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Abstract
The vulnerability of automatic speaker verification systems to
imposture or spoofing is widely acknowledged. This paper
shows that extremely high false alarm rates can be provoked by
simple spoofing attacks with artificial, non-speech-like signals
and highlights the need for spoofing countermeasures. We show
that two new, but trivial countermeasures based on higher-level,
dynamic features and voice quality assessment offer varying de-
grees of protection and that further work is needed to develop
more robust spoofing countermeasure mechanisms. Finally, we
show that certain classifiers are inherently more robust to such
attacks than others which strengthens the case for fused-system
approaches to automatic speaker verification.
Index Terms: automatic speaker verification, biometrics,
spoofing, imposture, countermeasures

1. Introduction
It is now widely acknowledged that automatic speaker verifi-
cation (ASV) systems are vulnerable to spoofing attacks. A
growing body of work shows that significant increases in false
alarms can be provoked through impersonation [1, 2], replay
attacks [3, 4], voice conversion [5, 6, 7] and speech synthe-
sis [8, 9]. All of this work assumes that spoofing efficacy
depends on the projection of speech with acceptable quality.
Given that most state-of-the-art ASV systems do not include
any form of speech quality assessment, this assumption is un-
founded; our own recent work [10] highlights significant vul-
nerabilities to entirely artificial, non-speech-like tone signals.
Dedicated countermeasures to protect ASR systems from spoof-
ing are thus needed urgently.

This is the objective of the EU FP7 TABULA RASA
project1 which aims to develop new spoofing countermeasures
for several different biometric modalities including ASV. Our
own work aims to systematically evaluate vulnerabilities and,
more importantly, to develop dedicated countermeasures to pro-
tect systems from attacks through voice conversion and artificial
signals. This paper reports recent work involving the latter and
demonstrates the level of spoofing protection afforded through
two, trivial countermeasures involving higher-level, dynamic
features and speech quality assessment.

This work was partially supported by the TABULA RASA project
funded under the 7th Framework Programme of the European Union
(EU) (grant agreement number 257289), the ALIAS project (AAL-
2009-2-049 - co-funded by the EC, the French ANR and the German
BMBF) and by a Futur et Ruptures award from Institut TELECOM.

1http://www.tabularasa-euproject.org

The remainder of this paper is organised as follows. Sec-
tion 2 describes the generation of artificial signals which are
used to highlight the vulnerability of ASV systems to spoof-
ing. Section 3 describes spoofing countermeasures. Section 4
reports an assessment of spoofing vulnerabilities and of coun-
termeasure protection. Finally, our conclusions are presented in
Section 5.

2. Spoofing with artificial signals
Our approach to assess the vulnerability of ASV systems using
artificial signals is presented in [10]. It is based on the modifi-
cation of the voice conversion algorithm reported by other au-
thors [6]. Both are summarised briefly in the following.

2.1. Voice conversion

Bonastre et al. [6] show how a speech signal Y represented
in the spectral domain according to the standard source-filter
model:

Y (f) = Hy(f)Sy(f) (1)

can be mapped toward a target speaker signal X by replacing
Hy(f) in Equation 1 with Hx(f), where Hx/y(f) is the vo-
cal tract transfer function of X/Y and Sx/y(f) is the Fourier
transform of the excitation source. Hx(f) can be estimated us-
ing two parallel sets of Gaussian mixture models (GMM) of the
target speaker. If the phase of the impostor signal is left unal-
tered, Y is thus mapped toward X in the spectral-slope sense
which is sufficient to overcome most ASV systems. Full details
can be found in [6].

2.2. Artificial signal generation

Certain short intervals in a speech signal X , e.g. those corre-
sponding to voiced regions, give rise to higher scores or likeli-
hoods than others and the chances of a spoofing attack succeed-
ing can thus be increased by concentrating on a short interval
or sequence of frames in X = {x1, ..., xm} which gives rise to
the highest score.

Let T = {t1, ..., tn} be such an interval short enough so
that all frames in the interval provoke high scores, but long
enough so that relevant dynamic information (e.g. delta and ac-
celeration coefficients) can be captured and/or modeled. In or-
der to produce a sample of significant duration, T can be repli-
cated and concatenated any number of times to produce an au-
dio signal of arbitrary length. In practice, the resulting concate-
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Figure 1: Optimization loop for artificial signal generation, re-
produced from [10].

nated signal is an artificial, or tone-like signal which reflects
the pitch structure in voiced speech. Even though such signals
can be used themselves to test the vulnerabilities of ASV sys-
tems, their limits can be more thoroughly tested by enhancing
the above approach further through voice conversion. Based on
an initial segment T , enhanced, artificial signals which max-
imise the potential for spoofing are generated by searching for
an optimal sequence of speech frames T ∗ such that the final
score of a given ASV system is maximized. To find T ∗, we use
an optimization loop as illustrated in Figure 1.

According to Equation 1 the short interval or sequence of
frames in T can be represented as:

ST = {St1(f), St2(f), ..., Stn(f)}, and (2)

HT = {Ht1(f), Ht2(f), ..., Htn(f)} (3)

Each frame ti ∈ T can be reconstructed from their cor-
responding elements in ST and HT . Therefore, each frame
ti ∈ T is transformed in the same manner as that for voice
conversion, replacing the corresponding Hti ∈ HT . ST is kept
fixed during the optimization process while a genetic algorithm
is used for searching optimal parameters of HT such that the
reconstructed speech f(HT , ST ) provokes a high ASV score.
Full details are presented in [10].

3. Spoofing countermeasures
Some state-of-the-art ASV parameterisations and systems cap-
ture and utilise speech characteristics at the utterance level. For
example, ASV systems based on GMM supervectors inherently
capture speech variability and we thus hypothesize that such
systems will be naturally robust to spoofing attacks with artifi-
cial signals. This hypothesis is investigated in our experiments
reported in Section 4. Here we describe two spoofing coun-
termeasures which are independent of recognition and are thus
applicable to any ASV system. The first is based on the use
of longer contexts, or higher level features, and the second on
voice quality assessment.

3.1. Higher level features

Features extracted over a longer context have utility in many ap-
plications of speech processing, for example prosodic features
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Figure 2: Block diagram of utterance-level feature (v) genera-
tion.

extracted over longer contexts have been applied successfully
in speaker verification and emotion recognition. Given a speech
utterance, longer context higher level features can be extracted
at the frame level, word level, phrase level or at the utterance
level. In this work, we investigate an utterance level feature
that can be quickly computed from frame level features. As de-
scribed in Section 2 it is very robust in distinguishing between
real speech and artificial spoofing signals.

Figure 2 shows a block diagram of our approach to compute
utterance level features. Conventional parameters extracted
from the input signal are indexed using vector quantization
(VQ) with respect to the means of the UBM that act as VQ cen-
troids. The histogram of the resulting index vector is reordered
based on the occurrence frequencies as in a Pareto chart and
the frequencies are scaled with respect to the first component to
obtain a new feature vector v.

During the vector quantization step, parameters corre-
sponding to a real speech signal are expected to be uniformly
indexed to all or most of the Gaussian components, while a
tone-like signal with a repetitive pattern is more likely to be
associated with one or very few components. Hence for a real
speech utterance, the feature v will have a smoother exponen-
tial distribution while tone-like artificial signals will exhibit a
Dirac, delta-like distribution with a dominant peak in the first
coefficient. This facilitates robust classification between real
speech and artificial spoofing signals. We used a simple thresh-
olded cosine distance between the test feature vector vtest and a
mean feature vector vmean estimated from real speech training
utterances.

3.2. Voice quality assessment

An intuitive approach to counter spoofing with artificial sig-
nals involves voice quality assessment. While a front-end au-
tomatic speech recognition (ASR) system could be used as a
means of voice quality/intelligibility assessment it is compara-
tively more complex than the simple approach proposed here.
We use the state-of-the-art, standard ITU-T P.563 recommen-
dation [11] voice quality assessment tool. As a single-ended
algorithm it forms an ideal countermeasure to identify artifi-
cial spoofing signals. The P.563 tool calculates a Mean Opinion
Score (MOS) for a given utterance which indicates subjective
quality. The MOS is in the range of 1 (worst) to 5 (best). We
note that the P.563 tool has already been used in NIST speaker
recognition evaluations to estimate speech quality [12] and in
the quality assessment of synthesized speech [13, 14]. To the
best of our knowledge, there is no previous work in the use of
such assessments for spoofing countermeasures.



4. Experimental work
This section reports our experimental work to test vulnerabili-
ties to spoofing from artificial signals, with and without spoof-
ing countermeasures.

4.1. ASV systems

Experiments were conducted with five different automatic
speaker verification (ASV) systems using combinations of dif-
ferent parameterisations and classifiers. All systems are based
on the LIA-SpkDet toolkit and the ALIZE library [15] and are
directly derived from the work in [16].

The first parameterisation comprises 16 linear frequency
cepstral coefficients (LFCCs), their first derivatives and delta
energy resulting in a feature vector of 33 coefficients. A second
parameterisation is used to assess performance when the ASV
system used for spoofing is different to that being assessed. It
is the same as the first parameterisation except with appended
second derivatives and delta-delta energy thereby giving fea-
tures vectors of 50 coefficients. The two parameterisation are
hereafter referred to as ‘m33’ and ‘m50’ respectively. In both
cases the same energy-based speech activity detection (SAD)
system is applied to remove non-speech frames.

The first ASV system is a standard Gaussian mixture model
(GMM) system with a universal background model (UBM). The
second ASV system includes channel compensation based on
factor analysis (FA) with the symmetrical approach presented
in [17]. The third system is a support vector machine (SVM)
classifier applied to GMM supervectors which come directly
from the GMM-UBM system.

4.2. Experimental protocol

ASV experiments relate to the 8conv4w-1conv4w task of the
NIST SRE’05 dataset. One of the 8 training conversations per
speaker is used for training and another, different conversation
is used for generating artificial signals. Each conversation has
an average duration of 2.5 minutes.

Results are reported for the male subset only and, for spoof-
ing assessments, all impostor tests in the baseline corpus are
replaced with artificial signals for which there is only one per
speaker.

Background data used for UBM learning and channel mod-
elling comes from the NIST SRE’04 dataset. That used to gen-
erate artificial signals comes from the NIST SRE’08 dataset.
Whereas ASV assessments consider both parameterisations and
all three classifiers, the ASV system used to generate artificial
signals uses only parameterisations of 33 coefficients and the
baseline GMM-UBM classifier.

4.3. Baseline and spoofing results

Baseline results for each parameterisation/classifier combina-
tion are illustrated in terms of equal error rates (EERs) in Ta-
ble 1. For the same GMM-UBM system and m33 parameteri-
sation used to generate artificial signals, results show a marked
degradation in performance from an EER of 8.5% to 77.1%.
While the baseline performance for the FA is significantly bet-
ter, a similar degradation is observed under spoofing (4.8% to
64.2%).

System Baseline Spoofing

GMM m33 8.5 77.1
FA m33 4.8 64.2
GMM m50 7.7 66.3
FA m50 4.2 57.7
SVM m33 7.8 4.1

Table 1: EERs (%) for baseline system and under spoofing.

With m50 parameterisations baseline performances are
slightly improved in both cases and the difference to parame-
terisations used to generate artificial signals affords a slightly
improved robustness to spoofing, however, the EERs in both
cases still remain high (66.3% and 57.7%).

Finally, as expected, the SVM approach shows significantly
better robustness. While the baseline EER of 7.8% is worse than
that of the FA system, almost all spoofed tests are detected and
the EER falls to 4.1%.

4.4. Countermeasures

Both the high level feature (HLF) and voice quality assessment
(p563) countermeasures operate independently of verification
and act as a filter to differentiate real speech utterances from
artificial signals. Being a similar two class problem, results are
reported in terms of EERs as before and using same spoofing
corpus used for ASV experiments.

The ITU standard p563 voice quality assessment tool can
be applied to speech signals of between 3 and 20 seconds with
a speech activity ratio (SAR) in the range of 25 to 75%. Since
all utterances used here are in the order of 2.5 minutes in du-
ration, they are split into segments of 15 seconds. The SAR of
each segment is estimated using the ASV energy-based speech
detector and the p563 tool is applied to all those segments with
a satisfactory SAR. Results in terms of score distributions and
spoofing detection performance are illustrated2 in Figure 3 and
Table 2 respectively. Figure 3 shows that artificial signals pro-
duce a large number of scores below 1.5 but also a small number
of higher scores. Real speech signals produce a balanced spread
with a mean of approximately 2.5. There is thus some poten-
tial to detect artificial signals though the two distributions do
overlap. The p563 countermeasure is moderately successful in
preventing some artificial signals in being passed to the ASV
system but also leads to some false alarms, i.e. valid speech sig-
nals withheld from ASV.

HLF performance was assessed in an identical fashion. We
observed that the distributions for real and artificial signals do
not overlap and thus a perfect separation is possible. Table 2
thus shows an EER of 0% for the HLF countermeasure. The
performance of the p563 countermeasure is rather poor, but it is
based only on prior knowledge of speech, and not on the partic-
ular spoofing attack investigated. While the HLF approach does
give a perfect separation of real speech and artificial signals it is
rather specific to the artificial spoofing signals investigated. It
may thus be overcome by alternatively generated artificial sig-

2TABULA RASA score toolkit (http://publications.
idiap.ch/downloads/reports/2012/Anjos_
Idiap-Com-02-2012.pdf)
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Figure 3: Performance of ITU-P563 as attack detector.

System EER

p563 27
HLF 0

Table 2: Spoofing detection performance in terms of EER (%)

nals, whereas p563 may be more robust. In this sense, even
though the p563 countermeasure generates a significant num-
ber of false alarms, it is not without merit.

5. Conclusions and future work
This work assesses the vulnerability of text-independent auto-
matic speaker verification (ASV) systems to spoofing with ar-
tificial signals. Large increases in EER are reported for two
popular approaches to ASV and the use of different parameteri-
sations does not afford any significant protection. Trivial coun-
termeasures based on speech quality assessment and high level
features (HLFs) offer varying levels of protection for varying
degrees of generality with respect to spoofing approaches. Fi-
nally, we show that a support vector machine (SVM) classifier is
inherently robust to spoofing attacks with artificial signals and
strengthens the case for fused-system approaches to automatic
speaker recognition.

While SVM approaches can behave well on unseen data,
and despite the perfect performance obtained with HLFs, it
is likely that they too can be overcome using optimisation
approaches similar to those used in generating artificial sig-
nals. While simple countermeasure solutions may be effective
against known attacks, more sophisticated and general coun-
termeasures solutions are needed to ensure robustness to un-
foreseen forms of spoofing. One promising direction for future
work involves the use of frame-level score distributions rather
than averaged frame scores to better protect ASV systems from
spoofing with artificial signals.
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