no cycles. An execution of CPW means a protocol run until successful

completion or synchronization by out-of-band means.

{ Assumption 2:

Each message will be received after a �nite number of retransmission at-

tempts.

{ Assumption 3:

To simplify the proof of correctness, we will assume that the AS only sends

positive acknowledgments (rejected requests are not acknowledged).

6.2 Idealized Protocol

Before we proceed to the formal analysis we need an idealized and formal rep-

resentation of the protocol.

Idealized representation of the protocol:

The protocol consists of two communicating state machines U and AS depicted

in Fig. 3, that respectively represent the behavior of the change password pro-

gram on the principal's side and the behaviour of the AS in response to the

presented change password protocol.

Notation:

{ Since each key generated by the principal is di�erent from all the ones

that were previously generated (Assumption 1), the keys form a totally

ordered set

K = fK0;K1;K2; ::g

whereby Ki is generated before Kj if i < j or, equivalently, Ki is the last

key generated before Ki+1.

{ Ui is the stable state of U characterized by the knowledge of Ki as the

current key.

{ U 0

i
is the transient state of U corresponding to the transition from state

Ui to state Ui+1.

{ ASi is the state of AS characterized by the knowledge of Ki as the current

key representing the principal.

{ !m represents the sending of message m.

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

P
PP

Q

Q
QR

��
�
�

�
���

P
PP

Q

Q
QR

��
�
�

�
���

P
PP

Q

Q
QR

��
�
�

�
���

?

�

��
HH

CC

��
��X

XXy

?

�

��
HH

CC

��
��XX

Xy

?

�

��
HH

CC

��
��X

XXy
.......

.

�

��
HH

CC

��
��XX

Xy

�

��
HH

CC

��
��XX

Xy

�

��
HH

CC

��
��XX

Xy

U0

U0'

U1

U1'

U2

U2'

U3

AS0

AS1

AS2

AS3

?cpw(K1)

?cpw(K2)

?cpw(K3)

!m1

!m2

?r1 / Ku:=K1

?r2 / Ku:=K2

!m3

?r3 / Ku:=K3

?m1 / !r1; Kas:=K1

?m2 / !r2; Kas:=K2

?m3 / !r3; Kas:=K3

? �m1 / !r1

? �m2 / !r2

? �m3 / !r3

U AS

Fig. 3. Idealized CPW protocol

{ ?m represents the receipt of message m.

{ := denotes the assignment operation.

{ Ku is the state variable of U that represents the current key.

{ Kas is the state variable of AS that represents the current key.

{ cpw(Ki) is the command entered by the principal that triggers a password

change operation on U. The old password is Ki and the new one is Ki+1.

{ mi is the REQ CPW message where Kold = Ki and Knew = Ki+1

{ �mi is the REQ CPW message, a retransmission from the AS's point of

view, where Knew = Ki+1 and Kold can take any value.

{ ri is the positive (accept) response to mi.

6.3 Properties of the Idealized Protocol

Owing to its message structure, the protocol has the following properties:

Property 1:

ASi can correctly determine the transition (the loop or the transition to the next

state) to be executed because ASi can always tell apart mi from mi+1. When

ASi receives a message m, it can identify the message as mi if Kold = Kas and

as mi+1 if Knew = Kas. This property is based on Assumption 1 and on the

structure of REQ CPW's which distinguishes the "new" key from the "old" one.

In other words, Knew can never be mistaken for Kold and vice versa.

Property 2:

With the knowledge of Ki, ASi can always extract the new key Ki+1 (Knew)

contained in message mi+1.

6.4 Analysis

Goal:

Now we can show that, using this protocol, the principal and the AS will always

(eventually) agree on the same key and that there will never be a deadlock

situation even in the presence of message losses and replay attacks.

Basic Idea :

We will �rst show the single step correctness of the protocol, that is, if the

principal and the AS both are in a state where both "know" the same key, and

the principal triggers the password change protocol, then the following events

take place:

{ the protocol terminates after a �nite period of time.

{ after the termination of the protocol, both the principal and the AS will

have replaced the old key with the new key provided by the principal.

Initial Equilibrium:

A complete proof of the protocol correctness requires that the system start in a

good initial state, i.e., the combination of the states of the principal and the AS

when both are initialized with the same key.

Single step correctness:

Let's assume that U is in state Ui, that AS in state ASi, that they both consider

Ki as the current key and that the principal enters cpw(Ki+1),

{ the protocol terminates: because of Assumption 2 there will eventu-

ally be a pair of messages mi+1 and ri+1 that will be received (by AS

and principal, respectively) after a �nite number of retransmissions. After

protocol termination U will reach state Ui+1 and AS the state ASi+1. Any

transition of U to a state other than Ui+1 and any transition of AS to a

state other than ASi+1 are excluded because of Property 1.

{ after protocol termination U and AS will have replaced the old

key with the key provided by the principal: The value of Ku in

state Ui+1 can only be Ki+1 since this is assured by the good behaviour

of the program independently of the communication between U and AS.

By de�nition mi+1 contains Ki+1 in the position of the new key and by

virtue of property 2 ASi can extract Ki+1 from mi+1 and assign its value

to Kas. Thus AS also knows Ki+1 in state ASi+1.

The correctness proof is still valid when we take into account the e�ect of a

crash on the side of either the principal or the AS. If the principal's end-system

crashes in a transient state U 0

i
between state Ui and Ui+1 the principal needs only

to restart the protocol by entering cpw(Ki+1) (Kold = Ki and Knew = Ki+1) in

order to properly terminate the single step execution of the protocol. If the AS

crashes, assuming that its non-volatile memory is crash-proof (otherwise there

would be no recovery at all), and if the duration of the crash and recovery is

comparable to a period of retransmissions from the principal's point of view,

the crash has the same e�ect as the loss of a message and the protocol has

been shown correct in the presence of failures and message losses. If the crash

and recovery takes a very long time, the change password command will abort

and the principal must restart from state Ui as in the case of the crash at the

principal's side, but this is still considered to be only one protocol run and the

principal must stick to Knew = Ki+1 since the server might have updated the

password database before the crash.

7 Summary

The proposed protocol is based on a single and atomic challenge/response ex-

change. The possibility of atomic re-tries provides for a level of robustness and

security that is not possible with current protocols. The advantages of the pro-

posed key change mechanism can be summarized as follows:

1. The protocol is resistant to replay attacks due to the asymmetric ip-op

property of the token construction in REQ CPW.

2. Unlike traditional authentication protocols, the messages in CPW do not

need to contain an explicit challenge (timestamp or nonce) to demon-

strate their freshness and to counter replay attacks. This property is a

result of the logical temporal order provided by the sequence of keys and

the robustness of the protocol messages. Because of the inherent strong

synchronization on keys that the protocol provides, replay detection can

be based on the sequencing of keys.

3. The protocol o�ers protection against walk-by-attacks whereby a previ-

ously authenticated principal leaves the workstation unattended.

4. Optionally, the protocol can permit recycling of keys without being sus-

ceptible to replay. By using a timestamp as one of the "nonces", the key

sequence can be roughly anchored in time without requiring secure time-

services. This is because the timestamp has to be fresh only with respect

to the relatively low frequency of password changes.

5. The protocol can be resumed after a system crash on the side of either

the AS or the requesting principal.

6. Last, but not least, the protocol is compact both in number of messages

and individual message sizes, and it requires very few cryptographic com-

putations.

References

1. National Bureau of Standards, Federal Information Processing Standards, Na-

tional Bureau of Standards, Publication 46, 1977.

2. J. G. Steiner, B. C. Neuman, J. I. Schiller, Kerberos: An authentication service

for open network systems, Usenix Conference Proceedings, Dallas, Texas, pp. 191-

202, February 1988.

3. Open Software Foundation, DCE User's Reference Manual, Cambridge, Mas-

sachusetts, 1992.

4. S. M. Bellovin, M. Merrit, Limitations of the Kerberos Authentication System,

Computer Communication Review, vol. 20(5), pp. 119-132, October 1990.

5. S. M. Bellovin, M. Merrit, Encrypted Key Exchange: Password-Based Protocols

Secure Against Dictionary Attacks, Proceedings of the IEEE Symposium on Re-

search in Security and Privacy, May 1992.

6. G. Tsudik, E. Van Herreweghen, On Simple and Secure Key Distribution, Pro-

ceedings of 1993 ACM Conference on Computer and Communications Security,

November 1993.

7. R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, M. Yung, Sys-

tematic Design of a Family of Attack-Resistant Authentication Protocols , IEEE

JSAC Special Issue on Secure Communications, July 1993.

8. R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, M. Yung, A

Modular Family of Secure Protocols for Authentication and Key Distribution

(DRAFT) in submission to IEEE Transactions on Communications, August 1993.

9. R. Molva, G. Tsudik, E. Van Herreweghen, S. Zatti, KryptoKnight Authentication
and Key Distribution Service, Proceedings of ESORICS 92, October 1992.

This article was processed using the LaTEX macro package with LLNCS style

