
Security and Privacy for In-Vehicle Networks
Hendrik Schweppe, Yves Roudier

EURECOM
Sophia-Antipolis, France

{schweppe, roudier}@eurecom.fr

Abstract—Mobile devices such as smartphones have gained
more and more attention from security researchers and malware
authors, the latter frequently attacking those platforms and
stealing personal information. Vehicle on-board networks, in
particular infotainment systems, are increasingly connected with
such mobile devices and the internet and will soon make it
possible to load and install third party applications. This makes
them susceptible to new attacks similar to those which plague
mobile phones and personal computers. The breach of privacy is
equally sensitive in the vehicular domain. Even worse, broken
security is a serious threat to car safety. In this paper, we
show how traditional automotive communication systems can be
instrumented with taint tracking tools in a security framework
that allows to dynamically monitor data flows within and between
control units to achieve elevated security and privacy.

On-Board Systems; In-Vehicle Network Security; Privacy; Data
Flow Tracking; Distributed Tainting; Binary Instrumentation

I. INTRODUCTION

Despite the fact that vehicles still serve their primary
purpose, transportation, we have seen a shift of this paradigm:
entertainment platforms and commodity functions have con-
quered a large portion of the vehicle and its electronics,
demanding for greater processing power. At the same time,
highly sophisticated and electronically triggered safety func-
tions have been installed. A typical on-board architecture of
vehicles, that we describe in more detail in the following
section, is based on paradigms from the embedded world
and thus allows little room for additional security features
by means of processing power and bandwidth. Recently, in-
vehicle networks with larger bandwidth, such as Ethernet have
been introduced into the architecture [1].

In the last years, such a paradigm shift could also be
observed for mobile phones: While phones were originally
purely communication devices that allowed the user to place
calls, they have evolved into personal computing devices,
which are always connected and store a multitude of personal
information. The attention of malfaiteurs has since lead to
increased attacks on these platforms in order to steal data.

Data Flow Tracking is a technique that can be used for
various purposes. It is used in a static manner to validate
program behavior (static source code analysis) or at runtime
to analyze malware or to debug software. It has recently
gained attention in the field of information flow control, i.e.,
controlling which piece of information may be processed and
stored at which places. Examples include a modified runtime
environment of the Android Dalvik/Java interpreter [2], which

follows the path of data through the execution and can, if the
data is misused, trigger an alert or inhibit the information leak.

Our contributions are:
• We present the first of its kind architecture that introduces

data flow tracking into the automotive on-board network.
• Our approach successfully hardens vehicle security in two

important aspects:
1) Privacy—data can only be used for its intended

purpose in applications, i.e., the information flow
is monitored and controlled.

2) Security—data used in the execution of code, e.g.,
the return address on the stack used by a RET
instruction is monitored for the absence of tags, that
would reveal an integrity compromise.

• We implemented a working prototype that integrates a
tainting-engine with an automotive security framework.

• We show the feasibility to transport tags among network
nodes by extending the communication payload.

• We show that acceptable overhead may be attained in the
near future, using optimized binary optimization for taint
processing.

This paper is organized as follows: we first give a brief
overview about the in-vehicle architecture of our use case.
In Section III, we introduce the methodology and tools that
were used for data flow tracking and describe the model
in detail. We present our implementation and performance
measurements in Section IV, then refer to related work in
Section V and finally conclude the paper with a summary and
future work.

II. IN-CAR ARCHITECTURE

Vehicle networks are a compound of Electronic Control
Units (ECUs) and on-board buses, which form a network
around specific domains (e.g., powertrain and cabin control).

Our scenario is centered around the so-called “head unit”,
the central hub for infotainment, i.e., information and enter-
tainment. Information that is available to this device includes
privacy relevant data: while the interest of in seat-position
and the approximate driver’s weight (occupancy-sensors) is
arguable, the head unit will also know where the vehicle
is moved (GPS) and capture what is said inside the car
(microphones). The head unit is connected to a number of
other controllers via the internal vehicle buses. In contrast with
the aforementioned privacy problem which does not endanger
car satefy, active attacks, influencing the vehicle behavior via

Instrument Panel

Odometer

Head Unit

Music Player

DriverAdaptation

Seat Controller

Display

Seat Position

Seat Heating

X
Key Fob

Mobile Device Music Player

...

Fig. 2. Multiple applications are located at the vehicle’s head-unit. They have
access to different services via the network. Access control must be detailed
at the level of applications, as network-based rules would not suffice to detect
and prevent malicious messages, e.g., an attempt from a compromised music
player to control the seat position.

fraudulent messages on the on-board network are possible, as
impressively shown in [3] and [4].

Head Unit APIs: MeeGo IVI (In Vehicle Infotainment)
is one branch of the MeeGo Linux project, that is used as
implementation base by the Genivi alliance [5], a consortium
of manufacturers and suppliers, who promote the open de-
velopment of an infotainment unit. The anticipated MeeGo-
IVI API [6] depicted in Fig. 1 illustrates the possibilities of
interaction with vehicle service and how powerful the head
unit of a vehicle can be.

Scenario: Our use case features two applications: the
first one is a music player, which reads user-supplied files
and displays information about the currently playing title on
the instrument panel’s display. The second application is a
commodity function. The user’s car key is identified (each key
fob carries a unique identifier) and the vehicle’s parameters
are adjusted according to his or her preferences (driver profile
saved in a file). We use the seat controls as an example
of personalization. Remote access to vehicle functionality
are features common to modern upper class vehicles, e.g.,
sending POI (Point Of Interest) coordinates to the head unit
or controlling the music player from a mobile phone, as in our
use case.

III. DATA FLOW TRACKING

On-Board applications are designed in a very distributed
and communication-centric fashion. Applications are built as
small function blocks following a component based model
that emphasizes the connection of inputs and outputs to
basic or composite software modules. Those modules are
finally mapped to different ECUs, thereby generating specific
communication patterns. Automotive middleware such as AU-
TOSAR is generally used to support such architectures.

In this distributed software and hardware system, it is
important to follow data not only within, but also between
individual ECUs. For example, a successful attack via the
tire-pressure monitoring system (shown in [7]), in which the
sensors transmit their data wirelessly and unauthenticated,
show that these data can compromise the display of the
speedometer. Data like tire pressure sensor readings are also
routinely broadcasted to the in-vehicle network and distributed
to further ECUs. These data are, for example, then used as
inputs for plausibility checks within the electronic stability

control module or to trigger the “limp home” functionality
(in case of a supposedly flat tire) within other units. If the
original data has been maliciously crafted, an ECU using these
data could be subject to an exploit. A possible overflow in
a device like the electronic stability control can result in the
brake system effectively being compromised, as it directly and
individually controls brake actuators at all wheels.

Our approach makes use of the information flow (communi-
cation and internal calls) that is hedged by the middleware and
the applications. This allows us to easily track in and outgoing
information. Incoming data are tainted with tags we introduce.
We verify the presence and absence of tags for outgoing
data according to the ruleset introduced in the following
section. The tainting engine that instruments all applications
and libraries at runtime takes care of the propagation among
the ECU’s memory and registers during execution. As we want
to track different kinds of sources, we use distinct taint tags,
often called “colored taint”.

A. Binary Instrumentation for Taint Tracking

In order to introduce taint tags into running applications,
we make use of a technique that is called “binary instru-
mentation”. This technique injects custom code to binaries at
run-time, i.e., one can instrument machine instructions and
system calls in order to follow the flow of data between
registers or memory regions, as well as to take precautions
if data is used in a questionable manner. One of the major
advantages of binary instrumentation is that the source code of
analyzed programs does not need to be available. This enables
monitoring programs of unknown pedigree for compliance
with given rules. We make use of Intel’s Pin [8]. Pin is a
generic tool for dynamic binary instrumentation, that provides
the base for the dynamic taint tag analysis. It is available not
only for x86 architectures (Windows, Linux, Mac), but also for
ARM. We have conducted our experiments on IA32 Linux.

There exist a number of prototype implementations for host-
based dynamic data flow tracking based on Pin [9]–[11]. We
analyzed these prototype implementations for feasibility to
integrate with our security framework developed in the scope
of the EVITA EU project. We use this framework to trace data
through execution on the platform and to propagate taint tags
together with network streams within the car.

B. Data Flows: Access Control

Data can be exchanged in a multitude of ways:
• By accessing shared memory,
• Via filesystem access,
• Through inter-process communication,
• By using network frames.
To limit possible data and information leaks from functions,

we first have to define which are the subjects in our model, i.e.,
at which granularity are data flows described. Granularities are
(from fine to coarse): Instructions, Functions and System calls,
Local programs, ECUs on a network.

While we cannot limit the data flow between processor
instructions (e.g., moving between registers and memory), we

Group Function Parameter Operation

Personalization Driver Seat Position Level per each part (recline seatback, slide, cushion height,
headrest, back cushion, side cushion) Get / Set

Dashboard Illumination % of Illumination (0 : Darkest, 100 : Brightest) Get / Set

Driving Safety Vehicle Top Speed Limit km/h or mph (0 means no limitation) Get / Set
Door Lock Status Lock/Unlock per each door (driver, passenger, rear left, rear right) Get / Noti / Set

Fig. 1. Excerpt from the MeeGo IVI API draft from [6]. These functions are accessible from applications on a head unit running MeeGo. This unit is the
centrally interconnected device of the vehicle, exchanging information with consumer devices (mobile phone) and internet services. Applications may interact
with entertainment (music player), infotainment (navigation), and also core vehicle components, such as door locks.

can monitor the information flow at instruction level. This
allows us to track data with a fine granularity and to enforce
control on data on the stack, e.g., to verify that the return
address of a function call has not originated from anywhere
else than the function call itself. Therefore, we can eliminate a
large amount of potential attacks that are based on overwriting
the stack pointer, e.g., including buffer-overflows [12], format-
string [13] and return-oriented-programming (ROP) [14] ex-
ploit techniques. If we would not have the ability to trace
individual machine instructions, a function-based propagation
would very quickly result in a state called over-tainting, as
all outputs of a function need to be marked according to
all input tags of the function. In addition, we can’t directly
prevent exploit techniques on the stack without instruction
level information flow tracking.

C. Taint Based Security Policy

It is not adequate to build access control rules for individual
processor instructions. Likewise, access control at the network
level is too coarse (see Fig. 2 for an example). The adequate
granularity to describe access control based on taints is tightly
linked with the communication structure of programs and
functions: we want to be able to control which program may
communicate what kind of data with which partner. This
approach is naturally modeled by a graph. In contrast to a
standard graph with vertices v and edges e, we also use the
kind of data as edge labels, to distinguish whether a certain
data exchange (the edge of a graph) between programs (the
vertices) is allowed or not. The labels of edges model the tags
allowed for communication and consist of a list of taint tags t.

We define the set V to contain all vertices v of a system,
E to contain all edges e, T to contain all tags t. We say
that the function T : V AR → P(T) assigns to each variable
var ∈ V AR the set of tags belonging to it.

A positive ruleset (whitelist) of such communication con-
tains the emitting program (source), the receiving program
(destination) and a set of allowed tags T . Thus, a rule r is
constructed as r = (e, T), where e ∈ V × V.

All vertices at the borders of the graph, i.e., those which
have either no incoming or no outgoing edge, serve a special
purpose. They are the source or sink of information. Fig. 3
shows an example of a tag propagation tree for the driver
adaptation comfort function. This example consists of four
rules: two in order to allow individual data flows from i)
an RFID reader that receives the key fob’s identifier and ii)
a file on disk (both are local), and two rules to allow data
streams from the driver adaptation application to two different

DriverAdaptation
Application Seat controlsRFID reader

Profile on disk

Head Unit Seat Control Unit
t1

t2

t1,t2,

Fig. 3. Propagation tree for DriverAdaptationApplication. Data is tainted at
source nodes (t1,t2). This corresponds to an I/O operation at the Head Unit.
The application issues commands to the seat control unit via the network.
The combined tags are conveyed over network communication and evaluated
at the receiving side before the actual operation is triggered. They are also
propagated throughout operation, to ensure maliciously crafted data do not
change the application control flow.

services for seat controls, both allowed to carry data from
corresponding input sources (t1 and t2). The latter two rules
relate to network data, while the first two are local to the ECU.

a) Baseline rules: These rules have to be defined by the
manufacturer a priori, e.g., as expert-knowledge along with
the functions that are deployed. For the majority of vehicle
functions, this does not pose any problem, as communication
channels are known already at the design-phase of the on-
board network and usually exist as structured data (e.g., the
K-matrix for CAN buses). In the upcoming development
paradigm associated with the AUTOSAR operating system,
individual data exchange between programs and functions are
modeled. Within AUTOSAR, the so-called Virtual Function
Bus abstracts from physical networks: communication is mod-
eled in UML as direct connections between programs and
functions, that are later grouped into composite functions
and finally mapped onto network or local communication.
This facilitates the generation of the proposed rules, as all
internal communication of control units is already known and
described explicitly.

b) Application specific rules: For third party applica-
tions to be loaded onto the head unit, a ruleset needs to
be supplied along with the application. This ruleset must
be evaluated against the system’s policies, i.e., the baseline
rules. In addition one can imagine that the user may grant
certain additional capabilities. This is similar to, but more
detailed than Android’s security manifest, for example. While
the granularity for Android security rules is very coarse (e.g.,
requires network access or not), our rules include the kind of
data that was used to generate specific network requests, for
example. In the example of Fig. 3 one sees that the control
request carries tags related to i) the key fob identifier (read via
an RFID reader) and ii) the user profile (read from disk). This

allows to effectively limit access to the vehicle functionality
and leakage of personal data.

D. Example of Tag Propagation

The propagation of tags happens at every intermediate
processing step. For the purpose of controlling the origin of
(possibly untrusted) data, we use the unification of tags as
common propagation-logic.

An example for the unification of tags is given in the
following listings:

Listing 1. Code Example of Taint Tag Propagation

d a t a x , y ;
d a t a z ;

x = r e a d (s e n s o r−i n p u t) ;
y = r e a d (f i l e −i n p u t) ;

z = c o n c a t (s e n s o r−i n p u t , f i l e −i n p u t) ;

w r i t e (o u t p u t , z) ;

For tag marks t1 and t2 that represent sensor-input and
file-input, this results in the following tags at the end of the
execution: T (x) = t1, T (y) = t2, and T (z) = t1, t2.

E. Network Marshalling

In order to follow data throughout the execution over multi-
ple processing stations, our framework automatically adds the
according tags for data contained in network messages and
signs the message with a previously exchanged, application-
specific symmetric session key. We use a low-cost symmetric
message authentication code (MAC) to secure the payload.
This MAC, in combination with a key distribution protocol,
assures robustness against man-in-the-middle attacks. We have
shown the feasibility of using application specific usage-
controlled symmetric session keys in our prototype in [15]. An
optional timestamp protects the payload against replay attacks.

The set of tags that is added to the payload corresponds to
the propagation scheme used for all possible segments of the
payload. We use a union of all tags of all n segments, i.e.,

Tmsg =

n⋃
i=1

T (si).

F. Enforcement

The rule based policy is enforced at two levels. First, the
immediate enforcement is done at certain instructions (RET,
JMP, etc.) and system calls (execve, system, etc.), where we
require that no tag is present at the according arguments (e.g.,
a return address). This enforcement is part of the tag engine
and introduced via binary instrumentation. Secondly, whenever
middleware functions are called, e.g., to send data over a
remote communication channel, input data is analyzed for the
presence and absence of tags corresponding to the according
rule (e.g., t1, t2 and no other tag must be present when the
DriverAdaptationApplication sends requests, cf. Fig. 3).

IV. IMPLEMENTATION

Applications in our prototype are implemented using a
C-style middleware, that establishes communication links to
other entities (UDP/TCP/CAN-TP) and secures the payload
accordingly. This is where taint tracking was introduced. The
middleware can access vehicle-wide security services, such
as single-sign-on or key distribution over an ASN.1 RPC
interface, that is offered at master nodes implemented in C++.
Details on this architecture can be found in the deliverables
D3.2 [16] and D3.3 [17] of the EVITA project [18].

Whenever a program reads from I/O channels that are
configured as taint sources, the corresponding data are marked.
In contrast to approaches which primarily focus on avoiding
run-time attacks (using a single binary tag per byte), we use
distinct tags in order to distinguish between different sources.

The dytan taint analysis engine is attached as a Pin tool,
i.e., the individual programs run instrumented. Additionally
to tagging I/O data at our middleware functions, dytan pos-
sesses of an XML configuration file. The configuration lists
network streams and files that should be regarded as additional
taint sources. Generic system calls such as read/write are
instrumented accordingly. Dytan allows a large number of
distinct tags to be followed in shadow memory. They are
held in an STL map. While this kind of implementation
offers great flexibility, we have seen that it performed rather
poorly, compared to other engines. However, it has some
distinct features (the virtually unlimited number of tags) that
were advantageous to show the interest of our approach. We
compare it to the performance oriented engine “libdft” in the
next subsection.

We have currently limited the number of tags to 32, in order
to place them into a four byte field to ensure a lower overhead
for network propagation of the taints.

We used a standard Ubuntu Linux (v2.6.38) on an i5
processor. We compiled all programs in 32bit mode and
without MMX and SSE instructions, as the tainting engine
does not support these registers nor 64 bit operations.

Performance

Instrumenting binaries with additional code incurs runtime
penalties, as for each original instruction, additional instruc-
tions are injected, thereby slowing down the overall execution
time. As demonstrated in [10] with the libdft implementation,
an optimization of tag-propagation instructions towards mod-
ern processors, which feature multi-stage pipelines and jump-
predictions, can result in much higher performance, compared
to heavier implementations. Unfortunately, the original libdft
implementation only allows to track binary taints. While this is
sufficient in order to detect previously unknown exploits that
trigger buffer overflows and similar, it does not offer a tag-
space sufficient for system-wide information flow monitoring.
However, in order to show the impressive performance of
their system, we also conducted experiments using libdft and
included them in our results. An alpha of libdft version sup-
porting 8 colored taints showed exactly the same performance.

1"

10"

100"

1000"

10000"

100000"

vanilla" nullpin" libd-.dta" dytan"

Fig. 4. Runtime of instrumented code in microseconds on logarithmical
scale. Decoding of the first 100 frames of an MP3 file in i586 instructions.
Unchanged code is ‘vanilla’ runtime, nullpin the instrumentation overhead,
libdft-dta and dytan the corresponding frameworks.

We measured the runtime of a modified version of mpg123,
which we integrated with our framework in order to send
the MP3 ID3 tags to a remote display (see the example in
Fig. 2). The runtime includes extracting the ID3 information,
the process of marshalling information with taint tags and
generating a MAC, as well as decoding the first 100 frames
of the MP3 file, corresponding to 2 seconds of music.

vanilla nullpin libdft-dta dytan
runtime in ms 37 377 1045 18 925
factor (v) 1 10.2 28.2 511.5
factor (i) 1 2.8 50.2

Vanilla execution is the non-instrumented, plain execution
of the code. The column “nullpin” relates to code instru-
mented with Pin, but without executing any hooks (part of
libdft’s sample tools). Libdft-dta and dytan are the actual tag-
propagation engines. We show their overhead compared to
vanilla execution (v) and instrumented execution (i).

Discussion: The performance results show that binary
instrumentation results in the most significant part of the
execution overhead (factor 10). A performance-oriented im-
plementation of the tag engine itself, such as libdft, only
incurs an overhead of 2.8. If the instrumentation itself can
be rendered more efficient, the overhead of tracking data
throughout execution is tolerable. While a small number of
tags will not be able to construct a full-fledged information-
flow system, it can still serve the purpose to limit data usage
from certain sources (e.g., user input from media, internet or
diagnosis), especially to limit leakage of private information.
Other approaches to secure applications on the head unit, such
as virtualization, incur a significant overhead as well.

V. RELATED WORK

A. Exploit Prevention Techniques

Many techniques to defend against exploits on personal
computers have been proposed, developed and deployed in

normal installations during the last years. A non-executable
stack (i.e., marking memory regions as non-executable) pro-
tects against the injection of shellcode [19]. Address-Space-
Layout-Randomization (ASLR) introduced an additional bur-
den, that protects against the return-to-libc exploiting tech-
nique, that was again defeated by return-oriented programming
(ROP) [14]. A new technique of aligning code during compi-
lation protects against ROP [20]. These techniques are slowly
beginning to be integrated into today’s CPU architecture,
operating system memory management, and compilers. Such
protections become prevalent in the PC environment, but they
are only slowly taken up in the embedded world, e.g., ASLR
was only introduced with iOS 4.3 and with Android 4.0.
Similarly, it was just introduced with the latest version of
QNX, a popular operating system for head units. However,
as vehicles typically have a lifespan of over ten years, newly
introduced exploit techniques likely apply to most vehicles on
the streets.

Moving towards dynamic protection methods, runtime data
flow tracking using input data tainting has been used. In
contrast to dytan [9], the libdft framework [10] is specifically
designed to run at low overhead and to provide a generic, yet
flexible toolkit for taint analysis. The sample libdft-dta tool
shows the applicability in an exploit-prevention context.

TaintExchange [21] was the first to demonstrate the feasibil-
ity of distributed taints using libdft. This system instruments
all system calls used to exchange data between processes and
to communicate over network sockets. In comparison, we are
introducing the notion of a ruleset, which is used to describe
acceptable behaviors of software modules.

B. Information Flow Control

The term information flow control originates at policies
for large organizations with different clearance levels, i.e.,
some people can read more documents than others. In his
work [22], Cheng introduced such clearance labels already
at the middleware layer: he proposed a self-contained .NET
based system that propagated those labels among remote
execution and data exchange. Another interesting approach
to limit sensitive data from leaving local applications was
taken by [23]. For every process, they run a copy (a shadow
process), that is only different in the detail, that private data
are exchanged for random data. They compare the output
of the programs (e.g., of write calls) and find, whether the
result of the original and shadow process are the same (no
private data used) or differ (private data was used in calculating
the results). They claim that their approach is up to thirty
times faster than taint tracking. While this is an interesting
approach to avoid data leakage in enterprises, it offers no
protection against platform attacks, which is one of our goals.
Dynamic information flow analysis of programs in order to
analyze malware, has also been done with the help of emulated
environments, e.g., Valgrind [24] or QEMU [25]. While these
approaches are well suited to analyze given malware programs,
it can hardly be applied to our application domain. There also
exists a tool based on Pin binary instrumentation for Windows,

that allows the user to trace whether certain input leaves a
program via the network [11].

C. Current On-Board Security

In the last two years, the automotive on-board network has
come to the attention of security researchers. We have seen that
a large effect (i.e., the complete control of a vehicle) can be
achieved with relatively common techniques locally [3] and
remotely [4]. Vehicles have been criticized for broadcasting
private data and not performing input validation [7]. Upcoming
Car2X communication demands for higher security levels and
introduces hardware security [26].

VI. CONCLUSIONS AND FUTURE WORK

We can successfully mitigate two types of attacks on
automotive on-board networks: those that break the system
with classic exploit techniques (e.g., buffer overflows, etc.)
and those which try to access data and services outside of
their foreseen application data flow. With our approach we
make sure that private information, e.g., data recorded from
microphones, can only be used as anticipated.

While we have certainly shown that the methodology can
be implemented and is a good contribution towards vehicular
on-board security, our performance results show that the
information flow tracking techniques are not ideally suited
for an embedded deployment, but that certain optimizations
make them seem feasible. A major trade-off can be observed
between the use of binary instrumentation for information
tracking (many tags needed) and for defeating attacks (only
binary tag needed). If only few sources need to be tracked,
libdft shows that one-byte taints, allowing for eight distinct
tags, can achieve the same performance as binary taints. If
we limit the use of dynamic information flow analysis to
few sources (e.g., the most critical interfaces of vehicles:
diagnosis, consumer electronics, internet, C2X and external
sensors), an adequate performance can be maintained. As an
example, a remotely triggered emergency brake could demand,
in addition to existing cryptographic security, the presence of
tags from Car2X and from radar sensors (used to double-check
remote messages), and the absence of all other tags, e.g. those
introduced at consumer-controlled interfaces. This results in a
minimum of three tag sources.

Our solution is not targeting today’s cars, as it involves
updating the ECU’s program code for both, information flow
analysis and communication protocols. Although it can not
be directly applied to today’s vehicles, it may constitute a
valuable line of defense for future vehicles.

ACKNOWLEDGEMENTS

We would like to thank James Clause for letting us use the
dytan code and Vasileios Kemerlis for giving us access to an
alpha version of libdft. We would also like to thank Benjamin
Weyl, Alexandre Bouard, and Jonas Zaddach for their fruitful
discussions and contributions.

REFERENCES

[1] R. Bruckmeier, “Ethernet for Automotive Applications,” in Freescale
Technology Forum, Orlando, 2010.

[2] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, L. Jung, P. McDaniel et al.,
“TaintDroid: An information-flow tracking system for realtime privacy
monitoring on smartphones,” in 9th OSDI, USENIX, 2010.

[3] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway
et al., “Experimental security analysis of a modern automobile,” in 31st
Security and Privacy, IEEE, 2010.

[4] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage et al., “Comprehensive experimental analyses of automotive
attack surfaces,” in 20th USENIX conference on Security, 2011.

[5] Linux Foundation, “Meego software platform chosen by the GENIVI
alliance,” online: http://tinyurl.com/mgoGNVI, July 2010.

[6] R. Streif, S. Bolek et al., “MeeGo: In-vehicle
api.” [Online]. Available: http://wiki.meego.com/index.php?title=In-
vehicle/Roadmap/API&oldid=44637&printable=yes

[7] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu et al., “Security
and privacy vulnerabilities of in-car wireless networks: a tire pressure
monitoring system case study,” in 19th USENIX Security, 2010.

[8] C. Luk, R. Cohn, R. Muth, H. Patil, and A. Klauser, “Pin: building
customized program analysis tools with dynamic instrumentation,” ACM
SIGPLAN, 2005.

[9] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint analysis
framework,” in ISSTA, 2007, pp. 196–206.

[10] V. P. Kermelis, G. Portokalidis, K. Jee, and A. D. Keromytis, “libdft:
Practical Dynamic Data Flow Tracking for Commodity Systems,” in
VEE’12, SIGPLAN/SIGOPS, 2012.

[11] D. Zhu, J. Jung, D. Song, and T. Kohno, “TaintEraser: protecting
sensitive data leaks using application-level taint tracking,” ACM SIGOPS
Operating Systems Review, 2011.

[12] E. Levy (Aleph One), “Smashing the stack for fun and profit,” The
Phrack Magazine, vol. 49, no. 14, 1996.

[13] scut, “Exploiting format string vulnerabilities,” TESO Security Group,
Tech. Rep., 2001.

[14] H. Shacham, M. Page, B. Pfaff, and E. Goh, “On the effectiveness of
address-space randomization,” in 11th CCS, 2004.

[15] H. Schweppe, Y. Roudier, B. Weyl, L. Apvrille, and D. Scheuermann,
“Car2X communication: securing the last meter - A cost-effective
approach for ensuring trust in Car2X applications using in-vehicle
symmetric cryptography” in WIVEC 2011, September 2011.

[16] B. Weyl, M. Wolf, F. Zweers, T. Gendrullis, M. S. Idrees, Y. Roudier
et al. “Secure on-board architecture specification,” EVITA Project, Tech.
Rep. D3.2, 2010.

[17] H. Schweppe, S. Idrees, Y. Roudier, B. Weyl, R. El Khayari, O. Henniger
et al., “Secure on-board protocols specification,” EVITA Project, Tech.
Rep. D3.3, 2010.

[18] “The EVITA project,” http://evita-project.org/, August 2008.
[19] A. Peslyak (Solar Designer), “Non-executable stack patch,” Linux Ker-

nel Patch, 1997.
[20] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-free:

Defeating return-oriented programming through gadget-less binaries,” in
26th ACSAC, 12 2010.

[21] A. Zavou, G. Portokalidis, and A. Keromytis, “Taint-exchange: a generic
system for cross-process and cross-host taint tracking,” 6th ACS, 2011.

[22] W. W.-Y. Cheng, “Information Flow for Secure Distributed Applica-
tions,” PhD Thesis, MIT, 2009.

[23] J. Croft and M. Caesar, “Towards Practical Avoidance of Information
Leakage in Enterprise Networks,” in 6th USENIX HotSec, 2011.

[24] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software,” in NDSS, 2005.

[25] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
capturing system-wide information flow for malware detection and
analysis,” in 14th CCS, 2007, pp. 116–127.

[26] P. Papadimitratos, L. Buttyan, T. Holczer, E. Schoch, J. Freudiger,
M. Raya et al. “Secure vehicular communication systems: design and
architecture,” IEEE Communications Magazine, vol. 46, no. 11, pp. 100–
109, 2008.

