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Abstract

We consider the time correlated MISO broadcast channel where the transmitter has imperfect knowledge on the

current channel state, in addition to delayed channel state information. By representing the quality of the current

channel state as P−α for the signal-to-noise ratio P and some constant α ≥ 0, we characterize the optimal degree

of freedom region for this more general two-user MISO broadcast correlated channel. The essential ingredients of

the proposed scheme lie in the quantization and multicasting of the overheard interferences, while broadcasting new

private messages. Our proposed scheme smoothly bridges between the scheme recently proposed by Maddah-Ali and

Tse with no current state information and a simple zero-forcing beamforming with perfect current state information.

I. INTRODUCTION

In most practical scenarios, perfect channel state information at transmitter (CSIT) may not be available due

to the time-varying nature of wireless channels as well as the limited resource for channel estimation. However,

many wireless applications must guarantee high-data rate and reliable communication in the presence of channel

uncertainty. In this paper, we consider such scenario in the context of the two-user MISO broadcast channel, where

the transmitter equipped with m antennas wishes to send two private messages to two receivers each with a single

antenna. The discrete time signal model is given by

yt = hH

txt + εt (1a)

zt = gH

txt + ωt (1b)
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for any time instant t, where ht, gt ∈ Cm×1 are the channel vectors for user 1 and 2, respectively; εt, ωt ∼ NC (0, 1)

are normalized additive white Gaussian noise (AWGN) at the respective receivers; the input signal xt is subject to

the power constraint E
(
‖xt‖2

)
≤ P , ∀ t.

For the case of perfect CSIT, the optimal degrees of freedom of this channel is two and achieved by linear

strategies such as zero-forcing (ZF) beamforming. When the transmitter suffers from constant inaccuracy of channel

estimation, it has been shown in [1] that the degrees of freedom (DoF) per user is upper-bounded by 2
3 . It is also

well known that the full multiplexing gain can be maintained under imperfect CSIT if the error in CSIT decreases

as O(P−1) or faster as P grows [2]. Moreover, for the case of the temporally correlated fading channel such that

the transmitter can predict the current state with error decaying as O(P−α) for some constant α ∈ [0, 1], ZF can

only achieve a fraction α of the optimal degrees of freedom [2]. This result somehow reveals the bottleneck of a

family of precoding schemes relying only on instantaneous CSIT as the temporal correlation decreases (α→ 0).

Recently, a breakthrough has been made in order to overcome such problem. In [3], Maddah-Ali and Tse showed a

surprising result that even completely outdated CSIT can be very useful in terms of degree of freedom, as long

as it is accurate. For a system with m ≥ 2 antennas and two users, the proposed scheme in [3], hereafter called

MAT, achieves the multiplexing gain of 2
3 per user, irrespectively of the temporal correlation. This work shifts the

paradigm of broadcast precoding from space-only to space-time alignment. The role of perfect delayed CSIT can be

re-interpreted as a feedback of the past signal/interference heard by the receivers. This side information enables the

transmitter to perform “retrospective” alignment in the space and time domain, as demonstrated in different multiuser

network systems (see e.g. [4]). Despite its DoF optimality, the MAT scheme is designed assuming the worst case

scenario where the delayed channel feedback provides no information about the current one. This assumption is

over pessimistic as most practical channels exhibit some form of temporal correlation. In fact, it readily follows that

a selection strategy between ZF and MAT yields the degrees of freedom of max{α, 2
3} for α ∈ [0, 1]. For either

quasi-static fading channel (α ≥ 1) or very fast channels (α→ 0), a selection approach is reasonable. However, for

intermediate ranges of temporal correlation (0 < α < 1), a fundamental question arises as to whether a better way

of exploiting both delayed CSIT and current (imperfect) CSIT exists. Studying the achievable DoF under such CSIT

assumption is of practical and theoretical interest.

The main contributions of this work are summarized as follows.

1) We propose a simple strategy (Scheme I) that combines the ZF precoding, based on the imperfect current state

information, and the MAT alignment, based on the perfect past state information. The main role of current

CSIT is to reduce, via spatial precoding, the overheard interference power in the original MAT alignment. The

said power reduction then enables, via source compression/quantization, to save the resources related to the

transmission of the overheard interference. Scheme I, initially reported in [6], achieves the DoF of

dScheme I =
2− α
3− 2α

, α ∈ [0, 1] (2)

that is strictly better than both the MAT alignment and ZF precoding for α ∈ (0, 1). The key of this scheme

is the quantization that is introduced into the MAT alignment to replace the analog transmission. Despite its
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suboptimality as it will turn out, it is the indispensable part of the optimal scheme that we propose later.

2) We establish an outer bound on the DoF region of the two-user broadcast channel with perfect delayed and

imperfect current state information. To that end, we use two powerful tools: the genie-aided model and the

extremal inequality [8]. The outer bound is a source of inspiration of our optimal scheme.

3) Based on Scheme I and motivated by the outer bound, we propose an optimal scheme (Scheme II) that achieves

the upper bound of the DoF

dScheme II =
2 + α

3
, α ∈ [0, 1] (3)

given by the converse. The enhancement is built on the observation that the second phase of Scheme I, i.e.,

multicast, does not exploit current CSI. This can be improved by sending two new private messages alongside

the common message on the overheard interference. The gain of 2α degrees of freedom, i.e., from 2− α to

2 + α is obtained at the price of 2α extra channel uses, i.e., from 3− 2α to 3. As confirmed by the converse,

this is in fact the best tradeoff for the symmetric DoF. To achieve the other corner points of the region, we

show that delayed CSIT is not necessary and the optimal strategy is to broadcast with common message that is

useful for only one of the users.

4) As an extension to the main result, we derive the optimal DoF region of the same channel with common

message. Another extension is the achievable DoF region when only imperfect delayed CSI is available (e.g.,

due to limited feedback rates). The case with general fading process (e.g., non-ergodic case in delay limited

communications) is also discussed. Finally, in addition to the results on the optimal DoF region, we provide

the exact achievable rate regions of the proposed schemes (cf. Appendix). At the time of submission, parallel

independent work [12] was brought to our attention which also builds on the results of [6].

The paper is organized as follows. In Section II, after presenting the assumptions and some basic definitions of

our model, we provide our main theorem on the optimal DoF region. The above contributions are then presented in

order. Finally, we conclude the paper with some perspectives. Detailed proofs are deferred to the Appendix.

Throughout the paper, we will use the following notations. Matrix transpose, Hermitian transpose, inverse, and

determinant are denoted by AT, AH, A−1, and det (A), respectively. x⊥ is any nonzero vector such that xHx⊥ = 0.

Logarithm is in base 2.

II. SYSTEM MODEL AND MAIN RESULTS

For convenience, we provide the following definition on the channel states.

Definition 1 (channel states): The channel vectors ht and gt are called the states of the channel at instant t. For

simplicity, we also define the state matrix St as St ,
[
hH
t

gHt

]
∈ S.

The assumptions on the fading process and the knowledge of the channel states are summarized as follows. Possible

relaxations of the assumptions are discussed in Section VI.

Assumption 1 (mutually independent fading): At any given time instant t, the channel vectors for the two users

ht, gt are mutually independent and identically distributed (i.i.d.) with zero mean and covariance matrix Im. Moreover,

we assume that rank (St) = 2 with probability 1.
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Assumption 2 (perfect delayed and imperfect current CSI): At each time instant t, the transmitter knows the

delayed channel states up to instant t− 1. In addition, the transmitter can somehow obtain an estimation Ŝt of the

current channel state St, i.e., ĥt and ĝt are available to the transmitter with

ht = ĥt + h̃t (4a)

gt = ĝt + g̃t (4b)

where the estimate ĥt (also ĝt) and estimation error h̃t (also g̃t) are uncorrelated and both assumed to be zero

mean with covariance (1− σ2)Im and σ2Im, respectively, with σ2 ≤ 1. The receivers knows perfectly St ∈ S and

Ŝt ∈ Ŝ without delay.

For simplicity and tractability, we have the following assumption on the fading process.

Assumption 3 (Rayleigh fading): The processes
{
Ŝt

}
and

{
S̃t

}
are independent, stationary, and ergodic. For

each t, the entries of Ŝt are i.i.d. NC
(
0, 1− σ2

)
distributed while the entries of S̃t are i.i.d. NC

(
0, σ2

)
distributed.

Moreover, we assume the following Markov chain

(Ŝt−1,St−1)↔ Ŝt ↔ St, ∀ t. (5)

Without loss of generality, we can introduce a parameter αP ≥ 0 as the power exponent of the estimation error

αP , − log(σ2)

logP
. (6)

The parameter αP can be regarded as the quality of the current CSI in the high SNR regime. Note that αP = 0

corresponds to the case with no current CSIT at all while αP →∞ corresponds to the case with perfect current

CSIT. In addition, we assume that lim
P→∞

αP exists and define

α , lim
P→∞

αP . (7)

Hereafter, we use α instead of αP , whenever no confusion is likely. Connections between the above model and

practical time correlated models are highlighted in Section VI.

Definition 2 (achievable degrees of freedom): A code for the Gaussian MISO broadcast channel with delayed

CSIT and imperfect current CSIT is

• A sequence of encoders at time t is given by Ft : W1 ×W2 × St−1 × Ŝt 7−→ Cm where the message W1 and

W2 are uniformly distributed over W1 and W2, respectively.

• A decoder for user k is given by the mapping Ŵk : C1×n × Sn × Ŝn 7−→Wk, k = 1, 2.

The DoF pair (d1, d2) is said achievable if there exists a code that simultaneously satisfies the reliability condition

lim sup
n→∞

Pr
{
Wk 6= Ŵk

}
= 0, (8)

and

lim
P→∞

lim inf
n→∞

log2 |Wk(n, P )|
n log2 P

≥ dk, k = 1, 2. (9)

The union of all achievable DoF pairs is then called the optimal DoF region the broadcast channel.
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The main result of this paper is stated in the following theorem.

Theorem 1: In the two-user MISO broadcast channel with delayed perfect CSIT and imperfect current CSIT, the

optimal degrees of freedom region is characterized by

d1 ≤ 1 (10a)

d2 ≤ 1 (10b)

d1 + 2d2 ≤ 2 + α (10c)

2d1 + d2 ≤ 2 + α (10d)

The next three sections are devoted to proving the Theorem. We start with the achievability.

III. ACHIEVABILITY: A SIMPLE SCHEME

In this section, we describe a novel and simple scheme that is initially presented in [6]. Since this scheme builds

on a variant of the MAT scheme, we briefly review the original MAT scheme and its variant.

A. MAT alignment revisited

In the two-user MISO case, the original MAT is a three-slot scheme, described by the following equations

x1 = u x2 = v x3 = [gH

1u+ hH

2v 0]T (11a)

y1 = hH

1u y2 = hH

2v y3 = h31(gH

1u+ hH

2v) (11b)

z1 = gH

1u z2 = gH

2v z3 = g31(gH

1u+ hH

2v) (11c)

where xt ∈ Cm×1, yt, zt ∈ C are the transmitted signal, received signal at user 1, received signal at user 2,

respectively, at time slot t; u,v ∈ Cm×1 are useful signals to user 1 and user 2, respectively; for simplicity, we

omit the noise in the received signals. The idea of the MAT scheme is to use the delayed CSIT to align the

mutual interference into a reduced subspace with only one dimension (hH
1v for user 1 and gH

1u for user 2). And

importantly, the reduction in interference is done without sacrificing the dimension of the useful signals. Specifically,

a two-dimensional interference-free observation of u (resp. v) is obtained at receiver 1 (resp. receiver 2).

Interestingly, the alignment can be done in a different manner.

x1 = u+ v x2 = [hH

1v 0]T x3 = [gH

1u 0]T (12a)

y1 = hH

1(u+ v) y2 = h21h
H

1v y3 = h31g
H

1u (12b)

z1 = gH

1(u+ v) z2 = g21h
H

1v z3 = g31g
H

1u (12c)

In the first slot, the transmitter sends the private signals to both users by simply superposing them. In the second

slot, the transmitter sends the interference overheard by receiver 1 in the first slot. The role of this stage is two-fold:

resolving interference for user 1 and reinforcing signal for user 2. In the third slot, the transmitter sends the
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interference overheard by user 2 to help both users the other way around. In summary, this variant of the MAT

consists two phases: i) broadcasting the private signals, and ii) multicasting the overheard interference, i.e., hH
1v and

gH
1u. At the end of three slots, the observations at the receivers are given by

y1

y2

y3

 =


hH

1

0

h31g
H
1


︸ ︷︷ ︸

rank=2

u+


hH

1

h21h
H
1

0


︸ ︷︷ ︸

rank=1

v, (13a)

and 
z1

z2

z3

 =


gH

1

g21h
H
1

0


︸ ︷︷ ︸

rank=2

v +


gH

1

0

g31g
H
1


︸ ︷︷ ︸

rank=1

u. (13b)

For each user, the useful signal lies in a two-dimensional subspace while the interference is aligned in a one-

dimensional subspace. It readily follows that the variant enables each user to achieve two degrees of freedom in

the three-dimensional time space as for the original MAT. Although two schemes are equivalent from the point of

the space-time alignment, they differ conceptually in the way how the “order-two” symbols are delivered. More

precisely, the variant spends two slots to deliver two symbols hH
1v, g

H
1u while the original MAT spends a single slot

to deliver one symbols hH
2v + gH

1u. As seen shortly, multicasting two “order-two” symbols separately is crucial

since it allows to shorten the time for multicasting when partial knowledge on the current state is available.

B. Integrating the imperfect current CSI

Based on the above variant of the MAT scheme, we propose the following two-stage scheme, called Scheme I,

that integrates the estimates of the current CSI. Since only h1 and g1 are involved below, we drop the indices for

convenience, whenever it is possible.

Phase 1 - Precoding and broadcasting the private signals: As in the above MAT variant, we first superpose the

two private signals as x = u+ v, except that u and v are precoded beforehand. The precoding is specified by the

covariance matrices Qu , E (uuH) and Qv , E (vvH) that may depend on the estimates of the current channel.

The power constraint is respected by choosing Qu and Qv such that

tr (Qu) + tr (Qv) ≤ P. (14)

Phase 2 - Quantizing and multicasting the overheard interference : As the second phase of the MAT variant, the

objective of this phase is to convey the overheard interferences (hHv, gHu) required by both receivers. However,

unlike the original MAT scheme (12) where these symbols are transmitted in an analog fashion, we quantize them

and then transmit the digital version. The rationale behind this choice is as follows. With (imperfect) CSI on the

current channel, the transmitter can use the precoding to align the signals and allocate the transmit power in such a
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way that the overheard interferences have a reduced power, without sacrificing too much received signal power.1

As a result, we should be able to save the time resource for multicasting, which in turn improves the degree of

freedom. The benefit can be significant when the current CSI is nearly perfect. In this case, the analog transmission

is not longer suitable, due to the mismatch between the source (interference) power and available transmit power.

Therefore, a good alternative is to quantize the interferences and to transmit the encoded symbols. The number of

quantization bits depends naturally on the interference power that is related to the quality of the state information.

For convenience, we define η1 , hHv, η2 , gHu, and η , (η1, η2).

The first step is the quantization. We quantize η1 and η2 separately. Note that for a given channel realization, the

average power of η1 and η2 are

σ2
η1 , hHQvh and σ2

η2 , gHQug. (15)

Let us assume that an Rηk -bits quantizer is used for ηk, k = 1, 2. Hence, we have

ηk = η̂k + ∆k (16)

where η̂k and ∆k are the quantized value and the quantization noise with average distortion E
(
|∆k|2

)
= Dk,

k = 1, 2, respectively. The index corresponding to η̂ , (η̂1, η̂2), represented in Rη , Rη1 + Rη2 bits, is then

multicast to both users.

Decoding: At the receivers’ side, each user first tries to recover (η̂1, η̂2). If this step is done successfully, then

receiver 1 has

y = hHu+ η1 + ε (17)

η̂1 = η1 −∆1 (18)

η̂2 = η2 −∆2 = gHu−∆2 (19)

from which an equivalent m× 2 MIMO channel is obtained

ỹ ,

y − η̂1

η̂2

 = Su+

ε+ ∆1

−∆2

 (20)

where the noise b , [ε+ ∆1 −∆2]T depends on the input signals in general. Similarly, if receiver 2 can recover

(η̂1, η̂2) correctly, then the following term is available

z̃ ,

 η̂1

z − η̂2

 = Sv +

 −∆1

ω + ∆2

. (21)

In order to finally recover the message, each user performs conventional MIMO decoding of the above equivalent

channel.

1With no CSIT on the current channel, the only way to reduce the interference power is to reduce the transmit power, therefore the received

signal power.
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C. Achievable degrees of freedom

In the following, we derive the achievable symmetric degrees of freedom of Scheme I. The exact achievable rate

region from which the DoF can be proved in a more rigorous way will be provided in Appendix A.

Let Rmimo, Rη , and Rmc be the average MIMO rate for each user, the quantization rate for η, and the multicast

rate of the channel, respectively. It is obvious that the average rate of Scheme I is given by

R̄I =
Rmimo

1 +Rη/Rmc
. (22)

In the rest of the section, we would like to show that the following rates are achievable

Rmc = logP +O(1) (23a)

Rη = 2(1− α) logP +O(1) (23b)

Rmimo = (2− α) logP +O(1) (23c)

from which we have the symmetric DoF 2−α
3−2α given by (2). The interpretation of the achievable DoF is the following.

By properly designing the precoding covariance matrices as well as the quantization, one can shorten the transmission

duration by 2α channel uses at the price of losing a pre-log factor α in total rate. Since we need to show the

achievability for any m ≥ 2, it is enough to consider the case with m = 2. And we fix the parameters of Scheme I

as follows:

• For each user, we send two streams in two orthogonal directions: one aligned with the estimated channel of

the unintended user while the other one perpendicular to it, i.e.,

Qu = P1ΨΨΨĝ⊥ + P2ΨΨΨĝ (24a)

Qv = P1ΨΨΨĥ⊥ + P2ΨΨΨĥ (24b)

where

ΨΨΨĝ ,
ĝĝH

‖ĝ‖2
(25)

and ΨΨΨĝ⊥ , ΨΨΨĥ, and ΨΨΨĥ⊥ are similarly defined.

• The transmitted power in the direction of estimated channel is such that P2 ∼ P 1−α while the transmitted

power in the orthogonal direction is P1 = P − P2 ∼ P for any α < 1.

• The distortions D1 and D2 are set to the noise level, i.e., D1 = D2 = 1 ∼ P 0.
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First, (23a) is achievable by using any single user code. Second, we can upper-bound the quantization rate Rη as

Rη ≤ E
(

log

(
hHQvh

D1

))
+ E

(
log

(
gHQug

D2

))
(26)

≤ log (E (hHQvh)) + log (E (gHQug)) (27)

= 2 log (E (gHQug)) (28)

= 2 log (E (g̃HQug̃) + E (ĝHQuĝ)) (29)

≤ 2 log
(
Pσ2 + P2E (ĝHΨΨΨĝĝ)

)
(30)

≤ 2 log
(
Pσ2 + 2P2(1− σ2)

)
(31)

= 2(1− α) logP +O(1) (32)

where the first inequality is from the rate-distortion theorem and by saying that Gaussian source is the hardest to

compress [7]; the second inequality is from the concavity of the log function; (28) is from the symmetry between the

channels and between the strategies; (29) is from (24a). Finally, we lower-bound the MIMO rate Rmimo of user 1 as

Rmimo = E
(
I(U ; Ỹ |S = S)

)
(33)

= E
(
I(SU ; Ỹ )

)
(34)

= E
(
h(SU)− h(SU | Ỹ )

)
(35)

= E
(
h(SU)− h(E + ∆1,−∆2 | Ỹ )

)
(36)

≥ E (h(SU)− h(E + ∆1,−∆2)) (37)

≥ E (log det (SQuS
H)− log(1 +D1)− log(D2)) (38)

= E (log det (Qu)) + E (log det (SSH)− log(1 +D1)− log(D2)) (39)

= log(P1P2) +O(1) (40)

= (2− α) log(P ) +O(1) (41)

where (37) holds since conditioning reduces differential entropies; (38) follows because u is Gaussian, then by

noticing that E + ∆1 and ∆2 are independent with the corresponding differential entropy maximized by Gaussian

distribution.

IV. CONVERSE

In this section, we establish the converse proof of the main result. Before going into the details, we would like to

point out the essential elements of the upcoming proof:

• Genie-aided model is used to construct a degraded broadcast channel, as in [3].

• Extremal inequality is applied to bound the weighted difference of differential entropies [8].

• Isotropic property of the estimation error on the current state is exploited.
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First, let us first consider the genie-aided model where the genie provides zt to user 1 at each time instant t.

This is a degraded broadcast channel X ↔ (Y,Z) ↔ Z. Therefore, we have the following upper bounds on the

rates (R1, R2):

nR1 ≤ H(W1) (42)

= H(W1 |Sn, Ŝn) (43)

= I(W1;Y n, Zn |Sn, Ŝn) + nεn (44)

≤ I(W1;Y n, Zn,W2 |Sn, Ŝn) + nεn (45)

= I(W1;Y n, Zn |Sn, Ŝn,W2) + nεn (46)

=

n∑
i=1

I(W1;Yi, Zi |Y i−1, Zi−1, Sn, Ŝn,W2) + nεn (47)

≤
n∑
i=1

I(Xi;Yi, Zi |Y i−1, Zi−1, Sn, Ŝn,W2) + nεn (48)

=

n∑
i=1

I(Xi;Yi, Zi |Y i−1, Zi−1, Si, Ŝi,W2) + nεn (49)

=

n∑
i=1

h(Yi, Zi |Y i−1, Zi−1, Si, Ŝi,W2) (50)

− h(Yi, Zi |Xi, Y
i−1, Zi−1, Si, Ŝi,W2) + nεn (51)

=

n∑
i=1

h(Yi, Zi |Ti, Si)− h(Ei,Ωi) + nεn (52)

≤
n∑
i=1

h(Yi, Zi |Ti, Si) + nεn (53)

nR2 ≤ H(W2) (54)

≤ I(W2;Zn |Sn, Ŝn) + nεn (55)

=

n∑
i=1

I(W2;Zi |Zi−1, Si, Ŝi) + nε (56)

=

n∑
i=1

h(Zi |Zi−1, Si, Ŝi)− h(Zi |Zi−1, Si, Ŝi,W2) + nε (57)

≤
n∑
i=1

h(Zi |Si)− h(Zi |Y i−1, Zi−1, Si, Ŝi,W2) + nε (58)

=

n∑
i=1

h(Zi |Si)− h(Zi |Ti, Si) + nε (59)

where we defined Ti , (Y i−1, Zi−1, Si−1, Ŝi,W2); we also used the fact that the differential entropy of the

AWGN h(Ei,Ωi) ≥ 0. Note that the above chains of inequalities follow closely Gallager’s proof for the degraded

broadcast channel [10] (also see [7]), with the integration of the channel states. Obviously, we have the Markov

chain Xi ↔ Ti ↔ (Si−1, Ŝi−1)↔ Ŝi ↔ Si. In the following, we would like to obtain an upper bound on R1 +2R2.
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From (53) and (59), we have

n(R1 + 2R2) ≤
n∑
i=1

(h(Yi, Zi |Ti, Si)− 2h(Zi |Ti, Si) + 2h(Zi |Si)) + 3nεn. (60)

Now, we can have an upper bound for each i,

h(Yi, Zi |Ti, Si)− 2h(Zi |Ti, Si) + 2h(Zi |Si) (61)

≤ max
PTiPXi|Ti

h(Yi, Zi |Ti, Si)− 2h(Zi |Ti, Si) + 2h(Zi |Si) (62)

≤ max
PTiPXi|Ti

2h(Zi |Si) + max
PTiPXi|Ti

(h(Yi, Zi |Ti, Si)− 2h(Zi |Ti, Si)). (63)

The first maximization can be upper-bounded as:

max
PTiPXi|Ti

2h(Zi |Si) ≤ 2EGi
(

max
PXi|Gi=gi

h(gH

iXi + Ei)

)
(64)

≤ 2EGi
(
log(1 + P‖gi‖2)

)
(65)

≤ 2 logP +O(1) (66)

where we used the fact that Gaussian distribution maximizes differential entropy under the covariance constraint, that

the logarithmic function is monotonically increasing, and Cov(Xi | gi) � Cov(Xi) � P I. The second maximization

in (63) can also be bounded, but in a slightly more involved way:

max
PTiPXi|Ti

(h(Yi, Zi |Ti, Si)− 2h(Zi |Ti, Si))

≤ max
PTi

ETi
(

max
PXi|Ti

(h(Yi, Zi |Ti = T, Si)− 2h(Zi |Ti = T, Si))

)
(67)

= max
PTi

ETi
(

max
PXi|Ti

ESi|Ti (h(Yi, Zi |Ti = T, Si = Si)− 2h(Zi |Ti = T, Si = Si))

)
(68)

= max
PTi

ETi
(

max
PXi|Ti

ESi|Ŝi (h(SiXi +Ni |Ti = T )− 2h(gH

iXi + Ei |Ti = T ))

)
(69)

= max
PTi

ETi

 max
C:C�0,tr(C)≤P

max
PXi|Ti

:

Cov(Xi|Ti)�C

ESi|Ŝi (h(SiXi +Ni |Ti = T )− 2h(gH

iXi + Ei |Ti = T ))

 (70)

= max
PTi

ETi
(

max
C:C�0,tr(C)≤P

ESi|Ŝi (log det (I + SiK∗S
H

i )− 2 log(1 + gH

iK∗gi))

)
(71)

≤ EŜi

(
max

K:K�0,tr(K)≤P
ESi|Ŝi (log det (I + SiKS

H

i )− 2 log(1 + gH

iKgi))

)
(72)

≤ EŜi

(
max

K:K�0,tr(K)≤P
ESi|Ŝi (log(1 + hH

iKhi)− log(1 + gH

iKgi))

)
(73)

where in (67) we put one of the maximization into the expectation, which only increases the value; in (69), we define

Ni , [Ei Ωi]
T; (70) is obtained by splitting one maximization into two, one with the trace constraint and the other

with the covariance constraint; (71) is from the fact that with covariance constraint, Gaussain distribution optimizes

the weighted difference of the two differential entropies, given that 1) Si is independent of Xi conditional on Ti, and

that Yi is a degraded version of (Yi, Zi); it is an application of the extremal inequality [8], [9]; note that K∗ � C
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is defined as the optimal covariance for the inner maximization; (72) is obtained by noticing that any K such that

0 �K � C with tr (C) ≤ P belongs to the set {K : K � 0, tr (K) ≤ P}, and that the whole term only depends

on Ŝi; the last inequality is from the fact that det (I +A) ≤ (1 + a11)(1 + a22) for any A , [aij ]i,j=1,2 � 0.

Lemma 1: For any given K � 0 with eigenvalues λ1 ≥ · · · ≥ λm ≥ 0, we have

ESi|Ŝi (log(1 + hH

iKhi)) ≤ log(1 + ‖ĥi‖2λ1) +O(1) (74)

ESi|Ŝi (log(1 + gH

iKgi)) ≥ log(1 + e−γσ2λ1) +O(1) (75)

where γ is Euler’s constant.

Proof: See Appendix C.

Without loss of generality, we consider σ2 > 0 in the following. The case with σ2 = 0 corresponds to the case of

perfect CSI, in which the optimal DoF is already known. From Lemma 1, we have

ESi|Ŝi (log(1 + hH

iKhi)− log(1 + gH

iKgi))

≤ log
1 + ‖ĥi‖2λ1

1 + e−γσ2λ1
+O(1) (76)

≤ log

(
1 +
‖ĥi‖2

e−γσ2

)
+O(1) (77)

≤ − log(σ2) + log
(
e−γσ2 + ‖ĥi‖2

)
+O(1) (78)

where (77) is from the fact that log 1+ax
1+bx ≤ log(1 + a

b ), ∀ a, x ≥ 0, b > 0. Note that this upper bound does not

depend on K. From (72) and (78), we have

max
PTiPXi|Ti

(h(Yi, Zi |Ti, Si)− 2h(Zi |Ti, Si))

≤ α logP + EŜi
(

log
(
e−γ + ‖ĥi‖2

))
+O(1) (79)

= α logP +O(1). (80)

From (60), (66), (80), and letting n→∞, we have

R1 + 2R2 ≤ (2 + α) logP +O(1) (81)

from which we obtain (10c) by dividing both sides of the above inequality by logP and let P → ∞. Similarly,

from (59), (66), and letting n→∞, we have

R2 ≤ logP +O(1) (82)

from which we obtain the single user bound (10b) by dividing both sides of the above inequality by logP and let

P →∞. To obtain (10d) and (10a), we can use the genie-aided model in which receiver 2 is helped by the genie

and has perfect knowledge of yt. Due to the symmetry, the same reasoning as above can be applied by swapping

the roles of receiver 1 and receiver 2.
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V. ACHIEVABILITY: CLOSING THE GAP

A. Inspiration from the upper bound

Let us compare the achievable symmetric DoF of Scheme I with the upper bound:

2− α
3− 2α

versus
2 + α

3
=

2− α+ 2α

3− 2α+ 2α
. (83)

A natural question arises. Can we convey 2α more symbols by extending the transmission by 2 channel uses, i.e.,

in total over three channel uses? We recall that the time saving of 2α channel uses has been made possible by

exploiting the current CSIT during the first phase (of broadcasting). The comparison above reveals that Scheme I

can be possibly enhanced if we exploit the current CSI during the multicasting phase as well.

B. Enhanced scheme

The key element of the new scheme is broadcasting with common message in the presence of imperfect CSI.

Lemma 2 (broadcast channel with common message and imperfect CSI): Let (R0, R1, R2) be the rate of com-

mon message, private message for user 1, and private message for user 2, respectively. Furthermore, we let (d0, d1, d2)

be the corresponding DoF. Then, there exists a family of codes {X0(P ),Xp1(P ),Xp2(P )}, such that

d0 = 1− α (84)

d1 = d2 = α (85)

is achievable simultaneously.

Proof: A sketch of proof is as follows, with more details given in Appendix B. Let us consider a single

channel use with a superposition scheme: x = xc + xp1 + xp2 with precoding such that E
(
xp1x

H
p1

)
=

Pp
2 ΨΨΨĝ⊥

and E
(
xp2x

H
p2

)
=

Pp
2 ΨΨΨĥ⊥ . We set the power Pp ∼ Pα such that the private signals are drowned by noise at the

unintended receivers while remain the level Pα at the intended receivers. The power of the common signal is

Pc = E
(
‖xc‖2

)
∼ P . The decoding is performed as follows. At each receiver, the common message is decoded

first with the private signals treated as noise. The signal-to-interference-and-noise ratio (SINR) is approximately

Pc/Pp ∼ P 1−α, from which the achievability of d0 = 1 − α is shown. Then, each receiver proceeds with the

decoding of their own private messages, after removing the decoded common message. The SINR for the private

message being approximately Pα, dk = α is thus achievable for user k, k = 1, 2. An important remark is that

only current CSI is used to achieve this point. Later on, in Section VI-A, we will show that this is in fact the best

tradeoff between private and common messages for the channel, even when delayed CSIT is available.

It is now clear that we can trade α of common degrees of freedom for 2α private degrees of freedom. Therefore,

Scheme I can be improved by modifying the second phase of the protocol. The new scheme, hereafter called

Scheme II, is described as below.

1) The first phase of Scheme II is identical to the first phase of Scheme I: x = u+ v with the same precoders.

2) As in Scheme I, the quantized version η̂ , (η̂1, η̂2) of the interferences η1 and η2 are coded in approximately

2(1−α) logP bits. However, instead of sending these bits in 2(1−α) channel uses, they are sent in 2 channel
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Fig. 1. Comparison of the achievable sum DoF between the proposed scheme and the zero-forcing and MAT alignment as a function of α.

uses with the code C0, as the common message for both users. Meanwhile, a new message of α logP bits per

channel use is sent to user k, as the private message of with codebook Xp,k, k = 1, 2.

3) To decode, each receiver starts from the received signal at the second phase. First, according to Lemma 2, the

private and common messages can be decoded reliably. Then, η̂ is restored in exactly the same manner as in

Scheme I. Finally, the MAT part of (2− α) logP bits can also be recovered reliably.

Therefore, in three channel uses, 2α+ 2− α = 2 + α DoF is achieved, yielding a symmetric DoF per channel use

of 2+α
3 .

Note that the region given by (10) is a polygon characterized by the vertices: (0, 1), (α, 1), ( 2+α
3 , 2+α

3 ), (1, α),

(1, 0). Obviously, Scheme II achieves the symmetric point. From Lemma 2, we can see that by making the common

message as the private message of one of the users, we achieve (1, α) and (α, 1). Therefore, by time sharing, the whole

region is achievable. In Fig. 1, we compare the sum DoF of different schemes. The scheme “SC+ZF” (superposition

coding and ZF precoding) is from the corner point (1, α) or (α, 1). Note that when α is close to 0, the estimation

of current CSIT is bad and therefore useless. In this case, the optimal scheme is MAT [3], achieving DoF of 4
3 for

each user. On the other hand, when α ≥ 1, the estimation is good and the interference at the receivers due to the

imperfect estimation is below the noise level and thus can be neglected as far as the DoF is concerned. In this case,

ZF with the estimated current CSI is asymptotically optimal, achieving degrees of freedom 1 for each user. Our

result (Scheme I and II) reveals that strictly larger DoF than max{ 2
3 , α} can be obtained by exploiting both the

imperfect current CSIT and the perfect delayed CSIT in an intermediate regime α ∈ (0, 1).

In the Appendix, we provide the exact achievable rate region. Some examples of the achievable sum rates are

plotted in Figure 2 and 3.2 In Fig. A, we plot the sum rate performance of our proposed scheme II for different α.

2Note that parameters are fixed according the choices given in the Appendix without optimization.
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Fig. 2. The achievable ergodic sum-rate of Scheme II for α = 0, 0.2, . . . , 1.
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Fig. 3. Comparison of the achievable ergodic sum-rate between the proposed scheme and the zero-forcing and MAT alignment. We set α = 0.5.

We observe that as the quality of channel knowledge increases (α→ 0) the sum rate improves significantly with the

sharper slope promised by the DoF result. Notice that the performance with α = 0 nearly corresponds to the sum

rate achieved by MAT(cf. Fig. 3). In Figure 3, we compare different strategies: Scheme II, MAT, ZF, as well as

“SC+ZF” in terms of the ergodic sum rate for α = 0.5. For this quality of the current CSIT, ZF performs substantially

worse than the others, achieving the pre-log of one. The sum rate with MAT, SC+ZF, scheme II increases with a

slope of 4/3, 3/2, 5/3, respective, as expected from the DoF results.

VI. EXTENSIONS AND DISCUSSIONS

A. DoF with common message

The main result of this paper can be extended trivially to the case with common message.
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Corollary 1: Let (d0, d1, d2) be the degrees of freedom related to the common message, private message to user 1,

and private message to user 2, respectively. Then, the optimal DoF region in terms of (d0, d1, d2) is characterized by

d0 + d1 ≤ 1 (86a)

d0 + d2 ≤ 1 (86b)

2d0 + d1 + 2d2 ≤ 2 + α (86c)

2d0 + 2d1 + d2 ≤ 2 + α (86d)

Proof: The converse follows the same lines as in the case without common message, presented in Section IV.

To obtain (86b) and (86c), we replace W2 by W̃2 , (W0,W2) and R2 by R̃2 , R0 +R2 throughout Section IV

and carry out exactly the same steps. To obtain the other two inequalities, we interchange the roles of user 1 and

user 2. It follows straightforwardly due to the symmetry between the two users.

Note that the region is a polyhedron and completely characterized by the vertices in terms of (d0, d1, d2):

• extreme points: (1, 0, 0), (0, 1, 0), (0, 0, 1)

• private points: (0, 1, α), (0, α, 1),
(
0, 2+α

3 , 2+α
3

)
• mixed point: (1− α, α, α)

which are all achievable with the proposed scheme. Therefore, the entire region is achievable by time sharing

between the vertices.

B. General fading processes

The main results are based on the fact that the channel gains are Rayleigh distributed and the fading processes

are stationary and ergodic. However, a close examination on the achievability and the converse proofs reveals the

results still hold in a more general setting. In the following, we discuss briefly some possible relaxations.

1) Non-Rayleigh fading: The Rayleigh distribution has been introduced for tractability of the achievable rates

and the upper bound. This constraint can be relaxed for the DoF analysis. In order to obtain the same upper bound

on the DoF, we need the following constraints:

• The estimation error S̃ should follow an isotropic (unitary invariant) distribution. Otherwise, it would be

possible to exploit the statistical property of the direction of S̃ to precode the signal. The DoF can be thus be

potentially increased.3

• E
(
log(‖g‖2)

)
, E
(
log(‖h‖2)

)
, E
(
log(‖ĝ‖2)

)
, and E

(
log(‖ĥ‖2)

)
are finite, i.e., in (−∞,∞).

On the other hand, in order to have the same achievability results, we need the second one of the above constraints

as well as E (log det (SSH)) > −∞.

3This constraint may be further relaxed as follows. Let Vδ be a set of Cm×m unitary matrices and the Haar measure of this set is µ(Vδ) = δ.

It can be shown that as long as the probability of S̃ lying within
{
S̃0V : V ∈ Vδ

}
scales as δ when δ → 0, for any S0 and Vδ , the DoF

results still hold. Detailed proofs are omitted.
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2) Non-ergodic fading (delay-limited communications): The DoF results have been derived based on the ergodic

rates. For non-ergodic fading processes, the DoF needs to be redefined. Here, we focus on the case with delay-limited

communication, i.e., when n is finite. Note that the original DoF definition does not hold any more, since the original

reliability condition (8) and (9) hinges on the fact that n→∞. However, it is possible to modify the definition by

replacing the limit on n in (8) by a limit on P →∞ and removing the limit on n in (9). Following the definition

of multiplexing gain in [5], we can redefine the achievable degrees of freedom in the delay-limited case as follows.

Definition 3 (achievable degrees of freedom in the non-ergodic case): For a family of codes {X(P )} of length

n and rate Rk(P ) bits per channel use for user k, k = 1, 2, we let Pe,k(P ) be the average probability of error for

user k and let

rk , lim
P→∞

Rk(P )

logP
, k = 1, 2. (87)

Then, the achievable degrees of freedom of X is defined as

DoFk , sup

{
r : lim

P→∞
− logPe,k(P )

logP
> 0

}
. (88)

In other words, the DoF defined above is the maximum pre-log factor of the rate of a coding scheme for a reliable

communication in the high SNR regime. Note that the code length n here is fixed.

The ergodicity is not necessary for the converse proof with the new reliability condition. This is because the

upper bounds have been established in a symbol-wise manner. The only detail to take care of is the term nεn from

Fano’s inequality. Note that nεn = 1 + nPeR. In the original setting where we can have n→∞, Pe goes to 0 with

n for any given rate R, which implies εn → 0 with n. In the new setting with finite n, Pe goes to 0 with P while

R goes to ∞ with P . Fortunately, (87) and (88) ensure that the decaying rate of Pe (polynomial in P ) is faster

than the increasing rate of R (logarithmic in P ). Therefore, we have εn = PeR→ 0 with P . As a result, every step

in the converse remains the same as in the original setting.

The achievability proof needs considerably more modifications for finite n for the following two reasons. First,

the rate-distortion function has been used to establish an upper bound on the quantization rate, while it is valid only

when n→∞. Second, the rate of the equivalent MIMO channel has been directly related to the mutual information,

while the achievability is also based on the assumption n→∞. Same arguments also hold for the second stage

of the proposed scheme. To circumvent these limitations, we propose a simple quantization scheme as well as a

random coding scheme with finite length. The achievability is shown by analyzing the error probabilities. It can

be shown that the achievable region of (DoF1,DoF2) is the same as the non-ergodic case. Details are deferred to

Appendix D.

C. Imperfect delayed CSI: Limited feedback

In most practical scenarios, delayed CSIT is obtained through feedback channel and the current state is then

predicted based on the delayed CSIT. Due to various reasons, perfect delayed CSIT may not be available. For
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Fig. 4. Impact of imperfect delayed CSI on the DoF region. We fix α = 0.5 and vary β from 1 to 0.

instance, the limited feedback rate may incur a distortion on the channel coefficients. In the following, we take a

look at the impact of the imperfect delayed CSIT on the achievable degrees of freedom of the proposed scheme.

First, let us assume that the channel state St−1 is quantized before being sent back to the transmitter (and the

other receiver). The quantization model is

St−1 = S̄t−1 + S̆t−1 (89)

where each entry of the quantization noise S̆t−1 has the same variance σ2
FB. We introduce a parameter β to

characterize the precision of the quantization. As the definition of α, we define β as the power exponent of the

quantization noise4, i.e.,

β , − log σ2
FB

logP
. (90)

Due to the lack of perfect delayed CSIT, instead of using St−1 to predict St for the precoding and using St−1 to

perform the MAT alignment, the transmitter now predicts the quantized state S̄t with the past quantized state S̄t−1

and uses S̄t−1 for the alignment. Therefore, although the actual interference seen by the receivers is (hHv, gHu),

the transmitter only has access to a noisy version of it η = (h̄Hv, ḡHu). Receiver 1 has

y = hHu+ hHv + ε = hHu+ η1 + (h− h̄)Hv + ε (91)

η̂1 = η1 −∆1 (92)

η̂2 = η2 −∆2 = ḡHu−∆2. (93)

4From the rate-distortion function, it is not difficult to relate β to the resource required for the CSI feedback, i.e., the feedback DoF.
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The power of η is h̄HQvh̄+ ḡHQuḡ that depends on the “precision” of the prediction from S̄t−1 to S̄t. It can be

shown5 that the power exponent of this said prediction error is α′ , min{α, β} where α is the power exponent of

the prediction error when perfect delayed CSIT is present, i.e., predicting St from St−1. Therefore, the achievable

DoF of Scheme II would be 2+α′

3 without taking into account the “residual interference” (h− h̄)Hv in (91). In fact,

this interference costs a DoF loss of 1− β over three slots, yielding the new DoF per user

d(α, β) =
2 + α′ − (1− β)

3
=

1 + min {α, β}+ β

3
. (94)

As in the case with perfect delayed CSIT, the DoF pairs (1, α′) and (α′, 1) are achievable without the MAT

alignment. An example of the DoF region is shown in Fig. 4, where we fix the value α and vary β from 1 to 0.

As shown in the figure, when β = 1, the DoF region is unchanged. When β is reduced to 1+α
2 , the symmetric

DoF point can be achieved by time sharing between the two corner points (1, α) and (α, 1). Delayed CSIT is not

beneficial any more. As β continues to diminish to α, the symmetric DoF keeps dropping while the corner points

remain still. At this point, using MAT alignment creates more interference than resolving it. When β goes below α,

it becomes the dominating source of interference. The corner points become (1, β) and (β, 1). The above analysis

reveals that even imperfect delayed CSI can beneficial, as long as the feedback accuracy β is larger than 1+α
2 .

D. Bandwidth-limited Doppler process

The main result on the achievable DoF has been presented in terms of an artificial parameter α, denoting the

speed of decay of the estimation error σ2 ∼ P−α in the current CSIT. In this section, we provide an example

showing the practical interpretation of this parameter. Focusing on receiver 1 due to symmetry, we describe the

fading process, channel estimation, and feedback scheme as follows:

• The channel fading ht follows a Doppler process with power spectral density Sh(w). The channel coefficients

are strictly band-limited to [−F, F ] with F =
vfcTf
c < 1

2 where v, fc, Tf , c denotes the mobile speed in m/h,

the carrier frequency in Hz, the slot duration in sec, the light speed in m/sec.

• The channel estimation is done at the receivers side with pilot-based downlink training. At slot t, receiver 1

estimates ht based on a sequence of the noisy observations {sτ =
√
Phτ + ντ} up to t, where νt is AWGN

with zero mean unit covariance. The estimate is denoted by h̄t with

ht = h̄t + h̆t. (95)

Under this model, the estimation error vanishes as E
(
‖h̆t‖2

)
∼ P−1.

• At the end of slot t, the noisy observation st is sent to the transmitter and receiver 2 over a noise-free channel.

At slot t+ 1, based on the noisy observation {sτ} up to t, the transmitter and receiver 2 acquire the prediction

5Without going into the details, we can see that the following Markov chain holds S̄t−1 ↔ St−1 ↔ St ↔ S̄t. The prediction error from

S̄t−1 to S̄t is now the aggregation of two effects: the channel variation, characterized by P−α, and the quantization error due to limited

feedback rate, characterized by P−β . Hence, we have the power exponent of the aggregated error α′ = min{α, β}.
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ĥt+1 of ht+1 and estimation h̃t of ht. The corresponding prediction model is

ht = ĥt + h̃t. (96)

From [2, Lemma 1], we have E
(
‖h̃t‖2

)
∼ P−(1−2F ).

In this channel with imperfect delayed CSIT, we can still apply the proposed scheme and analysis in exactly the

same way as in the previous section with α = 1− 2F and β = 1.

VII. CONCLUSIONS

A scheme achieving the optimal degrees of freedom region in a two-user MISO broadcast channel has been

presented. The approach optimally exploits the combination of delayed channel feedback together with current

imperfect CSIT. In practical scenarios, the current CSIT may be obtained from a prediction based on the delayed

CSIT samples. When the quality of current CSIT is poor, the proposed scheme coincides with the previously reported

MAT algorithm, whereas as the current CSIT prediction quality becomes ideal, the scheme relies on standard linear

precoding. In between these extremal regimes, the proposed strategy advocates interference quantization followed by

feedback.

APPENDIX

A. Achievable rate region of Scheme I

Let us recall that Scheme I consists of two phases: broadcast and multicast. In the following, let n1 and n2 denote

the length of Phase 1 and Phase 2, in channel uses, respectively. The main ingredients are:

• Codebook generation:

– Channel codebooks Xũ of length n1 and size 2n1Rmimo,1 , Xṽ of length n1 and size 2n1Rmimo,2 . Entries of Xũ

and Xũ are generated i.i.d. according to NC (0,ΛΛΛu) and NC (0,ΛΛΛv), respectively. ΛΛΛu,ΛΛΛv � 0 are m×m

matrices that can be assumed to be diagonal without loss of generality.

– Channel codebook Xmc of length n2 and size 2n2Rmc , the entries of which is generated i.i.d. according to

NC (0,ΛΛΛmc), where ΛΛΛmc � 0 is m×m diagonal matrix.

– Source codebooks Ck of length n1 and size 2n1Rηk , k = 1, 2. Entries of C1 and C2 are generated i.i.d.

according to NC

(
0, 1− D̃k

)
, D̃k ≤ 1, k = 1, 2.

• Time-varying linear precoders that only depend on the estimate of the current state:

ΘΘΘt,ΦΦΦt,ΩΩΩt : Ŝt 7−→ Cm×m. (97)

• Coding in Phase 1: The codewords {ũt}nt=1 and {ṽt}nt=1 are selected from Xũ and Xṽ, according to

Wmimo,1,Wmimo,2 respectively. The transmitted signal is {xt}nt=1 with

xt = ut + vt (98)

= ΘΘΘtũt + ΦΦΦtṽt. (99)
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• Quantization of the interferences η: At the end of Phase 1, the transmitter knows {(η1,t, η2,t)}n1
t=1 with

η1,t , hH
tvt ∼ NC(0, σ2

η1,t) and η2,t , gH
tut ∼ NC(0, σ2

η2,t), for a given channel realization {ht, gt}n1
t=1. The

codebook Ck, k = 1, 2, is used to quantize the normalized source
{
ηk,t
σηk,t

}n1

t=1
that is i.i.d. NC (0, 1). The

quantized output is represented in n1(Rη1 +Rη2) bits.

• Coding in Phase 2: The quantized interference, denoted by Wmc, is coded into {x̃mc,t}n1+n2
t=n1+1 using codebook

Xmc. It will be then precoded through the matrix {ΩΩΩt} and then multicast to both users. The transmitted signal

is {xmc,twith}n1+n2

t=n1+1

xmc,t = ΩΩΩtx̃mc,t. (100)

For user k to recover its original message Wk correctly6, when n1, n2 →∞, it is enough to

• recover the message Wmc at each receiver, which is possible if

n1(Rη1 +Rη2) ≤ n2Rmc (101)

and

Rmc < min{I(X̃mc;Ymc |S, Ŝ), I(X̃mc;Zmc |S, Ŝ)} (102)

where Ymc and Zmc are the received signals corresponding to Xmc at receiver 1 and 2, respectively.

• reconstruct {η̂k,t}n1

t=1, k = 1, 2 with

ηk,t = η̂k,t + ∆k,t, ∆k,t ∼ NC(0, σ2
ηk,t

D̃k), (103)

which is possible if

Rηk > log

(
1

D̃k

)
, k = 1, 2; (104)

• then decode the message Wmimo,k,which is possible if

Rmimo,1 < I(Ũ ;Y, η̂1, η̂2 |S, Ŝ) (105)

Rmimo,2 < I(Ṽ ;Z, η̂1, η̂2 |S, Ŝ). (106)

Putting all pieces together, we obtain the rate region of Scheme I in the following.

Proposition 1: Let us define the multicast rate Rmc, the compression rate Rηk , and the MIMO rate as

Rmc , min{E (log (1 + hHQmch)) ,E (log (1 + gHQmcg))} (107)

Rηk , log
1

D̃k

, k = 1, 2 (108)

Rmimo,1 , E (log det (I +D1SQuS
H)) (109)

Rmimo,2 , E (log det (I +D2SQvS
H)) (110)

6Note that the assumption on the ergodicity and the Markov chain (5) makes the single-letter representation of the rates possible.
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with

D1 , diag

(
1

1 + hHQvh D̃1

,
1− D̃2

gHQug D̃2

)
(111)

D2 , diag

(
1− D̃1

hHQvh D̃1

,
1

1 + gHQug D̃2

)
. (112)

Then, the achievable rate region of Scheme I is the union of the rate pairs (R1, R2) such that

Rk =
Rmc Rmimo,k

Rmc +Rη,1 +Rη,2
(113)

over all policies D(Ŝ) , {D̃1, D̃2 : 0 ≤ D̃k ≤ 1} and

Q(Ŝ) , {Qu,Qv,Qmc � 0 : tr (Qu +Qv) ≤ P, tr (Qmc) ≤ P} (114)

that only depend on the estimate of the channels.

Proof: The average rate for user k is

Rk =
n1Rmimo,k

n1 + n2
(115)

=
Rmimo,k

1 + n2/n1
(116)

≤ Rmc Rmimo,k

Rmc +Rη,1 +Rη,2
(117)

where the last inequality is from (101). (107) can be obtained from (102), with Qmc = ΩΩΩΛΛΛmcΩΩΩ
H. To see (109), we

write

I(Ũ ;Y, η̂1, η̂2 |S = S, Ŝ = Ŝ) = I(Ũ ; η̂1) + I(Ũ ;Y, η̂2 | η̂1) (118)

= I(Ũ ;Y, η̂2 | η̂1) (119)

= I(Ũ ;Y − η̂1, η̂2 | η̂1) (120)

= I(Ũ ;hHŨ + ∆1 + E, η̂2) (121)

= I(Ũ ;hHŨ + ∆1 + E, ammse g
HŨ + Emmse) (122)

= log det

(
I + diag

(
(1 + hHQvh D̃1)−1,

1− D̃2

gHQug D̃2

)
SQuS

H

)
(123)

where (118) is from the chain rule of mutual information; (119) is from the fact that Ũ is independent of η1; (121) is

from the fact that η̂1 is independent of all the other terms. Since η2 = η̂2 + ∆2 with η̂2 ∼ NC

(
0, gHQug(1− D̃2)

)
and ∆2 ∼ NC

(
0, gHQug D̃2

)
being additive Gaussian noise, we can “estimate” η̂2 from η2 and get the “backward

channel” model

η̂2 = ammse η2 + emmse (124)

where ammse , 1 − D̃2 and the additive noise emmse ∼ NC

(
0, ammseg

HQug D̃2

)
is independent of η2. Thus,

(123) follows as the mutual information of an equivalent Gaussian MIMO channel with Gaussian input, where
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Qu = ΘΘΘΛΛΛuΘΘΘ
H and Qv = ΦΦΦΛΛΛvΦΦΦ

H. Finally, (109) follows from (105) and (123). Due to the symmetry, (110) is

straightforward.

Note that the optimization in (113) is not trivial and is out of the scope of this paper. Instead of finding the exact

rate, we focus on the symmetric degrees of freedom of the scheme with m = 2, by fixing the parameters Q and D

as follows:

Qu =
P1

2
ΨΨΨĝ⊥ +

P2

2
ΨΨΨĝ (125)

Qv =
P1

2
ΨΨΨĥ⊥ +

P2

2
ΨΨΨĥ (126)

Qmc =
P

2
I (127)

D̃1 = D̃2 = (2P )−1 (128)

where we recall that ΨΨΨĝ , ĝĝH

‖ĝ‖2 and ΨΨΨĝ⊥ , ΨΨΨĥ, and ΨΨΨĥ⊥ are similarly defined. the power allocation (P1, P2) is

specified by

P2 = (1− α̂)
P

2
σ̂2 (129a)

P1 = P − P2 (129b)

with

σ̂2 , max
{
P−1, σ2

}
, α̂ , − log σ̂2

logP
. (130)

The interpretation of the choices on the covariance matrices has already been given in Section III-C. For the power

allocation (129) and the distortion (128):

• The scaling factor (1− α̂) ensures that P1 = P and P2 = 0 when the estimation error is small, i.e., σ2 ≤ P−1

while P1 = P2 = P
2 when the estimation error is high, i.e., σ2 = 1.

• The distortion D̃1 and D̃2 are such that the error after reconstruction of η is at the same level as the channel

noise.

It is readily shown that with the above choices, we obtain (23) and then the DoF (2).

B. Achievable rate region of Scheme II

The only difference between Scheme I and II is the private messages sent in second phase. That is, we need the

following, in addition to the ingredients of Scheme I:

• Channel codebooks Xp,1 of length n2 and size 2n2Rp,1 and Xp,2 of length n2 and size 2n2Rp,2 . Entries of Xp,k,

k = 1, 2, are generated i.i.d. according to NC (0,ΛΛΛp,k), with ΛΛΛp,k � 0 being m×m diagonal.

• Instead of Xmc, we use a channel codebook X0 of length n2 and size 2n2R0 , the entries of which is generated

i.i.d. according to NC (0,ΛΛΛ0), with ΛΛΛ0 � 0 being m×m diagonal.

• Time-varying linear precoders that only depend on the estimate of the current state:

ΞΞΞt,Γt,ΩΩΩt : Ŝt 7−→ Cm×m.
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• Coding in Phase 2: The quantized interferences, represented in n1(Rη1 + Rη2) bits and denoted by W0, is

coded in {x̃c,t}n1+n2
t=n1+1 ∈ X0, precoded, and then multicast to both users. Meanwhile, two private messages

Wp,1 and Wp,2 for user 1 and 2 are coded in {ṽp,t}n1+n2
t=n1+1 ∈ Xp,1 and {ũp,t}n1+n2

t=n1+1 ∈ Xp,2, respectively,

precoded, and sent. The transmitted signal is {xmix,t}n1+n2

t=n1+1

xmix,t = ΩΩΩtx̃c,t + ΞΞΞtũp,t + Γtṽp,t. (131)

Then, we can get the following result on the rate region.

Proposition 2: Let us define the common and private rates as

R0 , min

{
E
(

log

(
1 +

hHQ0h

1 + hH(Qp1 +Qp2)h

))
, E

(
log

(
1 +

gHQ0g

1 + gH(Qp1 +Qp2)g

))}
(132)

Rp,1 , E
(

log

(
1 +

hHQp1h

1 + hHQp2h

))
, Rp,2 , E

(
log

(
1 +

gHQp2g

1 + gHQp1g

))
(133)

and the compression rate Rηk and the MIMO rate Rmimo,k are defined by (108) and (109), respectively. Then, the

achievable rate region of Scheme II is the union of the rate pairs (R1, R2) such that

Rk =
R0Rmimo,k + (Rη,1 +Rη,2)Rp,k

R0 +Rη,1 +Rη,2
(134)

over all policies D(Ŝ) , {D̃1, D̃2 : 0 ≤ D̃k ≤ 1} and

Q′(Ŝ) , {Qu,Qv,Q0,Qp,1,Qp,2 � 0 : tr (Qu +Qv) ≤ P, tr (Q0 +Qp,1 +Qp,2) ≤ P} (135)

that only depend on the estimate of the channels.

Proof: The only differences from Scheme I are the multicast rate Rmc is now replaced by the common rate

R0, and that extra private rate is obtained. The common rate R0 is obtained by treating the private signals as noise.

Then, after removing the decoded common signal, the private message is obtained by treating the interference as

noise. The covariance matrices are such that Q0 = ΩΩΩΛΛΛ0ΩΩΩH, Qp,1 = ΞΞΞΛΛΛp,1ΞΞΞH, Qp,2 = ΓΛΛΛp,2Γ
H. Further details are

omitted.

As with Scheme I, we focus on the symmetric case with m = 2 and fix the parameters Q and D as follows:

Q0 =
Pc
2

I (136)

Qp1 =
Pp
2

ΨΨΨĝ⊥ (137)

Qp2 =
Pp
2

ΨΨΨĥ⊥ (138)

D̃1 = D̃2 = (2P )−1 (139)

where the power allocation (Pc, Pp) is specified by

Pp = α̂σ̂−2 (140a)

Pc = P − Pp (140b)

where σ̂2 and α̂ are defined in (130). The interpretation of the above choices of Qp1 and Qp2 in the second phase

is:
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• The transmitted power of the private signals scales as Pp ∼ Pα, while the received power at the unintended

receiver scale as P 0, i.e., the noise level. Therefore, the private signal does not incur any DoF loss for the

unintended receiver.

• The scaling factor α̂ in (140a) is such that Pp = P and Pc = 0 when the estimation error is small, i.e.,

σ2 ≤ P−1 while leading to Pc = 0 and Pp = P when the estimation error is high, i.e., σ2 = 1.

It is readily shown that, with these choices, we have the high SNR approximation of the rates

R0 = (1− α) logP +O(1) (141)

Rp,k = α logP +O(1), k = 1, 2 (142)

Rη = 2(1− α) logP +O(1) (143)

Rmimo,k = (2− α) logP +O(1), k = 1, 2 (144)

from which we derive the DoF of Scheme II

dScheme II =
2 + α

3
, α ∈ [0, 1]. (145)

C. Proof of Lemma 1

First, we show (74) as follows.

ESi|Ŝi (log(1 + hH

iKhi)) ≤ ESi|Ŝi
(
log(1 + λ1‖hi‖2)

)
(146)

≤ log(1 + λ1‖ĥi‖2 +mσ2λ1) (147)

= log(1 + λ1‖ĥi‖2) + log

(
1 +

mσ2λ1

1 + ‖ĥi‖2λ1

)
(148)

≤ log(1 + λ1‖ĥi‖2) + log

(
1 +

mσ2

‖ĥi‖2

)
(149)

where (147) is from the concavity of the log function. To derive (75), let us define ψ̂ , V Hĝi and ψ̃ , V Hg̃i with

V being the unitary matrix containing the eigenvectors of K, i.e., K = V diag (λ1, . . . , λm)V H. From isotropic

assumption, ψ̃i are i.i.d. NC(0, σ2). We also need the following lemma.

Lemma 3: Let X ∼ NC
(
µX , σ

2
X

)
and define φ(µX , σ

2
X) , E

(
log(|X|2)

)
, then φ(µX , σ

2
X) is monotonically

increasing and concave in |µX |2 and we have

φ(µX , σ
2
X) ≥ φ(µX , 0) (150)

φ(0, σ2
X) = log(e−γσ2

X), (151)

where γ is Euler’s constant.

Proof: From [11, Lemma 10.1]7, we have

φ

(
µX
σX

, 1

)
= log

(
|µX |2

σ2
X

)
− Ei

(
−|µX |

2

σ2
X

)
log e (152)

7Note that unlike in [11], the logarithm in this paper is in base 2.
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where Ei(x) is the exponential integral with −Ei(−x) =

∫ ∞
x

e−t

t
dt being positive and decreasing in x for x > 0.

The concavity and monotonicity are directly shown in [11]. To show (150),

φ(µX , σ
2
X) = log(σ2

X) + φ

(
µX
σX

, 1

)
(153)

≥ log(|µX |2) (154)

= φ(µX , 0) (155)

where the inequality is from (152). From (153) and using the fact that φ(0, 1) = −γ log e, we obtain (151).

Then, we have

ESi|Ŝi (log(1 + gT

iKgi)) = Eψ̃

log

1 +

m∑
j=1

λj |ψ̂j + ψ̃j |2
 (156)

≥ Eψ̃
(

log(λ1|ψ̂1 + ψ̃1|2)
)+

(157)

≥
(
Eψ̃
(

log(λ1|ψ̂1 + ψ̃|2)
))+

(158)

=
(
Eψ̃
(

log(λ1|ψ̃|2)
))+

(159)

=
(
log(e−γλ1σ

2)
)+

(160)

= log(1 + e−γλ1σ
2)− 1 (161)

where in (157), (x)+ means max {x, 0}; (158) is from the fact that moving the maximization outside of the

expectation only reduces the value; in (159) we use the monotonic increasing property of Eψ̃
(

log(|x+ ψ̃|2)
)

from

Lemma 3; (160) is from (151); in (161), we use the fact that (log(x))+ ≥ log(1 + x)− 1.

D. Proposed scheme for delay-limited communications

In the following, we set the finite length n = 3, which is only a particular case of n ≥ 3. For simplicity, we only

analyze the extension to Scheme I. The extension to Scheme II is straightforward. The main line of the proposed

scheme is the same as in the ergodic case. The only difference is that instead of using a Gaussian codebook to

quantize η, a truncated uniform quantization with unit step and truncation value η̄ = P
1+ζ
2 σ, for some ζ > 0, is

used for both the real and imaginary parts of η1 and η2, i.e.,

η̂k = [trunc(Re (ηk))] + i [trunc(Im (ηk))] (162)

where trunc(x) = x if x ∈ [−η̄, η̄] and 0 otherwise; [x] means bxc + 1
2 . Thus, the double indices of (η̂1, η̂2),

represented in

4 log(2dη̄e) ≈ 4 + 2(1 + ζ − αP ) logP bits, (163)

are sent with a multicast code.

We define the error event E as the event that one of the users cannot recover his message correctly. It can be

shown that this event implies one of the following events:
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• Quantization range error E∆: the amplitude of real or imaginary parts of interferences is out of [−η̄, η̄];

• Multicast error Emc: one of the users cannot recover the double indices of (η̂1, η̂2) correctly;

• MIMO decoding error Emimo: based on the received signal and the recovered indices, one of the users cannot

recover his original message after performing a MIMO decoding of the equivalent channel (20) or (21).

That is, E ⊆ E∆ ∪ Emc ∪ Emimo. Therefore, we have

Pe ≤ P (E∆) + P (Emc) + P
(
Emimo ∩ Ē∆ ∩ Ēmc

)
. (164)

In the following, we examine the individual error events.

1) Quantization range error E∆: This event is the union of the four events: {Re (η1) > η̄}, {Im (η1) > η̄},

{Re (η2) > η̄}, and {Im (η2) > η̄}. This event implies that the quantization error is not bounded. Let us recall that

ηk ∼ NC
(
0, σ2

ηk

)
, i.e., Re (ηk) , Im (ηk) ∼ N(0,

σ2
ηk

2 ), k = 1, 2, conditional on the channel state S. We have

P (Re (η1) > η̄) = E

(
Q

(
η̄1

ση1/
√

2

))
(165)

≤ E
(

exp

(
− η̄2

1

σ2
η1

))
(166)

≤ E
(

exp

(
− η̄

2
1

A

))
(167)

where the first equality comes from the Gaussian distribution conditional on the channel states; to obtain (166), we

applied Q(x) ≤ e−x
2/2; the last inequality is from the fact that σ2

η1 ≤ A with A , ‖h̃‖2P + ‖h‖2P2. Now, we

can go further with the upper bound, by introducing ε > 0,

P (Re (η1) > η̄)

≤ P
(
A ≤ η̄2P−ε

)
e−P

ε

+ P
(
A > η̄2P−ε

)
(168)

≤ e−P
ε

+ P
(
A > η̄2P−ε

)
(169)

≤ e−P
ε

+ P
(
‖h̃‖2P >

1

2
η̄2P−ε

)
+ P

(
‖h‖2P2 >

1

2
η̄2P−ε

)
(170)

= e−P
ε

+ P

(
‖h̃‖2

mσ2
>

1

2m
P ζ−ε

)

+ P

(
‖h‖2

m
>

1

2m
P ζ−ε+1−αP−ξP

)
(171)

≤ e−P
ε

+
1

4m2
P−2(ζ−ε) +

1

4m2
P−2(ζ−ε+1−αP−ξP ) (172)

where (170) is from the union bound; ξP , logP2

logP ; the last inequality is Chebyshev’s inequality.

Note that, due to the symmetry, the probabilities for the four events, i.e., P (Re (η1) > η̄), P (Im (η1) > η̄),

P (Re (η2) > η̄), and P (Im (η2) > η̄), have the same upper bound (172). Therefore, by the union bound, we
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have P (E∆) ≤ 4P (Re (η1) > η̄). From (172), a sufficient condition for lim
P→∞

P (E∆) = 0 is ζ > ε > 0 and

lim
P→∞

1− αP − ξP ≥ 0, i.e.,

lim
P→∞

ξP ≤ 1− α, (173)

meaning that the power P2 should not scale faster than P 1−α.

2) Multicast error Emc: First, we provide the following lemma.

Lemma 4: For the considered MISO broadcast channel with common message, (DoF0,DoF1,DoF2) = (1 −

α, α, α) is achievable with a single-letter Gaussian code.

Proof: The coding scheme is the same superposition coding with Gaussian codebooks as in the ergodic case,

except that the length is 1. As shown before, successive interference cancellation decoding is used at each receiver.

By treating the private signals as noise, the SINR for the common signal scales as P 1−α. After removing the

common signal successfully, the useful private message is decoded with a SINR scaling as Pα. To show the DoF, it

is enough to show that DoF = κ is achievable if the SINR scales as Pκ, κ ≥ 0. Since the interferences and noise

are all Gaussian, it can be easily shown with the union bound.

Note that the number of bits needed to describe the indices is approximately 4 + 2(1 + ζ − αP ) logP . From

Lemma 4, we know that for any δ < 0, a rate (1− δ) logP can be achieved reliably when P →∞. Therefore, as

long as the number of channel uses

l ≥ 4

(1− δ) logP
+

2(1 + ζ − αP )

1− δ
, (174)

we can guarantee that P {Emc} → 0 when P →∞.

3) MIMO decoding error Emimo: Let Emimo,k be the MIMO decoding error at receiver k, k = 1, 2. It is obvious

that P (Emimo) ≤ P (Emimo,1) + P (Emimo,2). Due to the symmetry, we can focus on Emimo,1. First, we introduce

ε′ > 0 and define

Oε′ , {S : log det (I + SQuS
H) < R+ ε′ logP} . (175)

Therefore, the error probability can be upper-bounded by

P
(
Emimo,1 ∩ Ē∆ ∩ Ēmc

)
≤ P

Emimo,1 ∩ Ē∆ ∩ Ēmc ∩ Ōε′︸ ︷︷ ︸
B

+ P (Oε′) (176)

= P
(
(W1 6= Ŵ1) ∩B

)
+ P (Oε′) . (177)

We can bound the two terms separately. For simplicity, we assume that minimum Euclidean distance decoding is

used8. To that end, we look into the pair-wise error probability for a pair of different codewords u(0),u(1) ∈ X1,

8Since the noise is not Gaussian and depends on the signal in general, it does not correspond to maximum likelihood decoding.
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denoted by P (u(0)→ u(1)). For a given channel realization S, we have

P ((u(0)→ u(1)) ∩B |S)

≤ P
((
‖S(u(0)− u(1))‖

2
≤ ‖b‖

)
∩B

)
(178)

≤ P
((
‖Sud‖2 ≤ 2(|ε|2 + |∆1|2 + |∆2|2)

)
∩B

)
≤ P

((
‖Sud‖2 ≤ 2|ε|2 + 1

)
∩B

)
(179)

≤ P
((
‖Sud‖2 ≤ 2|ε|2 + 1

)
∩ Ōε′

)
(180)

≤ P
(
‖Sud‖2 ≤ 2|ε|2 + 1

)
1Ōε′

(S) (181)

where 1Ōε′
(S) is the indicator function that gives 1 if S ∈ Ōε′ and 0 otherwise; (179) is from the fact that the

quantization error |∆k| is bounded by 1
2 , k = 1, 2. We can go further with the probability term

P
((
‖Sud‖2 ≤ 2|ε|2 + 1

))
(182)

≤ P
(
‖Sud‖2 ≤ 4|ε|2

)
+ P

(
‖Sud‖2 ≤ 2

)
(183)

≤ E
(

exp

(
−1

4
‖Sud‖2

))
+ P

(
‖Sud‖2 ≤ 2

)
(184)

≤ det
(

I +
1

4
SQuS

H

)−1

+ P
(
ρ1 ≤

2

µ1

)
P
(
ρ2 ≤

2

µ2

)
(185)

≤ 16 det (I + SQuS
H)
−1

+ (1− e−
2
µ1 )(1− e−

2
µ2 ) (186)

≤ 16 det (I + SQuS
H)
−1

+
16

(2 + µ1)(2 + µ2)
(187)

= 32 det (I + SQuS
H)
−1 (188)

where ud , (u0 − u1)/
√

2 ∼ NC(0,Qu); ‖Sud‖2
d
= µ1ρ1 + µ2ρ2 with ρ1, ρ2 ∼ exp(1) and µ1 ≥ µ2 being the

two eigenvalues of SQuSH; (187) is obtained by applying 1− exp
(
− 1
x

)
≤ 2

1+x , ∀x ≥ 0. With the union bound

on all possible codewords pairs, we finally obtain

P
(

(W1 6= Ŵ1) ∩B
)

≤ 2R ES
(
P ((u(0)→ u(1)) ∩B |S)

)
(189)

≤ 32P r ES
(

det (I + SQuS
H)
−1

1Ōε′
(S)

)
(190)

≤ 32P r ES
(
P−(r+ε′)

)
(191)

= 32P−ε
′

(192)

where we used the fact that det (I + SQuS
H)
−1 ≤ P−(r+ε′) for any S ∈ Ōε′ , from the definition (175).
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In the following, we set m = 2 to simplify the calculation. For m ≥ 2, the error probability can only be smaller.

The probability P (Oε′) is upper-bounded as follows

P (Oε′) ≤ P
(

det (SQuS
H) < P r+ε

′
)

(193)

= P
(

det (SSH) det (Qu) < P r+ε
′
)

(194)

= P
(

det (SSH) < P r−1−ξP+ε′
)

(195)

≤ P
(
λmin(SSH) < P

r−1−ξP+ε′
2

)
. (196)

As long as

r < 1 + ξP − ε′, (197)

the probability in (196) scales as P−
(r+1+ξP−ε

′)
2 , according to the near-zero behavior of the minimum eigenvalue of

the Wishart matrix SSH.

From (174) and (197), by letting P →∞, and making ζ, ε′, ε′′, and δ as close to 0 as possible, the proposed

scheme can achieve an average DoF per user

r

1 + l
=

2− α
3− 2α

. (198)

Due to the symmetry, same proof applies to finding precisely the same DoF for user 2.
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