
PPNA-251 1

Verifying Remote Data Integrity in Peer-to-Peer Data
Storage: a Comprehensive Survey of Protocols

Nouha Oualha
*
, Jean Leneutre

†
 and Yves Roudier

‡

*
CEA, LIST

Communicating Systems Laboratory

Bât. 451 – PC 94, F91191 Gif sur Yvette Cedex, France

nouha.oualha@cea.fr

†
Institut Telecom - TELECOM ParisTech

Dep. Informatique et Réseaux, CNRS LTCI-UMR 5141, 46 rue Barrault, 75634 PARIS cedex 13, France

leneutre@telecom-paristech.fr

‡
EURECOM

Dep. Réseaux et Sécurité, 2225, Route des Crêtes, 06650 Valbonne Sophia Antipolis, France

roudier@eurecom.fr

Abstract This paper surveys protocols that verify remote data

possession. These protocols have been proposed as a primitive

for ensuring the long-term integrity and availability of data

stored at remote untrusted hosts.

Externalizing data storage to multiple network hosts is

becoming widely used in several distributed storage and P2P

systems, which urges the need for new solutions that provide

security properties for the remote data. Replication techniques

cannot ensure on their own data integrity and availability,

since they only offer probabilistic guarantees. Moreover, peer

dynamics (i.e., peers join and leave at any time) and their

potential misbehavior (e.g., free-riding) exacerbate the

difficult challenge of securing remote data. To this end,

remote data integrity verification protocols have been

proposed with the aim to detect faulty and misbehaving

storage hosts, in a dynamic and open setting as P2P networks.

In this survey, we analyze several of these protocols, compare

them with respect to expected security guarantees and discuss

their limitations.

Index Terms Peer-to-peer, distributed data storage,

cryptographic protocols, data integrity.

1 Introduction

Peer-to-peer (P2P) applications are built using the

techniques and algorithms that consider a server-less

communication paradigm. Becoming very popular with

services like P2P file sharing including audio/video streaming,

these applications have spurred a lot of interest in the research

community because of the stimulating challenge of

establishing security guarantees in a dynamic, self-organizing

and open system. For instance, a P2P data storage application

(like Wuala
*
, AllMyData Tahoe

†
, UbiStorage

‡
, or Cucku

§
)

which offers peers the possibility to store their data in the

network, should provide the availability and integrity of the

stored data. Such guarantees cannot be solely ensured by

replication techniques, in particular, if data damage can be

caused by the dynamic or selfish behavior of storage peers, not

only by their accidental faults or failures. Additionally, peers

may be reluctant to freely offer a large amount of storage, in

order to sustain high data replication rates. Data replication

techniques should be, therefore, supported by other low-

resource primitives. These primitives aim to detect corrupted

data and trigger re-replication of data if it is necessary. This

type of primitives is provided with remote data possession

verification protocols that allow to periodically check data

integrity at remote storage hosts.

Compared to grid storage or cloud storage, P2P storage

relies on holders being totally untrusted. The verification

protocol aims then to detect data corruption or destruction

caused not only by accidental faults or crashes at these

holders, but more importantly by their voluntary misconduct.

Besides data security issues, the verification protocols may

also assist cooperation incentive mechanisms for P2P storage,

as this type of protocols allows evaluating peer behavior.

Mechanisms using reputation-based or payment-based

incentives (e.g., [22], [21]) stimulate peer contribution with

storage resources. The reaction of these mechanisms (i.e.,

reward or punish) toward a peer that has agreed to store other

peers’ data will rely on such peer behavior evaluation

provided by the verification protocol.

Designing secure and efficient verification protocols has

* http://wua.la/en/home.html
† http://allmydata.org/
‡ http://www.ubistorage.com/
§ http://www.cucku.com/

mailto:nouha.oualha@cea.fr
mailto:leneutre@telecom-paristech.fr
mailto:roudier@eurecom.fr

PPNA-251 2

attracted quite a lot of researches from multiple fields: works

have varied from designing secure local memory (e.g., [3], [4],

and [17]) and secure storage at remote servers (e.g., [6], [7],

[8], [10], [27], [28], and [32]) to securing cloud storage

applications (e.g., [5], [30], and [31]). The needs in each field

being specific, result in diverse kinds of such protocols. This

survey has a three-fold objective: it analyses the different

protocols that have been proposed so far, categorize them in

different groups, and finally compare them with respect to

several security and performance requirements, given

beforehand. A focus is given to those protocols that can be

deployed in a P2P data storage setting.

The remainder of this paper is organized as follows. Section

II defines protocols verifying remote data integrity with the

requirements that should be provided, and identifies taxonomy

for their classification. Section III surveys proposed

verification protocols and sorts them following the taxonomy

given in section II. Section IV analyzes and compares these

classes of protocols in terms of security, efficiency, and

scalability considerations, and eventually reveals tradeoffs

between these considerations. Section V outlines interesting

extensions that have been proposed for these protocols.

Finally, concluding remarks are presented in section VI.

2 Principles of remote data integrity
verification protocols

P2P storage applications offer peers the opportunity to

store, backup or archive their data in the P2P network. Such

applications should ensure data integrity and availability on a

long term basis. This objective requires developing

appropriate primitives for detecting dishonest peers taking an

unfair advantage of the self-organizing storage infrastructure.

Assessing such a behavior is an objective of remote data

possession verification protocols.

2.1 Overview

We consider a P2P storage application in which a peer,

called the data owner, replicates some data and stores the

replicas at several peers, called data holders. The latter entities

have agreed to keep these replicas for a predefined time period

negotiated with the owner. Their commitment is periodically

checked by verifiers. The verifiers are appointed by the data

owner who may play also this role.

Holders and verifiers may not correctly fulfill their roles

because of their failure or their misbehavior (e.g., free-riding).

Though, verifier misbehavior is generally less common

because of the lightweight operations at their side and the

potential participation of the owner to the verification process.

The retained practice of verification protocols takes the form

of an interactive proof of knowledge protocol where the holder

tries to convince the verifier that he holds the data. The

protocol consists of challenge-response messages. In a typical

interaction (as illustrated in Fig. 1) between a verifier and one

holder (or multiple holders), the holder is periodically

prompted to respond to a time-variant challenge as a proof that

it is holding its commitment, the very data.

Fig. 1 Verifier-holder proof-of-knowledge interaction: 1)

verifier sends a challenge message to the holder, 2) the holder

computes the response based on data and tags and 3) sends the

response back to the verifier, and finally 4) the verifier

validates the response using some metadata. Tags and

metadata are optional information i.e., one of these

information or both may be used by certain protocols.

To bring the verification process to work, verifiers and/or

holders generally hold some additional information, which

may consist of data digests or keys.

2.2 Challenges and goals

P2P data storage may take the shape of P2P data backup

where data is simply stored in multiple copies at the storage

hosts; whereas the original version is still stored at the owner.

Additionally, distributed storage and distributed file system

applications where the original version does not necessarily

exist at the owner, should be also considered.

The verification task cannot be limited to the actual owner’s

operations; it can be delegated to other network peers that are

not necessarily trusted, in order to off-load owners’ work and

to mitigate their intermittent connection and potential failure.

Simple integrity checks, which make sense only with respect

to a potentially defective yet trusted server, are not sufficient

in this context. Holders in P2P systems are autonomous and

may then misbehave by, for instance, destroying the data that

they have promised to keep. By verifying data possession

remotely, it is possible to detect voluntary data destructions by

holders. The verification has to be efficient: in particular,

verifying remotely the presence of data should not require

transferring it back in its entirety; it should neither make it

necessary to store the entire data at the verifier.

Enforcing the periodic holder storage verification has

implications on the organizational design, performance, and

security of the remote data integrity verification protocol. The

design goals to achieve secure, efficient and scalable

verification can be summarized as the following:

Requirement R1 - Sound verification: If the data (or

a portion of the data) has been destroyed by the holder,

the latter can only pretend it is storing them to the verifier

with a small probability. The holder may be tempted to

destroy the data that it has promised to keep, in order to

harm the storage system or simply to optimize its storage

resources. It may also be prone to failure or damage.

Requirement R2 - Complete verification: If both the

verifier and the holder properly follow the protocol,

Challenge

Response Holder Verifier

Metadata

T
ag

s

Data

1

3

4 Verification Lookup

memory

2

means optional.

PPNA-251 3

holder’s proof is considered as valid. The verification

process does not tolerate false negatives. Soundness and

completeness properties are satisfied by a proof of

knowledge protocol.

Requirement R3 - Dataless verification: The verifier

should not store the whole or a portion of the data to carry

out the verification task. It may however keep some

metadata information. For efficiency concerns, no

challenged data should be retrieved in its entirety by the

verifier during the verification process.

Requirement R4 - Quick verification: To avoid

connection problems between the verifier and the holder,

the verification should be processed quickly, i.e., the

computation complexity of the challenge generation, and

especially the creation of the response and its validation

should be reduced as low as possible.

Requirement R5 - Stateless verification: The verifier

should not need to keep state information between audits

throughout the long term of data storage.

Requirement R6 - Public verifiability: Anyone, not

just data owners should be enabled with the capability of

verifying the integrity of some data on demand. Since

deploying several trusted and dedicated servers in the

network is quite expensive, the ability to take part in the

verification process should be handed out to any peer in

the network.

Regarding requirement R1, some verification protocols

provide deterministic guarantees by verifying the stored data

in its entirety. Others check a piece of the data randomly

chosen at each verification operation. Thus, they offer a

probabilistic assurance that increases with the periodic

iteration of the verification process.

Other optional requirements can be considered like devising

a verification protocol that allows an unlimited number of

challenges. The importance of such requirement depends on

the duration of the data storage. With this requirement, regular

interaction between the owner and the verifier is not needed to

carry on the verification process in a long-term basis.

Realizing requirements R2, R3, R4, and R5 allow

increasing the desired general goals; on the other hand,

requirements R1 and R6 present tradeoffs with respect to two

different general goals. For R1, if the verification is

probabilistic, the holder computes a response message based

on a portion of the data. The computation at the holder side is

then efficient, but the detection of data corruption is only

probabilistic. For R6, the delegation of the verification task

from the owner to other peers should be controlled, in order to

particularly avoid Denial of Service (DoS) attacks whereby a

dishonest verifier floods the holders with challenge messages.

Such attacks can be mitigated by making the owner produce

verification certificates that grant, the verifiers that possess

such certificates, permission to check holder’s storage.

2.3 Taxonomy

The use of a specific terminology for remote data possession

verification protocols (remote integrity checking [8],

demonstration of data possession [10], proofs of data

possession [2], or proofs of retrievability [12]) emphasizes

how the storage and communication overhead requirements

differ between verification primitives for secure remote

storage and classical proof of knowledge protocols.

Efforts by Dodis et al. in [33] endeavor to make a distinction

between protocols that are bounded in the number of allowed

verification operations, so-called information-theoretic

bounded-use protocols or computational bounded-use

protocols, and protocols that permit an infinite number of

verification operations, referred to by computational

unbounded-use protocols. The former type of protocols relies

on pre-computed random challenge-response pairs that are

either stored at the verifier in the information-theoretic

bounded-use protocols or secretly stored at the holder in the

computational bounded-use protocols. This type of verification

information will be called in the rest of this survey metadata.

a)

b)

c)

Fig. 2 Tag-based (a or b) vs. data replication-based (c)

verification: (a or b) whereby the verifier checks one holder

based on some tags which are either stored by the holder

(encrypted) or the verifier and (c) whereby the verifier checks

all data replicas at multiple holders.

To classify remote data possession verification protocols,

we will not rely on their performance features but we will use

different aspects related to the metadata that is used for data

verification. The metadata information is generally produced

by the data owner before being sent to the verifier.

Data

replica 1

Holder r Holder 1

Data

replica r

Verifier

Responses

Identical challenges

Verifier
Response

Challenge

Data

Holder

T
ag

s

Challenge

Tags

Verifier
Response

Data

Holder

PPNA-251 4

Tag-based vs. data replication-based verification: tag-based

verification relies on tags which are supplementary

information attached to each copy of the stored data. They are

either stored at the verifier (Fig. 2.a) or at the holder (Fig. 2.b)

with proofs of authenticity (signatures). The verification is

performed over one single storage peer at a time. On the other

hand, data replication-based verification checks all the peers

hosting the data replicas, with no additional information (see

Fig. 2.c). It is, however, dependant on the used replication

technique.

Fig. 3 Entire data dependant tags (a) vs. data block dependant

tags (b). Such tags are generally stored by the holder.

Data-dependant tag vs. data-independent tag: in tag-based

verification, tags are generally produced by the data owner.

These tags can be either derived from the original data or

completely generic. In the second case, tags can be re-used for

the verification of another different data.

Entire data vs. data block dependant tag: there may be only

one tag that is used to relate to the entire data or multiple tags

with each tag corresponding to just one block of the data (refer

to Fig. 3). The latter tag construction is more suited to support

data dynamic operations like update, deletion, or insertion at

block level granularity.

Fig. 4 Taxonomy of data possession verification protocols

The taxonomy applied in this survey is summarized in Fig.

4.

3 Classification

With P2P storage, any peer in the network can store its data

at other peers, which are not necessarily trusted; however the

behavior of these latter can be evaluated through the adoption

of a verification routine through which the integrity of the

stored data is periodically checked by verifying peers. The

literature abounds with verification protocols for data

integrity. We will present these protocols following the

taxonomy illustrated in sub-section 2.3. The classification is

recapitulated in Table 2. We will first start this section by

giving a description of protocols verifying integrity of data

stored locally, referred to by local memory checking. We deem

these protocols as important, since they have paved the way to

the design of protocols verifying remote data integrity.

Table 1 Used notations
Symbol Description

T Data tag

i Data block index

Ti Tag of the block of index i
d Data

di Data block of index i

f Pseudo-random function
H

g

Hash function

Generator of a cyclic multiplicative group

x, , s Numbers kept secret from the holder

The key notations, summarized in Table 1, are used to

describe the protocols throughout the remainder of this paper.

3.1 Earlier related work

Earlier verification schemes concentrated on the problem of

securing the integrity of data stored at a local untrusted

memory. A potential premise of these schemes originates from

memory checking protocols (e.g., [4]). A memory checker

aims at detecting any error in the behavior of an unreliable

data structure while performing the user’s operations. The

checker steps between the user and the data structure. It

receives the input user sequence of “store” and “retrieve”

operations over data symbols that are stored at the data

structure. The checker checks the correctness of the output

sequence from the structure so that any error in the output

operation will be detected with high probability. For this, it

may use either its reliable storage (non-invasive checker) or

the data structure (invasive checker). In [4], the checker stores

hash values of the user data symbols at its reliable storage.

Whenever the user requests to store a symbol, the checker

computes the hash of the response of the data structure and

keeps the hash value. If the user requests to retrieve a symbol,

the checker computes the hash value of the response and

compares it with the stored hash value. The job of the memory

checker is to recover and to check responses originating from

an unreliable storage, not to check the correctness of the whole

stored data. With the checker, it is possible to detect corruption

of one symbol (usually one bit) per user operation.

With incremental cryptographic algorithms, the checker is

able to detect changes made to a whole document using one

small information, the tag. The tag is a small secret stored at a

reliable storage that relates to the complete stored document

and that is quickly updatable if the user makes modifications.

Bellare et al. in [3] propose several incremental schemes in

which the tag is either an XORed sum of randomized

document symbols or a leaf in a search tree built from a

Remote data possession
verification protocols

Tag-based protocols

Data dependant tag-
based protocols

Entire data dependant tag-
based protocols

Data block dependant tag-
based protocols

Data independant
tag-based protocols

Data replication-based
protocols

ta
g

tag 1

 tag 2

tag n

…

block 1

 block 2

block n

…

block 1

 block 2

block n

…

a) b)

Holder Holder

PPNA-251 5

message authentication algorithm applied to each symbol.

These schemes provide tamper-proof security of the user

document in its entirety. However, they require recovering the

whole data which is not practical for remote data verification

because of the high communication overhead.

The approach described in [17] or so-called authenticator

differently comprehends the data possession verification

problem. It extends the memory checker model by making the

verifier check the consistency of the entire document in an

encoded version. To achieve this, the document is encoded, to

be stored at the unreliable storage disk. Small tags (or

fingerprints in [17]) are generated, to be stored at the reliable

storage disk. Based on tags, the verifier checks whether it is

possible to recover the document without actually decoding it.

The authors of [17] propose a construction of the authenticator

where there is a public encoding of the document consisting of

index tags of this form:
 ()

for each encoded value bit di having fseed a pseudorandom

function with a seed. The seed is kept secret by the verifier.

The authenticator is repeatedly used to verify, for a selection

of random indices, whether the tags correspond to the

encoding values. The detection of document corruption is thus

probabilistic but improved with the encoding of the document.

Moreover, the query complexity is proportional to the number

of indices requested.

These presented verification schemes are the first to suggest

checking data integrity. They are, however, not applicable for

remote data integrity checking because they require the data to

be transmitted in its entirety to the verifier. Yet, they laid the

foundation by suggesting for instance an interactive proof of

knowledge protocol between the verifier and the prover that

provides soundness and completeness requirements defined in

section 2.2. The main improvement that will be introduced by

the following protocols is the ability for the storage host to

provide a short and fresh proof of data integrity and

availability for the verifier: this is to prevent him from storing

only the resulted response instead of data.

3.2 Entire data dependant tag-based protocols

The majority of verification protocols carry on with the idea

of [3] to associate data with some metadata in the form of

authentication tags. These tags are generally derived by the

owner from the actual data with some secret, thus allowing

both authenticating their origin and proving their integrity. The

size of data tag is generally small, and may be therefore kept

by the verifier. The typical operation for this category of

protocols is described in Fig. 5.

The first solution described in [8] requires pre-computed

results of challenges to be stored at the verifier, where a

challenge corresponds to the hashing of the data concatenated

with a random number. This information is considered as a

data dependant tag. The protocol requires low storage

overhead at the verifier, yet it allows only a fixed number of

challenges to be performed.

A similar scheme can be built using polynomials as

described in [19]. The protocol relies on the uniqueness of the

solution of the interpolation polynomial problem. The storage

peer must resolve (n+1) equations using the n data blocks and

a random challenge number. The solution is computed using

the Lagrange interpolation. The verifier possesses the solution

of this problem computed beforehand by the owner. The

number of verification operations is limited here again to the

number of solutions of interpolation problems stored by the

verifier.

Fig. 5 Entire data dependant tag-based verification: the holder

computes the response as the result of a particular function H

with the data and the verifier’s fresh challenge r as input, the

verifier validates the response using the relation binding the

tag to the data.

The second solution described in [8] requires little storage

at the verifier side and no additional storage overhead at the

holder side; yet it makes possible to generate an unlimited

number of challenges. This solution (inspired from RSA) has

been also proposed by Filho and Barreto in [10]. It makes use

of a key-based homomorphic hash function F. A construction

of F is also presented as F(m)=g
m
 mod N where N is an RSA

modulus such that the size of the message m is larger than the

size of N. In this solution, the verifier keeps the tag: T=g
d
. In

each challenge, a nonce N=g
r
 is generated by the verifier and

sent to the prover (a nonce is a unique and randomly chosen

value). The prover combines the nonce with the data using F

to prove the freshness of the answer and obtains R=N
d
. The

prover’s response will be compared by the verifier with a

value computed over T. Since the verifier can perform the

following operation:

 () ()
[23] relies on elliptic curve cryptography [13] to construct

the homomorphic function F(.). Having P a generator of a

special elliptic curve and m the message: F(m)=m.P. The

verifier’s challenge is a random point that will be multiplied

by the data to compute the response.

In these two later protocols, the holder proves data

possession by performing computation with complexity of

order n for data with n symbols. To reduce the computational

burden on the holder, the authors of these protocols have

proposed to perform these expensive operations on small

fragments of data, since these operations are generally

exponential additive. The verification uses then tags that are

related to a data fragment instead of the whole data.

Another protocol providing deterministic verification but

with computation operations on data blocks, is proposed in

[19]. The Diffie-Hellman based protocol allows remote

checking using a small tag derived as:

 ∏

where {di}1≤i≤n is the set of data blocks and {ci}1≤i≤n is the set

of random coefficients that are solely derived from a generator

g of a cyclic multiplicative group and a secret number x known

to the verifier. The challenge message consists of a set of

r

tags

Verifier
H(r, data)

data

Holder

PPNA-251 6

coefficients derived from the original coefficients and a

random number r. The holder computes a response in the form

of a new tag using the fresh coefficients and in particular using

the data blocks{di}1≤i≤n.

3.3 Data block dependant tag-based protocols

The exponentiation operation used in the RSA solution of [8]

makes the whole data as an exponent. To reduce the

computing time of verification, Sebé et al. in [28] propose to

trade off the computing time required at the prover against the

storage required at the verifier. The data is split in a number n

of blocks {di}1≤i≤n, the verifier holds {Ti=g
di}1≤i≤n and asks the

prover to compute a sum function of the data blocks {di}1≤i≤n a

challenge N=g
r and n random coefficients {ci}1≤i≤n generated

from a new seed handed out by the verifier at each challenge.

The response is computed as:
 ∑

When the verifier receives holder’s response, it compares R

with:

∏()

The index n is the ratio of tradeoff between the storage kept by

the verifier and the computation performed by the prover. The

protocol in [25] (extended version of [23]) allows such

adaptation whereby the holder performs point multiplication

operations with just a data block each, and then linearly

combines the results with random coefficients. Furthermore,

the basic solution can be still improved as described in [7];

though the verification method is probabilistic i.e., only a

randomly chosen portion of data is verified. The holder will be

storing tags of:

where si is a random number kept secret by the verifier. A

given tag Ti allows to authenticate the origin and the integrity

of a block of index i. The holder periodically constructs

compact forms of the data blocks and corresponding tags using

time-variant challenge sent by the verifier. The authors of [7]

argue that this solution achieves a good performance.

Fig. 6 Data block dependant tag-based verification: the

verifier chooses a random set of block indexes (c indexes) as a

challenge sent to the holder, then this latter sends back the

corresponding blocks along with their tags.

[20] proposes a probabilistically-built solution (as described

in Fig. 6). The index tags are formulated as block signatures

where the verifier keeps their corresponding public key.

Signatures are indeed generated by the data owner; though the

role of the verifier can be carried out by this latter or any peer

that possesses the public key. The verifier checks one data

block per verification operation. It may check more than one

data block and then the probability of data damage detection

increases exponentially; but the response message sent to the

verifier grows linearly with the number of challenges checked.

The owner has to determine the right value for blocks’ size or

their number that achieves a good compromise between the

accuracy of the verification and its costs (particularly in terms

of communication overhead).

The PDP (Provable Data Possession) scheme in [2]

improves the probabilistic model by presenting a new form of

tags:
 (()

)
where h(.) is a hash function, v a secret random number known

only by the owner and the verifier, N an RSA modulus with ks

being the owner’s signature key, and g a generator of the

cyclic group of ℤN
*
. With such homomorphic verifiable tags,

any number of tags chosen randomly can be compressed into

just one value by far smaller in size than the entire set, which

means that communication complexity is independent of the

number of indices requested per verification.

[29] further enhances the PDP protocol by considering

compact tags that are associated with each data block di having

the following form:

where α and si are random numbers. The verifier requests

random blocks from the remote holder and obtains a compact

form of the blocks and their associated tags such that it is able

to check the correctness of these tags just using α and the set

{s1, s2,…} that are kept secret.

The protocol proposed by [32] is a bilinear pairing-based

verification protocol (refer to [18] for a survey on bilinear

mapping techniques). Using experimentation, the author in

[32] shows that its approach outperforms PDP. In the proposed

scheme, the data is divided into blocks that are organized into

super-blocks. Each super-block is associated with a tag. The

tag of a given super-block of index i is derived as:

 (()
∑ ())

where f1 and f2 are two pseudo-random functions that output

results in respectively the first and the second group in the

bilinear map’s input, z is the file key, di,j is the j
th

 block

pertaining to the super-block, and finally t is a secret random

number known only to the owner. All these functions and

values except t are public. The generated tags evoke Ateniese

et al.’s tags in [2] but instead of using RSA public keys, they

rely on a secret key x shared only by the owner and the

corresponding public key g2
x
 where g2 is a generator of the

second group in the bilinear map’s input. The use of bilinear

mapping allows the verifier to check a subset of the challenged

super-blocks without the need to know x. The use of a double

block hierarchy makes it possible to improve the tradeoff

between the tag size and the probability of corruption

detection, since super-blocks are the information that is

actually being periodically checked.

The authors of [7] described several schemes, some of them

being hybrid construction of the existing and earlier presented

schemes. For instance, they proposed that the holder store the

data along with a redactable signature of the data: i.e., it is

possible to derive the signature of any data block from the

{ik}1≤k≤c

Verifier
{block ik, tag ik}1≤k≤c

Holder
tag 1

 tag 2

tag n

…

block 1

 block 2

block n

…

Holder

PPNA-251 7

signature of the entire data. The scheme allows the holder to

compute a valid signature of any data block requested by the

verifier.

Authenticating hash tables are fundamental data structures

that generally optimally answer to membership queries. These

tables have been used to check remote data integrity. An

approach using Merkle trees [16] was proposed by Wagner

and reported in [11]. The data stored at the holder is expanded

with a Merkle hash tree on data blocks and the root of the tree

is kept by the verifier. The verification process checks the

possession of one data block chosen randomly by the verifier

that requests also a full path in the hash tree from the root to

this random block.

3.4 Data independent tag-based protocols

Some approaches consider tags which are not generated from

data. The SEC (Storage Enforcing Commitment) scheme in

[11] for instance aims at remote data deterministic verification

using the following tags that are kept at the holder along with

the data:
 (

)

where x is a secret key known to the verifier and g is a

generator of a multiplicative group of same size as data blocks.

The tags are independent of the stored data, but their number

should be larger than two times the number m of data blocks

(n=2×m+1). Verifier’s challenge is a random value that will be

used to shift the indexes of tags to be associated with the data

blocks when constructing the response by the holder.

The POR protocol (Proof of Retrievability) in [12] explicitly

expresses the independency between the data and the metadata

used for verification (tags). The protocol is based on

verification of sentinels which are random values independent

of the owner’s original data. These sentinels are disguised

among data blocks. The verification is probabilistic with the

number of verification operations allowed being limited to the

number of sentinels.

These protocols introduce an extra storage overhead. This

overhead can be, however, limited by reusing tags for the

storage of different data.

3.5 Data replication-based protocols

Generally, data replication techniques are of great interest for

verification protocols, since they improve the probability of

data recovery in case the approach does not detect the

destruction of some parts of the stored data.

There are several protocol propositions where the verifier is

storing a data copy like the holder. This type of protocols is

pertinent for a backup application having the owner as the

verifier. For example, in the solution of [15] where the verifier

is storing the same copy as the holder, the verifier requests a

block out of the stored data from the holder. The response is

checked by comparing it with the valid block stored at the

verifier’s disk space. In another simple proposed protocol in

[6], the holder sends the MAC (Message Authentication Code)

of data as a response to the verifier’s challenge. The verifier

sends a fresh nonce as the key for the message authentication

code.

Fig. 7 Example of a storage where data is stored in two copies

- Data replication-based verification: the verifier chooses a

random set of block indexes (c indexes) that is sent to both

holders as a challenge, then these latter send back the

corresponding blocks, and finally the verifier compares the

received responses together.

The verifier may not store the data; still it can exploit

redundant data copies stored at multiple and distinct holders

(as illustrated in Fig. 7). The scheme proposed in [27] for

instance allows such verification. The scheme relies on

algebraic signatures. The verifier requests algebraic signatures

of data blocks stored at holders, and then compares the parity

of these signatures with the signature of the parity blocks

stored at holders too.

Table 2 Classification of remote data integrity verification

protocols
Protocol type Existing protocols

Tag-

based

Data
dependant

Entire

data

Oualha [19], Deswarte et al. [8], Filho

and Barreto [10], Oualha et al. [24]

Data

block

Sebé et al. [28], Chang and Xu [7],

Oualha and Roudier [20], Ateniese et al.

[2], Shacham and Waters [29], Zeng [32],
Wagner [11], Erway et al. [9], Wang et

al. [31]

Data independent Golle at al. [11], Juels and Kaliski [12]

Data replication-based

Lillibridge et al. [15], Caronni and

Waldvogel [6], Bowers et al. [5],
Schwarz and Miller [27]

The HAIL (High-Availability and Integrity Layer) protocol

in [5] proposed also a data replication-based verification

protocol. Similarly to [27], the verifier checks the correctness

of a random subset of rows in the encoded matrix. Each server

returns a linear combination of the blocks. To combine server

responses, an aggregation code implemented with a Reed-

Solomon code is used. The combined response is validated by

first decoding and then checking that at least one of the

responses of the secondary servers is valid.

The main downside of these approaches is that if the parity

blocks does not match, it is difficult (depends on the number of

the used parity blocks) and computationally expensive to

recognize the faulty or dishonest holder.

Verifier Data

copy 2

Holder 2 Holder 1

Data

copy 1

{ik}1≤k≤c

{block ik in copy 1, block ik in copy 2}1≤k≤c

PPNA-251 8

4 Analysis and comparison

We have described a number of verification protocols after

classifying then into several categories. With this description,

we have identified the general features and the typical

characteristics of the protocol categories. We will concentrate

on these categories to go through their qualitative evaluation

and comparison with respect to security, efficiency, and

scalability considerations.

4.1 Security

Remote data is vulnerable to two classes of threats:

accidental faults (e.g., caused by a bit error in the storage

medium), and voluntary data damage due to holder selfishness

whereby the entire or some parts of the data are removed in

order to optimize holder’s storage memory. In both cases,

destruction or corruption of data stored at a holder should be

detected as soon as possible. The main security problem is

then the detection of such damage. We distinguish two main

categories of verification schemes: probabilistic and

deterministic protocols. The first type of protocols achieves

only probabilistic detection of data damage that increases with

the iteration of the protocol; whereas data damage detection is

complete in the deterministic case.

Protocols with entire data dependant tags (e.g., [19], [8],

[10], and [24]) provide generally deterministic guarantees for

data damage detection; even though, the majority of

verification protocols in the remaining categories

probabilistically check data integrity for performance

concerns.

With probabilistic verification, the assurance on data

integrity preservation is increased with the iteration of the

verification protocol. For one stateless protocol instance, [20]

computed the probability of detection as:
 ()

where c is the number of blocks that are randomly checked and

d the number of blocks destroyed by the holder. The authors

showed that the probability of detection may approximate

100% for a small number of blocks being checked (about 10

blocks are checked for data probabilistic destruction < 0.5).

The probability exponentially increases by increasing the

number of aggregated blocks in a challenge message.

Besides a prototype implementation, [5] formally analyzed

the security of their probabilistic protocol HAIL against an

active and mobile adversary. This kind of adversary can

corrupt multiple (but up to a certain number) storage hosts

within any given time step. This adversary is capable of

corrupting all storage hosts at different times. The security

analysis demonstrated that it is possible to realize a high

probability of detection, even with partial data verification.

Data dissemination into the system may expose the

verification protocol to new attacks. Collusion attacks whereby

multiple holders collude so that only one of them keeps a data

copy that will be used to correctly answer all verifier’s

challenges directed toward these holders. Preventing this

attack may consist on personalizing each copy to its holder, as

explained in [6] and [25], or using an erasure coding

mechanism for data replication. Even without a collusion

attack, the verification protocols based on the replication

technique are still vulnerable to replay attacks where one of the

holders may derive or retransmit a response captured from

another holder’s response message. This attack can be

hampered by using common authentication and encryption

mechanisms during the verification process.

4.2 Efficiency

The costs of verifying the proper storage of some data

should be considered for the two parties that take part in the

verification process, namely the verifier and the holder.

Communication overhead. The size of challenge response

messages must be optimized. Still, the fact that the proof of

knowledge has to be significantly smaller than the data whose

knowledge is proven should not significantly reduce the

security of the proof.

Communication overhead is significantly low for the

majority of the presented protocols, notably the more

cryptographically advanced ones (using for instance elliptic

curve cryptography or bilinear maps in respectively [24] and

[32]), or replication based schemes (e.g., [5], [27]) since

challenges and responses are aggregated between all replica

holders.

The size of challenge and response messages is generally

fixed for deterministic verification approaches. On the other

hand, some probabilistic approaches, such as [20], have

traded-off the size of these messages with the precision of the

verification process: the larger the challenge-response

messages are, the more accurate the verification should be.

Storage overhead. The verifier must store a meta-information

that makes it possible to generate a time-variant challenge

based on the proof of knowledge protocol mentioned above

for the verification of the stored data. The size of this meta-

information must be reduced as much as possible even though

the data being verified is very large. The effectiveness of

storage at the holder must also be optimized. The holder

should store the minimum extra information along with the

data.

Protocols that rely on data independent and reusable

metadata or on the replication technique have proved that it is

possible to reduce storage overhead at maximum; even though

such techniques were less stringent with respect to other

considerations (e.g., concerning data damage detection).

Additionally tags relating to the whole data are generally

smaller than the sum of tags relating to single data blocks.

Actually, the number of block tags is the point of tradeoff

between storage overhead and computation complexity at the

holder side.

CPU usage. Response generation and response verification

respectively at the holder and at the verifier should not be

computationally expensive. Generally probabilistic

verification protocols that require from the holder to look up

for a limited number of blocks (not the entire data) to compute

a correct response are able to achieve good performance. This

is the case with protocols using block-dependant tags; even

though, this latter type of protocols requires more storage

space to store such tags.

PPNA-251 9

Computation complexity at the holder side is the main drain

of protocols using entire data-dependant tags. These protocols

are generally based on expensive functions that are applied to

the whole data. To overcome this problem, improved versions

(e.g., [28], [25]) have been proposed whereby the data is split

into multiple blocks from which tags are produced. With this

technique, computation complexity at the holder is reduced;

on the other hand, the holder or the verifier should store more

tags. Nevertheless, data damage detection continues to be

deterministic in these protocols since computation operations

over all blocks and tags are aggregated using random

coefficients.

Table 3 Comparison of some examples of remote data

integrity verification protocols in terms of performance. The

variable n is denotes the number of blocks that structure the

remote data. The variable c gives the portion of the data (in

number of blocks) that is being checked.

Protocols

Perf. parameters

Tag-based

Data

replication-

based, e.g.,
[27]

Data dependant

Data

independent
e.g., [12]

Entire

data

e.g.,
[24]

Data

block

e.g.,
[20]

Comm. overhead O(1) O(c) O(1) O(c)

Storage

over.

At verifier O(1) O(1) O(c) O(1)

At holder O(1) O(n) O(c) O(1)

CPU

usage

At verifier O(1) O(c) O(1) O(c)

At holder O(n) O(1) O(1) O(1)

Table 3 summarizes the discussed performance effects of

some of the described protocols from both the holder and the

verifier sides. For instance, the table presents some tradeoff

points, for example, in [24] where the computation complexity

at the holder is extensive but can be counterweighed with

probabilistic verification (using the variable c, rather than n)

like in [20]. The table shows also that the storage overhead at

the holder has been reduced at maximum in [27] compared to

[20] and [12].

The performance analysis provided in [33] gives also the

order of magnitude of storage and communication overhead

for some of the verification protocols. The estimated orders of

magnitude include a security parameter to stress on the

security-performance tradeoff that these protocols should

realize. Performance analysis based on real implementation, as

in Bowers at al.’s proof of retrievability protocol [34], shows

noticeable overheads in the time to access the file from the

holder’s disk. Probabilistic approaches are then more

appropriate for large files, compared to deterministic

protocols.

4.3 Scalability

The self-organizing style of the P2P storage system entails

specific features of the verification protocol. The verification

protocol should for instance scale to large populations of data

owners. Verification information should be either self-carried

by the data verifiers, or stored by the holders along with the

data, or even made available in a public repository. The latter

alternative is more robust since the information essential to the

protocol realization is reliably stored in the system rather than

kept by a single entity.

Verification protocols that rely on the replication technique

(like [5] and [27]) do not need more storage space than it is

required by the replication mechanism. Additionally, protocols

with data independent tags (such as [11]) require information

storable at a public space and reusable for any data. We argue

that these two types of verification protocols are the most

scalable and manageable for large population of peers.

Moreover, self-organization addresses highly dynamic

environments like P2P networks in which peers frequently

join and leave the system: this assumption implies that the

owner is able to delegate data storage evaluation to verifiers.

In this scenario, verifiers should act as third parties ensuring a

periodic evaluation of holders after the owner leaves. The

need for scalability also pleads for distributing this verification

function, in particular to distribute verification costs among

several entities. Last but not least, ensuring fault tolerance

means preventing the system from presenting any single point

of failure. To this end, data verification should be distributed

to multiple peers as much as possible. The data should also be

replicated to ensure its availability, which can only be

maintained at a given level if it is possible to detect storage

faults.

Protocols that allow delegating the verification task to other

peers from the network can scale to a large and dynamic

network. The protocol in [24] is the first to call for such

property in order to deploy the storage application into the

P2P context (as well [20] in the ad hoc context). The majority

of the presented protocols may provide such delegability if the

metadata needed for verification is either public or just

individually secret (i.e., revealing the secret will only

compromise the verification protocol taking place between a

given verifier and a given holder). Some tag-based protocols

(e.g., [8], [10], [24], [28]) employ tags derived from the data

and some public information and rely on the random challenge

to include the secret. Other tag-based protocols (e.g., [23], [2],

[9]) construct tags produced from the data and a secret key but

verifiable by the corresponding public key.

Since, it is difficult to fulfill all the desired requirements as

explained in 2.2, such protocols realize tradeoffs among these

requirements.

5 Extensions

A verification protocol allows checking remote data

integrity. The protocol should be transportable to any storage

application. For backup or archiving applications, data should

survive during a long period of time, and therefore

maintenance mechanisms are needed in order to maintain the

replication rate at an optimal level. On the other hand, for

distributed storage applications and file systems, data is

generally very dynamic, thus it should be possible to perform

dynamic operations on remote data in an efficient and secure

way.

PPNA-251 10

5.1 Storage maintenance

Data maintenance can be performed proactively whereby

data is re-copied periodically in the network, as proposed by

[14]. The degree of data redundancy in the network is

frequently adjusted in function of locally estimated network

dynamic properties. This technique provides only probabilistic

guarantees for data availability. It may be sufficient if the

degree of data redundancy is considerably high. Otherwise,

deterministic guarantees should be provided by regularly

checking storage at data holders. Furthermore, the technique of

[14] takes into account peer dynamics (i.e., transient or

permanent connection or failure), but not their potential

misbehavior.

 With reactive maintenance, data is re-copied if the

corruption or destruction of at least one data copy is

discovered. Data possession verification protocols allow the

verifier to detect (either deterministically or probabilistically)

whether the holder destroyed data. The detection of data

destruction triggers regeneration of a new data copy at another

holder in order to maintain a high (or at least a minimum)

replication rate. [24] suggested that this task should not be

solely tackled by the owner, since it does not often participate

in the verification process. Therefore, the task should be

conferred to the other participants in the verification process:

verifiers and holders should then cooperate in order to

regenerate a new data replica that will be stored at a volunteer

peer. For this, the authors proposed to use random linear

erasure coding to make possible the generation of new codes

supplying the network with new blocks. They showed based

on a theoretical model that with such maintenance mechanism

data is made persistently available and reliable at a high

replication rate in average.

5.2 Supporting dynamic data operations

The verification protocol should allow the owner to perform

operations on the remote data while maintaining the same

level of data correctness assurance. Several protocols

supporting dynamic data operations have been proposed with

a majority using data block tags. The authors of [1] have

proposed to rely on pre-computed challenge-response couples

that have been processed over multiple different blocks from

the data. These couples are able to be updated if some blocks

are modified, deleted, or inserted without the knowledge of the

remaining blocks stored at the holder.

[9] and [31] suggested to rely on authenticating hash tables

(e.g., Merkle hash tree, skip-list) to guarantee the update of the

verification metadata without having to transmit the whole

data to the owner.

A prominent advantage in using block-dependant tags is that

it enables the protocol to support dynamic operations at block

level. This has been demonstrated by [9] that proposed a rank-

based skip list [26]. A skip-list is another authenticating hash

table but it does not take into account the blocks’ indexes;

hence the notion of ranks introduced by Erway et al. The

verifier keeps the label of the start node in the skip list. The

bottom level nodes store block tags derived for a block di as:

When the owner updates its data that is stored at the holder,

this latter computes a new root that can be validated using the

old one and having the blocks that have been modified or

inserted.

[31] proposed to use a Merkle Hash tree [16] taking data

blocks as tree leaves and the metadata as the tree root. For

verification, the authors have proposed a bilinear pairing-based

verification where tags have this form:
 (()

)
where h is a hash function, u is a random element in the first

group of the bilinear map’s input, and α is the owner secret.

The verifier makes a double check. It first verifies the position

of a set of data blocks chosen randomly. It then checks the

integrity of these blocks using a bilinear map function (cf.

[18]) of the public key g2

 (g2 is the generator of the second

group in the bilinear map’s input). Since block indices are

verified using the Merkle hash tree, they are not represented in

the tags. Data update causes a modification of the root of the

Merkle hash tree. The new root is computed by the holder and

is verifiable having the old root and the updated blocks.

Both schemes use hash tables to generate proofs of data

update at, however, block level. For example, to update a byte

of a certain block, the whole block should be modified.

Moreover, deleting a byte from a block changes the following

blocks. [9] described a technique that allows supporting

variable-sized blocks. The technique consists in changing the

rank which is one of the attributes associated to the nodes

forming the skip-list [26]. The rank of a node at the bottom

level becomes equal to the size of its associated block. For the

internal node rank, it becomes equal to the number of bytes

reachable from each of them. Thus, data update can be

performed at byte-level.

Dynamic data implies that the system requires a versioning

control in order to synchronize data replicas at holders. [9]

proposed another technique to extend their scheme with a

versioning system based here again on the skip-list.

6 Conclusion

In this survey, we analyzed a large list of protocols for

remote data integrity verification and compared them. From

this list, we have identified the advantages and drawbacks of

each of these protocols; hence, identifying the uses to which

some of these protocols are more fitting than the others. For

instance, probabilistic verification is the most retained

technique if the holders store large amount of data, since the

lookup of the entire data in their memory incurs more

significant costs than fetching a small amount of data. In the

case where the holders are very dynamic, replication-based

verification becomes less appealing because of the difficulty

to discover a large number of holders connected to the

network during the same period of time.

The proposed verification protocols can be employed in

several other distributed storage systems to control data

integrity. In a cloud storage for instance, the client, by

periodically checking the integrity of its remote data, may

detect damage that is not necessarily due to the misconduct of

the dedicated storage servers in the cloud, but because these

latter may be compromised and then the storage system may

be subject to attacks.

PPNA-251 11

The majority of the existing verification protocols are built

with data integrity verification as primary objective. Other

security primitives like guarantying data confidentiality or

owner privacy are generally neglected; though, such properties

are of great interest in an open system like the P2P network.

Moreover, these protocols consider a storage system with a

single reader/writer. To support multiple readers and/or

writers, a versioning system controlled by an access control

protocol should be envisioned.

Designing remote data integrity verification is still a hot

topic in the research community and further performance

improvement and practical extensions (e.g., [30]) to suit a

large spectrum of storage applications are underway.

References

[1] Ateniese G., Di Pietro R., Mancini, L. V., and Tsudik, G. 2008. Scalable
and Efficient Provable Data Possession. In Proceedings of the 4th

International Conference on Security and Privacy in Communication

Networks (SecureComm'08), pp. 1–10, 2008.
[2] Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson,

Z., and Song, D. 2007. Provable data possession at untrusted stores. In

Proceedings of the 14th ACM conference on Computer and
communications security, ACM, 2007, 598-609.

[3] Bellare, M., Goldreich, O., and Goldwasser, S.. Incremental Cryptography

and Application to Virus Protection. In Proceedings of the 27th annual
ACM symposium on Theory of computing, p.45-56, May 29-June 01,

1995, Las Vegas, Nevada, United States.

[4] Blum, M., Evans, W. S., Gemmell, P., Kannan, S., and Naor, M. 1991.
Checking the Correctness of Memories. In 32nd Annual Symposium on

Foundations of Computer Science, pages 90-99, San Juan, Puerto Rico, 1-

4 October 1991.
[5] Bowers, K. D., Juels, and A., Oprea, A. 2009. HAIL: a high-availability

and integrity layer for cloud storage. 16th ACM Conference on Computer

and Communications Security CCS, November 9 - 13, 2009.
[6] Caronni, G. and Waldvogel, M. 2003. Establishing Trust in Distributed

Storage Providers. In Proceedings of 3rd IEEE International Conference

on P2P Computing, pp. 128-133, Linkoping, Sweden, September 2003.
[7] Chang, E. C. and Xu, J. 2008. Remote Integrity Check with Dishonest

Storage Server. 13th European Symposium on Research in Computer

Security (ESORICS), pp.223-237, 2008.
[8] Deswarte, Y., Quisquater, J.-J., and Saïdane, A.. Remote Integrity

Checking. In Proceedings of 6th Working Conference on Integrity and

Internal Control in Information Systems (IICIS), 2004.
[9] Erway, C., Kupcu, A., Papamanthou, C., and Tamassia, R. 2008. In

Proceedings of the ACM International Conference on Computer and

Communications Security (CCS), pages 213-222, Chicago IL, USA, 2009.
[10] Filho, L., D., G., and Barreto, P. S. L. M. 2006. Demonstrating data

possession and uncheatable data transfer. Cryptology ePrint Archive,

Report 2006/150, 2006. http://eprint.iacr.org
[11] Golle, P., Jarecki, S., and Mironov, I. 2002. Cryptographic Primitives

Enforcing Communication and Storage Complexity. In Proceeding of
Financial Cryptography, pages: 120-135, 2002.

[12] Juels, A., and Kaliski, B. S. 2007. PORs: Proofs of retrievability for large

files. Cryptology ePrint archive, June 2007. Report 2007/243.
[13] Koblitz, N. 1987. Elliptic curve cryptosystems. Mathematics of

Computation, Volume 48, pages: 203-209, 1987.

[14] Leng, C., Terpstra, W. W., Kemme, B., Stannat, W. and Buchmann, A. P..
Maintaining replicas in unstructured P2P systems. CoNEXT, page 19.

ACM, 2008.

[15] Lillibridge, M., Elnikety, S., Birrell, A., Burrows, M., and Isard, M. 2003.
A Cooperative Internet Backup Scheme. In Proceedings of the 2003

Usenix Annual Technical Conference (General Track), pp. 29-41, San

Antonio, Texas, June 2003.
[16] Merkle, R. C. 1987. A Digital Signature Based on a Conventional

Encryption Function. In CRYPTO '87, Conference on the Theory and

Applications of Cryptographic Techniques on Advances in Cryptology
(1988), pp. 369-378.

[17] Naor, M., and Rothblum, G. N. 2005. The Complexity of Online Memory

Checking. In Proceeding of 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2005), pp. 573-584.

[18] Okamoto, T. 2006. Cryptography based on bilinear maps. The 16th

International Symposium on Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes - AAECC-16, Lecture Notes in Computer

Science Vol.3857, pp.35-50, Springer-Verlag, 2006.

[19] Oualha, N. 2009. Security and cooperation for peer-to-peer data storage.
PhD Thesis, EURECOM/Telecom ParisTech, June, 2009.

[20] Oualha, N. and Roudier, Y. 2007. Securing ad hoc storage through

probabilistic cooperation assessment. 3rd Workshop on Cryptography for
Ad hoc Networks, July 8th, 2007, Wroclaw, Poland. Electronic Notes in

theoretical computer science, Volume 192, N°2, May 26, 2008, pp 17-29.

[21] Oualha, N. and Roudier, Y. 2008. Reputation and Audits for Self-
Organizing Storage. In Proceedings of the 1st Workshop on Security in

Opportunistic and SOCial Networks (SOSOC 2008), Istanbul, Turkey,

September 2008.
[22] Oualha, N. and Roudier, Y. 2010. Securing P2P Storage with a self-

organizing Payment Scheme. 3rd International Workshop on Autonomous

and Spontaneous Security (SETOP 2010), September 23, 2010, Athens,
Greece.

[23] Oualha, N., Önen, M., and Roudier, Y. 2008. A Security Protocol for Self-

Organizing Data Storage. 23rd International Information Security

Conference (IFIP SEC 2008), Milan, Italy, pp. 675-679, September 2008.

[24] Oualha, N., Önen, M., and Roudier, Y. 2010. Secure P2P Data Storage

and Maintenance. Hindawi International Journal of Digital Multimedia
Broadcasting, vol. 2010, Article ID 720251, 2010.

[25] Oualha, N., Önen, M., and Roudier, Y., 2008. A security protocol for self-

organizing data storage. EURECOM Research Report RR-08-208
(extended version), 2008.

[26] Pugh, W. 1989. Skip Lists: A Probabilistic Alternative to Balanced Trees.
In Workshop on Algorithms and Data Structures (1989), pp. 437-449.

[27] Schwarz, T., and Miller, E. L. 2006. Store, forget, and check: Using

algebraic signatures to check remotely administered storage. In
Proceedings of the IEEE Int'l Conference on Distributed Computing

Systems (ICDCS '06), July 2006.

[28] Sebé, F., Domingo-Ferrer, J., Martínez-Ballesté, A., Deswarte, Y., and
Quisquater, J.-J. 2007. Efficient Remote Data Possession Checking in

Critical Information Infrastructures. IEEE Transactions on Knowledge

and Data Engineering. Vol. 20, pp. 1034-1038. Aug 2008. ISSN: 1041-
4347

[29] Shacham, H. and Waters, B. 2008. Compact Proofs of Retrievability. In

Proceedings of Asiacrypt 2008, Lecture Notes in Computer Science, Vol.
5350, pp. 90-107, Springer-Verlag, 2008.

[30] Wang, C., Wang, Q., Ren, K., and Lou, W.. Privacy-preserving public

auditing for data storage security in cloud computing. In Proceedings of
the 29th conference on Information communications, p.525-533, March

14-19, 2010, San Diego, California, USA.

[31] Wang, Q., Wang, C., Li, J., Ren, K., and Lou, W. 2009. Enabling public
verifiability and data dynamics for storage security in cloud computing.

14th European Symposium on Research in Computer Security (ESORICS

2009), Saint Malo, France, pp. 355–70, September 21-25, 2009.
[32] Zeng, K. 2008. Publicly Verifiable Remote Data Integrity. 10th

International Conference on Information and Communications Security

(ICICS 2008), pp. 419-434, 20 - 22 October, 2008.
[33] Dodis Y., Vadhan S., and Wichs D. 2009. Proofs of Retrievability via

Hardness Amplification. In Proceedings of the 6th Theory of

Cryptography Conference on Theory of Cryptography (TCC '09), Omer

Reingold (Ed.). Springer-Verlag, Berlin, Heidelberg, 109-127.

[34] Bowers K. D., Juels A., and Oprea A. 2009. Proofs of retrievability:

theory and implementation. In Proceedings of the 2009 ACM workshop on
Cloud computing security (CCSW '09). ACM, New York, NY, USA, 43-

54.

PPNA-251

12

12

