
Effective and Efficient Security Policy Engines
for Automotive On-Board Networks

Muhammad Sabir Idrees and Yves Roudier

EURECOM
{muhammad-sabir.idrees,yves.roudier}@eurecom.fr

Abstract. The configuration of security mechanisms in automotive on-
board networks makes it necessary to define and deploy adapted security
policies. This paper discusses how to design policy engines that implement
an effective enforcement in such architectures despite the complexity of
the protocol stacks of on-board electronic control units. It also evaluates
how policies expressed in XACML can be adapted to the automotive envi-
ronment efficiency requirements despite the limited computational power
of those units and network bandwidth limitations.

Keywords: Security Policy, XACML, ASN.1, On-Board Policy Engine

1 Introduction

The changing requirements of automation have triggered a tremendous evolution
in automotive on-board systems, making vehicular communication a central fea-
ture of modern vehicles. Vehicular on-board networks have long been designed
with safety rather than security concerns. The security of bus systems was, to
a great extent, achieved through obscurity. Recognized security solutions must
now be used in order to mitigate the attacks that recent studies on those archi-
tectures have shown to be possible [16] or [25], [14], [33]. Secure communication
is a basic need in such architectures and should at least ensure some form of
authentication to participants.

Research we conducted in the past 3 years in the European funded project
EVITA [21] has been specifically addressing those requirements and appropriate
solutions for vehicular on-board networks. This project features a comprehen-
sive security architecture solution covering all aspects of on-board communica-
tion (data protection, secure communication, secure and tamper proof execution
platform for applications). The security mechanisms that we have defined in this
project are in particular coordinated by a security policy aiming at both net-
working and cryptographic material security. Due to the extended lifetime of
vehicles and the need to service them and therefore replace ECUs, it is manda-
tory that this policy might be updated. We focus in this paper on the networking
security policy and discuss how it can be implemented efficiently.
We have approached this problem through the combination of cryptographic

2 S.Idrees, Y.Roudier

protocols and trusted computing, the latter ensuring the binding of the former
to a known platform. This is achieved by associating a hardware security mod-
ule (or HSM) to every ECU, as illustrated in Figure 1. The security policy to
be applied in a vehicle is the combination of an invariant policy for the usage
control of cryptographic credentials of electronic control units, and a flexible net-
working security policy. The credential usage control policy is enforced by the
HSM [27] and possibly through the virtualization of the ECUs if applications
on the same ECU have to be segregated. In contrast, the networking security
policy is enforced by all network elements. Those elements first consist in the
protocol stacks implemented at the different ECUs: those stacks implement se-
cure protocols for transport, diagnosis, firmware update, key distribution (see for
instance [28]), policy distribution, or even system boot; they have to be linked
with the keys initially bound to ECUs by the HSM, which provides trusted au-
thentication as the building block for all those protocols. The interconnection
gateways between the different communication buses of the vehicle, or the V2X
communication units, or even the tools used to diagnose and service vehicles
constitute other network elements where policy enforcement can be done, based
on trusted authentication or other security mechanisms like traffic filtering or
secure logging.

Fig. 1: Automotive on-board network architecture

The remainder of this paper is organized as follows: Section 2 outlines the
security policy enforcement architecture, and in what way the security policy
supports the flexible deployment and enforcement of the networking security
policy. Section 3 discusses how XACML is being used to define the flexible part
of such a security policy. Section 4 presents and analyzes performance figures
for our policy engine. Section 5 reviews the capabilities of existing access con-
trol frameworks in comparison with our own system, with respect to the policy
interpretation and enforcement. Finally, the paper summarizes the results that
we achieved regarding on-board access control.

Security Policy Engines for Automotive On-Board Network 3

2 Security Policy Enforcement Architecture

We first describe the architecture that was adopted in [32] to enforce modular
access control. The policy engine, which can be flexibly updated, is deployed
within the automotive system environment. The policy that it enforces is de-
fined as a mandatory policy for all communication in the vehicle at a backend
system and is transferred to the vehicle. The policy engine is composed of two
main components i) A Policy Decision Point (PDP), following the terminology
used in XACML, and ii) Policy Enforcement Points (PEPs). Within the scope
of EVITA, both components are implemented as a proof of concept within the
EMVY middleware framework defined in [6]. EMVY uses a distributed master-
client architecture and provides component based templates for introducing se-
curity relevant mechanisms for securing communication between ECUs within a
vehicle. The PDP is implemented by a component termed the Policy Decision
Module (PDM). PEPs are instead implemented at various components of the
middleware, as described below. The policy decision module is used as a cen-
tralized module accessible from different domains and application as shown in
figure 2.

Fig. 2: PDM and PEP deployment

2.1 Policy Enforcement Points
Policy enforcement points (PEP) have to be deployed together with a PDP.
PEPs handle access, or communication, or boot sequence validation requests for

4 S.Idrees, Y.Roudier

instance and have to enforce policy based decisions. Access control in vehicular
embedded IT infrastructures has for instance traditionally been developed us-
ing a single enforcement point. However, in our fine grained architecture, policy
enforcement has to rely on a series of such PEPs at different parts of the com-
munication stacks and middleware, as well as at application level. For instance,
deciding on access control for some RPC request requires first allowing network
traffic between the communicating parties, then distributing the proper session
keys through the key distribution mechanism, then authenticating the communi-
cation channel using these keys, then finally making sure that the RPC request
can be performed by the entity authenticated at the transport layer. A list of
the enforcement points deployed in the car is presented in Table 1.

Security Mod-
ule

Module Description Policy Enforcement Point
(PEP)

Communication
Control Module
(CCM)

Handles all communication
functionality between EMVY
nodes and internal modules.

enforce the filtering policies which
act as firewall. Rule enforcement
will be based mainly on transport-
layer parameters but also on
application-layer information.

Entity Authen-
tication Module
(EAM)

provides authentication, single
sign-on/ sign-out security ser-
vices.

enforce the policy based login and
authentication services (e.g., pass-
word, smartcard).

Key Management
Module (KMM)

Distribution of fresh crypto-
graphic key material among
clients.

enforce the key generation and
group communication security
rules.

Platform In-
tegrity Module
(PIM)

Enhancement of platform secu-
rity by supplying runtime plat-
form integrity

rule enforcement regarding valid
boot integrity measurements.

Secure Storage
Module (SSM)

Cryptographic storage opera-
tions for applications.

enforce the secure storage/access of
data security rules (i.e. encrypt the
storage device or, can encrypt data
objects individually).

Security Watch-
Dog (SWD)

Intrusion detection and man-
agement services.

policy enforcement rely on a set of
rules consists of a attack pattern
and an action.

Table 1: Software Security Modules and Policy Enforcement Points (PEPs).

2.2 Handling Policy Decisions

The policy decision point decides based on security policies whether or not ac-
cess to a particular resource is granted. The decision of the PDP is then enforced
by the policy enforcement point (PEP) which drops a message, forwards a mes-
sage or modifies a message (e.g., encrypts the message with the cryptographic

Security Policy Engines for Automotive On-Board Network 5

key of the destination ECU) according to the security policy. A policy decision
point usually acts autonomously in its domain where he is assigned and makes
decisions in response to an authorization request. By default, a PEP actively
queries the PDP for every decision. For instance, an EMVY remote client ap-
plication (C2X application in figure 2) queries the PDM at the EMVY Master
Node for each authorization request. However, a PEP could be pre-configured
by the PDM (autonomous PEP). Such an autonomous PEP would act as an
ancillary PDP, mostly based on static or cached security decisions, and possibly
parameterized decisions depending on security information that are available lo-
cally. For instance, during the secure bootstrapping phase, the SSM-PEP acts
as an autonomous PEP and decides based on its local policy whether the PDP
is allowed to load security policies.

3 Security Policy Expression

As we explained, the onboard network policy has to describe how to configure
very different security mechanisms. After exploring several alternatives includ-
ing drafting our own policy language, we decided on building upon the XACML
[17] access control language, obviously for expressing the access control rules of
our security policy, such as the definition of secure communication groups and
related authorizations at the RPC level, but as well as a more general policy
language. XACML provides a flexible and modular way to define and enforce
policies, and its decision/enforcement model fits well in distributed environ-
ments, even for the on-board embedded system of a vehicle. XACML provides
an interchangeable policy format, support for the fine grained description of
resources, can describe conditional rights, supports policy combination and con-
flict resolution. Another important aspect regarding the choice of XACML as
our policy language was its independence from a specific implementation and the
large number of tools for writing and analyzing any policy. In the case of specific
configurations, XACML is flexible enough to represent different security profiles.
For instance, the XACML Policy element can be used in order to encapsulate
complex firewall rules comprising multiple attributes, the source IP address/port
numbers being specified in the XACML Subject element for instance, and the
destination IP address/port number being mapped to the XACML Resource
element. In a similar way, the XACML Rule element can be used to represent
distinct firewall rules.
However, due to the embedded nature of the on-board system and its functional
and non-functional constraints [18], [15], it is not feasible to transmit, process,
or store XML-based policies in the car. For instance, for the ubiquitous CAN
bus, which is operated at around 500kbit/s and offers 8 bytes of data payload
per packet, verbose formats like XML would constitute a hardly justifiable in-
crease of the bus load. To cope with the above-mentioned limitations, we defined
a binary-based security policy language that consumes less bandwidth, is fast
to process, and requires less memory (see Section 4 for a performance analy-
sis). We called this representation the Policy decision module Native Language

6 S.Idrees, Y.Roudier

(PNL). The purpose of the PNL is not to define yet another access control pol-
icy language but rather to provide an alternative interchangeable format for
XACML policies, that can be used where performance is an issue. We built PNL
on ASN.1 standards [31]. These standards are adopted in a wide range of ap-
plication domains, as in aviation systems for traffic control, mobile networks,
network management, secure emails, fast web services, etc., [31]. PNL makes use
of these standards, describes a serialized representation of XACML policies in
binary format, and ensures that the XACML structure is preserved during seri-
alization. In order to do so, a XACML schema is mapped into a corresponding
ASN.1 definition (see listing 1.1). This mapping is based on the ITU-T X.694
standard (Mapping from XML Schemas to ASN.1 modules) [30].

1 XACML DEFINITIONS AUTOMATIC TAGS ::= BEGIN
2 /* XACML Policy Defintion */
3 PolicyType ::= SEQUENCE {
4 ...
5 ruleCombiningAlgId UTF8String,
6 target Target,
7 choice-list SEQUENCE OF CHOICE {
8 ...
9 rule Rule

10 } OPTIONAL,
11 obligations Obligations OPTIONAL
12 }
13 Policy ::= PolicyType
14 /* XACML Target Definition */
15 TargetType ::= SEQUENCE {
16 subjects Subjects OPTIONAL,
17 resources Resources OPTIONAL,
18 actions Actions OPTIONAL,
19 environments Environments OPTIONAL
20 }
21 Target ::= TargetType
22 ...
23 /* XACML Rule Defintion */
24 RuleType ::= SEQUENCE {
25 effect EffectType,
26 ruleId UTF8String,
27 description Description OPTIONAL,
28 target Target OPTIONAL,
29 condition Condition OPTIONAL
30 }
31 Rule ::= Rule
32 ...
33
34 END

Listing 1.1: Excerpt of a Policy decision module Native Language (PNL) based
on ASN.1 Definition. An excerpt of serialized policy using listing 1.1 is presented
in Fig.3.

We have implemented the XACML to PNL mapping engine. In our architec-
ture, this encoder resides at the OEM’s backend system. The mapping engine is
responsible for serializing security policies into the PNL format and then trans-
mitting it to the vehicle. During the serialization process each security policy
is verified against a XACML schema. Upon a successful validation, the security
policy is serialized into a specific ASN.1 encoding scheme. Due to constraints
from other components (e.g., low level drivers, HSM interfaces, etc.) which em-

Security Policy Engines for Automotive On-Board Network 7

ploy the ASN.1 DER encoding [29], the security policies are also serialized using
DER encoding rules. However, a more efficient binary encoding such as Packed
Encoding Rules (PER) can be used if needed. We anticipate that using PER
encoding scheme would further enhance performance and latency results.

3.1 Security Policy Configuration

From the on-board PNL configuration perspective, our high-level goal is to auto-
configure security policies and appoint access rules from the vehicle ignition
stage. This implies that security policy are deserialized during secure bootstrap-
ping phase, while also recognizing an explicit configuration procedures, after
secure bootstrapping phase, in order to load new/update policies (i.e., instal-
lation of new application with its policy set or update existing policy). Note
that the new policy set or security rules which may have an impact on the ba-
sic safety of the vehicle are always configured during next vehicle start cycle.
Adding/updating safety critical rules while vehicle is running may cause safety
critical problems, depending on the security policy responsible for.
In our implementation stack, the bootstrapping protocols are defined to ensure
the secure initialization of all security modules and components (see figure 2).
On a certain point of the boot strapping procedure, the boot chain send an ini-
tialization call to the PDP(s) to load all PNL based security policies (i.e., group
communication policy) from its policy database. Note that these security policies
are stored in the Secure Storage Module (SSM), which enforces confidentiality,
integrity, authenticity, and freshness mechanisms. Thus, require proper authen-
tication and access rights to access these policies. Since during boot strapping
process, SSM cannot ask PDP for a decision when PDP is opens/reads from
its policy database (which is also stored via SSM), it has to make autonomous
decisions. A detail description of autonomous decisions (autonomous PEP) is dis-
cussed in section 2.1. On successful verification of access rights, the SSM allow
the PDP(s) to read policy set from its policy database. Regarding the integrity
of policies, we rely on the security solutions enforced by SSM. However for the
policy validation attempt in our prototype implementation, we enforced, that
a vehicle will only be started in case of successful configuration of all PDP/au-
tonomous PEP(s) with respective security policies and the vehicle will shutdown
momentarily otherwise.

4 Performance Analysis

We have analyzed the performance of the PNL as well as the memory consump-
tion of different policies by varying the number of elements and attributes used.
Performance has a special importance with respect to the user experience in au-
tomotive environments, where the time to load and configure security policies,
and to assess authorization request and response time is a critical issue when
the driver waits for his vehicle to start. The deserialization and configuration of
authorization/security policies must be performed before receiving any request

8 S.Idrees, Y.Roudier

Fig. 3: PDM: On-board policy deserialization and configuration

from a PEP. Hence, the configuration of these security policy is significantly
contributing to the overall responsiveness of the policy decision and enforcement
at startup time.

4.1 Performance Analysis: Technical Approach

In order to evaluate our results against other XML based access control poli-
cies, we are comparing our results with different XML parsers. There have been
numerous benchmark studies towards the evaluation of XML parsers [3], [8],
[13], [2], [34], [26]. These benchmarks cover several aspects of XML parsing such
as performance, schema validation, DOM manipulation, XML security, etc. We
used these benchmarks in order to select an agile XML parser implemented in
the same language as our own (C/C++), and to run a comparison with our
ASN.1 encoded policies. Several lightweight C/C++ XML libraries [3], [2], [1]
have been developed for low power devices, with fast parsing capabilities. For
instance, the pugixml library enables extremely fast, convenient, and memory-
efficient XML document processing. It consists of a DOM-like interface with
rich traversal and modification capabilities. However, since pugixml has a DOM
parser, it cannot process XML documents that do not fit in memory; also the
parser is not a schema validating parser [3], which is a mandatory requirement
in our case, for obvious security as well as safety reasons, such as to prevent
software compromises.

4.2 Experimental Setup and Results

Based on results of these benchmarks and these specific constraints, we decided
to evaluate our results with the Gnome XML toolkit (libxml) [4]. According to

Security Policy Engines for Automotive On-Board Network 9

the XMLBench Project [8], libxml is the fastest toolkit that has a rich enough
set of features. We have generated several XACML policies with various sizes
using the UMU XACML editor. The policy tickets are than transformed into
a corresponding PNL description, as described in section 3. We have set up a
testing environment in order to compare the scalability of our parser with libxml.
All presented performance results were obtained using a 64 bit Mac OS X 10.7.2
on a MacBook Pro with 8GB of RAM and a 2.8GHz Intel Core i7 processor. All
tests were run in a single user mode without any system services running. We
followed the assumptions outlined in [8]: for instance, the time spent to initialize
the toolkits is not counted in these results, in order to compare our results with
this benchmark. The measurements consist in several latency results which show
that the parsing of a PNL encoded policy is lighter and enables a much faster
parsing and configuration of security policies. Figure 4.a compares the parsing
time with different policy sizes, in which the PNL encoded policy parsing is
approximately a third of the XML policy. For 2364 elements (2898 attributes)
in a single XACML policy, the PNL encoded policy amounts to 42,368 bytes
and the XML encoded one to 152,817 bytes. In the eight tests presented on
Figure 4.b, we parsed a single XML policy (21 Elements, 22 Attributes) up
to 200 times to understand the scalability. This resulted in parsing times of
0.25ms. In contrast, deserializing using the PNL encoded security policy 200
times takes approximately 0.015ms. Parsing with the PNL encoding is thus about
16 times faster that with an XML based encoding. If we scale up the above
presented comparison results for modern ECUs which might only contain 32 bits,
40-MHz to 60 MHz processor [11], the parsing time for 200 PNL policies in an
average ECU takes up to 1.05ms. Whereas, the same XML based policies requires
approximately 17.5ms. Furthermore, a link to the maximum computational delay
to provide safety applications (also related to the maximum number of signature
verifications per second) might also highlight the need of such fast and scalable
binary based policy language.

5 Related Work

There has been a quite remarkable progress in the area of access control archi-
tecture for automotive networks [10], [7], [20], but they appear to have succeeded
mostly in terms of requirement specification or have been only concerned with
security policies for protecting V2X communications. Gerlach et al. [12] present
a C2C communication solution integrating several previous proposals [23], [24],
[19] for secure vehicular communications [7]. These proposals consider the car
mostly as a single entity, communicating with other cars using secure protocols
and thus essentially aim at communication specific security policies enforced at
the Communication Unit of the vehicle. Our approach in contrast treats both
the expression of V2X and intra-vehicle security policies uniformly. The EASIS
project [10] defines a central gateway, a sort of firewall, that is configured so that
it denies all data traffic from the external interfaces (e.g. C2C/C2I or Telem-
atics) as a default. Unfortunately, like [7] this proposal is also limited to V2X

10 S.Idrees, Y.Roudier

0"

20000"

40000"

60000"

80000"

100000"

120000"

140000"

160000"

180000"

21" 76" 196" 386" 596" 1186" 2364"

PNL""

XACML"

Elements"

Si
ze
(b
yt
es
)"

(a). Comparison of XML and PNL
security policies, with different elements
and attributes, in terms of size (bytes) of

policy data

0"

0.05"

0.1"

0.15"

0.2"

0.25"

25" 50" 75" 100" 125" 150" 175" 200"

PNL"

XACML"

Policies"

Ti
m
e(
m
/s
)"

(b). Speed up analysis of about 25-200
XML and PNL security policies, where
single security policy is constitute of 21

XACML Policy Elements.

Fig. 4: Size of data and increase in speed up factor.

security policy enforcement and not accompanied by any further analysis of the
particular requirements/limitation of an in-vehicle architecture with respect to
security policies. Zrelli et al. [35] proposed a security framework for the vehicular
communication infrastructure implementing access control at both the data link
layer and the network layer. However, the proposed solution is solely based on
a central policy decision and enforcement module. A single failure in this mod-
ule may compromise the overall security of the on-board network. Furthermore,
this solution is obviously only handling V2X security policy enforcement at the
gateway level.
For in-vehicle architectures, numerous authors mention the need for an on-board
access control architecture [16], [22], [5]. However, very few solutions have been
proposed. A recent security analysis [16] has shown that the risk of attacks on
vehicle on-board systems is not anymore of theoretic nature. It depicts several
scenarios where access control is either weak or simply not considered, like the
firmware update process, which may compromise the overall security of the on-
board network, yet no security architecture is described in this work. In [5], a
set of cryptographic protocols are discussed to support vehicular use-cases. How-
ever, regarding access control, this intra-vehicle security tool box is also limited
to the only specification of an API, without any detail about the policy decision
engine, practical matters regarding the enforcement architecture, nor implemen-
tation perspectives.
Chutorash et al. [9] propose an approach for integrating firewalls in a vehicle
communication bus. Firewalls are integrated between application software and
between vehicle components. In their approach, filtering rules are applied only
on user’s request, and commands sent from the HMI, preventing unauthorized
access to vehicle components. We see that the practicality of this approach is
largely limited by the fact that: i) rule enforcement is limited to firewall rules

Security Policy Engines for Automotive On-Board Network 11

and more specifically only to user commands. However, in an automotive system,
different entities (i.e., security modules as discussed in section 2) are themselves
requesters ii) rules are statically defined and remain the same over the vehi-
cle lifetime, and iii) the constraints of embedded vehicular networks regarding
notably the policy transmission, processing, or storage and the practical imple-
mentation of the proposed approach, are again left out. The OVERSEE Project
[22] aims among other objectives at in-vehicle firewall configuration and appli-
cation level access control using XML based configuration rules. As of now, this
project has just begun and no result is available, thus we cannot evaluate the
practicality of this approach. However, according to our experience, the per-
formance of verbose formats like XML in a constrained environment has to be
closely watched.

6 Conclusion

We have exposed in this paper in what respect the complexity of automotive on-
board network architectures and their evolution involve a complex expression of
the security policy. Today’s automobiles are a perfect example of a system whose
security relies on the combination of many different enforcement points in the
vehicle on-board network and even in every electronic control unit’s communi-
cation stack. The role of a security policy in this context is to link the trusted
computing base and the trusted credentials it stores with enforcement mecha-
nisms, as well as to connect enforcement mechanisms together. We are taking
advantage of the extensibility of XACML subjects to associate attributes, and
in particular the means to perform a trusted authentication of electronic control
units: this mechanism is at the core of the EVITA approach. The performance
of the policy parsing is also very important in a vehicle. We described how the
XACML policy can be encoded in ASN.1 in order to make it fit better the
resource constrained environment of a vehicle. The policy engine described in
this paper was finally deployed in the EVITA project demonstrator - two cars
equipped with the EVITA HSMs and software framework - and was successfully
used for network filtering, configuring secure group communication, and RPC
level access control.

Acknowledgment

This work has been carried out in the EVITA (E-safety Vehicle Intrusion proTected
Applications) project, funded by the European Commission within the Seventh Frame-
work Programme for research and technological development.

References

1. Arabica XML and HTML Processing Toolkit. http://www.jezuk.co.uk/cgi-
bin/view/arabica.

12 S.Idrees, Y.Roudier

2. Asm-Xml Benchmark. http://tibleiz.net/asm-xml/benchmark.html.
3. Pugixml Benchmark. http://pugixml.org/benchmark/.
4. The XML C Parser and toolkit of Gnome libxml. http://www.xmlsoft.org.
5. Hagai Bar-El. Intra-Vehicle Information Security Framework. September 2009.
6. BMW. EMVY: The Embedded Vehicular IT Security Construction Kit. Basic

Concept, June 2009.
7. C2C-CC. Car2Car Communication Consortium. http://www.car-to-car.org/.
8. S. Chilingaryan. The XMLBench Project: Comparison of Fast, Multi-platform

XML libraries, pages 21–34. Springer-Verlag, Berlin, Heidelberg, 2009.
9. J. CHUTORASH, Richard. Firewall for vehicle communication bus. In Interna-

tional Patent Classification 7, number WO/2000/009363, PCT/US1999/017852.
European Patent Office, Feb 2000.

10. EASSIS. Security and firewall concepts for gateways. Technical Report Deliverable
D1.2-12, EASIS-Project, 2006.

11. Freescale. Mpc565 reference manual. Technical report, Freescale Semiconductor,
2005.

12. M. Gerlach, A. Festag, T. Leinmüller, G. Goldacker, and C. Harsch. Security
architecture for vehicular communication. In In WIT 2005, 2005.

13. S. Cheng Haw and G.S.V.R. K. Rao. A comparative study and benchmarking
on xml parsers. In Advanced Communication Technology, The 9th International
Conference on, volume 1, pages 321 –325, feb. 2007.

14. Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Automotive it-security as a
challenge: Basic attacks from the black box perspective on the example of privacy
threats. In Computer Safety, Reliability, and Security, volume 5775 of Lecture
Notes in Computer Science, pages 145–158. Springer Berlin / Heidelberg, 2009.

15. E. Kelling, M. Friedewald, T. Leimbach, M. Menzel, P. Säger, H. Seudié, and
B. Weyl. Specification and evaluation of e-security relevant use cases. Technical
Report Deliverable D2.1, EVITA Project, 2009.

16. Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, and Stefan Savage. Experimental security analysis of a modern au-
tomobile. In Security and Privacy (SP), 2010 IEEE Symposium on, pages 447
–462, May 2010.

17. Tim Moses. eXtensible access control markup language TC v2.0 (XACML), Febru-
ary 2005.

18. N. Navet. Automotive communication systems : from dependability to security.
1st Seminar on Vehicular Communications and Applications (VCA 2011), Luxem-
bourg, May 2011.

19. P. Papadimitratos. Securing vehicular communications - assumptions, require-
ments, and principles. In In Workshop on Embedded Security in Cars (ESCAR),
2006.

20. CVIS Project. Cooperative vehicle infrastructure systems.
http://www.cvisproject.org/.

21. EVITA Project. E-safety vehicle intrusion protected applications.
http://www.evita-project.org.

22. OVESEE Project. Open vehicular secure platform. https://www.oversee-
project.com/.

23. M. Raya, P. Papadimitratos, and Jean-Pierre Hubaux. Securing vehicular commu-
nications. IEEE Wireless Communications Magazine, Vol 13:8–15, 2006.

24. Maxim Raya, Daniel Jungels, Panos Papadimitratos, Imad Aad, and Jean-Pierre
Hubaux. Certificate revocation in vehicular networks. Technical report, 2006.

Security Policy Engines for Automotive On-Board Network 13

25. Ishtiaq Rouf, Rob Miller, Hossen Mustafa, Travis Taylor, Sangho Oh, Wenyuan
Xu, Marco Gruteser, Wade Trappe, and Ivan Seskar. Security and Privacy Vul-
nerabilities of In-Car Wireless Networks: A Tire Pressure Monitoring System Case
Study. In Proceedings of the 19th USENIX Security Symposium, Washington DC,
aug 2010.

26. A. Schmidt, F. Waas, M. Kersten, Michael J. Carey, I. Manolescu, and R. Busse.
Xmark: A benchmark for xml data management. In VLDB, pages 974–985, 2002.

27. H. Schweppe, B. Weyl, Y. Roudier, M. Sabir Idrees, T. Gendrullis, and M. Wolf.
Securing car2X applications with effective hardware software codesign for vehicular
on-board networks. In VDI Automotive Security 27. VW-Gemeinschaftstagung
Automotive Security, VDI Bericht 2131, Berlin, Germany, 10 2011.

28. Hendrik Schweppe, Yves Roudier, Benjamin Weyl, Ludovic Apvrille, and Dirk
Scheuermann. Car2x communication : securing the last meter - a cost-effective
approach for ensuring trust in car2x applications using in-vehicle symmetric cryp-
tography. In WIVEC 2011, 4th IEEE International Symposium on Wireless Ve-
hicular Communications, San Francisco, CA, United States, September 2011.

29. International Telecommunication Union. Information Technology - ASN.1 encod-
ing rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules
(CER) and Distinguished Encoding Rules (DER), ITU-T Recommendation X.690.
Technical report, ITU-T, 2002.

30. International Telecommunication Union. Information Technology - ASN.1 encod-
ing rules: Mapping W3C XML schema definitions into ASN.1, ITU-T Recommen-
dation X.694. Technical report, ITU-T, 2004.

31. International Telecommunication Union. Information Technology - ASN.1 encod-
ing rules: Abstract Syntax Notation one (ASN.1): Specification of basic notation,
ITU-T Recommendation X.680. Technical report, ITU-T, 2008.

32. B. Weyl, M. Wolf, F. Zweers, T. Gendrullis, M. Sabir Idrees, Y. Roudier,
H. Schweppe, H. Platzdasch, R. E. Khayari, O. Henniger, D. Scheuermann,
A. Fuchsa, L. Apvrille, G. Pedroza, H. Seudie, J. Shokrollahi, and A. Keil. Secure
On-board Architecture Specification. Technical Report Deliverable D3.2, EVITA
Project, 2010.

33. Marko Wolf, Andre Weimerskirch, Christof Paar, and Most Bluetooth. Security in
automotive bus systems. In Proceedings of the Workshop on Embedded Security in
Cars (escar) 04, 2004.

34. Y. Wu, Q. Zhang, Z. Yu, and J. Li. A hybrid parallel processing for xml parsing
and schema validation. In Proceedings of Balisage: The Markup Conference 2008.
Balisage Series on Markup Technologies Montréal, Canada, volume 1, August 12
- 15 2008.

35. S. Zrelli, A. Miyaji, Y. Shinoda, and T. Ernst. Security and access control for
vehicular communications. In Proceedings of the 2008 IEEE International Con-
ference on Wireless & Mobile Computing, Networking & Communication, pages
561–566, Washington, DC, USA, 2008. IEEE Computer Society.

	Security Policy, On-Board Policy Engine, Multilayer rule enforcement
	Introduction
	Security Policy Enforcement Architecture
	Policy Enforcement Points
	 Handling Policy Decisions

	Security Policy Expression
	Security Policy Configuration

	Performance Analysis
	Performance Analysis: Technical Approach
	Experimental Setup and Results

	Related Work
	Conclusion

