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Abstract This paper surveys protocols that verify remote data 

possession. These protocols have been proposed as a primitive 

for ensuring the long-term integrity and availability of data 

stored at remote untrusted hosts.  

Externalizing data storage to multiple network hosts is 

becoming widely used in several distributed storage and P2P 

systems, which urges the need for new solutions that provide 

security properties for the remote data. Replication techniques 

cannot ensure on their own data integrity and availability, 

since they only offer probabilistic guarantees. Moreover, peer 

dynamics (i.e., peers join and leave at any time) and their 

potential misbehavior (e.g., free-riding) exacerbate the 

difficult challenge of securing remote data. To this end, 

remote data integrity verification protocols have been 

proposed with the aim to detect faulty and misbehaving 

storage hosts, in a dynamic and open setting as P2P networks.  

In this survey, we analyze several of these protocols, compare 

them with respect to expected security guarantees and discuss 

their limitations. 

 

Index Terms Peer-to-peer, distributed data storage, 

cryptographic protocols, data integrity. 

 

1 Introduction 

Peer-to-peer (P2P) applications are built using the 

techniques and algorithms that consider a server-less 

communication paradigm. Becoming very popular with 

services like P2P file sharing including audio/video streaming, 

these applications have spurred a lot of interest in the research 

community because of the stimulating challenge of 

establishing security guarantees in a dynamic, self-organizing 

and open system. For instance, a P2P data storage application 

(like Wuala
*
, AllMyData Tahoe

†
, UbiStorage

‡
, or Cucku

§
) 

which offers peers the possibility to store their data in the 

network, should provide the availability and integrity of the 

stored data. Such guarantees cannot be solely ensured by 

replication techniques, in particular, if data damage can be 

caused by the dynamic or selfish behavior of storage peers, not 

only by their accidental faults or failures. Additionally, peers 

may be reluctant to freely offer a large amount of storage, in 

order to sustain high data replication rates. Data replication 

techniques should be, therefore, supported by other low-

resource primitives. These primitives aim to detect corrupted 

data and trigger re-replication of data if it is necessary. This 

type of primitives is provided with remote data possession 

verification protocols that allow to periodically check data 

integrity at remote storage hosts. 

Compared to grid storage or cloud storage, P2P storage 

relies on holders being totally untrusted. The verification 

protocol aims then to detect data corruption or destruction 

caused not only by accidental faults or crashes at these 

holders, but more importantly by their voluntary misconduct. 

Besides data security issues, the verification protocols may 

also assist cooperation incentive mechanisms for P2P storage, 

as this type of protocols allows evaluating peer behavior. 

Mechanisms using reputation-based or payment-based 

incentives (e.g., [22], [21]) stimulate peer contribution with 

storage resources. The reaction of these mechanisms (i.e., 

reward or punish) toward a peer that has agreed to store other 

peers’ data will rely on such peer behavior evaluation 

provided by the verification protocol. 

Designing secure and efficient verification protocols has 

                                                           
* http://wua.la/en/home.html 
† http://allmydata.org/ 
‡ http://www.ubistorage.com/ 
§ http://www.cucku.com/ 
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attracted quite a lot of researches from multiple fields: works 

have varied from designing secure local memory (e.g., [3], [4], 

and [17]) and secure storage at remote servers (e.g., [6], [7], 

[8], [10], [27], [28], and [32]) to securing cloud storage 

applications (e.g., [5], [30], and [31]). The needs in each field 

being specific, result in diverse kinds of such protocols. This 

survey has a three-fold objective: it analyses the different 

protocols that have been proposed so far, categorize them in 

different groups, and finally compare them with respect to 

several security and performance requirements, given 

beforehand. A focus is given to those protocols that can be 

deployed in a P2P data storage setting. 

The remainder of this paper is organized as follows. Section 

II defines protocols verifying remote data integrity with the 

requirements that should be provided, and identifies taxonomy 

for their classification. Section III surveys proposed 

verification protocols and sorts them following the taxonomy 

given in section II.  Section IV analyzes and compares these 

classes of protocols in terms of security, efficiency, and 

scalability considerations, and eventually reveals tradeoffs 

between these considerations. Section V outlines interesting 

extensions that have been proposed for these protocols. 

Finally, concluding remarks are presented in section VI. 

2 Principles of remote data integrity 
verification protocols 

P2P storage applications offer peers the opportunity to 

store, backup or archive their data in the P2P network. Such 

applications should ensure data integrity and availability on a 

long term basis. This objective requires developing 

appropriate primitives for detecting dishonest peers taking an 

unfair advantage of the self-organizing storage infrastructure. 

Assessing such a behavior is an objective of remote data 

possession verification protocols. 

2.1 Overview 

We consider a P2P storage application in which a peer, 

called the data owner, replicates some data and stores the 

replicas at several peers, called data holders. The latter entities 

have agreed to keep these replicas for a predefined time period 

negotiated with the owner. Their commitment is periodically 

checked by verifiers. The verifiers are appointed by the data 

owner who may play also this role. 

Holders and verifiers may not correctly fulfill their roles 

because of their failure or their misbehavior (e.g., free-riding). 

Though, verifier misbehavior is generally less common 

because of the lightweight operations at their side and the 

potential participation of the owner to the verification process. 

The retained practice of verification protocols takes the form 

of an interactive proof of knowledge protocol where the holder 

tries to convince the verifier that he holds the data. The 

protocol consists of challenge-response messages. In a typical 

interaction (as illustrated in Fig. 1) between a verifier and one 

holder (or multiple holders), the holder is periodically 

prompted to respond to a time-variant challenge as a proof that 

it is holding its commitment, the very data. 

 

 

Fig. 1 Verifier-holder proof-of-knowledge interaction: 1) 

verifier sends a challenge message to the holder, 2) the holder 

computes the response based on data and tags and 3) sends the 

response back to the verifier, and finally 4) the verifier 

validates the response using some metadata. Tags and 

metadata are optional information i.e., one of these 

information or both may be used by certain protocols. 

 

To bring the verification process to work, verifiers and/or 

holders generally hold some additional information, which 

may consist of data digests or keys. 

2.2 Challenges and goals 

P2P data storage may take the shape of P2P data backup 

where data is simply stored in multiple copies at the storage 

hosts; whereas the original version is still stored at the owner. 

Additionally, distributed storage and distributed file system 

applications where the original version does not necessarily 

exist at the owner, should be also considered. 

The verification task cannot be limited to the actual owner’s 

operations; it can be delegated to other network peers that are 

not necessarily trusted, in order to off-load owners’ work and 

to mitigate their intermittent connection and potential failure.  

Simple integrity checks, which make sense only with respect 

to a potentially defective yet trusted server, are not sufficient 

in this context. Holders in P2P systems are autonomous and 

may then misbehave by, for instance, destroying the data that 

they have promised to keep. By verifying data possession 

remotely, it is possible to detect voluntary data destructions by 

holders. The verification has to be efficient: in particular, 

verifying remotely the presence of data should not require 

transferring it back in its entirety; it should neither make it 

necessary to store the entire data at the verifier.  

Enforcing the periodic holder storage verification has 

implications on the organizational design, performance, and 

security of the remote data integrity verification protocol. The 

design goals to achieve secure, efficient and scalable 

verification can be summarized as the following:  

Requirement R1 - Sound verification: If the data (or 

a portion of the data) has been destroyed by the holder, 

the latter can only pretend it is storing them to the verifier 

with a small probability. The holder may be tempted to 

destroy the data that it has promised to keep, in order to 

harm the storage system or simply to optimize its storage 

resources. It may also be prone to failure or damage. 

Requirement R2 - Complete verification: If both the 

verifier and the holder properly follow the protocol, 
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holder’s proof is considered as valid. The verification 

process does not tolerate false negatives. Soundness and 

completeness properties are satisfied by a proof of 

knowledge protocol. 

Requirement R3 - Dataless verification: The verifier 

should not store the whole or a portion of the data to carry 

out the verification task. It may however keep some 

metadata information. For efficiency concerns, no 

challenged data should be retrieved in its entirety by the 

verifier during the verification process.  

Requirement R4 - Quick verification: To avoid 

connection problems between the verifier and the holder, 

the verification should be processed quickly, i.e., the 

computation complexity of the challenge generation, and 

especially the creation of the response and its validation 

should be reduced as low as possible.  

Requirement R5 - Stateless verification: The verifier 

should not need to keep state information between audits 

throughout the long term of data storage. 

Requirement R6 - Public verifiability: Anyone, not 

just data owners should be enabled with the capability of 

verifying the integrity of some data on demand. Since 

deploying several trusted and dedicated servers in the 

network is quite expensive, the ability to take part in the 

verification process should be handed out to any peer in 

the network. 

 

Regarding requirement R1, some verification protocols 

provide deterministic guarantees by verifying the stored data 

in its entirety. Others check a piece of the data randomly 

chosen at each verification operation. Thus, they offer a 

probabilistic assurance that increases with the periodic 

iteration of the verification process. 

Other optional requirements can be considered like devising 

a verification protocol that allows an unlimited number of 

challenges. The importance of such requirement depends on 

the duration of the data storage. With this requirement, regular 

interaction between the owner and the verifier is not needed to 

carry on the verification process in a long-term basis.  

Realizing requirements R2, R3, R4, and R5 allow 

increasing the desired general goals; on the other hand, 

requirements R1 and R6 present tradeoffs with respect to two 

different general goals. For R1, if the verification is 

probabilistic, the holder computes a response message based 

on a portion of the data. The computation at the holder side is 

then efficient, but the detection of data corruption is only 

probabilistic.  For R6, the delegation of the verification task 

from the owner to other peers should be controlled, in order to 

particularly avoid Denial of Service (DoS) attacks whereby a 

dishonest verifier floods the holders with challenge messages. 

Such attacks can be mitigated by making the owner produce 

verification certificates that grant, the verifiers that possess 

such certificates, permission to check holder’s storage. 

2.3 Taxonomy 

The use of a specific terminology for remote data possession 

verification protocols (remote integrity checking [8], 

demonstration of data possession [10], proofs of data 

possession [2], or proofs of retrievability [12]) emphasizes 

how the storage and communication overhead requirements 

differ between verification primitives for secure remote 

storage and classical proof of knowledge protocols.  

Efforts by Dodis et al. in [33] endeavor to make a distinction 

between  protocols that are bounded in the number of allowed 

verification operations, so-called information-theoretic 

bounded-use protocols or computational bounded-use 

protocols, and protocols that permit an infinite number of 

verification operations, referred to by computational 

unbounded-use protocols. The former type of protocols relies 

on pre-computed random challenge-response pairs that are 

either stored at the verifier in the information-theoretic 

bounded-use protocols or secretly stored at the holder in the 

computational bounded-use protocols. This type of verification 

information will be called in the rest of this survey metadata. 

 

 

 
a) 

 

 
b) 

 

 
c) 

Fig. 2 Tag-based (a or b) vs. data replication-based (c) 

verification: (a or b) whereby the verifier checks one holder 

based on some tags which are either stored by the holder 

(encrypted) or the verifier and (c) whereby the verifier checks 

all data replicas at multiple holders. 

 

To classify remote data possession verification protocols, 

we will not rely on their performance features but we will use 

different aspects related to the metadata that is used for data 

verification. The metadata information is generally produced 

by the data owner before being sent to the verifier. 
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Tag-based vs. data replication-based verification: tag-based 

verification relies on tags which are supplementary 

information attached to each copy of the stored data. They are 

either stored at the verifier (Fig. 2.a) or at the holder (Fig. 2.b) 

with proofs of authenticity (signatures). The verification is 

performed over one single storage peer at a time. On the other 

hand, data replication-based verification checks all the peers 

hosting the data replicas, with no additional information (see 

Fig. 2.c). It is, however, dependant on the used replication 

technique. 

 

 

Fig. 3 Entire data dependant tags (a) vs. data block dependant 

tags (b). Such tags are generally stored by the holder. 

 

Data-dependant tag vs. data-independent tag: in tag-based 

verification, tags are generally produced by the data owner. 

These tags can be either derived from the original data or 

completely generic. In the second case, tags can be re-used for 

the verification of another different data. 

 

Entire data vs. data block dependant tag: there may be only 

one tag that is used to relate to the entire data or multiple tags 

with each tag corresponding to just one block of the data (refer 

to Fig. 3). The latter tag construction is more suited to support 

data dynamic operations like update, deletion, or insertion at 

block level granularity. 

 

 
Fig. 4 Taxonomy of data possession verification protocols 

 

The taxonomy applied in this survey is summarized in Fig. 

4. 

3 Classification 

With P2P storage, any peer in the network can store its data 

at other peers, which are not necessarily trusted; however the 

behavior of these latter can be evaluated through the adoption 

of a verification routine through which the integrity of the 

stored data is periodically checked by verifying peers. The 

literature abounds with verification protocols for data 

integrity. We will present these protocols following the 

taxonomy illustrated in sub-section 2.3. The classification is 

recapitulated in Table 2. We will first start this section by 

giving a description of protocols verifying integrity of data 

stored locally, referred to by local memory checking. We deem 

these protocols as important, since they have paved the way to 

the design of protocols verifying remote data integrity. 

 

Table 1 Used notations 
Symbol Description 

T Data tag 

i Data block index 

Ti Tag of the block of index i 
d Data 

di Data block of index i 

f Pseudo-random function 
H 

g 

Hash function 

Generator of a cyclic multiplicative group 

x, , s Numbers kept secret from the holder 

 

The key notations, summarized in Table 1, are used to 

describe the protocols throughout the remainder of this paper. 

3.1 Earlier related work 

Earlier verification schemes concentrated on the problem of 

securing the integrity of data stored at a local untrusted 

memory. A potential premise of these schemes originates from 

memory checking protocols (e.g., [4]). A memory checker 

aims at detecting any error in the behavior of an unreliable 

data structure while performing the user’s operations. The 

checker steps between the user and the data structure. It 

receives the input user sequence of “store” and “retrieve” 

operations over data symbols that are stored at the data 

structure. The checker checks the correctness of the output 

sequence from the structure so that any error in the output 

operation will be detected with high probability. For this, it 

may use either its reliable storage (non-invasive checker) or 

the data structure (invasive checker). In [4], the checker stores 

hash values of the user data symbols at its reliable storage. 

Whenever the user requests to store a symbol, the checker 

computes the hash of the response of the data structure and 

keeps the hash value. If the user requests to retrieve a symbol, 

the checker computes the hash value of the response and 

compares it with the stored hash value. The job of the memory 

checker is to recover and to check responses originating from 

an unreliable storage, not to check the correctness of the whole 

stored data. With the checker, it is possible to detect corruption 

of one symbol (usually one bit) per user operation. 

With incremental cryptographic algorithms, the checker is 

able to detect changes made to a whole document using one 

small information, the tag. The tag is a small secret stored at a 

reliable storage that relates to the complete stored document 

and that is quickly updatable if the user makes modifications. 

Bellare et al. in [3] propose several incremental schemes in 

which the tag is either an XORed sum of randomized 

document symbols or a leaf in a search tree built from a 

Remote data possession 
verification protocols 

Tag-based protocols 

Data dependant tag-
based protocols 

Entire data dependant tag-
based protocols 

Data block dependant tag-
based protocols 

Data independant 
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message authentication algorithm applied to each symbol. 

These schemes provide tamper-proof security of the user 

document in its entirety. However, they require recovering the 

whole data which is not practical for remote data verification 

because of the high communication overhead. 

The approach described in [17] or so-called authenticator 

differently comprehends the data possession verification 

problem. It extends the memory checker model by making the 

verifier check the consistency of the entire document in an 

encoded version. To achieve this, the document is encoded, to 

be stored at the unreliable storage disk. Small tags (or 

fingerprints in [17]) are generated, to be stored at the reliable 

storage disk. Based on tags, the verifier checks whether it is 

possible to recover the document without actually decoding it. 

The authors of [17] propose a construction of the authenticator 

where there is a public encoding of the document consisting of 

index tags of this form:  
        (    ) 

for each encoded value bit di having fseed a pseudorandom 

function with a seed. The seed is kept secret by the verifier. 

The authenticator is repeatedly used to verify, for a selection 

of random indices, whether the tags correspond to the 

encoding values. The detection of document corruption is thus 

probabilistic but improved with the encoding of the document. 

Moreover, the query complexity is proportional to the number 

of indices requested. 

These presented verification schemes are the first to suggest 

checking data integrity. They are, however, not applicable for 

remote data integrity checking because they require the data to 

be transmitted in its entirety to the verifier. Yet, they laid the 

foundation by suggesting for instance an interactive proof of 

knowledge protocol between the verifier and the prover that 

provides soundness and completeness requirements defined in 

section 2.2. The main improvement that will be introduced by 

the following protocols is the ability for the storage host to 

provide a short and fresh proof of data integrity and 

availability for the verifier: this is to prevent him from storing 

only the resulted response instead of data. 

3.2 Entire data dependant tag-based protocols 

The majority of verification protocols carry on with the idea 

of [3] to associate data with some metadata in the form of 

authentication tags. These tags are generally derived by the 

owner from the actual data with some secret, thus allowing 

both authenticating their origin and proving their integrity. The 

size of data tag is generally small, and may be therefore kept 

by the verifier. The typical operation for this category of 

protocols is described in Fig. 5. 

The first solution described in [8] requires pre-computed 

results of challenges to be stored at the verifier, where a 

challenge corresponds to the hashing of the data concatenated 

with a random number. This information is considered as a 

data dependant tag. The protocol requires low storage 

overhead at the verifier, yet it allows only a fixed number of 

challenges to be performed.  

A similar scheme can be built using polynomials as 

described in [19]. The protocol relies on the uniqueness of the 

solution of the interpolation polynomial problem. The storage 

peer must resolve (n+1) equations using the n data blocks and 

a random challenge number. The solution is computed using 

the Lagrange interpolation. The verifier possesses the solution 

of this problem computed beforehand by the owner. The 

number of verification operations is limited here again to the 

number of solutions of interpolation problems stored by the 

verifier.   

 

 

Fig. 5 Entire data dependant tag-based verification: the holder 

computes the response as the result of a particular function H 

with the data and the verifier’s fresh challenge r as input, the 

verifier validates the response using the relation binding the 

tag to the data. 

 

The second solution described in [8] requires little storage 

at the verifier side and no additional storage overhead at the 

holder side; yet it makes possible to generate an unlimited 

number of challenges. This solution (inspired from RSA) has 

been also proposed by Filho and Barreto in [10]. It makes use 

of a key-based homomorphic hash function F. A construction 

of F is also presented as F(m)=g
m
 mod N where N is an RSA 

modulus such that the size of the message m is larger than the 

size of N. In this solution, the verifier keeps the tag: T=g
d
. In 

each challenge, a nonce N=g
r
 is generated by the verifier and 

sent to the prover (a nonce is a unique and randomly chosen 

value). The prover combines the nonce with the data using F 

to prove the freshness of the answer and obtains R=N
d
. The 

prover’s response will be compared by the verifier with a 

value computed over T. Since the verifier can perform the 

following operation:  

   (  )  (  )  
[23] relies on elliptic curve cryptography [13] to construct 

the homomorphic function F(.). Having P a generator of a 

special elliptic curve and m the message: F(m)=m.P. The 

verifier’s challenge is a random point that will be multiplied 

by the data to compute the response. 

In these two later protocols, the holder proves data 

possession by performing computation with complexity of 

order n for data with n symbols. To reduce the computational 

burden on the holder, the authors of these protocols have 

proposed to perform these expensive operations on small 

fragments of data, since these operations are generally 

exponential additive. The verification uses then tags that are 

related to a data fragment instead of the whole data. 

Another protocol providing deterministic verification but 

with computation operations on data blocks, is proposed in 

[19]. The Diffie-Hellman based protocol allows remote 

checking using a small tag derived as: 

  ∏   
  

 

   
 

where {di}1≤i≤n is the set of data blocks and {ci}1≤i≤n is the set 

of random coefficients that are solely derived from a generator 

g of a cyclic multiplicative group and a secret number x known 

to the verifier. The challenge message consists of a set of 

r 

tags 

Verifier 
H(r, data) 

data 

Holder 



PPNA-251 6 

coefficients derived from the original coefficients and a 

random number r. The holder computes a response in the form 

of a new tag using the fresh coefficients and in particular using 

the data blocks{di}1≤i≤n. 

3.3 Data block dependant tag-based protocols 

The exponentiation operation used in the RSA solution of [8] 

makes the whole data as an exponent. To reduce the 

computing time of verification, Sebé et al. in [28] propose to 

trade off the computing time required at the prover against the 

storage required at the verifier. The data is split in a number n 

of blocks {di}1≤i≤n, the verifier holds {Ti=g
di}1≤i≤n and asks the 

prover to compute a sum function of the data blocks {di}1≤i≤n a 

challenge N=g
r and n random coefficients {ci}1≤i≤n generated 

from a new seed handed out by the verifier at each challenge. 

The response is computed as: 
   ∑      

 
    

When the verifier receives holder’s response, it compares R 

with:  

∏(  )
    

 

   

 

The index n is the ratio of tradeoff between the storage kept by 

the verifier and the computation performed by the prover. The 

protocol in [25] (extended version of [23]) allows such 

adaptation whereby the holder performs point multiplication 

operations with just a data block each, and then linearly 

combines the results with random coefficients. Furthermore, 

the basic solution can be still improved as described in [7]; 

though the verification method is probabilistic i.e., only a 

randomly chosen portion of data is verified. The holder will be 

storing tags of: 
    

      
where si is a random number kept secret by the verifier. A 

given tag Ti allows to authenticate the origin and the integrity 

of a block of index i. The holder periodically constructs 

compact forms of the data blocks and corresponding tags using 

time-variant challenge sent by the verifier. The authors of [7] 

argue that this solution achieves a good performance. 

 

 

 
 

Fig. 6 Data block dependant tag-based verification: the 

verifier chooses a random set of block indexes (c indexes) as a 

challenge sent to the holder, then this latter sends back the 

corresponding blocks along with their tags. 

 

[20] proposes a probabilistically-built solution (as described 

in Fig. 6). The index tags are formulated as block signatures 

where the verifier keeps their corresponding public key. 

Signatures are indeed generated by the data owner; though the 

role of the verifier can be carried out by this latter or any peer 

that possesses the public key. The verifier checks one data 

block per verification operation. It may check more than one 

data block and then the probability of data damage detection 

increases exponentially; but the response message sent to the 

verifier grows linearly with the number of challenges checked. 

The owner has to determine the right value for blocks’ size or 

their number that achieves a good compromise between the 

accuracy of the verification and its costs (particularly in terms 

of communication overhead).  

 

The PDP (Provable Data Possession) scheme in [2] 

improves the probabilistic model by presenting a new form of 

tags: 
   ( (   )  

  )         
where h(.) is a hash function, v a secret random number known 

only by the owner and the verifier, N an RSA modulus with ks 

being the owner’s signature key, and g a generator of the 

cyclic group of ℤN
*
. With such homomorphic verifiable tags, 

any number of tags chosen randomly can be compressed into 

just one value by far smaller in size than the entire set, which 

means that communication complexity is independent of the 

number of indices requested per verification. 

[29] further enhances the PDP protocol by considering 

compact tags that are associated with each data block di having 

the following form:  
           

where α and si are random numbers. The verifier requests 

random blocks from the remote holder and obtains a compact 

form of the blocks and their associated tags such that it is able 

to check the correctness of these tags just using α and the set 

{s1, s2,…} that are kept secret.  

The protocol proposed by [32] is a bilinear pairing-based 

verification protocol (refer to [18] for a survey on bilinear 

mapping techniques). Using experimentation, the author in 

[32] shows that its approach outperforms PDP. In the proposed 

scheme, the data is divided into blocks that are organized into 

super-blocks. Each super-block is associated with a tag. The 

tag of a given super-block of index i is derived as:  

   (  (   )   
∑   (   )      )

 
    

where f1 and f2 are two pseudo-random functions that output 

results in respectively the first and the second group in the 

bilinear map’s input, z is the file key, di,j is the j
th

 block 

pertaining to the super-block, and finally t is a secret random 

number known only to the owner. All these functions and 

values except t are public. The generated tags evoke Ateniese 

et al.’s tags in [2] but instead of using RSA public keys, they 

rely on a secret key x shared only by the owner and the 

corresponding public key g2
x
 where g2 is a generator of the 

second group in the bilinear map’s input. The use of bilinear 

mapping allows the verifier to check a subset of the challenged 

super-blocks without the need to know x. The use of a double 

block hierarchy makes it possible to improve the tradeoff 

between the tag size and the probability of corruption 

detection, since super-blocks are the information that is 

actually being periodically checked. 

The authors of [7] described several schemes, some of them 

being hybrid construction of the existing and earlier presented 

schemes. For instance, they proposed that the holder store the 

data along with a redactable signature of the data: i.e., it is 

possible to derive the signature of any data block from the 

{ik}1≤k≤c 

Verifier 
{block ik, tag ik}1≤k≤c 

Holder 
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signature of the entire data. The scheme allows the holder to 

compute a valid signature of any data block requested by the 

verifier.  

Authenticating hash tables are fundamental data structures 

that generally optimally answer to membership queries. These 

tables have been used to check remote data integrity. An 

approach using Merkle trees [16] was proposed by Wagner 

and reported in [11]. The data stored at the holder is expanded 

with a Merkle hash tree on data blocks and the root of the tree 

is kept by the verifier. The verification process checks the 

possession of one data block chosen randomly by the verifier 

that requests also a full path in the hash tree from the root to 

this random block. 

3.4 Data independent tag-based protocols 

Some approaches consider tags which are not generated from 

data. The SEC (Storage Enforcing Commitment) scheme in 

[11] for instance aims at remote data deterministic verification 

using the following tags that are kept at the holder along with 

the data:  
  (     

 
     

 
) 

where x is a secret key known to the verifier and g is a 

generator of a multiplicative group of same size as data blocks. 

The tags are independent of the stored data, but their number 

should be larger than two times the number m of data blocks 

(n=2×m+1). Verifier’s challenge is a random value that will be 

used to shift the indexes of tags to be associated with the data 

blocks when constructing the response by the holder.  

The POR protocol (Proof of Retrievability) in [12] explicitly 

expresses the independency between the data and the metadata 

used for verification (tags). The protocol is based on 

verification of sentinels which are random values independent 

of the owner’s original data. These sentinels are disguised 

among data blocks. The verification is probabilistic with the 

number of verification operations allowed being limited to the 

number of sentinels. 

 

These protocols introduce an extra storage overhead. This 

overhead can be, however, limited by reusing tags for the 

storage of different data. 

3.5 Data replication-based protocols 

Generally, data replication techniques are of great interest for 

verification protocols, since they improve the probability of 

data recovery in case the approach does not detect the 

destruction of some parts of the stored data. 

There are several protocol propositions where the verifier is 

storing a data copy like the holder. This type of protocols is 

pertinent for a backup application having the owner as the 

verifier. For example, in the solution of [15] where the verifier 

is storing the same copy as the holder, the verifier requests a 

block out of the stored data from the holder. The response is 

checked by comparing it with the valid block stored at the 

verifier’s disk space. In another simple proposed protocol in 

[6], the holder sends the MAC (Message Authentication Code) 

of data as a response to the verifier’s challenge. The verifier 

sends a fresh nonce as the key for the message authentication 

code.  

 
 

Fig. 7 Example of a storage where data is stored in two copies 

- Data replication-based verification: the verifier chooses a 

random set of block indexes (c indexes) that is sent to both 

holders as a challenge, then these latter send back the 

corresponding blocks, and finally the verifier compares the 

received responses together. 

 

The verifier may not store the data; still it can exploit 

redundant data copies stored at multiple and distinct holders 

(as illustrated in Fig. 7). The scheme proposed in [27] for 

instance allows such verification. The scheme relies on 

algebraic signatures. The verifier requests algebraic signatures 

of data blocks stored at holders, and then compares the parity 

of these signatures with the signature of the parity blocks 

stored at holders too.  

 

Table 2 Classification of remote data integrity verification 

protocols 
Protocol type Existing protocols 

Tag-

based 

Data 
dependant  

Entire 

data 

Oualha [19], Deswarte et al. [8], Filho 

and Barreto [10], Oualha et al. [24] 

Data 

block 

Sebé et al. [28], Chang and Xu [7], 

Oualha and Roudier [20], Ateniese et al. 

[2], Shacham and Waters [29], Zeng [32], 
Wagner [11], Erway et al. [9], Wang et 

al. [31] 

Data independent  Golle at al. [11], Juels and Kaliski [12] 

Data replication-based 

Lillibridge et al. [15], Caronni and 

Waldvogel [6], Bowers et al. [5], 
Schwarz and Miller [27] 

 

The HAIL (High-Availability and Integrity Layer) protocol 

in [5] proposed also a data replication-based verification 

protocol. Similarly to [27], the verifier checks the correctness 

of a random subset of rows in the encoded matrix. Each server 

returns a linear combination of the blocks. To combine server 

responses, an aggregation code implemented with a Reed-

Solomon code is used. The combined response is validated by 

first decoding and then checking that at least one of the 

responses of the secondary servers is valid. 

 

The main downside of these approaches is that if the parity 

blocks does not match, it is difficult (depends on the number of 

the used parity blocks) and computationally expensive to 

recognize the faulty or dishonest holder.  

Verifier Data 

copy 2 

Holder 2 Holder 1 

Data 

copy 1 

{ik}1≤k≤c 

{block ik in copy 1, block ik in copy 2}1≤k≤c 
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4 Analysis and comparison 

We have described a number of verification protocols after 

classifying then into several categories. With this description, 

we have identified the general features and the typical 

characteristics of the protocol categories. We will concentrate 

on these categories to go through their qualitative evaluation 

and comparison with respect to security, efficiency, and 

scalability considerations. 

4.1 Security 

Remote data is vulnerable to two classes of threats: 

accidental faults (e.g., caused by a bit error in the storage 

medium), and voluntary data damage due to holder selfishness 

whereby the entire or some parts of the data are removed in 

order to optimize holder’s storage memory. In both cases, 

destruction or corruption of data stored at a holder should be 

detected as soon as possible. The main security problem is 

then the detection of such damage. We distinguish two main 

categories of verification schemes: probabilistic and 

deterministic protocols. The first type of protocols achieves 

only probabilistic detection of data damage that increases with 

the iteration of the protocol; whereas data damage detection is 

complete in the deterministic case. 

Protocols with entire data dependant tags (e.g., [19], [8], 

[10], and [24]) provide generally deterministic guarantees for 

data damage detection; even though, the majority of 

verification protocols in the remaining categories 

probabilistically check data integrity for performance 

concerns. 

With probabilistic verification, the assurance on data 

integrity preservation is increased with the iteration of the 

verification protocol. For one stateless protocol instance, [20] 

computed the probability of detection as: 
                (   )

  
where c is the number of blocks that are randomly checked and 

d the number of blocks destroyed by the holder. The authors 

showed that the probability of detection may approximate 

100% for a small number of blocks being checked (about 10 

blocks are checked for data probabilistic destruction < 0.5). 

The probability exponentially increases by increasing the 

number of aggregated blocks in a challenge message. 

Besides a prototype implementation, [5] formally analyzed 

the security of their probabilistic protocol HAIL against an 

active and mobile adversary. This kind of adversary can 

corrupt multiple (but up to a certain number) storage hosts 

within any given time step. This adversary is capable of 

corrupting all storage hosts at different times. The security 

analysis demonstrated that it is possible to realize a high 

probability of detection, even with partial data verification. 

Data dissemination into the system may expose the 

verification protocol to new attacks. Collusion attacks whereby 

multiple holders collude so that only one of them keeps a data 

copy that will be used to correctly answer all verifier’s 

challenges directed toward these holders. Preventing this 

attack may consist on personalizing each copy to its holder, as 

explained in [6] and [25], or using an erasure coding 

mechanism for data replication. Even without a collusion 

attack, the verification protocols based on the replication 

technique are still vulnerable to replay attacks where one of the 

holders may derive or retransmit a response captured from 

another holder’s response message. This attack can be 

hampered by using common authentication and encryption 

mechanisms during the verification process. 

4.2 Efficiency 

The costs of verifying the proper storage of some data 

should be considered for the two parties that take part in the 

verification process, namely the verifier and the holder.  

 

Communication overhead. The size of challenge response 

messages must be optimized. Still, the fact that the proof of 

knowledge has to be significantly smaller than the data whose 

knowledge is proven should not significantly reduce the 

security of the proof. 

Communication overhead is significantly low for the 

majority of the presented protocols, notably the more 

cryptographically advanced ones (using for instance elliptic 

curve cryptography or bilinear maps in respectively [24] and 

[32]), or replication based schemes (e.g., [5], [27]) since 

challenges and responses are aggregated between all replica 

holders.  

The size of challenge and response messages is generally 

fixed for deterministic verification approaches. On the other 

hand, some probabilistic approaches, such as [20], have 

traded-off the size of these messages with the precision of the 

verification process: the larger the challenge-response 

messages are, the more accurate the verification should be. 

 

Storage overhead. The verifier must store a meta-information 

that makes it possible to generate a time-variant challenge 

based on the proof of knowledge protocol mentioned above 

for the verification of the stored data. The size of this meta-

information must be reduced as much as possible even though 

the data being verified is very large. The effectiveness of 

storage at the holder must also be optimized. The holder 

should store the minimum extra information along with the 

data. 

Protocols that rely on data independent and reusable 

metadata or on the replication technique have proved that it is 

possible to reduce storage overhead at maximum; even though 

such techniques were less stringent with respect to other 

considerations (e.g., concerning data damage detection).  

Additionally tags relating to the whole data are generally 

smaller than the sum of tags relating to single data blocks. 

Actually, the number of block tags is the point of tradeoff 

between storage overhead and computation complexity at the 

holder side. 

 

CPU usage. Response generation and response verification 

respectively at the holder and at the verifier should not be 

computationally expensive. Generally probabilistic 

verification protocols that require from the holder to look up 

for a limited number of blocks (not the entire data) to compute 

a correct response are able to achieve good performance. This 

is the case with protocols using block-dependant tags; even 

though, this latter type of protocols requires more storage 

space to store such tags.  
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Computation complexity at the holder side is the main drain 

of protocols using entire data-dependant tags. These protocols 

are generally based on expensive functions that are applied to 

the whole data. To overcome this problem, improved versions 

(e.g., [28], [25]) have been proposed whereby the data is split 

into multiple blocks from which tags are produced. With this 

technique, computation complexity at the holder is reduced; 

on the other hand, the holder or the verifier should store more 

tags. Nevertheless, data damage detection continues to be 

deterministic in these protocols since computation operations 

over all blocks and tags are aggregated using random 

coefficients. 

 

Table 3 Comparison of some examples of remote data 

integrity verification protocols in terms of performance. The 

variable n is denotes the number of blocks that structure the 

remote data. The variable c gives the portion of the data (in 

number of blocks) that is being checked. 

 

Protocols 

 

 
 

Perf. parameters 

Tag-based 

Data 

replication-

based, e.g., 
[27] 

Data dependant 

Data 

independent 
e.g., [12] 

Entire 

data 

e.g., 
[24] 

Data 

block 

e.g., 
[20] 

Comm. overhead O(1) O(c) O(1) O(c) 

Storage 

over.  

At verifier  O(1) O(1) O(c) O(1) 

At holder  O(1) O(n) O(c) O(1) 

CPU 

usage 

At verifier  O(1) O(c) O(1) O(c) 

At holder  O(n) O(1) O(1) O(1) 

 

Table 3 summarizes the discussed performance effects of 

some of the described protocols from both the holder and the 

verifier sides. For instance, the table presents some tradeoff 

points, for example, in [24] where the computation complexity 

at the holder is extensive but can be counterweighed with 

probabilistic verification (using the variable c, rather than n) 

like in [20]. The table shows also that the storage overhead at 

the holder has been reduced at maximum in [27] compared to 

[20] and [12]. 

The performance analysis provided in [33] gives also the 

order of magnitude of storage and communication overhead 

for some of the verification protocols. The estimated orders of 

magnitude include a security parameter to stress on the 

security-performance tradeoff that these protocols should 

realize. Performance analysis based on real implementation, as 

in Bowers at al.’s proof of retrievability protocol [34], shows 

noticeable overheads in the time to access the file from the 

holder’s disk. Probabilistic approaches are then more 

appropriate for large files, compared to deterministic 

protocols.  

4.3 Scalability 

The self-organizing style of the P2P storage system entails 

specific features of the verification protocol. The verification 

protocol should for instance scale to large populations of data 

owners. Verification information should be either self-carried 

by the data verifiers, or stored by the holders along with the 

data, or even made available in a public repository. The latter 

alternative is more robust since the information essential to the 

protocol realization is reliably stored in the system rather than 

kept by a single entity. 

Verification protocols that rely on the replication technique 

(like [5] and [27]) do not need more storage space than it is 

required by the replication mechanism. Additionally, protocols 

with data independent tags (such as [11]) require information 

storable at a public space and reusable for any data. We argue 

that these two types of verification protocols are the most 

scalable and manageable for large population of peers.  

Moreover, self-organization addresses highly dynamic 

environments like P2P networks in which peers frequently 

join and leave the system: this assumption implies that the 

owner is able to delegate data storage evaluation to verifiers. 

In this scenario, verifiers should act as third parties ensuring a 

periodic evaluation of holders after the owner leaves. The 

need for scalability also pleads for distributing this verification 

function, in particular to distribute verification costs among 

several entities. Last but not least, ensuring fault tolerance 

means preventing the system from presenting any single point 

of failure. To this end, data verification should be distributed 

to multiple peers as much as possible. The data should also be 

replicated to ensure its availability, which can only be 

maintained at a given level if it is possible to detect storage 

faults. 

Protocols that allow delegating the verification task to other 

peers from the network can scale to a large and dynamic 

network. The protocol in [24] is the first to call for such 

property in order to deploy the storage application into the 

P2P context (as well [20] in the ad hoc context).  The majority 

of the presented protocols may provide such delegability if the 

metadata needed for verification is either public or just 

individually secret (i.e., revealing the secret will only 

compromise the verification protocol taking place between a 

given verifier and a given holder). Some tag-based protocols 

(e.g., [8], [10], [24], [28]) employ tags derived from the data 

and some public information and rely on the random challenge 

to include the secret. Other tag-based protocols (e.g., [23], [2], 

[9]) construct tags produced from the data and a secret key but 

verifiable by the corresponding public key. 

Since, it is difficult to fulfill all the desired requirements as 

explained in 2.2, such protocols realize tradeoffs among these 

requirements. 

5 Extensions 

A verification protocol allows checking remote data 

integrity. The protocol should be transportable to any storage 

application. For backup or archiving applications, data should 

survive during a long period of time, and therefore 

maintenance mechanisms are needed in order to maintain the 

replication rate at an optimal level. On the other hand, for 

distributed storage applications and file systems, data is 

generally very dynamic, thus it should be possible to perform 

dynamic operations on remote data in an efficient and secure 

way.  
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5.1 Storage maintenance 

Data maintenance can be performed proactively whereby 

data is re-copied periodically in the network, as proposed by 

[14]. The degree of data redundancy in the network is 

frequently adjusted in function of locally estimated network 

dynamic properties. This technique provides only probabilistic 

guarantees for data availability. It may be sufficient if the 

degree of data redundancy is considerably high. Otherwise, 

deterministic guarantees should be provided by regularly 

checking storage at data holders. Furthermore, the technique of 

[14] takes into account peer dynamics (i.e., transient or 

permanent connection or failure), but not their potential 

misbehavior. 

 With reactive maintenance, data is re-copied if the 

corruption or destruction of at least one data copy is 

discovered. Data possession verification protocols allow the 

verifier to detect (either deterministically or probabilistically) 

whether the holder destroyed data. The detection of data 

destruction triggers regeneration of a new data copy at another 

holder in order to maintain a high (or at least a minimum) 

replication rate. [24] suggested that this task should not be 

solely tackled by the owner, since it does not often participate 

in the verification process. Therefore, the task should be 

conferred to the other participants in the verification process: 

verifiers and holders should then cooperate in order to 

regenerate a new data replica that will be stored at a volunteer 

peer. For this, the authors proposed to use random linear 

erasure coding to make possible the generation of new codes 

supplying the network with new blocks. They showed based 

on a theoretical model that with such maintenance mechanism 

data is made persistently available and reliable at a high 

replication rate in average. 

5.2 Supporting dynamic data operations 

The verification protocol should allow the owner to perform 

operations on the remote data while maintaining the same 

level of data correctness assurance. Several protocols 

supporting dynamic data operations have been proposed with 

a majority using data block tags. The authors of [1] have 

proposed to rely on pre-computed challenge-response couples 

that have been processed over multiple different blocks from 

the data. These couples are able to be updated if some blocks 

are modified, deleted, or inserted without the knowledge of the 

remaining blocks stored at the holder. 

[9] and [31] suggested to rely on authenticating hash tables 

(e.g., Merkle hash tree, skip-list) to guarantee the update of the 

verification metadata without having to transmit the whole 

data to the owner.  

A prominent advantage in using block-dependant tags is that 

it enables the protocol to support dynamic operations at block 

level. This has been demonstrated by [9] that proposed a rank-

based skip list [26]. A skip-list is another authenticating hash 

table but it does not take into account the blocks’ indexes; 

hence the notion of ranks introduced by Erway et al. The 

verifier keeps the label of the start node in the skip list. The 

bottom level nodes store block tags derived for a block di as: 
    

   

When the owner updates its data that is stored at the holder, 

this latter computes a new root that can be validated using the 

old one and having the blocks that have been modified or 

inserted. 

[31] proposed to use a Merkle Hash tree [16] taking data 

blocks as tree leaves and the metadata as the tree root. For 

verification, the authors have proposed a bilinear pairing-based 

verification where tags have this form:  
   ( (  )  

  )  
where h is a hash function, u is a random element in the first 

group of the bilinear map’s input, and α is the owner secret. 

The verifier makes a double check. It first verifies the position 

of a set of data blocks chosen randomly. It then checks the 

integrity of these blocks using a bilinear map function (cf. 

[18]) of the public key g2
 

 (g2 is the generator of the second 

group in the bilinear map’s input). Since block indices are 

verified using the Merkle hash tree, they are not represented in 

the tags. Data update causes a modification of the root of the 

Merkle hash tree. The new root is computed by the holder and 

is verifiable having the old root and the updated blocks. 

Both schemes use hash tables to generate proofs of data 

update at, however, block level. For example, to update a byte 

of a certain block, the whole block should be modified. 

Moreover, deleting a byte from a block changes the following 

blocks. [9] described a technique that allows supporting 

variable-sized blocks. The technique consists in changing the 

rank which is one of the attributes associated to the nodes 

forming the skip-list [26]. The rank of a node at the bottom 

level becomes equal to the size of its associated block. For the 

internal node rank, it becomes equal to the number of bytes 

reachable from each of them. Thus, data update can be 

performed at byte-level. 

Dynamic data implies that the system requires a versioning 

control in order to synchronize data replicas at holders. [9] 

proposed another technique to extend their scheme with a 

versioning system based here again on the skip-list. 

6 Conclusion 

In this survey, we analyzed a large list of protocols for 

remote data integrity verification and compared them. From 

this list, we have identified the advantages and drawbacks of 

each of these protocols; hence, identifying the uses to which 

some of these protocols are more fitting than the others. For 

instance, probabilistic verification is the most retained 

technique if the holders store large amount of data, since the 

lookup of the entire data in their memory incurs more 

significant costs than fetching a small amount of data. In the 

case where the holders are very dynamic, replication-based 

verification becomes less appealing because of the difficulty 

to discover a large number of holders connected to the 

network during the same period of time. 

The proposed verification protocols can be employed in 

several other distributed storage systems to control data 

integrity. In a cloud storage for instance, the client, by 

periodically checking the integrity of its remote data, may 

detect damage that is not necessarily due to the misconduct of 

the dedicated storage servers in the cloud, but because these 

latter may be compromised and then the storage system may 

be subject to attacks. 
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The majority of the existing verification protocols are built 

with data integrity verification as primary objective. Other 

security primitives like guarantying data confidentiality or 

owner privacy are generally neglected; though, such properties 

are of great interest in an open system like the P2P network. 

Moreover, these protocols consider a storage system with a 

single reader/writer. To support multiple readers and/or 

writers, a versioning system controlled by an access control 

protocol should be envisioned.  

Designing remote data integrity verification is still a hot 

topic in the research community and further performance 

improvement and practical extensions (e.g., [30]) to suit a 

large spectrum of storage applications are underway. 
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