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ABSTRACT

Client models used in Automatic Speaker Recognition (ASR) and
Automatic Face Recognition (AFR) are usually trained with labelled
data acquired in a small number of enrolment sessions. The amount
of training data is rarely sufficient to reliably represent the variation
which occurs later during testing. Larger quantities of client-specific
training data can always be obtained, but manual collection and la-
belling is often cost-prohibitive. Co-training, a paradigm of semi-
supervised machine learning, which can exploit unlabelled data to
enhance weakly learned client models. In this paper, we propose
a co-LDA algorithm which uses both labelled and unlabelled data
to capture greater intersession variation and to learn discriminative
subspaces in which test examples can be more accurately classi-
fied. The proposed algorithm is naturally suited to audio-visual per-
son recognition because vocal and visual biometric features intrinsi-
cally satisfy the assumptions of feature sufficiency and independency
which guarantee the effectiveness of co-training. When tested on the
MOBIO database, the proposed co-training system raises a baseline
identification rate from 71% to 99% while in a verification task the
Equal Error Rate (EER) is reduced from 18% to about 1%. To our
knowledge, this is the first successful application of co-training in
audio-visual biometric systems.

Index Terms— Biometrics, speaker recognition, face recogni-
tion, co-training, audio-visual person recognition, semi-supervised
learning

1. INTRODUCTION

Biometric systems exploit physiological and/or behavioural traits to
recognize individuals. Popular traits or modalities include finger-
prints, hand-geometry, face, voice, iris, retina, gait, signature, palm-
print, ear, etc. Among them, face and voice features have the advan-
tages of non-intrusiveness, easy acquisition and also the possibil-
ity of non-cooperative acquisition. Automatic Speaker Recognition
(ASR) and Automatic Face Recognition (AFR) have thus attracted a
high degree of research interest in the last decade.

ASR and AFR systems generally share the same operational
paradigm. During enrolment, training data is collected and client
models are learnt or adapted, while under normal use or testing new
samples are compared to a single model (verification) or to a group
of models (identification). Under well controlled conditions perfor-
mance is typically acceptable. In real operational scenarios, how-
ever, test data can exhibit substantial differences to that collected
during enrolment. In the case of face recognition, so-called inter-

session variability may come from differences in illumination or
pose, the presence of facial accessories (glasses or piercings), and
ageing over an extended time period. Voice features may vary as
a consequence of environmental noise or changes to the vocal tract
as a consequence of illness or ageing. Unless such variations are
captured and represented in the client models, or unless suitably ro-
bust features or normalization approaches are applied, recognition
performance can deteriorate drastically.

The use of more robust features can ameliorate this problem to
some extent. In AFR, for example, Local Binary Pattern (LBP) fea-
tures [1] are among the most robust to illumination changes, while
SIFT-like features [2] are robust to geometrical transformations. To
date, however, there are no ”perfect features” universally robust to
every foreseeable variation. Another approach involves the decom-
position of observed features into session-dependent and session-
independent components and the only the later are used for recog-
nition. Decomposition and transformation typically require large
quantities of data to learn and some important information is often
lost. One such example is Joint Factor Analysis (JFA) [3], which is
popular in ASR.

Semi-supervised learning (SSL) is another popular approach to
the data insufficiency problem and has experienced a surge in re-
search interest in the machine learning community during the last
decade [4]. Compared to supervised learning (learning from la-
belled data) and unsupervised learning (clustering unlabelled data),
SSL uses a small amount of labelled data and a larger pool of un-
labelled data to learn models, thereby avoiding costly manual la-
belling. SSL can be used to solve the problem of scarce labelled
data in AFR and ASR: models weakly trained during enrolment can
be enhanced by learning from abundant unlabelled data obtained
during normal use or testing, which is inherently rich in variation.
Several semi-supervised AFR and ASR systems have been proposed
and show the capacity for increasing the performance of supervised
systems [5][6].

Co-training is one of the most successful examples of SSL and
was proposed by Blum and Mitchell [7] in 1998. The basic assump-
tion is that each data sample can be represented by two independent
features, each of which is generally sufficient for correct classifica-
tion. First, two classifiers are weakly trained using a small num-
ber of labelled examples on two different feature sets respectively.
Each classifier is then used to classify a larger pool of unlabelled
auxiliary data. The most positive examples are then used to train the
other classifier. The process is iterative and is repeated several times.
Consequently, both classifiers become more robust with the accumu-
lation of new training data. Blum and Mitchell demonstrated that if



the two following assumptions are verified, co-training guarantees
improved performance over supervised learning [7]: (i) sufficiency,
which requires each classifier feeds to the other more correctly la-
belled samples than incorrectly labelled samples, (ii) independency,
which requires that samples confidently classified by one classifier
are fully informative to train the other.

One of the first applications of co-training to AFR is proposed
in [8], but based on two different facial features. The two features
are extracted from the same image and thus the assumption of inde-
pendency is not satisfied; unlabelled samples confidently classified
by one system may not help to improve the other, and thus improve-
ments in performance are modest. A template co-update biometric
system based on two independent biometric features, face and finger-
prints, is proposed in [9]. This combination of modalities requires
special equipment and thus application is limited.

In this paper, we propose a co-training type algorithm which
exploit the natural co-occurrence of audio-visual data, namely co-
Linear Discriminant Analysis (co-LDA), which uses both labelled
and unlabelled data to learn discriminative subspaces in which test
examples can be better classified. In this paper we report its appli-
cation to audio-visual person recognition in videos. The scenario
involves a very limited number of labelled videos and a larger aux-
iliary pool of unlabelled videos. Each video contains images and
audio from a single person, and is parametrized by face and voice
feature vectors of high dimension. For each feature, a LDA-based
classifier is learnt with the small number of labelled samples and is
used to classify the unlabelled samples. The most confident clas-
sification results (samples) identified by one classifier are added to
the labelled data set, and the corresponding features are then used
to train the other LDA subspace and classifier, and vice versa. Af-
ter several iterations and the accumulation of automatically labelled
data, we obtain more reliable subspaces for both face and voice clas-
sification.

The remainder of this paper is organized as follows. In Section
2, the principles of co-training are described and the co-LDA frame-
work are presented and analysed. The application of the proposed
algorithm in audio-visual person recognition is described in Section
3. Experiments and results are detailed in Section 4 before our con-
clusions are presented in Section 5.

2. CO-TRAINING AND CO-LDA

In this section, we first briefly introduce the principles of co-training
and LDA in Section 2.1 and 2.2 respectively, and then present the
semi-supervised discriminant subspace learning problem, propose
and analyse the co-LDA algorithm in Section 2.3.

2.1. Principle of Co-Training

Co-training belongs to a class of algorithms which combine semi-
supervised learning and multi-view learning into one unified frame-
work. The basic assumption of co-training is that the data samples
can be presented with two disjoint views x1 and x2. Two classi-
fiers C1(x1) and C2(x2) are initially learnt with a small set of la-
belled data L: {xi1;xi2, li|i = 1, 2, ..., N}where l is the class label,
and a large amount of unlabelled data U: {x′i1;x′i2|i = 1, 2, ...,M},
where N and M denote the size of labelled and unlabelled dataset
respectively. At each iteration, the algorithm incorporates samples

from the unlabelled set U into the pool of labelled data L. Typically
the selected data are those with the highest prediction confidence
for each view. Each classifier is then updated using the augmented
labelled data set. The process can be repeated iteratively until all
unlabelled auxiliary data is incorporated into labelled dataset. Fi-
nally, the outputs of the two classifiers C1 and C2 can be weighted
and give a single-view classifier C. The intuition of co-training is
that each classifier can provide the other with additional, automati-
cally labelled data which might be as informative as some random
noisy labelled examples. Based on the analysis of Nigam et al [7],
co-training requires the two views to be conditionally independent
in order that each classifier provides informative data to the other.

2.2. Principle of LDA

Linear Discriminant Analysis is a well-known simple and efficient
approach to dimensionality reduction, and is widely used in vari-
ous classification problems. It aims to find an optimised projection
Wopt which projects t dimensional data vectors x into a f dimen-
sional space by y = Woptx, in which intra-class scatter (SW ) is
minimized while the intra-class scatter (SB) is maximized. SW and
SB are determined according to:

SW =

c∑
j=1

lj∑
i=1

(xji − µj)(x
j
i − µj)

T , (1)

and

SB =

c∑
j=1

lj(µj − µ)(µj − µ)T , (2)

where xji is the ith sample of of class j, µj is the mean of class j, c
is the number of classes, and lj is the number of samples in class j .
Wopt is obtained according to the objective function:

Wopt = argmax
W

WTSBW

WTSWW
= [w1, . . . , wg] (3)

where {wi|i = 1, . . . , g} are the eigenvectors of SB and SW which
correspond to the g largest generalized eigenvalues according to:

SBwi = λiSWwi, i = 1, . . . , g (4)

Note that there are at most c−1 non-zero generalized eigenvalues, so
m is upper-bounded by c − 1. Since SW is often singular, it is com-
mon to first apply Principal Component Analysis (PCA) to reduce
the dimension of the original vector. LDA has been applied to AFR
and ASR and is often referred to as Fisherface [10] and Fishervoice
[11].

While LDA can extract discriminant information from high di-
mensional feature vectors when labelled training data is abundant,
but when training data is scarce, the projections can be significantly
biased, which generally leads to reduced performance.

2.3. Co-LDA

In many practical AFR and ASR applications, but unlabelled test
data is often abundant, ie. obtained during testing. It typically
contains a high degree of intersession variations, from which much
more reliable LDA projections can be learnt. We propose a novel



co-training framework which is applied to in the discriminant di-
mensionality reduction problem in two distinct feature spaces, where
each classifier iteratively and automatically labels and provide new
training data to another.

As illustrated in Fig.1, the input of the co-LDA algorithm is a
small amount of labelled data and a large pool of unlabelled data,
while each sample can be represented with two features, x1 (left in
Fig.1)and x2 (right), which are assumed to be independent and suf-
ficient for classification. An LDA projection is learnt on each view
respectively. As shown in Fig.1 (a), the labelled dataset is small and
is not representative of the general class distribution, so SB and SW

in Equation (1) and (2) are not well estimated. The LDA projection
(Wopt) learned from this data is illustrated by a solid line. It is bi-
ased and leads to an ineffective classification boundary (dashed line).
The LDA space of view 1, a classifier is then applied to classify all
the unlabelled data, one (or a few) sample that is farthest from the
classification boundary is added to the labelled set, and the LDA pro-
jection for view 2 is relearned, as shown in Fig.1 (b). Note that, since
the two views are assumed to be independent from each other, one
point confidently classified in view 1 is highly informative in view 2
(otherwise if the two views are correlated, that point will be also far
from the classification boundary in view 2), and is able to correct to
improve the corresponding LDA. In the same way, unlabelled data
in view 2 is also classified, and the most confident samples are added
to the labelled dataset before the LDA projection for view 1 is also
relearned. The process is iterative and as more labelled data is accu-
mulated, the LDA projections are improved and give better results.
Of course, one view may feed misclassified samples to the other but
according to the sufficiency assumption, classifiers will feed more
correctly labelled data than mislabelled data to the other classifier,
and thus performance ultimately improves.

3. APPLICATION TO AUDIO-VISUAL PERSON
RECOGNITION

It is well known that better recognition performance can be achieved
through the combination of multiple biometric modalities, through
so-called multi-modal systems [12]. With both traits available with
standard commercial video capturing devices and on account of their
non-intrusive nature, audio-visual person recognition is of natural
appeal to both commercial clients and end-users and thus attracted
considerable research interest in recent years. Such systems gener-
ally involves the score level fusion of AFR and ASR systems. Both
are vulnerable to inter-session variations discussed in Section 1, and
the proposed co-LDA approach has natural application in audio-
visual person recognition scenario: (1) Labelled data is limited while
abundant unlabelled data is available during the normal system op-
eration; (2) Peoples’s face and voice are naturally available in videos
and are independent from each other; (3) Many state-of-the-art ASR
& AFR implementations use high-dimensional feature vectors so di-
mensionality reduction is needed.

The proposed co-LDA audio-visual person recognition system
is composed of three steps. First, a facial feature vector and a vocal
feature vector are extracted from each video; second, two discrim-
inant subspaces are learned with both labelled and unlabelled face
and voice data respectively; third, verification is achieved with ac-
cepting or rejecting the claim, while in the identification task, there
is no identity claim, and the system is required to establish their iden-

Fig. 1. Illustration of Co-LDA algorithm

tity.

3.1. Feature vector extraction

The process of feature extraction is illustrated in Fig.2. For the face
modality, face detection is first applied and detected faces are aligned
according to detected facial landmark positions. For each video,
Local Binary Pattern (LBP) feature vector [1] is extracted from the
most confident detected face. LBP feature extraction divides faces
into sub-regions and LBP histograms, which reflect the local tex-
ture are extracted from each region and concatenated to form a high
dimensional vector. For the voice modality, voice detection is first
applied to eliminate non-speech frames. MFCC coefficients are then
extracted from each audio frame and used to determine a Gaussian
Mixture Model (GMM) through the Maximum A Posteriori (MAP)
adaptation of a speaker independent world model. The means of the
GMM model are concatenated into a high-dimensional supervector
[13]. Accordingly each video is represented by a facial feature vec-
tor fface and a voice feature vector fvoice.

3.2. Subspace learning

The co-LDA system is supplied with a small set of labelled train-
ing data acquired during the enrolment session, and a large set of



Fig. 2. Feature vector extraction for face and voice

unlabelled data acquired during a period of normal system opera-
tion. The dimensionality of the original face and voice feature vector
fface and fvoice is too great to perform LDA, so a PCA step is first
applied to reduce the dimension to n, (xface, xvoice) represents the
two features in the PCA space. As illustrated in Fig.3, the labelled
training samples are first used to learn LDA projections with face
and voice feature vectors respectively, and then to learn two clas-
sifiers Cface and Cvoice. Here we simply use a nearest-template
classifier, where a template for each class is calculated as the within-
class mean, and the test samples are assigned the label of the closest
template according to the label of a test data is determined according
to the normalized correlation metrics, which has been demonstrated
to be an appropriate similarity measure for LDA space [14]. The
similarity between a test point x and a template µ is defined as:

SN =

∥∥xTµ
∥∥√

xTxµTµ
(5)

All unlabelled face and voice samples are projected into their
LDA spaces respectively, and classified by Cface and Cvoice. For
each classifier and each class, the unlabelled samples closest to the
the template are moved from the unlabelled dataset to the labelled
dataset with the automatically determined label. We refer to this aux-
iliary training datas pseudo-labelled data. With the increased pool of
labelled data, the two LDA subspaces are relearned, and the tem-
plates are recalculated. This process is iterative and is repeated until
the unlabelled dataset is empty.

3.3. Identification and verification

Both identification and verification tasks can be accomplished using
the LDA projections and client templates learned according to the
above procedure.

In the identification scenario, facial and vocal feature vectors are
extracted from each test video in the manner as described in Section
3.1, and each of them is first projected into their PCA subspaces, and
then into their LDA subspaces respectively. In each space, the pro-
jected point is compared to each of the c templates according to the
normalized correlation similarity measure as described above, thus
resulting in two sets of c similarity scores (S1

face, S
2
face, . . . , S

c
face)

and (S1
voice, S

2
voice, . . . , S

c
voice) Corresponding face and voice sim-

ilarity scores are then averaged to obtain a fused score:

Si
fused =

Si
face + Si

voice

2
, (6)

Fig. 3. Illustration of co-LDA subspace learning

and the test sample is assigned the label of the template whose sim-
ilarity score is highest. The recognition performance is evaluated
with the top 1 identification rate.

In the verification scenario, the face and voice feature vectors
of a test data sample are extracted and projected into the same LDA
space as before, but are compared only to the template corresponding
to the claimed identity. Face and voice similarity scores are fused
in the same way. The verification performance is evaluated with
the Detection Error Trade-offs (DET) plot acquired with client and
imposter scores.

4. EXPERIMENT AND RESULTS

4.1. Database

The experiments reported here aim to evaluate the capability of
the co-LDA audio-visual person recognition algorithm to use inter-
session variations contained in unlabelled data to enhance models
which are weakly learned with limited labelled data. All experi-
ments were conducted with the MOBIO database [15]. It contains
videos of 150 subjects captured in real-world challenging condi-
tions in 12 sessions. Recordings come from a mobile phone camera
over a one-and-a-half-year period, and each session contains 11-21
videos. Fig.4 shows example images which demonstrate typical pose
and illumination variability. Similar variability is also presented in
the audio streams which contain different environmental noise. We
selected 30 subjects with which to train a GMM world model for
speaker recognition, another 30 subjects to conduct co-training ex-
periments, and 15 subjects are selected as imposters in the verifi-
cation experiment. For subspace learning, one session is randomly
selected and used as labelled training data for enrolment, another
session is randomly chosen as test data, and the other 10 sessions are



Fig. 4. Image examples of MOBIO database

used as unlabelled data.

4.2. Experimental work

In each video, face images are detected automatically with an
OpenCV based face detector. It incorporates eye and nose detec-
tion which help to crop detected faces according to facial landmark
coordinates. Cropped face images are then resized to 144 × 128
pixels. For each video, the single most confidently detected face
is selected. This face image is divided into 9 × 8 blocks and
LBPu2

(8,2)features are extracted from each block and concatenated
into a 4248-dimensional vector. MFCC acoustic features are ex-
tracted over 20ms Hamming windowed frames at a 10ms frame rate.
Features are composed of 26 MFCC coefficients augmented with
their 26 delta coefficients and the delta energy, resulting in acous-
tic vectors of 53 coefficients. Informative speech frames are ex-
tracted with an acoustic energy based speech detector described in
[16] and non-speech frames are discarded. A 64-component speaker
model is then adapted from the world model trained with an EM al-
gorithm of the wold model subset. MAP adaptation is performed
with a relevance factor of 14 and only means were adapted. The
GMM means are concatenated to form a 3392-dimensional super-
vector. Each video is thus represented by an LBP feature vector and
a GMM voice supervector.

Following co-training as described in Section 3, initial LDA pro-
jections and classifiers are learned on the labelled dataset, and iter-
atively updated with automatically labelled data. After the learning
process, data is projected into the learnt LDA spaces and both iden-
tification and verification experiments were conducted. The identi-
fication rate reported is the average of 50-fold cross-validation. In
verification experiment, following the protocol for LDA face veri-
fication described in [14], we used an imposter set containing 15
subjects which is independent from the training set used to learn the
projections and models. Thus client scores are calculated by com-
paring the test data of the 30 clients to their true identity models,
and imposter scores are calculated by comparing 15 imposters to
30 client models in an exhaustive way. we and the verification per-
formance is reported in terms of Detection Error Trade-off (DET)
curves which correspond to these client and imposter scores.

We first report results for the identification task. The identifica-
tion rate attained by independent face and voice classifiers and their
fusion is shown in Fig.5 (a). In all cases, performance is shown as
function of number of iterations of co-training. Profiles show that the
identification rate for both face and voice classifiers increases when a
greater number of unlabelled samples is incorporated into the train-
ing set through co-training: face identification rate increases from
53% to 96% while the voice identification rate increases from 55%
to 94%; and the identification rate for the fused system increases
from 70% to 99%. Among the automatically labelled data samples,
98.5% of them are correctly labelled.

(a) Identification rate as a function of co-training iterations

(b) Identification rate of as a function of labelled
training sessions for baseline system

Fig. 5. Results for identification task

We may wonder with purely supervised learning method, how
many sessions of labelled data we need in order to achieve the same
performance. So we randomly select 1-11 sessions as labelled train-
ing data to train the LDA spaces and models, and another session as
test data, each experiment is repeated 50 times and the average iden-
tification rate with respect to the different number of labelled training
sessions is shown in Fig.5 (b). The result shows that, with supervised
method, at least 10 labelled training sessions are needed to reach the
performance of the proposed co-training method, which uses only 1
labelled session accompanied with 10 unlabelled sessions.

In a verification scheme, test data vectors are projected into the
LDA subspaces learnt through co-training and are compared to all
the client models. The DET curves for Face/Voice/Fusion verifica-
tion systems before and after co-training are shown in Fig. 6. The
performance for these systems without co-training is generally low
due to the large inter-session variations which are not represented in
the low quantity of training data (AFR and ASR verification rates are
around 20%). Similar results were reported in [17]. However, after
co-training, both single systems achieve below 5% EER while the
fusion system achieves an EER of 1.4%. These results demonstrate
the effectiveness of the proposed method.



Fig. 6. DET curves for face (left) voice (middle) and fused (right) verification system

5. CONCLUSION

This paper proposes a new semi-supervised, linear dimensionality
reduction algorithm, referred to as co-LDA, which allows two in-
dependent biometric systems to train each other using a large pool
of automatically labelled auxiliary training data while equally appli-
cable to any combination of biometric modalities. In this paper we
demonstrate its utility in the scenario of audio-visual person recog-
nition in videos. Automatic speaker and face recognition systems
are shown to make efficient use of both labelled and unlabelled data,
where unlabelled data are added iteratively to the labelled dataset and
are used to improve the discriminative power of LDA. Experimental
results on both identification and verification tasks show significant
improvements in performance and demonstrate the effectiveness of
our algorithm.
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