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ABSTRACT
Many state-of-the-art biometric systems use feature vec-

tors of high dimension and call for dimensionality reduction
techniques to avoid the co-called ‘curse of dimensionality.’
Supervised approaches such as Linear Discriminant Anal-
ysis can extract discriminative features and is used widely,
but suffers from over-fitting when used with small datasets.
Through the imposition of local adjacency constraints, semi-
supervised dimensionality reduction techniques can make
use of abundant, unlabelled data to improve classification
performance. This paper reports a new multi-view, semi-
supervised discriminant analysis (MSDA) algorithm and its
application in audio-visual person recognition. In contrast
to existing approaches which typically utilize a single view,
MSDA determines a more reliable neighbourhood constraint
built jointly from multiple views of the same data. Experi-
mental results on the standard MOBIO database show that our
algorithm not only outperforms baseline supervised and un-
supervised methods, but that it also outperforms single-view
semi-supervised dimension reduction techniques in single
view.

Index Terms— Audio-visual person recognition, semi-
supervised learning, discriminant analysis

1. INTRODUCTION

Many state-of-the-art biometric systems make use feature
vectors of high dimension. Classification performance, typi-
cally degrades, however, when faced with high-dimensional
feature vectors which often contain redundant components
not necessary for classification. A straight forward so-
lution involves the use of dimensionality reduction tech-
niques which project the original data vector into a lower-
dimensional discriminant subspace which is more favourable
for classification.

One of the most popular dimensionality reduction tech-
niques is Linear Discriminant Analysis (LDA) [1]. LDA is a
supervised method which searches for projection axes which
maximise the distance between samples belonging to different
classes while minimising the distance between samples of the
same class. LDA can achieve significantly better performance
than Principle Component Analysis (PCA) [2] which is an
unsupervised alternative. However, in practical scenarios and

especially biometric applications, manually labelled samples
are often difficult or expensive to collect leaving the appli-
cation of supervised approaches to dimensionality reduction
potentially problematic when labelled training data is scarce.
In particular, class covariance matrices may not be reliably
estimated when the number of training samples is insufficient
relative to the number of dimensions and. Classification per-
formance can then be worse than that achieved with unsuper-
vised methods [3].

While manually labelled training samples acquired dur-
ing enrolment are often limited in number, unlabelled data
is often available in abundance or can be collected easily.
In such situations it is often possible to augment the pool
of manually labelled training samples with unlabelled sam-
ples and thus to improve classification performance. Semi-
supervised dimensionality reduction techniques, e.g. [4, 5, 6,
7] have attracted significant attention over recent years. De-
spite some major differences between such techniques, the
common idea involves the avoidance of over-fitting through
the imposition of local adjacency constraints on the pool of
unlabelled data. For example, Semi-supervised Discriminant
Analysis (SDA) [4] imposes on the conventional LDA objec-
tive function a local adjacency constraint of Locality Preserv-
ing Projection (LPP) [8]. It ensures that unlabelled samples
which are close to each other in the original feature space
remain close to each other in the lower-dimensional, discrim-
inant subspace.

Practical data is often noisy and samples from the same
class may lie far from each other in feature space and still dis-
tributed far apart after projection. Neighbourhood links learnt
from single views are often sparse and the resulting improve-
ment in classification performance is often modest. In some
applications such as multi-modal biometrics for example, a
data sample is represented by more than a single view. Most
approaches to semi-supervised learning, including all those
mentioned above, focus only on a single view and are not ca-
pable of exploiting multiple views. The standard approach in
this case involves the independent learning of projections for
each view. Assuming that each view is uncorrelated, then two
same-class samples belonging to the same class which are far
from each other in one view could be very close to each other
in another view. Local adjacency information in one view can
therefore help in learning more reliable projections in another
view.



In this paper, we propose a new algorithm referred to as
Multi-view Semi-supervised Discriminant Analysis (MSDA)
as a multi-view extension to SDA. It imposes a multi-view
local adjacency constraint on the conventional LDA objective
function and requires that two neighbouring samples in the
original feature space of one view lie near to each other in
the projected, lower-dimensional and discriminative space of
the other view. The approach better exploits the information
in unlabelled data to augment small, manually labelled train-
ing sets and thus to enhance the performance of supervised
LDA. The algorithm is assessed in an audio-visual person
identification scenario where both speaker and face recog-
nition models make use of high-dimensional features. Ex-
perimental results show that the proposed MSDA system not
only enhanced supervised and unsupervised baseline meth-
ods (LDA, PCA, LPP) by a large margin but that it also out-
performs single-view SDA.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a review of several single view dimensionality
reduction methods which are related to the proposed multi-
view approach. The new MSDA algorithm is presented in
Section 3. Section 4 presents experimental work and results
which demonstrate the effectiveness of our approach. Finally,
we provide some conclusions in Section 5.

2. DIMENSIONALITY REDUCTION

Since they are closely related to the new approach proposed
in this paper, we include here a brief overview of the Local-
ity Preserving Projection (LPP) [8] and Semi-supervised Dis-
criminant Analysis (SDA) [4].

2.1. Locality preserving projection

LPP belongs to the family of manifold (or local) dimension-
ality reduction techniques which have together received con-
siderable research interest over the last decade. Compared to
global dimensionality reduction techniques, such as PCA and
LDA, LPP seeks to preserve intrinsic geometric structure by
learning a locality preserving sub-manifold. The objective of
LPP is to find an optimal projection aopt such that the neigh-
bouring samples in the original space remain closely located
in the projected space, where

aopt = argmin
a

∑
i,j

(aTxi − aTxj)
2Sij , (1)

and where S is local adjacency matrix which reflects of any
pair of samples xi and xj . This commonly involves a simple
weight function; two common examples are a binary weight:

Sij =

{
1, if xi ∈ Np(xj) or xj ∈ Np(xi)
0, otherwise (2)

or heat kernel weight:

Sij =

{
exp(−‖xi − xj‖), if xi ∈ Np(xj) or xj ∈ Np(xi)
0, otherwise

(3)

where Np(xi) denotes the set of p nearest neighbours in the
vicinity of sample xi. A projection is then sought which min-
imises the sum of distances between linked samples.

Let X = [x1, ...,xn] be a matrix of n samples. Through
some straightforward algebraic manipulation (interested read-
ers are referred to [8] for details), the objective function in
Eq. (1) can be re-written as:

aopt = argmin
a

(aTXLXa), (4)

where L is the graph Laplacian matrix and where:

L = D − S, (5)

in which D is a diagonal matrix with Dii =
∑

j Sij . The
projection a can be obtained by solving the generalized eigen-
value problem:

XLXTa = λXDXTa. (6)

LPP has been successfully applied in automatic face
recognition problems and is commonly referred to as Lapla-
cianface [9].

2.2. Semi-supervised discriminant analysis

LPP is an unsupervised method and thus lacks discriminant
power favourable for classification. While supervised ap-
proaches such as LDA have discriminant power they often
require impractical quantities of training data. SDA [4] har-
nesses the benefits of discriminant LDA and unsupervised
LPP to learn reliable projections from both labelled and un-
labelled data and prevent over-fitting. As presented in [4],
the LDA objective function is first reformulated in a form
compatible with LPP:

aopt = argmax
a

aTXWl×lX
Ta

aTXXTa
, (7)

where Wl×l is a l × l matrix:

Wl×l =


W (1) 0 · · · 0
0 W (2) · · · 0
...

...
. . .

...
0 0 · · · W (c)

 , (8)

and whereW (k) is a lk× lk matrix with all the elements equal
to 1/lk, and where l and lk are the total number of labelled
samples and number of samples in the k-th class respectively.
The SDA objective function is defined as:

aopt = argmax
a

aTXWl×lX
Ta

aTXXTa+ αaTXLXTaT
(9)

= argmax
a

aTXWXTa

aT (Ĩ + αL)aT
, (10)

where:



Ĩ =

(
I 0
0 0

)
, and (11)

W =

(
Wl×l 0
0 0

)
(12)

where I is an identity matrix of size l × l, and α is a parame-
ter which weights the contribution of labelled and unlabelled
information. The projection a is obtained by solving the gen-
eralized eigenvalue problem:

XWXTa = λX(Ĩ + αL)XTa, (13)

SDA exploits labelled data to cluster same-class data to-
gether and to better separate different-class data, while re-
taining the local structure of unlabelled data to prevent over-
fitting.

3. MULTI-VIEW SEMI-SUPERVISED
DISCRIMINANT ANALYSIS

According to a recent, comparative study [10], dimensionality
reduction techniques based on local manifold learning work
very well for artificial datasets where samples are densely
linked within local manifold structures. With real datasets,
however, which often contain substantial noise, same-class
data in the original feature space can be dispersed and sam-
ple links are sparse. In such situations the performance of
local manifold learning techniques can degrade significantly.
In this section we show how this problem can be alleviated
by extending the approach to exploit multiple, uncorrelated
views of the same data.

3.1. Multi-view local adjacency constraint

The inspiration for our work stems from a multi-view semi-
supervised learning method referred to as co-training [11].
With co-training two classifiers are first weakly trained with
a small number of labelled data in two different views. Each
classifier is used to label a large pool of auxiliary, unlabelled
data and the most confidently labelled data is then used to
augment the training set and thus to enhance the other clas-
sifier. The co-training algorithm is based on view sufficiency
and view agreement assumptions which imply that, given
well-trained classifiers, information in each view is sufficient
to predict the labels of unlabelled data and that the two classi-
fiers should generally agree on a common labelling decision.

We extend this idea to multi-view dimensionality re-
duction. Given two well-trained projections in uncorrelated
views, two data samples belonging to a sample manifold in
one projected space should belong to the corresponding man-
ifold in the other projected space. Accordingly, we construct
the multi-view local adjacency matrix as follows: if a link
between two data samples is established in the original space
of either view, a corresponding link is also established in the
other view. This idea is illustrated in Fig. 1 in which blue
and white circles represent samples corresponding to two
different classes. Left and right plots illustrate two different

Fig. 1. An illustration of multi-view adjacency constraints

views of the same data. The solid lines represent the links
between samples which are deemed automatically to belong
to the same class. Samples in each class lie in disjoint mani-
folds and with conventional manifold learning methods, it is
unlikely that they will lie near to each other in the projected,
lower dimensional space. Assuming that the two views are
conditionally independent from each other, two different but
same-class manifolds in view 1 may be in the same manifold
in view 2, and vice versa. By updating the neighbourhood
constraints in one view according to the corresponding ad-
jacency constraints in the other, a more reliable adjacency
graph (dashed red lines in Fig. 1) can be constructed and used
to improve learnt projections.

3.2. Projection algorithm

We propose a multi-view extension of SDA, which we re-
fer to a Multi-view Semi-supervised Discriminant Analysis
(MSDA). While this paper focuses the use only on two views,
the algorithm can be applied to an unlimited number of differ-
ent views and consequently the algorithm is presented below
in its most general form (not limited to two views).

We assume a small set of l labelled n-view data samples,
{xi1, xi2 . . . , xin; yi|i = 1 . . . l} and a set of u unlabelled
data samples {xi1, xi2 . . . , xin; |i = 1 . . . u}, where xij is
the j-th view of the i-th sample and yi is the label for the i-th
sample. The algorithm is applied as follows:

1. Construct the adjacency graph for each view: For
each view xn, construct the p-nearest neighbour graph
Sn according to Eq. (2) or (3).

2. Construct the multi-view adjacency graph: the
multi-view graph S is constructed according to:

S = max
n

(Sn), (14)

and the graph Laplacians are determined according to
Ln = Dn − Sn.

3. Construct the labelled graph: weight matrices W
and Ĩ are determined according to Eq. (11) and (12)
respectively.

4. Solve the eigenvalue problem: for each view xn the
eigenvectors are determined for all non-zero eigenval-
ues according to the generalized eigenvalue problem:



XnWXT
n an = λnXn(Ĩ + αLn)X

T
n an, (15)

where Xn = [xn1, . . . ,xnl,xn(l+1), . . . ,xn(l+u)] is
the whole data matrix which pools together both la-
belled and unlabelled samples. If W is of rank c then
there will be c eignenvectors with non-zero eigenval-
ues. We denote them as an1, . . . ,anc.

5. MSDA embedding: let An = [an1,an2, . . . ,anc]
such that the samples in the n-th view can be embedded
into a c-dimensional subspace according to:

zn = AT
nxn. (16)

In the following we show how the MSDA approach can be
applied in audio-visual person recognition, i.e. using n = 2
views.

4. EXPERIMENTS IN AUDIO-VISUAL
PERSON RECOGNITION

We now describe the application and assessment of the pro-
posed MSDA algorithm in audio-visual person recognition.
MSDA has natural appeal in such a scenario since: (1) la-
belled data is limited while abundant unlabelled data can of-
ten be collected with ease; (2) face and voice are natural bio-
metrics in the case of videos and are independent from each
other, and (3) most state-of-the-art, automatic speaker and
face recognition systems utilise high-dimensional feature vec-
tors which require dimensionality reduction.

4.1. Database

All experiments were conducted with the MOBIO database1.
It contains videos of 150 subjects from whom video data
is captured in 12 sessions over a one-and-a-half year pe-
riod. Each session contains 11-21 videos of spoken data
captured in variable, challenging conditions recorded with
a mobile phone video camera. Data from a random subset
of 30 subjects was used to train a world Gaussian Mixture
Model (GMM) for speaker recognition and data from another
random and non-overlapping subset of 30 subjects was used
for recognition experiments in an identification framework.
a number of l = 1, 2, 3 sessions are randomly selected as
labelled training data for enrolment. Another single, random
session is set aside as test data. The remaining 11− l sessions
are used as unlabelled data. The total amount of training
data thus remains constant and the parameter l controls the
fraction of it which is manually labelled.

1http://www.idiap.ch/dataset/mobio

4.2. Experiments

Experiments are conducted with largely standard speaker and
face recognition systems which represent each video by a
GMM speaker supervector [12] and an Local Binary Pattern
(LBP) [13] face feature vector, both of high dimensionality.

The speech signal is parameterised using Mel-scaled
Cepstral Coefficients (MFCCs) which are extracted from
20ms Hamming windowed frames at a 10ms frame rate.
Feature vectors are composed of the first 26 MFCC co-
efficients augmented with their 26 delta coefficients and
the delta energy. Non-informative speech frames are iden-
tified using energy-based speech detection and discarded.
A 64-component GMM world model is learned with an
Expectation-Maximization (EM) algorithm and adapted
to generate speaker models using Maximum A-Posteriori
(MAP) adaptation. Only the GMM means are adapted and
are concatenated to form a 3392-dimensional supervector.

Face images are extracted and cropped according to facial
landmarks identified using a face detector based on OpenCV2.
Cropped face images are then resized to 144×128 pixels. The
single most confidently detected face is divided into 9 × 8
blocks and LBPu2

(8,2) features are extracted from each block
and concatenated into a 4248-dimensional vector.

Experiments were performed with PCA [2], LDA [1],
LPP [8], SDA [4] and MSDA algorithms in an otherwise
identical setup. Since LDA cannot be applied to data of di-
mensionality greater than the difference between the number
of samples and number of classes, a step of PCA dimen-
sionality reduction is often applied to obtain an intermediate
representation upon which LDA can be applied [1]. PCA is
therefore used to reduce both speech and face feature vec-
tors to 100 dimensions and all compared algorithms are then
applied in the same intermediate feature space.

Projections are learnt with different techniques for both
speech and face biometric modalities, or views. Here unsu-
pervised methods PCA and LPP use all 11 training sessions as
unlabelled data, supervised method LDA only uses l labelled
sessions, while semi-supervised methods SDA and MSDA
use both labelled and unlabelled data. LDA, SDA and MSDA
methods are applied to reduce the feature dimension to 29
(number of classes - 1) dimensions, and so PCA and LPP are
applied to reduce features to the same dimensions. Test data
are projected into lower dimensional spaces and are classified
with a nearest-neighbour classifier based on Euclidean dis-
tances. For a score-level fusion, in each projected space, the
distances of a test sample to all n labelled training samples
[d1, ..., dn] are normalized to reduce the range to the interval
[0, 1] according to dnormi = (di − dmin)/(dmax − dmin),
where dmin and dmax are the minimum and maximum val-
ues of these distances. Then the corresponding dnormi s in two
spaces are averaged to get fused distances [dfuse1 , ..., dfusen ].
The test sample is then assigned to the same class as nearest
labelled sample.

2http://opencv.willowgarage.com/wiki/



PCA LPP LDA SDA MSDA
Face 58.9% 68.1% 43.0% 67.4% 73.6%
Voice 68.0% 75.9% 33.7% 76.8% 87.5%
Fusion 78.3% 81.6% 50.0% 87.5% 90.6%

(a) 1 labelled training session (l = 1)

PCA LPP LDA SDA MSDA
Face 72.3% 76.4% 79.2% 83.0% 86.9%
Voice 79.7% 80.0% 82.5% 88.0% 91.4%
Fusion 89.0% 89.2% 92.5% 95.7% 96.7%

(b) 2 labelled training sessions (l = 2)

PCA LPP LDA SDA MSDA
Face 76.7% 77.8% 83.6% 85.7% 88.4%
Voice 84.4% 81.8% 92.0% 92.0% 94.1%
Fusion 91.9% 91.0% 96.4% 97.0% 97.4%

(c) 3 labelled training sessions (l = 3)

Table 1. Person recognition performance for different ap-
proaches to dimensionality reduction on the MOBIO database

4.3. Results

Average results across 50 iterations of cross-validation are
presented in Table 1. Results are presented independently for
both speaker and face recognition systems in addition to re-
sults after score-level fusion and where the number of labelled
training sessions is varied between l = 1, 2 and 3.

When labelled training data is scarce (l = 1), due to
over-fitting LDA performance is even worse than for unsu-
pervised methods PCA and LPP. When the training set is aug-
mented with the auxiliary pool of unlabelled data then semi-
supervised SDA and the proposed MSDA algorithm lead to
significantly improved performance. Improvements are ob-
served for both individual classifiers in addition to the fused,
bi-modal system. When sufficient labelled training data is
available (l = 2), LDA out-performs PCA and LPP, but SDA
and MSDA still achieve better performance, though the gain
brought through the use of unlabelled data decreases as the
labelled training set becomes larger (l = 3). Nonetheless,
in all cases the proposed MSDA algorithm achieves superior
performance to alternative approaches.

These results show that local adjacency constraints in
one view can be effectively harnessed to learn more reliable
projections in another view of the same data and ultimately
give significantly improved classification performance, par-
ticularly when initial models are weakly or insufficiently
trained.

5. CONCLUSIONS

This paper reports a new multi-view, semi-supervised dis-
criminant analysis algorithm and its application to audio-
visual person recognition. A more reliable local adjacency
constraint is constructed using unlabelled information in dif-
ferent views and helps to enhance projections learnt from lim-
ited labelled data. Results on the standard MOBIO database

show that the new algorithm not only outperforms baseline
supervised and unsupervised approaches by a significant
margin, but that it also outperforms semi-supervised dimen-
sionality reduction techniques applied to a single view. The
new algorithm is thus effective in harnessing unlabelled,
multi-view biometric data to extract discriminative features
favourable for classification.

6. REFERENCES

[1] P. N. Belhumeur, J. P. Hespanha and D. J. Kriegman, “Eigen-
faces vs. Fisherfaces: recognition using class specific linear pro-
jection,” in IEEE Transaction on PAMI, vol. 19(7), PP. 711-720,
1997.

[2] M. Turk and A. Pentland. “Eigenfaces for recognition,” in Jour-
nal of Cognitive Neuroscience, 3(1):71-86, 1991.

[3] A. M. Martinez and A.C. Kak. “PCA versus LDA,”in IEEE
Trans. on PAMI, 23(2), 2001.

[4] D. Cai, X. He and J. Han. “Semi-supervised Discriminant Anal-
ysis,” in Procedings of International Conference on Computer
Vision (ICCV), 2007 .

[5] D. Zhang, Z.-H. Zhou and S. Chen. “Semi-supervised dimen-
sionality reduction,”in Proceedings of the 7th SIAM Interna-
tional Conference on Data Mining (SDM’07).

[6] M. Sugiyama, S. Nakajima and J. Sese, “Semi-supervised lo-
cal Fisher discriminant analysis”, in Machine Learning, 78(1-
2), 2011, pp. 35-61.

[7] X. Zhao, N. Evans and J.L. Dugelay, “Co-LDA: A new ap-
proach to audio-visual person recognition in videos,”in IEEE In-
ternational Conference on Multimedia and Expo (ICME), 2012

[8] X. He and P. Niyogi. “Locality Preserving Projection,”in Ad-
vances in Neural Information Processing Systems 16. MIT
Press, Cambridge, MA, 2003.

[9] X. He, S. Yan, P. Niyogi and H. J. Zhang. “Face recognition us-
ing Laplacianfaces,”in IEEE Trans. PAMI, 27(3):328-340, 2005.

[10] L. J. P. van der Maaten, E. O. Postma and H. J. van den Herik.
“Dimensionality Reduction: A Comparative Review,”Tilburg
University Technical Report, TiCC-TR 2009-005, 2009.

[11] A. Blum and T. Mitchell, “Combining labeled and unlabeled
data with co-training,” in Proceedings of the Workshop on Com-
putational Learning Theory, 1998.

[12] W. Campbell, D. Sturim, and D. Reynolds, “Support vector
machines using GMM supervectors for speaker verification”,
IEEE Signal Processing Letters 13, 5 (May 2006), pp. 308311.

[13] T. Ahonen, A. Hadid and M. Pietikainen. “Face recognition
with local binary patterns,” in Proc. ECCV 2004, LNCS, vol.
3021, pp. 469-481. Springer, Heidelberg, 2004.


