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ABSTRACT
Marginal Alphabets (MEDA) were proposed as an alterna-
tive to Bag of Words (BoW) for image representation. They
aggregate sets of locally extracted descriptors (LEDs) by us-
ing visual alphabets based on the marginal approximation
of the LED components. Compared to the exponential com-
plexity of the BoW codebooks, the MEDA model is very
efficient because each dimension of the LED is quantized
independently. However, MEDA lacks of considering the
relations between the LED components, loosing precious in-
formation for image representation.
In this paper, we design Multi-MEDA, a shift-invariant ker-
nel for MEDA signatures that allows to reintroduce, at a
kernel level, the connections between LED components that
were broken with the independent quantization. With our
approach, we can derive in a polynomial time a multivari-
ate model from the marginal approximations stored in the
MEDA vector, without explicitly computing any multidi-
mensional codebook. Results show that the MEDA signa-
ture increases its discriminative power when analyzed through
the Multi-MEDA kernel evaluation. Moreover, we show that
the model generated my the Multi-MEDA-based learning
brings complementary information compared to traditional
kernels over MEDA and BoW signatures: our experiments
on the TRECVID database show that the combination of
these approaches brings a substantial improvment compared
to BoW-only classification.

Categories and Subject Descriptors
I.4.7 [Artificial Intelligence]: Scene Analysis

Keywords
Scene Recognition, Feature Extraction, CBIR

1. INTRODUCTION
Visual signatures represent a crucial element for the de-

velopment of effective Content-Based Multimedia Retrieval
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Figure 1: Multi-MEDA: a kernel over MEDA de-
scriptors for multivariate probability modeling from
marginals

(CBMR) and categorization systems. In CBMR frameworks,
signatures are extracted from visual data, and then mod-
eled using kernel-based learning techniques such as Support
Vector Machines. Image signatures based on aggregation of
locally extracted descriptors (LEDs) such as SIFT [9] have
been proved to be effective representations for CBMR when
associated with kernel machines.
One of the most popular LED-based model is probably the
Bag of Visual Words model (BoW). In this approach, LEDs,
namely local feature vectors of fixed length k, are first com-
puted to describe the surrounding of interest points [4] or
densely sampled points [3]. A codebook of w visual words is
then generated by vector quantizing the k-dimensional space
defined by the LED. Each image is then mapped into a w-
dimensional signature by collecting the occurrences of such
words. In order to avoid information loss during this map-
ping, the codebook needs to properly reflect the joint dis-
tribution of the LED components: the codebook creation is
therefore generally performed by quantizing the LEDs with
clustering techniques such as k-means [2] or hierarchical clus-
tering [10]. Despite its effectiveness, a negative impact of the
BoW model is its associated complexity and storage cost,
that increase exponentially with the length of the LED.
An alternative and complementary approach for LED ag-

gregation is represented by the MEDA [12] signature. In this
approach, the visual codebook is a set of n uni-dimensional
bins (“letters”) per dimension, obtained by quantizing the
marginal distribution of each component of the LED. The
final image representation is a k×n histogram collecting the
occurrences of such letters at each dimension. The MEDA
signature represents therefore a concatenation of the approx-
imated marginal distributions of the image LEDs compo-
nents. This approach is very efficient, because it performs
the vector quantization in a 1-d space, eliminating the cor-
relation between the LED components by analyzing their
distributions independently. However, by doing so, MEDA



brakes the relationships between the LED components, loos-
ing a lot of useful information for image representation.
In this paper we propose Multi-MEDA, namely a new ker-
nel function designed for the MEDA signature, that allows
to model the joint contribution of the LED components
in an efficient way. Our Multi-MEDA kernel models in a
polynomial time the k-dimensional LED space, by deriving
a multivariate probability from the k marginal approxima-
tions. With our approach, we keep as input to the kernel
machine the classic, marginal-based MEDA signature, but
we increase its discriminative power by analyzing it under
a multidimensional perspective through the kernel formula-
tion.
The main idea behind the Multi-MEDA kernel is that, since
MEDA considers each dimension of the LED as an indepen-
dent variable, we can approximate the joint distribution of
the LED components by multiplying their marginal distribu-
tions. However, an image signature supporting such model
would require a k-fold cartesian product of n-dimensional
vectors, namely the multiplication of the approximations
concatenated in the MEDA signature. This would lead again
to an exponentially complex problem (O(nk)), with a code-
book of nk elements and an extremely high-dimensional fea-
ture. For this reason, the key aspect of our approach is that
we do not compute explicitly the image signature nor the
visual dictionary, and instead we shift the computation of
the multivariate probability inside the kernel machine. As a
matter of fact, Multi-MEDA is as shift-invariant kernel that
embeds the marginals multiplication, i.e. the cartesian prod-
uct of the marginal approximations. The most important
property of our kernel is that it does not require exponen-
tial time to achieve the multidimensional modeling. We in-
deed show that the cost of computing the k-dimensional joint
probability with the Multi-MEDA kernel becomes polyno-
mial with the dimension of the LED and the number of let-
ters in the MEDAcodebook ((O(nk)). Therefore, although
MEDA is built to describe marginal 1-d probabilities, when
place the Multi-MEDA kernel on top of MEDA signatures,
we can reconsruct a model of the LED space that is based on
a k − d multi-variate probability, without needing to quan-
tize the k − d space.
Compared to the models generated by traditional SVM ker-
nels over MEDA signatures, Multi-MEDA represents the
LED space under a new, complementary point of view, as
shown in Fig. 1. Multi-MEDA allows therefore to explore
two spaces (marginal-based and multidimensional) with the
same feature (MEDA). Moreover, both the MEDA model
and Multi-MEDA model are in turn different from the joint
distribution approximation generated by traditional BoW
approaches. By introducing Multi-MEDA, we therefore in-
troduce a new discriminative source of information regard-
ing the LED distribution, that can be combined with the
MEDA and BoW models, leading to a significant increase
(+50 %) of the CBMR performances, without requiring the
computation of new LEDs, and without introducing expo-
nential complexity. We test the effectiveness of our solu-
tion for scene recognition and video retrieval on a variety of
challenging datasets (e.g. the TrecVid [14] 2010 database),
and show that the Multi-MEDA model achieve good per-
formances for all the tasks. Moreover, we show that The
combination of MEDA, Multi-MEDA and BoW produces
substantial improvements (more than 50% on the TrecVid
data) compared to BoW-only retrieval.

The rest of the paper is organized as follows: in Sec. 2 we
give an overview of the related work, Sec. 3 gives a sta-
tistical explanation of the differences and complementarities
between MEDA, Multi-MEDA and BoW. In Sec. 4 we give a
brief overview of the MEDA model, and show its view from
a kernel perspective. In Sec. 5 we detail the implementa-
tion of our new kernelized solution and finally in Sec. 6 we
validate the proposed framework with experimental results
on scene categorization and video retrieval.

2. RELATED WORK
In Multi-MEDA we look at the cooperation between LED-

based signatures and kernels, and we shift some statistical
aspects of the features at a kernel level. In this section, we
will summarize the relevant work in the field that directly
relates to our proposed approach. First, we will show the
most significant contributions in the area of the LED-based
image representation. We will then give an overview of the
state-of-the art works that focus on the combination between
LED aggregators and kernels to improve the discriminative
ability of the image signature.
The popular BoW model is the most used framework for
image representation based on locally extracted descriptors.
A major issue in the BoW model is the way in which the
LED quantization in the k-d space is performed, namely,
the method used to define the visual dictionary. Csurka et
al. in [2] first introduced the BoW approach, addressing the
quantization problem by applying k-means clustering on the
LEDs of the training set. This approach was then extended
in [17] to select the optimal set of words based on a discrim-
ination measure. Various clustering techniques have been
used later on to vector quantize the LED space. For exam-
ple, to create visual codebooks, in [8] a mean-shift clustering
is proposed to obtain visual words from LEDs and in [10]
LEDs are hierarchically quantized in a vocabulary tree. An
alternative approach is represented by [15], where each di-
mension of the LED is quantized into a fixed set of bins,
and then the dictionary is chosen based on the discrimina-
tive power of the resulting hypercubes. All the mentioned
approaches are proved to be very effective for image cate-
gorization and retrieval tasks. However, one of the major
drawbacks is that they perform the codebook computation
in the k-dimensional space, which implies exponential com-
putational time with the number of dimensions of the LED.
Another view is given by the MEDA model: a 1-dimensional
search approach was proposed in [12], that quantizes each
dimension of the LED into a fixed number of bins, and ob-
tains the image signature by counting the occurrences of
such bins in the components of the image LED. This ap-
proach is proved to be very light in terms of computation,
and as efficient as BoW for moderate dictionary sizes. Since
the quantization is performed independently for each dimen-
sion, MEDA does not take into account the relationships
between the behavior of the single LED components. How-
ever, LED are vectors that describe an entire image region,
and each element in a LED concur in describing the sur-
roundings of an interest point. Therefore, eliminating the
correlation between the LED elements can cause losses of
precious information for image description.
This motivates us to perform a kernel-based analysis on the
MEDA signature, allowing to learn a multivariate model
that considers the relations between the LEDs components.
To our knowledge, the Multi-MEDA approach is one of the
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Figure 2: Statistical and time complexity dif-
ferences between various LDE aggregators: (a)
MEDA, (b) Multi-MEDA (c) Lattice-based BOW
(d) Clustering-based BOW.

first attempts to improve the MEDA model by focusing on
the kernel properties.
As a matter of fact, the cooperation between LED aggre-
gators and kernels has mainly been investigated for extend-
ing the traditional BoW model. Various steps of the BoW
approach has been improved through the interaction with
kernels: a better codebook generation is achieved in [18] by
using the Histogram Intersection Kernel in an unsupervised
manner, while in [5] codebooks are used as free parameters
of a Multiple Kernel Learning-based learning algorithm. In
[16], kernel density estimation techniques are used to model
ambiguities in visual word assignment. Lazebnik et al. in
[7] use Spatial Pyramid Kernels to add the spatial infor-
mation in the BoW model learning. The learning step is
also improved in [1] by mapping the image LEDs into a low
dimensional feature space, then averaging such vectors to
obtain a set-level feature, and finally using a linear classifier
to model the resulting vectors.
Our approach is different from the mentioned approaches
because, first of all, we do not analyze the BoW model, but
we extend instead the MEDA model to a multi-dimensional
model through a kernel-based learning. Moreover, although
we generate a model that works on a multivariate proba-
bility, the space that we explore through the Multi-MEDA
kernel; is statistically different from the space determined by
vector quantization in BoW. We will see in the next section
the reasons of this difference.

3. FEEDING 2 BIRDS WITH ONE SEED:
SAME FEATURES, 2 (3) SPACES

The kernelized approach proposed in this paper represents
a new technique to approximate the multivariate probability
distribution of the LEDs in an image dataset. As mentioned,
various approaches [2, 12, 15] are available in literature to
produce compact image signatures based on the distribution
of the LEDs. In this section, we will show the novelty intro-
duced by Multi-MEDA with respect to existing techniques
and demonstrate that our method is complementary to the
state-of-the-art LED aggregators from a statistical point of
view .

3.1 Multi-MEDA VS Existing LED-based sig-
natures

Here we analyze statistically the BoW [2] and the MEDA
[12] models and compare them with the Multi-MEDA ap-
proach. For simplicity, we assume a 2-d space, e.g. an ideal
case where the length of the LED is k = 2. A visual repre-
sentation of our analysis can be seen in Figure 2. We define
as X = (xi1, x

i
2), i = 1, . . . , t the set of t descriptors extracted

from a given image set.
In the BoW model(see Fig. 2(d)), vector quantization is per-
formed in the LED k-dimensional space using a variety of ap-
proaches [2, 8, 15]. No matter the approach used, the output
is a codebook of Nbow vectors cbow = {cbow1 , . . . , cbowNbow

} that
allows to approximate the joint distribution of the LED com-
ponents, namely the multivariate pbow = p(x1, x2). Lattice-
based models like [15] (see Fig. 2(c)) follow the same model:
although each dimension is quantized into a fixed number of
bins Nlat, The vocabulary is obtained by generating all the
resulting Nk

lat hypercubes, and then discarding the less dis-
criminative ones based on the conditional joint distribution
of the LED components.
In the MEDA model, as shown in Fig. 2 (a), each dimension
of the LED is quantized independently, therefore the code-
book is a set of Nmd letters for each dimension,
cmd = (cmd

1,1 , . . . , c
md
1,Nmd

, . . . , cmd
2,1 , . . . , c

md
2,Nmd

),
that reflects the marginal of each dimension, namely the 1-
dimensional pmd

1 = p(x1), or pmd
2 = p(x2).

In our Multi-MEDA model, Fig. 2(b), we exploit the in-
dependence between the LEDs dimensions introduced by
MEDA, and we estimate the joint LEDs distribution by mul-
tiplying the 1-d marginals, therefore pmmd = pmd

1 · pmd
2 =

p(x1) · p(x2). Since the computation of this multivariate
distribution is performed inside the Multi-MEDA kernel, in
our approach we do not need to compute a new visual signa-
ture or express explicitly the shared codebook, and we use
instead as input the traditional MEDA vector.

3.2 1 Signature, 2 Spaces. 1 LED, 3 spaces.
pmd and pmmd are therefore generated using the same fea-

ture vector, but analyzing it with different kernels (tradi-
tional RBF or linear in the first case, Multi-MEDA in the
second case). However, while the first one is a 1-d, marginal
probability, the second is an actual multivariate probability
distribution. Therefore, with our approach, we allow to con-
struct two different models of the LED space using the same
input vector. The two models generated represent different
sources of information regarding the position of the exam-
ples in the feature space. In this way, we “feed two birds
with one seed”: we explore two, complementary, probability



distributions using one single descriptor.
Furthermore, if we consider the LED as the input “seed”,
we are in a way actually feeding “three birds”. As a matter
of fact, pbow and pmmd are both multi-dimensional approx-
imations of the LED distribution. However, while the first
one represents an estimation of the real joint probability,
the second is a k-d probability inferred from the set of k,
monodimensional pmd. We can therefore say that also pbow

and pmmd allow to learn the LED space with different, com-
plementary approaches. Moreover, it was already proved in
[12] that MEDA and BoW represent orthogonal approaches
to aggregate LEDs. We can therefore deduce that the three
approaches discussed (BoW, MEDA and Multi-MEDA) rep-
resent three different cues to explore the LED space, and
that we can therefore combine their contributions in order
to maximize the CBMR performances.

4. MATCHING MEDA WITH KERNELS:
MARGINAL APPROXIMATIONS

In order to understand the Multi-MEDA approach, we de-
tail in this section the implementation of the MEDA signa-
ture and show its kernel perspective, namely how the kernel
function is formulated when evaluating MEDA vectors.

4.1 Marginals Estimation
for Descriptors Aggregation

In the MEDA approach, each dimension of the LED is
quantized in a set of n bins, namely the “letters” of the vi-
sual alphabet. The final image signature is then obtained
by collecting the number of feature vectors that fall into a
given bin, for each dimension.
Like traditional BoW models, for an image I, m salient
points are detected in the image. For each point, a k-
dimensional normalized SIFT descriptor xi = (xi1, . . . , x

i
k),

i = 1, . . . ,m is then computed to describe its surrounding
region. Each component xj , j = 1, . . . , k of the descrip-
tor is then quantized into n discrete values βj,b, b = 1, . . . , n
according to its marginal distribution p(xj). A set of k inde-
pendent alphabets c1, . . . , ck results from this quantization,
where cj = βj,1, . . . , βj,n.
The final image representation is a k × n histogram

v = (v1,1, v2,1, . . . , vn,1, v1,2, . . . , vk,n). (1)

Each element vj,b = p(xj,b) = #{xi : xij ∈ βj,b} in the
MEDA signature counts how many image descriptors at po-
sition j fall into bin b.1

4.2 MEDA from a kernel perspective
In retrieval frameworks, kernel machines learn the input

space using as input visual descriptors such as MEDA. In
the learning phase, the machine learns how to separate the
feature space into two classes. In order to do so, kernels
are used to evaluate similarities between such features and
define an optimal decision boundary, namely a hyperplane
in the feature space.2

1#{·} is a counts the number of the elements that fulfill the
condition in brackets.
2When the input samples are linearly separable, the similarity
between two features v and w is computed with a simple dot
product v · w. However, in many cases, e.g. in multimedia data
representation, decision boundary is not linear: one common
solution is to define a transform φ that maps the input space

Among the many kernel function used to model the feature
space (e.g. chi-square, polynomial), the Radial Basis Func-
tion (RBF) kernel has been shown to perform well for image
retrieval applications [19].
For two input vectors v and w, the RBF kernel has equation

k(v, w) = exp(−λ||v − w||2).

When MEDA is used in conjunction with a RBF-based clas-
sifier, the kernel function evaluates the differences between
the letters frequencies for each pair of training images I and
J . In order to show this behavior, We will use the following
notation:

• for image I, the LEDs are in the set x = {xij} and the
MEDA signature is v = {vj,b}
• for image J , the LEDs are in the set y = {yij} and the

MEDA signature is w = {wj,b}
In order to understand the kernel view of MEDA, in Fig-
ure 3, we propose a 2-d representation (namely a scenario
where the LED has dimension k = 2) of the MEDA-based
feature space. In the 2-dimensional case, the kernel function
of MEDA signatures becomes:

k(v, w) = exp(−λ(
n∑

b=1

|v1,b−w1,b|2+

n∑
b=1

|v2,b−w2,b|2)

= exp(−λ(
n∑

b=1

|p(x1,b)−p(y1,b)|2+

+

n∑
b=1

|p(x2,b)−p(y2,b)|2)), (2)

i.e. for each dimension j, the sum over n bins of the squared
differences between the signature values at each bin b.
It is therefore straight-forward to extend such kernel view
and consider the real case, i.e. when k >> 2. In this sce-
nario, the kernel evaluates the marginal contribution of all
dimensions (j = 1, . . . , k) and the previous equation be-
comes:

k(v, w)= exp(−λ(
k∑

j=1

n∑
b=1

|p(xj,b)−p(yj,b)|2)) (3)

As confirmed by the summation of Eq. (3) the current for-
mulation of the MEDA signature analyzes the marginal dis-
tribution of each dimension of the LED independently, with-
out taking into account the interactions between the com-
ponents in the k-dimensional space.

5. KERNELIZED MULTI-MEDA:
MULTIDIMENSIONAL PROBABILITY
ESTIMATION FROM MARGINALS

As explained before, the MEDA modeling generates a 1-
dimensional probability, while a model based on LED k-
dimensional vectors should exploit a multivariate probabil-
ity. In the Multi-MEDA model, we derive a k-dimensional
probability from the marginal (1-d) probabilities computed
for each dimension of the LED. Since the computation of
such signature would result in an extremely high-dimensional
vector, we shift the multidimensional modeling at a kernel

in the feature space v → φ(v) and then use a kernel function
k(v, w) = φ(v) · φ(w) to represent the dot product in the high-
dimensional feature space.
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Figure 3: Placing kernels on top of MEDA: marginal (RBF/traditional kernels) and multidimensional (Multi-
MEDA kernel) approaches

level, embedding the k-d evaluation of MEDA in a RBF ker-
nel. In this section, we start from the MEDA formulation
and show its multi-dimensional extension, that we then ker-
nelize to build the Multi-MEDA model.
The MEDA vector in Eq. 1 can be seen as a set of k
n-dimensional vectors {vj} = {p(xj,1), . . . , p(xj,n)}, j =
1, . . . , n. Each vj represents the approximation of the marginal
p(xj) of the jth component of the LEDs in image I. We
want to derive a joint probability so that we can exploit the
combination of the occurrences of all the dimensions. Since
MEDA analyzes each dimension independently, in order to
estimate the joint probability, we can multiply the contribu-
tion of the marginals of all components.3

For image I, this would result in a k-dimensional vector de-
termined by the k-fold cartesian product of all vectors vj ,
∀j. The model codebook would be the cartesian product of
all the k scalar alphabets, namely the set of hypercubes:

c(1,2,...,k) = c1 × c2 × . . . ,×ck =

= {(β1,1, . . . , βk,1), . . . , (β1,n, . . . , βk,n)} =

. = {(β1,b, β2,d, . . . , βk,e}, b, d, e = 1, . . . , n

Each value of the nk-dimensional signature would be there-
fore the product of the occurrences of the unidimensional
bins that concur in generating each hypercube:

v(1,b),(2,d),...,(k,e) = p(x1,b) · p(x2,d) · . . . · p(xk,e). (4)

The number of hypercubes to consider in such multidimen-
sional formulation of the MEDA signature is exponential

3(P (A,B) = P (A) · P (B) if A,B are independent)

with the number of dimensions of the LED, which is typ-
ically 128 for traditional SIFT [9] vectors or 36 for PCA-
SIFT [6]. Treating such high-dimensional feature, even with
a small number of training samples, becomes impractical
with traditional kernel machines. This motivates us to shift
this multivariate probability computation inside an RBF-
like kernel, and create the Multi-MEDA kernel.
As proposed for the previous analysis, we start with the 2-d
example (k = 2, see Figure 3) and we then extend it to the
more realistic k-d case.
When we want to take the cartesian product of the marginals
( as in Eq. (4) when k = 2) inside an RBF-like kernel, for
the two images I and J the formulation in Eq. 3 becomes

k(v, w)= exp(−λ(

n∑
b=1,c=1

|p(x1,b) · p(x2,c)−p(y1,b) · p(y2,c)|2))

(5)
Developing the power in Eq. (5), we obtain:

k(v, w) = exp(−λ(
n∑

b=1,c=1

p(x1,b)2 ·p(x2,c)2+p(y1,b)2 ·p(y2,c)2 −

−2(p(x1,b)· (y1,b)· (x2,b)· (y2,c))))

= exp(−λ(
∑
b

p(x1,b)2
∑
c

p(x2,c)2 +
∑
b

p(y1,b)2
∑
c

p(y1,c)2

−2
∑
b

p(x1,b)p(y1,b)
∑
c

p(x2,c)p(y2,c))). (6)

The trick that allows us to compute Multi-MEDA in a
polynomial time is that, when extending Eq. (6) to the
k-dimensional space, the squares of the MEDA elements are



multiplied over all dimensions independently, and the previ-
ous Equation becomes:

k(v, w) = exp(−λ(

k∏
j=1

n∑
b=1

p(xj,b)
2+

k∏
j=1

n∑
b=1

p(yj,b)
2−

−2

k∏
j=1

n∑
b=1

p(xj,b)p(yj,b))), (7)

which has a polynomial complexity O(kn). This allows us
to use directly the original MEDA vectors as input to the
kernel-based classifier, without pre-computing the dictio-
nary hypercubes and the multidimensional MEDA (Eq.(4)).
Moreover, unlike [15], this product-based formulation allows
us to increase both the number of letters in the 1-d alpha-
bets and the LED dimension without exponential increase
of computation.

6. EXPERIMENTAL VALIDATION
We tested the effectiveness of the kernelized Multi-MEDA

on two recognition tasks, namely scene categorization and
video retrieval. We will use the following naming convention
here: MEDA is the MEDA signature learnt with traditional
kernels, Multi-MEDA is the MEDA signature learnt with
the Multi-MEDA kernel, and BoW represents the Bag of
Words vector. We compute the three models on the input
images and we compare their performances. We use them
as stand-alone descriptor and we then analyze the effects
of their combinations, on the two given tasks. In this sec-
tion, we show that our proposed multidimensional modeling
achieves good performances in both the mentioned tasks,
comparable with both MEDA and BoW. Moreover, when we
combine Multi-MEDA with the other LED aggregators, we
show that it actually provides complementary information,
as hypotized in Sec.3, bringing a significative improvement
in our experimental results.
MEDA, BoW, and Multi-MEDA share the same input seed.
Therefore, the first step of our experiments is the extraction
of a set of SIFT keypoints. We then aggregate them using
both BoW, by clustering a subset of training images using
a standard k-means algorithm, and MEDA models (using
the percentile-based technique proposed in [12]). Both sig-
natures are then learnt by chi-square kernels.
In order to compute the kernelized Multi-MEDA, we use the
MEDA signatures as input for our RBF-based multidimen-
sional kernel in Eq. (7). One major issue is that the MEDA
values are not normalized. Therefore, the products over k
dimensions in Eq. (7) result in very high values. This val-
ues become the negative exponent of the RBF kernel, and
k(v, w) becomes close to zero. The similarity between the
two vectors cannot be estimated reliably without normal-
ization. In order to cope with this issue, we normalize the
MEDA signature by m/n inside the kernel formulation. This
is because each element in the MEDA vector represents a
fraction (approximately 1/n) of the total number of vectors
(m), namely the one that take a given value in a given di-
mension. Moreover, instead of taking the product of such
small values, that would bring the exponent to zero, we com-

pute the sum of the log of those terms. 4

In the following experiments, other parameters or vector
quantization models can be used, but given the statistical
difference between the three approaches, the performances.
of the stand-alone models and their combined contributions
would not change significantly.

6.1 Scene Categorization
For the task of scene categorization, we choose two differ-

ent datasets, namely the Indoor-67 database [11], and the
Amadeus-16 database used in [13]. For each database, we
select a different experimental setup, and we look at the ex-
perimental results:
Amadeus-16 dataset: travel-related scene catego-
rization
The Amadeus dataset is a set of 100,000 hotel-related im-
ages coming from a travel service provider, that are used in
Hotel Management Platforms. This database contains 16 in-
door and outdoor scene categories, annotated from different
sources and therefore particularly subject to labeling noise.
For each category, half of the images are used for training
and the rest for testing. For this group of experiments, we
extract PCA-Sift LEDs [6]. We then compute the following
signatures

• BoW with 150 visual words

• MEDA with 5 letters per dimension (total signature
length is 180)

Both signatures are learnt with a 1-vs-all SVM with chi-
square kernel. The MEDA vectors are then used as input
for 1-vs-all SVM with Multi-MEDA kernel to compare the
performances. The three features prediction are then com-
bined with weighted linear fusion.
Results on this database show that actually the Multi-MEDA
kernel models the LED space in a meaningful and effective
way: Multi-MEDA achieves comparable results with both
BoW and MEDA, and the combination of the MEDA and
the Multi-MEDA contributions (same feature, different ker-
nels) outperforms the BoW model. Moreover, we can see
here someF evidences of the complementarity of the three
approaches: the combination of MEDA, Multi-MEDA and
BoW gives an improvement of about 6% over the MEDA-
only based classification.
Indoor-67 dataset: indoor scene categorization
This database was first introduced in [11] for indoor scene
recognition with global and local features, and it has now
become a benchmarking dataset for scene categorization de-
scriptors. It spans 67 categories with around 15500 images
of different sizes. For this database, we extract PCA-Sift
LEDs [6]. We then compute the LED aggregators, namely,
similar to [12]:

• BoW with 360 visual words

• MEDA with 10 letters per dimension (total signature
length is 360)

4Equation (7) becomes therefore:

k(v, w) = exp(−λ(
k∑
j=1

log((
n

m
)
2
n∑
b=1

p(xj,b)
2
)+

+
k∑
j=1

log((
n

m
)
2
n∑
b=1

p(yj,b)
2
)

−2
k∑
j=1

log((
n

m
)
2
n∑
b=1

p(xj,b)p(yj,b)))). (8)



0,00

0,05

0,10

0,15

0,20

0,25

A
ve

ra
ge

 P
re

ci
si

o
n

 (
%

) 

airport_inside 15 15 5 0 5 10 10 computerroom 6 6 6 11 6 11 11 inside_subway 0 38 48 43 48 57 57 poolinside 0 0 0 0 0 0 0

artstudio 5 5 0 0 0 0 0 concert_hall 35 35 25 25 15 30 30 jewelleryshop 9 9 9 9 9 5 9 prisoncell 45 40 40 35 40 45 45

auditorium 33 33 28 28 28 39 39 corridor 52 48 48 67 67 48 62 kindergarden 18 18 18 36 36 18 27 restaurant 15 15 10 5 10 10 5

bakery 16 16 21 11 21 21 21 deli 5 5 5 5 5 0 0 kitchen 5 5 0 0 0 0 0 restaurant_kitchen 0 0 4 9 9 9 9

bar 11 17 17 17 17 17 17 dentaloffice 19 19 29 29 29 33 38 laboratorywet 9 5 5 9 5 5 5 shoeshop 5 5 5 5 5 5 5

bathroom 50 33 28 50 44 39 39 dining_room 6 6 6 11 11 6 6 laundromat 18 23 14 9 14 14 14 stairscase 30 25 35 25 35 25 25

bedroom 0 0 5 0 0 0 0 elevator 11 11 0 22 11 11 11 library 0 0 20 15 25 20 20 studiomusic 37 37 42 21 42 37 42

bookstore 16 16 21 11 21 21 26 fastfood_restaurant 0 0 13 0 13 6 13 livingroom 5 5 0 0 0 0 0 subway 10 5 5 14 5 5 5

bowling 0 25 20 20 20 35 35 florist 74 74 68 79 68 79 79 lobby 0 0 10 0 15 5 5 toystore 18 14 18 9 14 18 14

buffet 0 0 33 33 33 33 33 gameroom 10 10 10 10 10 15 10 locker_room 14 14 14 19 14 19 19 trainstation 35 40 35 40 40 35 40

casino 56 56 78 67 56 78 67 garage 0 0 6 0 6 6 6 mall 20 20 30 20 30 25 20 tv_studio 33 33 22 17 28 28 28

children_room 50 50 50 44 33 50 50 greenhouse 64 73 73 55 55 64 64 movietheater 40 40 40 50 40 40 45 videostore 18 18 18 18 18 14 23

church_inside 21 21 16 11 11 16 16 grocerystore 33 33 24 33 29 33 38 museum 0 4 9 4 4 13 9 waitingroom 0 0 0 0 0 0 0

classroom 50 44 33 44 33 50 50 gym 0 0 0 0 0 0 0 nursery 5 5 0 10 0 5 5 warehouse 10 5 14 0 14 14 10

cloister 65 65 50 70 65 60 60 hairsalon 10 10 24 24 29 29 33 office 19 19 10 29 24 19 29 winecellar 14 19 19 19 14 24 24

closet 11 11 11 11 11 17 11 hospitalroom 35 35 30 50 35 35 35 operating_room 16 16 26 26 26 21 26

clothingstore 17 17 17 28 22 17 22 inside_bus 52 48 39 52 48 52 52 pantry 60 60 60 60 55 55 5018

19

20

21

22

23

24

25

A
ve

ra
ge

 A
cc

u
ra

cy
 (

%
) 

Trecvid 2010 Average Precision Amadeus-16  Avg Accuracy 

Indoor-67 Average Indoor-67 Per Class Accuracy 

(a) 

(b) 

(c) 

(d) 

27

28

29

30

A
ve

ra
ge

 
A

cc
u

ra
cy

 (
%

) 

  
          

Airplane_Flying 0,045 0,015 0,046 0,06 0,062 0,078 0,089 

Boat_ship 0,005 0,004 0,005 0,006 0,005 0,007 0,007 

Bus 0,003 0,003 0,007 0,007 0,003 0,007 0,007 

Cityscape 0,194 0,204 0,191 0,204 0,227 0,194 0,227 

Classroom 0,006 0,007 0,003 0,008 0,011 0,008 0,011 

Demonstration_or_Protest 0,033 0,037 0,033 0,037 0,041 0,035 0,042 

Hand 0,004 0,009 0,01 0,013 0,009 0,009 0,013 

Nighttime 0,05 0,062 0,111 0,113 0,076 0,121 0,122 

Telephones 0 0,001 0,001 0,001 0,001 0,001 0,001 

MAP 0,038 0,038 0,045 0,05 0,048 0,051 0,058 

Trecvid 2010 Average Precision 

(e) 
Figure 4: Experimental results for scene recognition ((b), Amadeus-16 database, and (d-e) Indoor-67
database, results per class and average accuracy) and video retrieval (average precision results on the Se-
mantic Indexing Task of Trecvid 2010 (c-))

Both signatures are used as input for 1-vs-all SVM with chi-
square kernel. The Multi-MEDA-based results are then ob-
tained by feeding a Multi-MEDA kernel-based 1-vs-all SVM
with the MEDA vector. The three contributions of MEDA,
BoW and Multi-MEDA are then combined with weighted
linear fusion.
As shown in Figure 4 (d-e), the categorization framework
proposed for this database benefits from the introduction of
the Multi-MEDA kernel. Not only the MultiMEDA brings
an improvement of about 6% over the BoW model, but also
its combination with MEDA brings a further improvement
over the BoW-only model. Moreover, the fusion of Multi-
MEDA with the other models is very effective in terms of
average accuracy: the combination of the three approaches
brings an improvement of 20% compared to the BoW-only
classification.

6.2 Video Retrieval
We use the TrecVid 2010 dataset to test the effectiveness

of our proposed approach in a video retrieval task. In par-
ticular, we focus on the challenging Light Semantic Indexing
Task (SIN), of TrecVid [14] 2010, where the participants are
asked to build systems that rank relevant shots according
to their pertinence to a given set of semantic concepts. The
system is composed of a set of features and a set of con-

cept specific SVMs that learn how to distinguish between
relevant and non relevant shots based on the distribution of
the input signatures. For a new shot, each classifier gives
a concept score, and concept scores from different features
are linearly combined to obtain the final score for each shot.
In our framework, we extract 128-length SIFT features ex-
tracted from interest points based on Harris point detector.
From such points we extract the following signatures:
• BoW with 500 words

• MEDA with a number of bin per dimension that have
been adapted for each concept (typically 10)

BoW and MEDA are learnt using a chi-square kernel. The
Multi-MEDA kernel is then applied on top of the MEDA
signatures and results are compared with Mean Average
Precision. Results in Fig. 4 (a-c) shows that the kernel-
ized solution that we propose in this paper is a good source
of information for CBMR. Multi-MEDA, as a stand-alone
model, brings an improvement of around 13% to both tra-
ditional MEDA and BoW models. The concepts for which
MEDA was not performing as good as BoW (e.g. Bus, Tele-
phones, Airplane Flying) benefit from the multidimensional
modeling in the learning phase. In the TrecVid results we
can also clearly notice the complementarity of the kernel-
ized multidimensional modeling that we propose in this pa-
per with respect to the exsiting approaches. As a matter



of fact, the combination of just two out of the three mod-
els (e.g. MEDA + Multi-MEDA) considered for this task
gives an average improvement of 30% compared to using the
traditional BoW model only. Moreover, when we fuse the
contribution of MEDA, Multi-MEDA and BoW together we
obtain a prediction on the test set that is 50% more precise
compared to traditional aggregators alone.

7. CONCLUSIONS, LIMITATION AND FU-
TURE WORK

We proposed a kernel function for MEDA signatures. Multi-
MEDA performs at a kernel level a multivariate analysis of
the feature space given the marginal approximations stored
in the MEDA vector. The resulting model is a multidi-
mensional representation of the LED space, built without
explicitely defining a multidimensional codebook nor a new,
complex image signature. We showed that by embedding
the marginal products into a shift-invariant kernel, the cost
of computing such multidimensional model becomes polyno-
mial with the number of dimension of the locally extracted
descriptor.By doing so, we allow to model the LED space un-
der a new, more discriminative, and complementary point of
view compared to traditional kernels for MEDA signatures.
Experimental results show indeed that our new kernel im-
proves the MEDA discriminative power when embedded in
a categorization/retrieval framework, and it increases the fi-
nal retrieval performances when we combine its contribution
with traditional kernels over LEDs aggregators (+ 50% on
the TRECVID data).
One limitation of our model is the assumption of indepen-
dence between the LED components. We plan to develop
the Multi-MEDA kernel so that it can built a more accurate
model that can reconstruct the joint contribution of the LED
components by considering the real joint contribution of the
marginals. Moreover, Multi-MEDA considers the relation-
ships between the components over k-d bins only. However,
we could explore the possibility of consider the joint contri-
butions of the marginals over bins of dimensions l < k (e.g.
considering the interactions between components 2 by 2, 3
by 3 etc.), building a complete model with various level of
multivariate analysis.
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