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Abstract—In automatic video surveillance applications, one
of the most popular topics consists of separating the moving
objects from the static part of the scene. In this context, Gaussian
Mixture Model (GMM) background subtraction has been widely
employed. It is based on a probabilistic approach that achieves
satisfactory performance thanks to its ability to handle complex
background scenes. However, the background model estimation
step is still problematic; the main difficulty is to decide which
distributions of the mixture belong to the background.
To achieve an improved overall performance, motion cue could
provide a rich source of information about the scene. Therefore,
in this paper, we propose a new approach based on incorporating
an uniform motion model into GMM background subtraction.
By considering these both cues, high accuracy of foreground
segmentation is obtained. Our approach has been experimentally
validated showing better segmentation performance by compar-
isons with other approaches published in the literature.

I. INTRODUCTION

Segmenting foreground objects from a video sequence is
a fundamental step in many computer vision applications
such as video understanding, video conferencing and traffic
monitoring. In this context, there are many issues (such as
illumination changes, reflections, shadows, objects that have
been moved, sleeping foreground, and so on) that make
obtaining high accuracy foreground segmentation difficult and
still subject to errors.
To tackle these problems, intensive research has been con-
ducted. Among the proposed methods, GMM based back-
ground subtraction includes some robustness against changes
in the background. Nevertheless the popularity of this method,
the background/foreground discrimination still leaves rooms
for further improvements. Actually, the decision on which of
the Gaussians are most likely belonging to the background is
made based on selecting the ones having the most supporting
evidence and the least variance, which is not always correct.
This ambiguity left by GMM method makes the estimation
of the background model still hard to be properly addressed.
To overcome the mentioned shortcoming, we propose incor-
porating an uniform motion model into GMM background
subtraction. Considering these both information over time into
a single overall system has the potential to detect foreground
objects more reliably.
The rest of the paper is organized as follows: Section II
reviews relevant works to foreground segmentation. Section
III describes our motivation for the proposed approach. Then,

Section IV and Section V detail our approach. Section VI
shows the experimental results to demonstrate the effectiveness
of our method. Finally, we give a brief conclusion in Section
VII.

II. RELATED WORKS

The simplest method to handle the problem of segmenting
foreground objects is based on computing the difference
between consecutive frames in order to detect moving objects.
This technique is referred as temporal differencing [1], it is
useful only in dynamic environments because as soon as an
object stopped moving, it will be considered as foreground
entity. Also, it is unable to extract the complete shape of
moving objects.

Another commonly used technique to achieve this segmen-
tation is based on building a representation of the scene called
background model and comparing each incoming frame to
this model. This process is termed as background subtraction
and it aims at separating the expected part of the scene from
the moving objects. The technique of background subtraction
is widely used in real-time video processing using stationary
cameras. Especially in video surveillance, it is considered as
the basic low-level operation since many techniques can be
carried out after performing background subtraction.

In this context, there are many difficulties that decrease
the reliability of foreground segmentation. Precisely, the task
becomes more challenging to deal with videos containing
complex background [2]. One central problem is the changes
that occur in the background such as water waves, waving
trees, sudden lights switch and illumination changes caused
by time of day evolution. The pixels belonging to the back-
ground are classified wrongly as foreground pixels. There is
another category of issues making the distinction between the
foreground and the background difficult, for example, sleeping
(or motionless) foreground may be labeled as a part of the
background. Added to that, shadows and reflections have not
to interfere with foreground entities.

In the literature, many methods have been proposed to
perform background subtraction which is mainly oriented
towards the segmentation of moving objects from a video
sequence. At the beginning, most of these methods assumed
that the background is static and is composed of stationary
objects. This constraint generates erroneous segmentation in



many cases. As a result, an efficient solution to handle the
background variations was required.
The simplest manner proposed to deal with these variations is
to smooth the color of background pixels with a Kalman filter
or with an Infinite Impulse Response [3], [4].
After that, a better solution was proposed to handle smooth
variation in the background; it is based on using Gaussian
function [5]. For each pixel, the parameters of the Gaussian
(the mean and the variance) are learned from the color
observations in several adjacent frames. Afterwards, for an
input frame, each pixel deviating from the background model
is classified as foreground entity.
Although this technique allows learning gradual background
changes in the time; it is restricted to model only one back-
ground. To handle this limitation, Gaussians Mixture Model
(GMM) has been proposed by Stauffer and Grimson [6]. It
consists of modeling each pixel as a mixture of Gaussians and
using an on-line approximation for updating the model. Thanks
to its ability to model various background distributions, this
method showed a substantial progress to handle complex
scenes. Therefore, until nowadays, GMM based background
subtraction is considered as a standard method and it has
become the basis for a large number of related methods [7],
[8], [9].

Another way to segment foreground objects is by computing
the optical flow between adjacent frames in a video sequence.
To address this problem, many approaches have been proposed
in the literature. Among them, the most popular ones are block
matching and differential methods. Block matching methods
are based on establishing the correspondences between each
two successive frames. Differential based methods attempt to
calculate the motion between two frames taken at times t and
t+δt. Depending on the additional constraint used to estimate
the flow velocity, differential methods can be also categorized
into two subgroups which are local and global methods.
The difficulty of these methods is that its performance is
low in poor textured regions where objects are not clearly
defined. In addition, another problem in using optical flow
is caused by the constant brightness assumption. This latter
makes the technique unable to handle any variation in the
lighting conditions. As a result, applying only optical flow is
not so much used for foreground segmentation.

III. MOTIVATION

After the analysis of the above different techniques for
foreground segmentation, we demonstrate that GMM based
background subtraction is powerful method to handle complex
background scenes compared to temporal differencing and
optical flow methods. But, the estimation of the background
model using GMM still leave some ambiguities. At the same
time, motion cue can provide additional and important infor-
mation about the scene structure. That is why, we consider
the combination of motion information and GMM background
subtraction as a promising research direction.

In the last decade (after the method conducted by Stauffer
and Grimson about GMM for background subtraction), many

extensions of GMM have been proposed. However, there
have been only few works on using optical flow with GMM
background subtraction. A brief review on these works will be
discussed. First, Zhou and Zhang proposed a combination of
background subtraction, optical flow and temporal differencing
[10]. The method starts by extracting foreground objects using
GMM background subtraction. Then, optical flow supported
by frame differences is used as post-processing step. The
fusion is based on considering foreground objects only that are
in motion. Another way to use optical flow within background
subtraction was presented by Cai et al. [11]. This paper used
optical flow to indicate the movement of a pixel’s neighbor-
hood. Therefore, two events can be distinguished: covering and
revealing events which simplifies the task of determining the
background value at a pixel position. After that, Kermouche
and Aouf proposed a new technique [12] by integrating flow
information with RGB color information in the same feature
vector to statistically estimate the background model. Recently,
a new background subtraction has been proposed by Wolf and
Jolion [13], it integrates a discrete approximative optical flow
by spatio-temporal regularization.

These works represent preliminary tentative attempting to
overcome the limitations of background subtraction by using
optical flow. In the same trend, we propose a new approach
using both of these cues: the appearance models and the
motion. Unlike the previous works, our proposed method
applied an improved GMM for the background subtraction.
The difference between the original and the improved versions
of GMM will be discussed in Section IV.
In addition, we deal with the problem of the fusion dif-
ferently. Actually, the integration of both cues is based on
the assumption that pixels moving together (with the same
velocity and orientation of the optical flow) have to get the
same label (foreground or background). For this purpose, a
measure for uniformity of motion is defined in Section V .
Then, the incorporation of these two cues is done by favoring
similar labels for pixels moving together. Moreover, compared
to the previous woks, the present study has the advantage of
comparing the results to other approaches in the literature with
quantitative evaluation using public dataset, see Section VI.

IV. BACKGROUND SUBTRACTION BY GAUSSIAN MIXTURE
MODEL

The most popular background subtraction algorithm is based
on Gaussian mixture model proposed by Stauffer and Grimson
[6]. This method uses a mixture of K Gaussian distributions
to model the recent history {X1, ..., Xt} of each pixel. The
probability of observing the current pixel value is defined by
a sum of weighted Gaussian distributions :

P (Xt) =
K∑
i=1

wi,t ∗ η(Xt, µi,t,Σi,t) (1)

where K is the number of distributions (typically between
3 and 5), wi,t, µi,t and Σi,t are respectively, an estimate of
the weight, the mean value and the covariance matrix of the



ith Gaussian in the mixture at time t. And η(Xt, µ,Σ) is the
Gaussian probability density function.
Then, incoming pixels are compared against the corresponding
Gaussian mixture model in order to find a Gaussian within
2.5 standard deviations. If a matching is found, the mean and
the variance of the matched Gaussian are updated accordingly.
However, if there is no match, the least probable component of
the mixture is replaced by a new one modeling the incoming
pixel. The prior weights of the K distributions at time t are
defined as follows:

wk,t = (1− α)wk,t−1 + α(Mk,t) (2)

where α is a learning rate, and Mk,t is equal to 1 for the
matched model and equal to 0 for the remaining models.
The updated parameters of the distribution that matches the
new observation are defined by:

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µt)
T (Xt − µt) (3)

µt = (1− ρ)µt−1 + ρXt (4)

where σt−1, µt−1 are the last mean and variance values of the
matched Gaussian and Xt is the value of the new pixel. ρ is
the second learning rate defined by:

ρ = α(Xt|µk, σk) (5)

The last step aims at estimating the background model from
the mixture. For this purpose, the algorithm assumes that
Gaussian distributions having the most supporting evidence
and the least variance are most likely produced by background
processes. As a result, the Gaussians are ordered by w/σ
and the first B of the ranked distributions whose accumulated
weights exceed T are deemed to be the background:

B = arg min
b

(

b∑
k=1

wk > T ) (6)

where T is the minimum fraction of the background model.
The detailed adaptive modeling background is robust

enough for illumination changes; it can also deal with the
movement in the background due to its multimodality. Many
improvements for this method can be found in the literature
to solve different limitations. One of these limitations arises
due to the use of fixed learning rate all the time. Therefore,
the parameters stabilize slowly which leads to problems with
the initialization. That is why, the original version of GMM
background subtraction has been further enhanced to improve
its learning rate. This modification was proposed by Kaew-
trakulpong and Bowden [14]. For the initialization, they im-
proved the slow learning problem by using online Expectation
Maximization algorithm and switching to the L-recent window
update equations in order to give priority over recent data. This
makes the convergence on a stable background model faster
and also the tracker adapted to changes in the environment.

Another limitation of GMM method is caused by using
a fixed number K of components over the time. Also, this
number remains the same for each pixel which is not optimal

in terms of computational time and segmentation accuracy.
To address this problem, Zivkovic [15] proposes to constantly
update not only the parameters but also the number of compo-
nents of the mixture for each pixel. Using the Dirichlet prior,
an online algorithm estimates the parameters of the GMM and
selects the appropriate number of Gaussians simultaneously.
As a result, K is dynamically adapted to the multimodality of
each pixel. This method is called improved adaptive Gaussian
mixture model and it is developed with shadow detection
[16] to remove moving shadow pixels upon pixels labeled as
foreground. A pixel is detected as shadow if it is considered as
darker version of the background. For this purpose, a threshold
is used to specify the darkness of the shadow.

Even if these modifications proposed in [15] showed im-
provement comparing to the original algorithm, the separa-
tion between foreground and background distributions is still
problematic. Actually, the distinction is based on selecting
as background components the Gaussians that are more fre-
quently matched. In other words, it assumes that the often
occurring pixels are deemed to model the background, which
it is not always the case. That is why; we propose combining
the improved GMM background subtraction with a uniform
motion model into a single framework. This observation
leads to better segmentation of the scene into foreground and
background entities.

V. UNIFORM MOTION ESTIMATION

The second cue of the proposed approach is motion infor-
mation. It is obtained by computing the optical flow between
consecutives frames, then a measure for uniformity of motion
is applied. For optical flow computation, several algorithms
exist in the literature. A popular one was proposed by Lucas
and Kanade [17], but this algorithm is classified as a sparse
method since it is more suitable to be applied to a subset of
points.

For dense optical flow computation, the algorithm con-
ducted by Horn and Schunck [18] was the first proposed, it is
based on the brightness constancy assumption. Then, another
dense method was proposed by Farneback [19], it consists of
computing optical flow based on polynomial expansion. This
method uses quadratic polynomial model to approximate each
neighborhood of both frames. Then, it estimates displacement
fields from the polynomial expansion coefficients by observing
how an exact polynomial transforms under translation. Also,
it uses Gaussian to smooth the neighboring displacements.
The evaluation of this method shows good results in terms of
accuracy and low computation burden. Therefore, for optical
flow computation, we utilize this method.

Figure 1 shows the optical flow across two adjacent frames
at times t and t + 1. For each point P located at the 2D
image coordinate ~x = [x y]

T , the dense optical flow field
provides a motion vector which is expressed as 2D velocities
~V = [vx vy]

T . From these x− and y− components of the 2D
velocity field, the optical flow of each point P in the origin
image can be also defined by its magnitude and its direction



as follows:

Optical F low(Px,y,t) =

(
Magnitude (Px,y,t)
Direction (Px,y,t)

)
(7)

(a) First frame (b) Second frame (c) Optical flow

Fig. 1. Dense optical flow computation for two consecutive frames

After computing the optical flow on the current frame,
the detection of uniform motion is performed. It works as
follows: only pixels having non-zero optical flow velocities are
considered. For the remaining values in the magnitude of the
motion, neighbor pixels having similar direction are grouped in
the same component. Therefore, four directions corresponding
to these quadrants {[−π/2, 0], [0, π/2],[π/2, π],[−π, −π/2]}
can be distinguished.
For each direction d, Nd connected components are obtained
with different brightness values for the magnitude. To measure
the uniformity of the motion inside each component, a mean
motion value is computed. If we denote Ωk one component
of the current frame, where k varies from 1 to N (N is the
total number of components expressed as: N =

∑4
d=1Nd),

the mean motion value inside Ωk is defined as follow:

vk = 1/p
∑
i∈Ωk

vi (8)

where p is the total number of pixels inside Ωk and vi is
the magnitude of the motion for a pixel i. The difference
between each magnitude value and the mean value inside the
component is used as an error measure:

ε = vi − vk (9)

Then, an adequate threshold is chosen empirically for
measuring the uniformity of motion. Only pixels belonging
to Ωk and regarding this uniformity will be considered. After
the distinction between the different new components Ω

′

k

(with the same velocity and orientation), the label of each
component Ω

′

k (whether it belongs to background BG or
foreground FG process) is defined as follows:

label(Ω
′

k) =

{
FG if (

∑
∀Pi∈Ω′

k
E(Pi)

Mk
≥ R)

BG otherwise
(10)

where Mk is the total number of pixels inside Ω
′

k, R is a
ratio in the range of [0,1] and

E(Pi) =

{
0 if label(Pi) = BG

1 if label(Pi) = FG

The goal of this integration is to improve the detection
rate of GMM background subtraction without deteriorating the
precision. Actually, pixels that belong to the background and
undergo changes are correctly classified as background entities
by GMM. However, these pixels are prone to be classified as
foreground entities using optical flow. Therefore, we chose to
start with the labels provided by GMM, then, by using the
measure defined for uniform motion, the label of each pixel is
updated. This integration adds spatial and temporal coherence
since labeling process using GMM is done only at pixel level.
It is an efficient way to improve the results and to avoid
outliers caused by optical flow as well. Experimental results
reported in the next section demonstrate the effectiveness of
our proposed approach.

VI. EXPERIMENTAL RESULTS

The proposed algorithm is compared with the improved
adaptive GMM [15], and the foreground object detection
method [20]. Unfortunately, most recent works cited in
section III do not report results on public datasets.
To evaluate these methods, we used the i2r dataset
(http://perception.i2r.a-star.edu.sg/bk model/bk index.html)
with available ground truths. The dataset is composed of nine
video sequences captured in challenging environments. For
each sequence, ground-truth foreground masks are provided
for 20 randomly selected frames.
Using this dataset, both of qualitative and quantitative analysis
of the results are presented with comparisons to the already
cited methods. Figure 2 shows results on three frames from
different sequences. The results of the proposed method are
qualitatively better than those obtained by the other methods.

(a) (b) (c) (d) (e)

Fig. 2. Foreground segmentation results (a) Evaluation frames (b)
Ground-truth foreground masks (c) Results of improved adaptive
GMM [15] (d) Results of foreground object detection method [20] (e)
Results of our proposed approach

For quantitative evaluation, we use these metrics to compare
the foreground mask to the ground truth:



Improved adaptive Foreground object Our proposed
Video sequences Metrics GMM [15] detection method [20] approach

Restaurant recall 55.09 48.48 63.41
precision 99.61 97.38 99.03

Curtain recall 38.92 41.66 70.62
precision 99.95 99.89 99.23

Escalator recall 71.65 40.02 74.36
precision 98.75 98.31 98.24

Fountain recall 44.42 40.40 54.87
precision 99.28 99.41 99.23

Water Surface recall 67.72 50.05 79.39
precision 99.77 99.19 99.44

Trees recall 73.99 63.49 88.14
precision 97.45 99.63 97.19

Shopping center recall 52.18 59.50 66.60
precision 99.69 98.33 99.28

Lobby recall 40.14 38.87 73.34
precision 99.97 94.1 99.88

Hall recall 39.10 47.37 63.18
precision 99.71 99.08 99.27

TABLE I
QUANTITATIVE EVALUATION OF OUR PROPOSED APPROACH COMPARED TO OTHER METHODS

• Recall: It is called also True Positive Rate or Detection
Rate defined by:

Recall =
TP

TP + FN
(11)

• Precision: it corresponds to 1 − FAR where FAR is
called False Acceptance Rate, it is defined by:

Precision =
TN

FP + TN
(12)

where TP , TN , FP and FN denote respectively the total
number of true positives, true negatives, false positives and
false negatives.
Quantitative results using these metrics are reported in Table
I. These results show that the improved GMM [15] reaches
99% for the precision (we compute the average of different
results), however, the detection rate is neither sufficient nor
satisfactory for many applications (only 53%). That is why,
our proposed method showed substantial improvement over
GMM by increasing the detection rate (by 17%) and the
precision remains roughly the same (around 99%). Also, by
means of comparison to the method proposed in [20], our
method gives better results. For the detection rate, it achieved
a noteworthy improvement of about 23% compared to [20].
For the precision, the method proposed in [20] achieved 98%.

From these comparisons, we conclude that our proposed
method outperforms the other methods. In addition, as it is
shown is Figure 2, our results are able to detect full object
or in a shape that can be useful in many other applications.
Since foreground segmentation is a key step in automatic
video surveillance, the superior results that we obtained can
deeply affect many applications such as people detection and
tracking, person counting, and so on.

VII. CONCLUSION

In this paper a new approach is proposed for robust and on-
line foreground segmentation using Gaussian Mixture Model
and motion cue. The proposed approach succeeds to harness
the advantages of both cues by improving the detection rate
without deteriorating the precision. Our approach has been also
tested on dataset of complex background scenes. The results
demonstrate its ability to improve significantly the accuracy
of the foreground segmentation compared to other existing
approaches in the literature. The obtained superior results are
significant since many applications can be carried out after
performing reliable foreground segmentation.
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