
Distributed Troubleshooting of Web Sessions

Using Clustering

Heng Cui, Ernst Biersack

EURECOM, Sophia Antipolis, France
firstname.lastname@eurecom.fr

Abstract. Web browsing is a very common way of using the Internet
to, among others, read news, do on-line shopping, or search for user gen-
erated content such as YouTube or Dailymotion. Traditional evaluations
of web surfing focus on objectively measured Quality of Service (QoS)
metrics such as loss rate or round-trip times; In this paper, we propose
to use K-means clustering to share knowledge about the performance
of the same web page experienced by different clients. Such technique
allows to discover and explain the performance differences among users
and identify the root causes for poor performances.

Keywords: Web Browsing, Home Networks Measurement, Troubleshoot-
ing

1 Introduction

Web browsing is a very common way of using the Internet access as it allows
to access to a wealth of information. Since there is a “human in the loop”, the
time it takes to render a Web page should be small in order to assure a good
user experience.

Traditional evaluations of the web surfing mainly use Quality of Service (QoS)
metrics that are easy to measure such as packet loss rate or round trip times.
In this paper, we propose a methodology which combines a browser plugin and
lower level capturing to evaluate web page performances, and we use clustering to
share the performance metrics. We demonstrate that this clustering is suitable to
compare and explain the experiences among different clients and further identify
root causes for poor performance.

This work builds on our previous work [1] where we presented the measure-
ment architecture but did not carry out any systematic analysis of the measure-
ments. An extended version of this work is available in our technical report [2].

Different methodologies of troubleshooting user’s network connections are
proposed in the literature. Joumblatt et al. [4] propose HostView, an end-system
to collect user generated packets and store all the information into a centralized
server. Netalyzr [5] is a web-based diagnostic tool that to analyze and debug
end-user’s connectivity properties such as bandwidth, proxy, etc. Compared to
these works, our work focuses only on Web browsing.



Client Internet

Time

SYN

SYN/ACK

S1

S2

ACK

S3

GET

ACK

Data

FIN/RST/nextGET

net.rtt

synack

service
 offset

Data

(a) Delay Related Metrics

ACK

Data

FIN/RST/nextGET

Timer

Client Internet

Time

S1

S2

S3

Loss

d.retr.

(b) Loss Related Metrics

Fig. 1. Metrics Related to Download One Element In a Web Page

2 Methodology

We set up an experimental platform that uses a firefox plugin and normal packet
capture to measure both, page level information such as full page load time, and
lower packet level metrics such as RTT or loss rate. The firefox plugin, among
others, binds each HTTP query initiated by the browser to its associated firefox
window/tab and measures the full load time for that Web page. We use packet
capture (libpcap format) to obtain raw packet traces that are loaded into a
database for post-processing. For details about the architecture and how we
combine the measured records, we refer the readers to our previous work [1].

A typical web page can contain up to hundreds of elements. To fully render
the Web page, the browser needs to load all these elements. The typical procedure
for loading one element is shown in Fig.1. As is shown in Fig.1(a), for download
of each element, we extract metrics as shown in Fig.1 from the packet trace. For
detailed description of our defined metrics, please refer to our extended report [2].
To describe the performance of a Web session, we use the metrics computed for
each Web element and compute the mean over all the values of the given metric
to obtain a Key Performance Index(KPI), which consists of

[nr., SY NACK, NET.RTT, SERV.OFF., RTT, LOSS, D.RETR.]

Note that nr. is the number of distinct GET requests during a complete web
session, which provides an estimation of the size of the Web page in terms of
the number of elements. Meanwhile, for the KPI, we focus on metrics captured
by TCP connections, and currently we ignore DNS queries since TCP connec-
tions already provide rich enough information; and DNS pre-fetching is widely
supported by recent browsers and this causes DNS queries to occur before a
real web page surfing, which makes the lookup time less useful. However, we
plan to study the effects of DNS (e.g. response time, response IP, TTL, etc.) on
the web browsing experiences in the future. To compare results among differ-
ent homes, we use clustering: we first normalize all the measured KPI metrics



nr SYNACK NET.RTT SERV.OFF RTT LOSS D.RETR
0

200

400

600

n
r.

 /
 m

s
e

c

1#,tot.:177, ADSL:0, EUR:177, STEX:0

0

2

4

6

8

nr SYNACK NET.RTT SERV.OFF RTT LOSS D.RETR
0

200

400

600

2#,tot.:182, ADSL:169, EUR:0, STEX:13

0

2

4

6

8

ra
te

(%
)

nr SYNACK NET.RTT SERV.OFF RTT LOSS D.RETR
0

200

400

600

n
r.

 /
 m

s
e

c

3#,tot.:32, ADSL:2, EUR:0, STEX:30

0

2

4

6

8

nr SYNACK NET.RTT SERV.OFF RTT LOSS D.RETR
0

200

400

600

4#,tot.:136, ADSL:1, EUR:0, STEX:135

0

2

4

6

8

ra
te

(%
)

(a) ‘Google’ Session Clustering Signatures

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Full Load (s)

C
D

F

 

 

4#
3#1#

2#

(b) ‘Google’ Page Load Time

10
−1

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

milliseconds

C
C

D
F

 

 

ADSL
STEX
EUR

(c) ‘Google’ DNS Response Time

Fig. 2. ‘Google’ Sessions in Three Homes

into the range [0,1], and then use the well known kmeans algorithm, which is
an un-supervised classification algorithm that does not need any training. The
tricky point in kmeans is how to set a-priori the number of clusters. We use four

clusters throughout the paper, and refer for a more detailed discussion to our
technical report [2]. Furthermore, we run the kmeans ten times and keep the one
with smallest distance error.

3 Troubleshooting Case Study

In this section, we show a simple example of how to use clustering to trou-
bleshoot web sessions. The main idea behind this is to share browsing knowledge
among different clients located in different homes. We emulate users browsing
(i) at home connected via an ADSL connection, (ii) in the office at Eurecom
connected via a 100 Mb/s link to the Internet and (iii) in a student residence.
All the machines are located in France. We refer to the ADSL home, Eurecom
office Ethernet and the student residence connections as ‘ADSL’, ‘EUR’, and
‘STEX’ respectively. The experiments are done during the same evening in three
homes and last for around 8 hours each. Both, the ‘EUR’ and ‘STEX’ client com-
puters are connected via a wired connection, while the ‘ADSL’ client computer



is physically very close to the Access Point and uses a wireless connection. We
clear the browser cache at the end of each Web session.

As an illustration of how the comparison of the performance of the access
to the same Web page across different clients helps identify the influence of
problems specific to a client, we use the Google Web page, and show the results
in Fig.2. We know that Google works very hard to keep the page download times
as low as possible by placing servers close to the clients and also by keeping the
number of elements of its Web page low. We see that the requests from ‘EUR’
are grouped in cluster 1 and from ‘ADSL’ are grouped in cluster 2. On the
other hand, the requests in clusters 3 and 4 are issued almost exclusively from
the ‘STEX’ client. The fact that the ‘STEX’ client experiences higher delays
and also loss can be seen in its KPIs. Cluster 3 is interesting because of its
large SYNACK values; it turns out that for cluster 3 on average one out of five
SYN requests to establish a TCP connection does not get answered and must
be retransmitted after timeout. Since the retransmission timeout for the SYN
packet is three seconds, we get SYNACK = (50+50+50+50+3050)

5 = 650(ms). The
long tail for the page load times in cluster 4 is due to the long DNS response
time for some of the sessions. Since the ‘STEX’ client experiences more packet
loss than the other two clients. We can clearly identify in Fig.2(c) that around
3% of the DNS queries need to be retransmitted.

4 Future Work

As future work, we plan to deploy our system on more end-users and also check
how the number of clusters for kmeans is affected by the number of users. We
also plan to extend our system to work in real time and in a distributed fash-
ion by making the agents in the different locations communicate and perform
distributed clustering [3].

References

1. H. Cui and E. Biersack. Trouble Shooting Interactive Web Sessions in a Home
Environment. In ACM SIGCOMM Workshop on Home Networks, Toronto, Canada,
August 2011.

2. H. Cui and E. Biersack. On the Relationship Between QoS and QoE for Web Ses-
sions. Technical Report RR-12-263, EURECOM, Sophia Antipolis, France, January
2012. http://www.eurecom.fr/∼cui/techrep/TechRep12263.pdf.

3. S. Datta, C. Giannella, and H. Kargupta. Approximate Distributed K-Means Clus-
tering over a Peer-to-Peer Network. IEEE Transactions on Knowledge and Data

Engineering, 21:1372–1388, October 2009.
4. D. Joumblatt, R. Teixeira, J. Chandrashekar, and N. Taft. HostView: Annotating

End-host Performance Measurements with User Feedback. In HotMetrics, ACM

Sigmetrics Workshop, New York, NY, USA, June 2010.
5. C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr: Illuminating The

Edge Network. In IMC ’10: Proceedings of the 10th annual conference on Internet

measurement, pages 246–259, New York, NY, USA, 2010. ACM.


