
Android Stack Integration in Embedded Systems
Soumya Kanti Datta

Mobile Communication Department
EURECOM

Sophia Antipolis, France
Soumya-Kanti.Datta@eurecom.fr

Abstract—Smartphone usage has increased manifold upon
introduction of Google’s Android. Since its introduction,
Android has evolved at an outstanding pace in terms of
application development, commercialization and market share
of Android powered devices. Although originally developed for
smartphones, now the embedded system industry has realized
the capabilities of Android. Due to open source nature, rich
user interface, wide range of connectivity, secure
communication, data encryption and multitasking, Android is
being integrated and ported to various embedded systems.
These include set-top boxes, IPTV, Google TV, In-Vehicle
Infotainment systems. One major advantage of such
integration is that an Android app can address the
functionalities all these devices powered by Android and
developers need not to write several applications for different
embedded systems. These systems will also benefit from
Android power management capabilities. This paper makes an
attempt to promote Android software stack as a suitable
operating system for embedded systems. The Linux kernel
modifications introduced in Android are described in details.
The procedure to integrate Android stack in an embedded
system are outlined and Android porting is also briefed. The
power management benefits are also pointed out. Finally the
paper concludes with several important advantages of such
embedded system with android stack.

Keywords- embedded system; Android stack integration;
Android power management; Linux kernel;

I. INTRODUCTION

Tracing the history reveals that Android Inc. was bought
by Google Inc. who pioneered Android platform. Later in
2007, Google along with 78 international firms announced
the formation of Open Handset Alliance (OHA). The
founding members include T-Mobile, eBay, Google,
Broadcom Corporation, Intel Corporation, Nvidia
Corporation, Qualcomm, Texas Instrument, LG, Samsung,
Sony, Motorola etc. OHA has contributed to the research &
development of Android platform which is mostly covered
by BSD and Apache licenses. Since the initial release of
Android software stack, it has come a long way with new
versions releasing every few months. The most current
version is Android Ice Cream Sandwich. Until very recent
times, Android was targeted for smartphones and tablets
only. The entire software stack, application development
tools were designed and developed for those devices only.
But the sophisticated features of Android (e.g. user interface

and connectivity, secure communication, network stack)
have made it lucrative for other embedded devices also.
Telecom, medical, automotive and home application devices
are potential candidates for Android integration and porting.

Being an open source system is the first advantage of
Android integration into embedded systems. Also Inter
Process Communication (IPC), multitasking, rich User
Interface (UI), OpenSSL for secure communication, SQLite
for database and 2G/3G/Wi-Fi/Bluetooth connectivity are
making the platform attractive for any kind of embedded
systems. Such systems which already have a legacy system
running on top of Linux, can integrate Android into their
systems. The integration process modifies the underlying
Linux kernel to support Android specific features and
merges Android stack to the legacy system. As a result, both
work simultaneously but independent of each other. This is
very important aspect and should be carefully done so that
inclusion of Android does not affect the functioning of the
present legacy system. Initially, Android supported only
ARM embedded architecture. But due to its mentioned
advantages, the platform got successfully ported to other
architectures also. Porting of Android to different embedded
architecture is also briefed in this paper. Due to wider
adaptation, now-a-days, Android has found its presence in
devices including set top boxes, cars & In Vehicle
Infotainment [10], IPTV, Google TV, tablet computers, e-
readers and other embedded devices. The features of
Android which benefit the embedded systems used in
telecom, automobile, medical, home application are listed
below.

• For telecom devices, it provides a complete
solution for network stack, connectivity, secure
communication using SSL, apps to monitor the
traffic and many more.

• For futuristic smart cars, Android is the natural
choice as it includes GPS, motion sensors, apps
giving map of places. Location based applications
could inform about the nearest hotel, car parking,
gas station and more. Android also supports audio
and video which could be a part of in vehicle
infotainment.

• With the advent of telemedicine, the medical
embedded systems require easily operating user
interface (UI) and reliable connectivity. Android
provides a rich UI and also several connectivity
options like 2G, 3G and Wi-Fi.

This work is partially sponsored by French research project “Smart 4G
Tablet” Pole SCS.

• Home gateway devices that deal with digital audio
and video could use Android as it provides several
audio and video libraries and applications to play
them.

• With the advent of Android Open Accessory
Development Kit (ADK), unveiled in Google I/O
2011, developers can build custom hardware to be
controlled by Android [1].

• Android comes with its own power management
extension which is suitable for embedded devices
running with low power and increase battery life.

• An Android app (created to perform some specific
tasks) can function on various embedded devices
running Android even if they have different
embedded architecture. The different devices
(which might have different architectures) can
communicate to each other through one Android
app. This could be achieved by making minimal
changes made in the app for different device
specific architectures. This simplifies maintenance
of application itself, cost and other overheads.

Thus, the embedded industry has been gradually shifting
its focus on Android for immense benefits. Rest of the paper
is organized as below. Section II highlights some important
underlying features of Android stack that further motivate
Android integration to embedded devices. The Linux kernel
additions are described in detail in section III. Section IV
discusses in details the Android integration steps, challenges
and their solutions while section V briefly touches the
Android porting issue. Section VI describes the advantages
of Android integration specially benefits of power
management.

II. ANDROID STACK OVERVIEW

The Android stack is composed of Linux kernel, native
libraries, android runtime, application framework and
application layer as depicted in Fig. 1 [2].

Figure 1. Android software stack.

Android versions till Honeycomb rely on Linux kernel
2.6 while Android Ice Cream Sandwich is based on kernel
3.0. Linux kernel is chosen as it provides several device
drivers, memory & process management, network stack,
security and other core services. Google has modified the
Linux kernel 2.6.33 to address efficient power, memory and
runtime managements for mobile devices and by extension
other embedded devices.

The native libraries (e.g. libc, libm) are written in
C/C++. These libraries are designed and developed to run
on devices with limited power and main memory. Main
libraries include surface manager, 3D libraries (OpenGL
ES), Media libraries (Mpeg4, Mp3, JPG etc.), Libwebcore
(for web browser), SQLite.

Android runtime is composed of Dalvik virtual machine
(VM) and core libraries written in Java [11]. Again the
constraints of mobile systems like limited power, memory
have played pivotal role behind the birth of Dalvik VM.
Android SDK incorporates a tool ‘dx’ that converts java
byte codes from .jar form to .dex which runs on the Dalvik
VM. Introduction of the Dalvik VM is unique to Android
and the former is capable of executing any java based
application of the embedded system quite efficiently.

The capabilities of native libraries are exposed to the
developers through applications framework. The components
(e.g. activity manager, telephony manager, content
providers) are written in Java. The topmost layer in the
Android architecture contains all the applications used by the
end-users.

III. ANDROID LINUX KERNEL

As mentioned, the Linux kernel 2.6.33 is modified as per
the special needs of smartphones. But these additions are
also beneficial other embedded systems. The Android kernel
introduces changes in memory management, adds new
features (e.g. logger, alarm) and runtime power management
driver (wake locks). Following gives the Android kernel
specific features [3].

A. Efficient Memory Management

The main goal behind such changes is to ameliorate the
memory usage as the amount of RAM available in
smartphones and embedded systems is limited. Android
introduces two features e.g. ASHMEM and PMEM which
are two different ways of allocating memory to kernel. Also
the standard Out of Memory (OOM) feature of mainline
kernel is modified and low memory killer is added to
Android kernel.

• ASHMEM – The Anonymous Shared Memory
(ASHMEM) is used to provide shared memory by
allocating a named memory block that can be
shared across multiple processes. The advantage of
ASHMEM is that it can be freed by kernel. To use

ASHMEM, a process opens “/dev/ashmem” and
performs mmap() on it. mmap() is a system call
that maps files or devices in memory.

• PMEM – The Physical Memory (PMEM) on the
other hand allows allocating contiguous memory to
drivers and libraries.

• Low memory killer – It mainly informs running
processes to save their state in case a critical low
memory situation occurs. When worsened, it starts
to terminate processes with low importance.

B. Runtime Power Management

Although Android inherits the power management (PM)
of Linux kernel but the former has put forward its own PM
system [7], [9]. Again the motivation behind such advanced
PM is that Android will run on devices having limited
battery life and the power saving features is different than
personal computer. A power driver has been added to the
Linux kernel and the driver allows controlling the
peripherals: screen display & backlight, keyboard backlight
and button backlight. The power for peripherals is controlled
by “Wake Locks” which are requested by applications
through a power management API present in applications
framework layer. Wake locks are means through which
applications keep the screen on, the CPU stays awake to
react quickly to interrupts.

C. Other Additions and Modifications

The other additions and modifications to the kernel are
described as below.

• IPC Binder: Although standard Linux kernel has
Inter Process Communication (IPC) mechanism,
Android adds its own IPC. The Android IPC
implementation is based on OpenBinder and has
the advantage of being light weight. The binder
driver uses shared memory to pass the messages
between threads and processes [8].

• Logger: Android extends the logging capabilities
by adding four logging classes e.g. main, system,
event and radio.

• Alarm: A driver which provides timers that can
wake the device up from sleep and a monotonic
time base that runs while the device is asleep.

• RAM_CONSOLE: Gives ability to save console
output to a reserved ram area for diagnostics on a
subsequent boot.

• Timed output/gpio: It allows chaining a gpio pin
and restores it automatically after a given timeout
and exposes a user space interface used by vibrator
code.

• USB gadget driver for Android Debug Bridge
(ADB).

IV. ANDROID STACK INTEGRATION

This section describes the Android stack integration
process for an embedded system that has a legacy system
based on Linux. The main outcomes of such Android
integration are primarily manifold as mentioned below.

• Integration of majority of the Android stack in the
embedded system.

• Execution of Android applications on the
embedded systems.

• Android running in parallel to the legacy system
without affecting its execution.

The entire integration process can be sub-divided into
following phases:

• Embedded device requirements

• Preparing Linux kernel to support Android

• Resolving the dependency on display hardware

• Configuring & building Android sources for an
embedded system

A. Embedded device requirements

The minimum requirements for an embedded device to
run Android stack are listed in Table 1.

TABLE I. EMBEDDED DEVICE
REQUIREMENTS

Feature Requirement
Chipset ARM-based
Memory 128MB RAM, 256MB external Flash
Display TFT LCD, 16-bit color

Navigation keys 5-way navigation with 5 application keys, power,
camera and volume controls

USB Standard USB interface

Android integration requires that the device should have

ARM chipset. Many embedded devices do not have a
display and navigation keys and Android integration in that
case poses a problem. But that can be addressed by
including virtual display, keypad & power drivers and it is
discussed later.

B. Preparing Linux kernel to support Android

The unique Android kernel features must be added
separately to Linux kernel 2.6.33. In this work it is assumed
that the embedded system has kernel 2.6.33. The addition
could be done using a patch containing all the Android
specific features. Most of these drivers are available as open
source. The added files are listed in table 2.

TABLE II. FILES TO BE ADDED TO LINUX KERNEL AND
THEIR PURPOSE

Name of the file added Purpose

drivers/staging/android/binder.c
Introduces Android IPC
Binder subsystem

drivers/staging/android/binder.h Header file for binder.c

drivers/staging/android/logger.c
Introduces the logging system
for Android

drivers/staging/android/logger.h Header file for logger.c
drivers/staging/android/lowmemorykill
er.c

Adds low memory killer
driver

drivers/staging/android/Kconfig
Contains Android
Configurations

drivers/staging/android/Makefile Makefile to build the sources

drivers/staging/android/ram_console.c

 Ability to save console output
to a reserved ram area for
diagnostics on a subsequent
boot.

drivers/staging/android/timed_gpio.h Header file for timed_gpio.c

drivers/staging/android/timed_gpio.c

This exposes a user space
interface for timed GPIOs. It
is used in the vibrator code.

drivers/staging/android/timed_output.c Used to calculate timed output

drivers/staging/android/timed_output.h Header for timed_output.c

include/linux/ashmem.h
Serves as header for
ashmem.c

mm/ashmem.c Adds ASHMEM driver

drivers/misc/pmem.c
Implementation of process
memory allocator

include/linux/android_pmem.h Header file for pmem.c

kernel/power/wakelock.c
Used for power management
files.

drivers/usb/gadget/android.c USB gadget driver for ADB

include/linux/wakelock.h Header file for wakelock.c

drivers/rtc/alarm.c
To support Android alarm
manager

include/linux/android_alarm.h Header file for alarm.c

Then existing kernel configuration file of the legacy
system of the embedded system has to be modified to take
into account the new features [4]. The file should contain
the following:

CONFIG_ANDROID_KERNEL_CORE=y

#Android

#CONFIG_ANDROID_RAM_CONSOLE is not set
CONFIG_ANDROID_POWER=y
CONFIG_ANDROID_BINDER_IPC=y
CONFIG_ANDROID_LOGGER=y

CONFIG_ASHMEM=y
#CONFIG_ANDROID_RAM_CONSOLE is not set
#CONFIG_ANDROID_TIMED_GPIO is not set

It is to be noted that the above Android kernel
configuration varies depending upon the embedded system
and its usage.

C. Resolving the dependency on display hardware

Android stack has a strong dependency on hardware of
a smartphone. It is evident that the largest dependency is on
the touch screen as user interacts via the touch screen. A
majority of the embedded systems still does not contain any
display. This challenge can be overcome by either adding a
USB based touch screen along with its driver or including
virtual display drivers [12]. In either case, the driver(s) must
be added to the Android Linux kernel using a patch. It is
possible to remove the hardware dependencies, but then
there will not remain anything useful in the Android stack to
integrate in the embedded system. It is easier to add virtual
drivers for display along with virtual keypad and power
drivers to the kernel. Adding virtual drivers is essential for
integrating Android embedded systems that does not include
a touch screen. These drivers could be developed as per the
embedded system.

D. Configuring & building Android sources for an
embedded system

The next step is to download the android sources and
configure them to run on the specific embedded system. The
necessary tools required to download and compile Android
sources are explained in [5] and [6]. This paper gives a
complete overview of the source code configuration [13].

Basically configuration files related to the embedded
system are to be added to the downloaded Android sources.
The added files are:

• A product specific makefile: it includes the product
name and product device where the product is the
embedded system.

• AndroidProducts.mk: this file points to individual
product makefile.

• system.prop: it is used in case the developer wants to
modify any system properties.

• product_config.mk: contains product specific
definitions and without this file the Android build
system will simply fail.

• Android.mk: it is the make file for Android build for
the new embedded system.

After that the Android sources should be built and if the
steps till now have been followed correctly, the Android
root file system will be created successfully. The Android
root file system should be merged with the root file system
of the legacy system running on the embedded system. If
include path of the libraries of Android and legacy system

overlap, the resulting system will not work. Efforts must be
given to identify such issue although normally the include
paths of libraries are different for both the systems. After the
system boot up when the shell is available, “ps” command
can be used to check Android daemons (e.g. logd, adbd, rild,
vold etc.), applications (e.g. servicemanager, mediaserver),
system_server and Java applications (e.g.
com.android.phone) that are running. Figure 2 portrays such
a scenario.

Figure 2. Android components running on an embedded

system.

It is worthy to note that on first booting of Android, the
process “dexopt” optimizes all the java byte codes and stores
them in the system. Next time when the device is booted, the
optimized java codes are used and the system boots up and
works faster.

V. ANDROID PORTING

This section briefs Android porting to a Linux system
with a previously unseen CPU architecture [14]. In this case
also, attention should be paid to the following issues:

• Firstly, the target Linux kernel needs to be prepared
i.e. patched with Android specific kernel features.

• The Dalvik Virtual Machine (VM) needs to be
accurately ported to the new CPU. The Dalvik VM
runtime is written in portable C, but Java Native
Interface (JNI) Call Bridge of runtime is non-
portable. This could be worked around using the
open source Foreign Function Interface (FFI). Dalvik
VM has dependencies on Android core libraries
including OpenSSL, zlib and ICU. These libraries
also need to be ported.

• The native libraries must be optimized to suite the
new CPU and then ported. Also additional support
might be necessary for applications framework APIs.

Android sources provide internal documentation which
elaborates such porting to unseen CPU architectures.

VI. ADVANTAGES OF ANDROID INTEGRATION

Embedded systems that have Android integrated into
them benefit from several advantages.

• For devices without a display, a USB based touch
screen can be added. This would open new vistas
of application for the device. The device could be
configured at real time using an Android app. The
configuration could be done by interacting through
the touch screen or by remotely sending
commands. The status of the device could be
displayed. An Android application could be written
to control some features of the device. For
example, if the device is being used as router, the
app can monitor the packets passing through and
generate some statistics.

• Embedded systems could execute standalone java
modules in Dalvik VM.

• Devices that are deployed in rural areas could use
the Android connectivity and secure
communication features to report collected data to
a command center.

• During I/O 2011, Google announced that they are
extending Android for home automation. Android
4.0 is already deployed for Google TV which
promises to revolutionize the TV experience of
users. It would be also possible to customize the
hardware capabilities and use the Android platform
to control home appliances.

• Another important advantage is increasing power
efficiency of embedded systems. Android has its
own PM features to control the CPU resources and
is superior to the Linux PM. There are numerous
power widgets available that increase power
efficiency by controlling several features of the
embedded device. The usage of Wi-Fi, 2G/3G,
brightness of display (if any) could be intelligently
controlled by an Android app since these consume
high power. Specific app could be produced to
monitor the power consumption pattern of
embedded systems and automatically control
mentioned features to conserve the battery life.
Thus the battery life will be prolonged and impact
on environment will be reduced.

VII. CONCLUSION

In a nutshell, this paper brings into attention the benefits
of integrating Android software stack into different
embedded systems. The different features of Android that

can benefit the telecom, residential, automobile and medical
devices are presented. Developers can build Android
applications that will address specific functionalities of
these systems. Android specific kernel additions are
described in detail and kernel configuration file
modification is shown with an example. Developers can
modify the configuration file according to the kernel
requirement. The files that should be added to the Linux
kernel 2.6.33 are listed along with their purpose. One
important challenge during Android integration is to work
around the dependency of Android stack on display
hardware (i.e. touch screen). The solution is to add virtual
display drivers (to the Linux kernel) that emulate the real
hardware drivers. The Android source configuration for the
device and Android porting to unseen CPU architecture is
briefed. Such devices will also benefit from the intelligent
power management applications. Other notable advantages
of such integration are highlighted.

In future work, a power management Android application
will be developed that monitors the power consumption.
The power consumption pattern could be studied and the
power dissipated in various hardware components (display,
Wi-Fi etc.) could be modeled. An app could be developed
that controls power dissipation using the power models.
Using IPC mechanism, the application will be able to
communicate with legacy system also. Different approaches
for power saving and their impact on performance will be
evaluated.

ACKNOWLEDGMENT

The author thanks Mr. Antoine Boiteau & Mr. Yannick
Vignon of Mindspeed Technologies and Prof. Yves Roudier,
EURECOM for their valuable guidance during an internship
on Android integration. The author also expresses his
gratitude to Prof. Christian Bonnet, EURECOM for his
valuable suggestions on Android power management.

REFERENCES
[1] http://betanews.com/2011/05/10/google-extends-android-into-

embedded-hardware-home-automation/

[2] http://developer.android.com/guide/basics/what-is-android.html

[3] http://elinux.org/Android_Kernel_Features

[4] http://www.kandroid.org/online-pdk/guide/bring_up.html

[5] http://source.android.com/source/initializing.html

[6] http://source.android.com/source/downloading.html

[7] http://developer.android.com/reference/android/os/PowerManager.ht
ml

[8] http://en.wikipedia.org/wiki/OpenBinder

[9] www.elinux.org/Android_Power_Management

[10] http://www.autoblog.com/2011/07/15/harman-to-bring-android-
integration-to-cars-finally

[11] http://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-
Presentation-Of-Dalvik-VM-Internals.pdf

[12] http://www.netmite.com/android/mydroid/development/pdk/docs/disp
lay_drivers.html

[13] http://www.netmite.com/android/mydroid/development/pdk/docs/buil
d_new_device.html

[14] http://www.kandroid.org/online-pdk/guide/dalvik.html

