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Abstract. We study functionally correct TCP connections – normal set-up, data
transfer and tear-down – that experience lower than normal performance in terms
of delay and throughput. Several factors, including packetloss or application
behavior, may lead to such abnormal performance. We presenta methodology
to detect TCP connections with such abnormal performance from packet traces
recorded at a single vantage point. Our technique decomposes a TCP transfer into
periods where: (i) TCP is recovering from losses, (ii) the client or the server are
thinking or preparing data, respectively, or (iii) the datais sent but at an abnor-
mally low rate. We apply this methodology to several traces containing traffic
from FTTH, ADSL, and Cellular access networks. We discover that regardless
of the access technology type, packet loss dramatically degrades performance as
TCP is rarely able to rely on Fast Retransmit to recover from losses. However, we
also find out that the TCP timeout mechanism has been optimized in Cellular net-
works as compared to ADSL/FTTH technologies. Concerning loss-free periods,
our technique exposes various abnormal performance, some being benign, with
no impact on user, e.g., p2p or instant messaging applications, and some that are
more critical, e.g., HTTPS sessions.

1 Introduction

Several access technologies are now available to the end user for accessing the Internet,
e.g., ADSL, FTTH and Cellular. Those different access technologies entail different
devices, e.g., smartphones equipped with dedicated OS likeandroid. In addition, a dif-
ferent access technology also implies a different usage, e.g., it is unlikely that p2p appli-
cations be used as heavily on Cellular than on wired access. Even if we consider ADSL
and FTTH, which are two wired technologies, some differences have been observed in
terms of traffic profile [1].

Despite this variety of combinations of usage and technology, some constant factors
remain in all scenarios like the continuous usage of email orthe use of TCP to carry the
majority of user traffic. This predominance of TCP constitutes the starting point of our
study and our focus in the present work is on the performance of TCP transfers.

In this work, we aim at detecting functionally correct TCP connections – normal set-
up/tear-down and actual data transfer – that experienced bad performance. The rationale
behind this study is that bad performance at the TCP layer should be the symptom of
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bad performance at the application or user level. Note that this a different objective
from the detection of traffic anomalies, where the focus is todetect threats against the
network, e.g. DDoS [2] [3–6].

To tackle the problem, we adopt a divide and conquer approach, where we analyze
separately connections that experience losses and connections that are unaffected by
losses. Our analysis of connections unaffected by losses (the majority of connections)
uses as a starting point a breakdown approach initially proposed in [7]. It enables to
delineate, for each transfer, time periods due to the serveror client thinking, or the time
spent sending data. Once each connection is transformed into in a point in multidimen-
sional space, we isolate anomalous TCP connections experiencing bad performance as
those connections having high value(s) in one or several dimensions.

We apply our methodology to passive traces of traffic collected on ADSL, Cellular
and FTTH access core networks managed by the same Access Service Provider. Our
main contributions are as follows:

– Concerning losses, we extend to the case of multi-technology Internet access, what
other studies have observed, namely that losses lead to a substantial, from 30 to 70%
(median) increase of transfers times for all connection sizes (mice or elephants).

– We observed that the strategies observed on the Cellular technology to recover from
losses seem more efficient than on ADSL and FTTH, as the time out durations are
close to the Fast Retransmit durations.

– Concerning transfers unaffected by losses, we propose different definitions of what
an abnormal performance means and exemplify the different approaches on our
traces. A salient point is that our approach relies on an adequate normalization of
those quantities in order to pinpoint abnormal performanceindependently of the
actual size of the connection.

– While analyzing the connections flagged as abnormal, we relate the performance at
the transport layer to the performance at the application layer. We show that in some
cases, e.g., instant messaging applications, the low performance at the transport
are unrelated to problems at the application layer. On the opposite, in some key
client/server applications like HTTPS transfers, low performance at the transport
layer might be perceived negatively by the end user.

2 Datasets

We collected packet level traces of end users traffic from a major French ISP involving
different access technologies: ADSL, FTTH and Cellular. The latter corresponds to 2G
and 3G/3G+ accesses as clients with 3G/3G+ subscriptions can be downgraded to 2G
depending on the base station capability. ADSL and FTTH traces correspond to all the
traffic of an ADSL and FTTH Point-of-Presence (PoP) respectively, while the Cellular
trace is collected at a GGSN level, which is the interface between the mobile network
and the Internet. Note that ADSL and FTTH clients might be behind 802.11 home
networks, but we have no means of detecting it.

Table 1 summarizes the main characteristics of each trace. Each trace features
enough connections to obtain meaningful statistical results.
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Cellular FTTH ADSL
Date 2008-11-222008-09-302008-02-04

Starting Capture 13:08:27 18:00:01 14:45:02:03
Duration 01:39:01 00:37:46 00:59:59

NB Connections 1,772,683 574,295 594,169
Functionally correct cnxs1,236,253 353,715 381,297

Volume UP(GB) 11.2 51.3 4.4
Volume DOWN(GB) 50.6 74.9 16.4

Table 1.Traces Description

Our focus is on applications on top of TCP, which carries the vast majority of bytes
in our traces. We restrict our attention to the connections that correspond to presumably
valid and complete transfers from the TCP layer perspective, that we term functionally
correct connections. Functionally correct connections must fulfill the following condi-
tions: (i) A complete three-way handshake; (ii) At least oneTCP data segment in each
direction; (iii) The connection must finish either with a FINor RST flag. Functionally
correct connections carry between 20 and 125 GB of traffic in our traces (see Table
1). The remaining connections, which amount for almost one third of connections in
our traces, consist for the vast majority of transfers with non complete three-way hand-
shakes (presumably scans) and also a minority of connections, a few percents, for which
we missed the beginning or the end of the transfer.

To have in idea of the applications present in our data sets, we performed a rough
classification of traffic by identifying destination ports.It reveals that more than 84% of
Cellular access connections targeted ports 80 and 443. Thisvalue falls to respectively
45% and 62% of bytes for our FTTH and ADSL traces, where we observed a prevalence
of dynamic destination ports, which are likely to correspond to p2p applications.

3 On the impact of losses on TCP performance

TCP implements reliability by detecting and retransmitting lost segments. The common
belief is that the loss recovery mechanism of TCP is particularly penalizing for short
transfers. However, several work have shown that even long transfers might be penal-
ized by loss recovery, e.g. [7]. We confirm those results for the cases of all the access
technology we consider. We further demonstrate that on the Cellular access technology,
some counter measures have been put in place to limit the duration of TCP recovery
phases.

3.1 Losses and Retransmission periods

To assess the impact of TCP loss retransmission events in ourtraces, we use an algo-
rithm to detect retransmitted data packets, which occur between the capture point and
the remote server or between the capture point and the local (ADSL, FTTH, Cellular)
client. This algorithm is similar to the one developed in [8]: we define the retransmission
time as the time elapsed between the moment where we observe adecrease of the TCP
sequence number and the first time where it reaches a value larger than the largest se-
quence number observed so far. If ever the loss happens afterthe observation point, we
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observe the initial packet and its retransmission. In this case, the retransmission time
is simply the duration between those two epochs. When the packet is lost before the
probe, we infer the epoch at which it should have been observed, based on the sequence
numbers of packets. Note that computations of all those durations are performed at the
sender side, as time series are shifted according to our RTT estimate. We (heuristically)
separate actual retransmissions from network out of sequence and spurious [8] retrans-
mission events by eliminating durations smaller than the RTT of the connection. Once
losses are identified, we compute for each TCP connection, its total retransmission time.

We first report, in Table 2, on two metrics: the average loss rate and the average
fraction of connections affected by loss events.

Cellular FTTH ADSL
Loss rate 4% 2% 1.2%

Fraction of connections 29% 9% 5%
Table 2.Overall loss rates

We observe from Table 2 that while loss rates are quite low (our traces are too
short to draw general conclusions on the loss rates in each environment), the fraction
of connections affected by losses are quite high, esp. for the Cellular technology. A
possible reason is that losses are due to random losses on thewireless medium, which
may result in small loss episodes that affect connections irrespectively of their duration
or rate.

To assess the impact of the loss recovery mechanisms of TCP, we compute the
fraction of transfer time that the recovery period represents. The transfer time itself is
defined as the sum of set-up (three-way handshake) and data transfer time (including
loss recovery periods) for each connection. We exclude the tear-down time, where only
control segments are exchanged (ACK, FIN, RST,) as this duration as no impact on
application performance5 and has been observed to be extremely long in a lot of cases
- see [7]. As we further want to assess the impact of the recovery process for both short
and long connections, we present results for each decile of the connection size, i.e., we
report results for the 10% of smaller connections, then the next 10%, etc. Results for
each access technology are presented in Figure 1. We observethat for all technologies,
losses lead to a significant increase of the connection duration, between 30 and 70 %
when considering the medians (bars in the center of the boxplots), irrespectively of the
actual size of the transfer. We also note that the lower impact is observed for the Cellular
trace, while the impact on the ADSL and FTTH traces are similar for all deciles.

We further investigate this discrepancy Cellular and ADSL/FTTH in the next sec-
tion.

3.2 Delving into TCP retransmissions

To uncover the better performance of Cellular connections observed in the last para-
graph, we next distinguish between losses recovered by a retransmission time-out (RTO)

5 A server might in fact be affected by long tear down times as the resources associated to the
socket are unnecessarily affected to the connection
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Fig. 1. Fraction of connection duration due to TCP retransmissions

and losses recovered by a fast retransmit/fast recovery (RF/R). We suppose that RTO
(resp. FR/R) correspond to recovery periods with strictly less than (resp. greater or
equal to) 3 duplicate acknowledgments. This definition leads to a striking result: for our
traces, more than 96% of loss events are detected using RTO. This result is in line with
previous studies [7].

Two factors contribute to this result. First, most of transfers are short and it is well-
known that short transfers, which do not have enough in flightpackets to trigger a FR/R
revert to the legacy RTO mechanism. Second, long connections must often rely on RTO
as the transfer, while large, consists of a series of trains (questions and answers of the
application layer protocol) whose size is not large enough,in almost 50% of the cases
in our traces, to trigger a FR/R.

Figure 2 plots the distribution of data retransmission timefor FR/R and RTO based
retransmissions. As expected, FR/R retransmission times are shorter than RTO for all
access technology. However, the key result here is that under the Cellular technology,
a significant attention has apparently been paid to limit theRTO duration, which re-
sults in RTO performance close to the FR/R performance. Thismight be due to specific
mechanisms at the server side6 or at the Access Point Name, which is the proxy that
Cellular clients use to the access the Internet. Optimizingthe RTO mechanism in the
Cellular environment is a strategy that pays offs as the vastmajority of TCP transfers
rely on RTO. For instance, if we arbitrarily set a threshold in terms of abnormal per-
formance to 1s of recovery period, we observe that with the current optimization, the
fraction of abnormal recovery times is about 20% smaller in Cellular than in ADSL and
FTTH scenarios.

6 While the protocol stack of the end device might also play a role, most of the data packets flow
from the server to the cellular client.
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Fig. 2. Retransmission times due to FR/R or RTO

4 TCP Abnormal Performance due to causes other than losses

4.1 Methodology

We next turn our attention to connections that are not affected by retransmissions. We
are left with the set-up, data transfer and tear-down times.We did not observe long
set-up times, due for instance to the loss of SYN/SYN-ACK packets. We thus do not
consider set-up times in our analysis. We exclude the tear-down phase from our anal-
ysis for the same reasons as in the previous section: it does not affect client perceived
performance and can bias our analysis as tear-down durations can be extremely large as
compared to the actual data transfer. To highlight the aboveassertion, we present in Fig-
ure 3 the legacy throughput (total amount of bytes divided bytotal duration including
tear down) and what we call the Application-Layer (AL) throughput where tear-down
is excluded. We already see a major difference between thosetwo metrics. If we are
to reveal the actual performance perceived by the end user, we further have to remove
the durations from the epochs where the user7 has received all data she requested from
the server (which we detect as no unacknowledged data from the server to the client in
flight) and the epochs where she issues her next query. We callthis metric the Effective
Exchange (EE) throughput. Those three metrics (throughput, AL throughput and EE
throughput) are presented in Figure 3 and we can see that theypresent highly different
views of the achieved performance.

We can generalize the above approach by decomposing each transfer into 6 periods
whose durations sum to the total transfer durations:

7 The user might be a program, e.g, a mail client sending multiple mails.



Detecting and Profiling TCP Connections Experiencing Abnormal Performance 7

10
−1

10
0

10
1

10
2

10
3

10
40

0.2

0.4

0.6

0.8

1

Kbits

C
D

F

 

 

CELL: TH
CELL: AL TH
CELL: EE TH
FTTH: TH
FTTH: AL TH
FTTH: EE TH
ADSL: TH
ADSL: AL TH
ADSL: EE TH

Fig. 3.Various Ways of Computing Connection Throughput

– The client8 and serverwarm-up times, where either the client is thinking or the
server is crafting data;

– The theoretical timescomputed on the client and server side, which represent the
time an ideal TCP connection acting on the same path (same RTTbut infinite band-
width) would take to transfer all data from one side to the other. As a simple exam-
ple, consider a TCP connection that must convey 7 data packets from a sender A to
a receiver B. Assuming an infinite bandwidth, it takes3.5 × RTT to transfer the
packets from A to B if we assume an initial congestion window of 1 and the use of
the delayed acknowledgment mechanism.

– The difference between the transfer in one direction (say client to server) and the
sum of thinking time and theoretical time is due to some phenomenon in the pro-
tocol stack, e.g. the application or the uplink/downlink capacity that slowed down
the transfer. We callpacing this remaining duration.

Figure 4 depicts an example of our decomposition approach for the case of a brows-
ing session.

The above methodology was presented in [7] with a different objective than detect-
ing anomalies. We aim here at using it to isolate abnormal TCPconnections. A first
step is that we exclude the client side warm-ups as large thinking time at the client side
should not mean anomaly. Next, we apply a normalization process on each dimension
as we want to select anomalous connections irrespectively of their actual size. To do so,
we apply the following normalization procedure :

– Normalized Warm-up: for each connection, we obtain the normalized warm-up as
the time total warm-up divided by the number of warm-up events.

– Normalized theoretical times: for each connection, we obtain the normalized theo-
retical time for each direction as the total theoretical time divided by the number of
packet for the corresponding direction. For long connections, the normalized theo-
retical times should be close to the RTT of the connection. For small connections,
the speed at which the congestion window opens will constrain the normalized the-
oretical time.

8 The client is for us, the initiator of the transfer.
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Fig. 4.Decomposition of a typical TCP transfer

– Normalized pacing: similarly to the theoretical time, we divide the total pacing time
per direction by the number of packets for the correspondingdirection.

We next present three different definitions of an anomaly. Note that since we ex-
cluded the Warm-up at the client side, each connection corresponds to a point in a 5
dimensional space.

– Definition 1: a connection is declared anomalous if its value, in any of the5 di-
mension is higher than the p-th quantile for this dimension.

– Definition 2: a connection is declared anomalous if the sum of its values ineach
dimension is higher than the p-th quantile (computed over the sum).

– Definition 3: a connection is declared anomalous if its normalized response time,
which is defined as its transfer time (set-up plus data transfer time. Again, we ex-
clude the tear-down phase) divided by the total number of packets transferred (sum
over both directions) is higher than the p-th quantile of thecorresponding distribu-
tion.

Each of the above definitions has its own merits. Definition 3 is the simplest one
and does not require our break-down methodology to be applied. Definitions 1 and 2
are built on our decomposition approach. Definition 1 aims atdetecting outlier in at
least one dimension while definition 2 aims at detecting global outliers, which might
not have extremely high values in any dimension but a globally high sum.

In the present work, our objective is to understand which anomalies can be detected
using our approach. We leave aside the important problem of determining which defi-
nition is the best and also, which value ofp is the best. Instead, we focus on analyzing
a set of connections flagged by the three definitions for an arbitrary value ofp.
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4.2 Selection of anomalous connections

We proceeded as follows to select a set of abnormal connections. Our starting point is
definition 1, for which we usep = 85, i.e., we select a connection as an outlier if its
values in any dimension is larger than the 85-th quantile in this dimension. Using this
approach and this threshold value will lead to select between 15 and 75% of connec-
tions. It will be 15% if a connection that features a high value in one dimension also
features a high value in all the other dimensions. Conversely, if we have disjoint sets
of connections for each dimension, we obtain5 × 15 = 75% of connections. In our
case, we obtain an intermediate value of 33% of connections.Those 33% of connec-
tions correspond to 5% of the overall bytes exchanged . We next adjust the threshold in
definitions 2 and 3 so as to have the same number of connectionsselected as in defini-
tion 1. This simply means that we setp = 77% for definitions 2 and 3. As we do not
want to decide which definition is the best at this stage, we consider the intersection of
the sets of connections selected using those 3 definitions. The matrix below provides
the percentages of intersections using each definition:





Def. 1 Def. 2 Def. 3
Def. 1 100% 53% 55%

Def. 2 53% 100% 62.1%

Def. 3 55% 62.1% 100%





4.3 Clustering results

The intersection of the three sets correspond to 11% of connections and 3% of bytes.
We use a clustering approach to discover similarities between anomalies. We used the
popular Kmeans algorithm. Using Kmeans requires both to choose (before running the
algorithm) the number of clusters and also the initial choice of the centroids of the
cluster. For the first problem, we rely on a visual inspectionof the data using a di-
mensionality reduction technique (t-SNE [9]) that projects multi-dimensional data on a
2D plane, while preserving the relative distance between points. Concerning the choice
of the initial centroids, we use the classical Kmeans + approach whereby 100 initial
choices of clusters are considered and the best result (in terms of intra and inter-cluster
distances) is picked at the end.

For our set of bad performing connections selected in the previous section, we ob-
tained with tSNE that 4 clusters was a reasonable choice. We present the 4 clusters
obtained with Kmeans in Figure 6. We use a boxplot representation for each of the five
dimensions. Note that the values reported here are non-normalized values: we normal-
ize prior to clustering but we report initial values in the boxplot representations. We
also enrich the graph of each cluster with (i) the fraction ofconnections for each access
technology and (ii) the median size of transfers (both, on top of the graphs). We fur-
ther present in Figures 5(a) and 5(b) the distributions of ports per cluster and also the
volumes (in bytes) per cluster, respectively.

We can observe that the size of clusters range between 17 and 38%, which means
that they are relatively homogeneous in terms of size. In contrast, the clusters are
quite different in terms of the applications they correspond to. Cluster 1 corresponds
to HTTP/HTTPS traffic and also a significant fraction of others, where others means
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Fig. 5. Intersection

that both the source and destination ports are dynamic (a good hint of a p2p applica-
tion). Cluster 2 corresponds mostly to HTTP/HTTPS traffic. Cluster 3 features mostly
to HTTP and POP, while cluster 4 is dominated by dynamic ports.

When correlating the dominating ports and the fraction of connections per access
technology in each cluster (on top of each plot in Figure 6), one can clearly observe
that cellular access is mostly present in clusters 2 and 3 where there is little dynamic
ports. In contrast, most of the ADSL and FTTH connections arein clusters 1 and 4 that
contain a lot of connections corresponding to dynamic ports. Those observations are
in line with intuition as dynamic ports are likely to be due top2p applications that are
more popular on ADSL/FTTH than Cellular access technology.Note that a majority of
our cellular users use smartphones rather than laptop equipped with 3G dongles as we
observed by mining the HTTP header (user-agent information) of their Web requests.

Let us now focus on the interpretation of the 4 clusters in Figure 6. One can adopt
a quantitative or a qualitative standpoint. From a qualitative standpoint, we can observe
that clusters 1 and 2 report on problems located at the serverside, with extremely high
warm-up or pacing times. In contrast, for clusters 3 and 4, one observes large values at
both the client and the server side. If one adopts a quantitative viewpoint, the situation
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Fig. 6. Intersection: K-means Results

is quite different. Indeed, clusters 1, 2 and 4 are characterized by values (for the dimen-
sions that characterize the anomaly) that are one to two order of magnitudes larger – in
the order of tens or hundreds of milliseconds for those clusters as compared to about
one second time scale for cluster 3.

Our starting point, in this work, was the hypothesis that badperformance at the
TCP layer should be the symptom of a problem at the application layer or from the user
point of view. A closer analysis of the clustering results reveals that while our approach
indeed reveals TCP connections that perform badly, not all these connections result in
bad performance from the user perspective. Let us consider the case of cluster 4. In
this cluster, one observes 14% of connections using port 1863, which is the Microsoft
messenger port. It is clear that here, the bad performance atthe transport layer is due to
the fact that the client and the server are two humans that (normally) think before typing
and type relatively slowly. Bad performance at the transport layer is thus unrelated to
bad performance at the application layers. Also, still for cluster 4, one observes a large
fraction of dynamic ports, which is likely to be due to p2p applications. It is known
that p2p applications tend to throttle the bandwidth offered to other peers. This is why
we observe limitations at both the client and server side, which are the two ends of
the application. It is difficult to categorize the bad performance of p2p applications as
an anomaly from the user perspective since users are in general patient when it comes
to download content since they treat this traffic as a background traffic (that should not
interfere with their current interactive traffic, typically browsing ; hence the rate limiters
in p2p applications).

The situation is different for clusters 1 and 2, for which anomalies are clearly located
at the server side and a significant share of the traffic is due to HTTP and HTTPS. We
observed typically large values for HTTPS connections thatpresumably (given the IP
address) correspond to electronic payment transactions. We leave for future work a
more in depth analysis of the servers flagged as anomalous (e.g., which fraction of their
traffic is indeed anomalous, do they serve only a specific typeof clients, e.g. cellular
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clients) and we present in the next section, some typical examples of anomalies that
we observed, related to warm-up or pacing problems, in orderto make our case more
concrete.

4.4 Examples of anomalies

  

Client has issued
her GET and

server has acknowedged
at TCP layer

4.5 seconds of idleness
before the server start sending 

the object (a png image)

Wireshark reports correct reception
at this time, when all TCP packets

have been received

Fig. 7.Abnormal Long Response Time at The Server Side (Warm-up B value)

Large Warm-up B We report in Figure 7 an example of large warm-up time at the
server side,observed by a client behind an ADSL access. We notice that the acknowl-
edgment received from the server indicates that the query (GET request) has been cor-
rectly received by the server, but it takes about 4.5 secondsbefore the client receives
the requested object (a png image in this case).

Fig. 8. Webmail: Large Pacing B in Gmail Server

Large Pacing B We report in Figure 8 an example of large pacing time for a Gmail
server, observed by a client behind an FTTH access. We noticethat the acknowledgment
received from the server indicates that theGET requesthas been correctly received by
the server. The server sends data until the last TCP segment which is delayed by 27.6
seconds, before the client receives the object.
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Large Pacing A We report in Figure 9 an example of large Pacing A in the case of
an HTTPS connection for a Cellular client. After a successful three way handshake,
the user authenticates and exchanges data with the server. If we focus on the client last
data packet, we observe that it is delayed by more than 200 seconds compared to the
previous data packet. This introduces a large idle time in the transfer. We see through
this example that the application can play an important rolein data scheduling at the
network layer, which can have a detrimental impact in terms of perceived performance.

Fig. 9. Large Pacing A

5 Conclusion

In this paper, we have shed light on the problem of detecting and understanding TCP
connections that experience low performance. We jointly analyzed network traces col-
lected on a variety of networks that reflect the way people areaccessing the Internet
nowadays.

Losses in the network, while rare, significantly deteriorate performance. This result
is not new but the added value of our work is to show that any transfer that experiences
losses suffers, irrespectively of the access technology orits exact size. Furthermore, our
approach of jointly profiling different access technologies enabled us to highlight that
more attention is paid to limiting the impact of losses in cellular than on ADSL/FTTH
networks apparently. We relate this discrepancy to the shorter durations of time out du-
rations on the cellular network. While those results need tobe confirmed over longer
traces, the extent to the difference (a factor of 2 in the fraction of time required to re-
cover losses on Cellular trace as compared to our ADSL/FTTH traces) suggests it can
not be a mere coincidence. As future work, we intend to investigate whether optimiza-
tions of the recovery mechanism of TCP could be proposed based on the observations
we made.

For the majority of connections that do not experience losses, we propose several
approaches to detect outliers. Each of them accounts for thesize of the connections so
that not only long connections be flagged as experiencing abnormal performance. We
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exemplify the different approaches by analyzing their intersection set, i.e., the set of
connections flagged as abnormal, whatever the definition is.We use a clustering ap-
proach to form groups of similar abnormal connections. We enrich those groups with
additional information like the distribution of ports per group, to understand whether
low performance at the transport layer is a symptom of bad performance at the applica-
tion layer. It turns out that the relation between the transport and the application layer
is complex. There are cases, e.g., instant messaging, wherethe two are fully unrelated.
This is also partly the case with p2p transfers as users are resilient to low performance
at the transport layer as long as they eventually obtain the content they want. On the
other hand, we observed low performance for a significant number of cases, e.g. HTTP
and HTTPS transfers where the user might consider that the application is misbehaving.
As future work, we intend to profile more precisely the latterset of connections (where
bad performance at the transport and application layer are apparently related) to better
understand the extent of those anomalies.
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