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ABSTRACT

Overlapping speech is known to degrade speaker diarization
performance with impacts on speaker clustering and segmentation.
While previous work made important advances in detecting overlap-
ping speech intervals and in attributing them to relevant speakers, the
problem remains largely unsolved. This paper reports the first ap-
plication of convolutive non-negative sparse coding (CNSC) to the
overlap problem. CNSC aims to decompose a composite signal into
its underlying contributory parts and is thus naturally suited to over-
lap detection and attribution. Experimental results on NIST RT data
show that the CNSC approach gives comparable results to a state-of-
the-art hidden Markov model based overlap detector. In a practical
diarization system, CNSC based speaker attribution is shown to re-
duce the speaker error by over 40% relative in overlapping segments.
Index Terms: overlap detection, speaker attribution, speaker di-
arization, convolutive non-negative sparse coding

1. INTRODUCTION

Over recent years, state-of-the-art speaker diarization systems have
advanced to the point where overlapping speech can be a dominant
source of error [1, 2]. The occurrence of overlap is typical in uncon-
trolled, spontaneous scenarios such as that of conference meetings,
which have been the focus of the NIST Rich Transcription (RT) eval-
uations since 20041.

In a speaker diarization context two problems need to be ad-
dressed. The first involves the detection of overlapping speech so
that it can be removed from speaker clustering and model training.
The second problem involves the attribution of overlapping speech
to contributing speakers and naturally depends on reliable overlap
detection. There is some evidence that a solution to the first prob-
lem alone is unlikely to be sufficient and that a solution to speaker
attribution is potentially more valuable [3–5].

Only a small number of attempts to treat overlapping speech
have been successful. Boakye et al. [4, 6] investigated the use of
multiple features for overlap detection using a hidden Markov model
(HMM) based system for detection and a post-processing step for at-
tribution. Encouraging results are reported and oracle experiments
confirm the full potential.

Our approach to overlap detection and attribution involves con-
volutive, non-negative matrix factorisation (CNMF). CNMF cap-
tures spectro-temporal patterns and has been successfully applied to
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1http://www.itl.nist.gov/iad/mig/tests/rt/

speech denoising/separation applications [7]. While initial results
with the basic CNMF algorithm were encouraging, the use of sparse
coding constraints [8] gave more promising results. The resulting
convolutive non-negative sparse coding (CNSC) approach combines
the advantages of mixed pattern decomposition due to non-negative
constraints and powerful representation and noise robustness due to
sparse coding.

In a practical speaker diarization system, the CNSC-based over-
lap detection and speaker attribution involves learning speaker-
specific base patterns using the diarization output and projecting the
acoustic signal onto the set of speaker bases. Base activations pro-
vide an indication of speaker-specific activity and hence can be used
to both detect and attribute intervals of overlapping speech. Due
to the sparseness constraints, the distribution of speaker energy is
enforced to only a small number of bases and thus provides better
discrimination between active and inactive speakers. Experimental
results demonstrate the merit of the proposed approach and support
further work to develop the potential.

2. CONVOLUTIVE NON-NEGATIVE SPARSE CODING

Non-negative matrix factorisation (NMF) [9] is an approach for the
linear decomposition of a non-negative matrix D ∈ R≥0

M×N with
similar non-negative constraints on the decomposed matrices W ∈
R≥0

M×R and H ∈ R≥0
R×N so that:

D ≈ WH (1)

The columns of W are base vectors and the columns of H are
the base activations or weights needed to recompose an estimate of
the original matrix. As described in [10], the decomposition is per-
formed iteratively using elegant and computationally efficient multi-
plicative update rules to minimise the distance between the original
matrix and its approximation:

(Ŵ , Ĥ) = arg min
W,H

‖D −WH‖2F (2)

where, ‖.‖F is the Frobenius norm. The matrix representation of
a speech signal D typically comprises windowed magnitude spectra
which satisfy the non-negative constraint. The decomposition results
in base vectors that correspond to prominent spectral features. NMF,
however, does not capture the correlation between adjacent frames
that are inherent in speech signals. A convolutive variant, referred to
as convolutive NMF (CNMF) [7] addresses this issue. The CNMF
decomposition takes the form:

D̂ ≈
P−1X
p=0

Wp

p→
H (3)



where P is the convolution range. The operators p→. and p←. are col-
umn shift operators that shift p columns of the matrix to the right
and left respectively. Vacated columns are filled with zeros. A se-
quence of P vectors corresponding to the ith column of Wp can
be viewed as a base dimension that captures one of the prominent
spectro-temporal patterns in the given signal.

The further application of sparse constraints [8,11] with the fol-
lowing optimisation criterion leads to a sparse activation matrix H .

(Ŵ , Ĥ) = arg min
W,H

‖D −WH‖2F + λ
X
ij

Hij (4)

where Hij denotes the elements of H . This decomposition is re-
ferred to here as convolutive non-negative sparse coding. In our im-
plementation, we use the update rules proposed in [8] for computing
W and H:

Wp = Wp ¯ D
p→
H

T

D̂
p→
H

T
(5)

H(p) = H ¯ wT
p

p←
D

wT
p

p←
D̂ +λU

(6)

H =
1

P

P−1X
p=0

H(p) (7)

where¯ is the Hadamard product and where the division of matrices
is performed element-wise. U is an R × N unit matrix. W and H

are updated iteratively until D̂ converges. After each update of W ,
columns are normalised to unit vectors. This is an essential step in
sparse coding since it ensures that W does not grow in an uncon-
trolled manner and forces the resulting activations to be sparse.

3. OVERLAP DETECTION

Here we describe our approach to apply CNSC to the detection of
overlapping speech. Attribution, where we aim to determine con-
tributing speakers, is covered in Section 4. We first consider per-
formance where the ground-truth reference is used to learn speaker
bases and then assess performance using an automatic segmentation
output from a practical speaker diarization system.

3.1. Ground-truth references

CNSC is implemented according to the following procedure:
1. Using pure (non-overlapping) speech for each given speaker,

learn base matrices W using spectral magnitude features.
2. Concatenate together the W ’s for all speakers to create a

global set W G that spans the spectral patterns of all speak-
ers.

3. Decompose the magnitude spectrum of a mixed, and possibly
overlapping speech signal (same speakers as in 1.) accord-
ing to W G and update only H to minimise the optimisation
criterion.

The activations of H which correspond to the bases for any given
speaker therefore serve as an indication of that particular speaker’s
activity. Since the bases W are normalised, the sum of the activa-
tions for a speaker is strongly correlated to the signal energy from
that particular speaker. The speaker energy is determined according
to:

Ej(s) =
X
i∈Is

Hij (8)
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Fig. 1. An illustration of the correlation between ground-truth
speaker activity (bottom) and CNSC activation energies (top) for 4
speakers in a conversation.

where Is is the set of rows in H corresponding to the bases of
speaker s and where j is the frame index.

Figure 1(top) illustrates the energy profiles against time for all
speakers during a short interval from an example meeting recording.
Ground-truth reference speaker activities are plotted below using the
same colour profile for corresponding speakers. The latter are plot-
ted on different scales solely for clarity and show that, for the most
part, there is only one or two active speakers. Between 6.5s and 8s,
however, there are four active speakers. Energy profiles correlate
well with the ground-truth references and thus support the utility of
CNSC activations as an indicator of speaker activity.

In our approach speaker energies calculated as per Eq. 8 are
then smoothed with a moving average filter and used to implement
a frame-based overlap detector. At this step, the output of a voice
activity detection (VAD) component can optionally be used to iden-
tify and remove nonspeech frames. We performed experiments with
reference VAD transcriptions and with or without the VAD of our
baseline diarization system.

A couple of measures were considered to detect overlapping
speech, namely, the ratio of two highest speaker energies in a frame
and the variance of the energy difference. The latter gave better per-
formance and was thus used for all experiments reported here. To
compute this measure, the speaker energy is normalised according to
the highest energy across all speakers. The difference in normalised
energy is then calculated for all speaker pairs. The inverse variance
of energy differences forms the measure.

mj =
1

var(energy difference)
(9)

This value is expected to be higher in overlapping speech segments
than in non-overlapping segments since the variation in speaker en-
ergies should be respectively lower. After smoothing, overlapping
speech frames are detected by comparing mj to a threshold tdet.

We evaluated our approach to overlap detection using a set of
16 single distant microphone (SDM) conference meeting waveforms
from the standard NIST RT evaluation dataset. To compute the
speaker bases for each evaluation file, pure speech was first obtained
for each known speaker according to the reference transcripts in an
oracle-style experiment. This was done to avoid the impact of errors
in an automatically derived speaker segmentation or diarization out-
put and thus to focus the assessment on CNSC alone. We used 50
bases for each speaker with a convolutional range of 4 and a sparse-
ness parameter of 0.2 chosen heuristically. Features are magnitude
spectra computed on 20ms windows with a window shift of 10ms.
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Fig. 2. Detection error tradeoff curve using the CNSC approach,
using either oracle bases or real bases and either oracle VAD, no
VAD or a real VAD component.
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Fig. 3. Precision, recall, missed detection probability and false alarm
probability (using real VAD output) for overlap detection

Overlap detection performance for varying tdet is illustrated in
the detection error trade-off (DET) curve shown in Fig. 2 for a prac-
tical (real) VAD. The equal error rate (EER) is approximately 36%.
Profiles and EERs obtained without (no) VAD and with a reference
(oracle) VAD are almost identical.

For consistency with prior work, we also consider precision and
recall metrics. Improvements in speaker diarization require over-
lap detection with high precision, whereas recall is of lower im-
portance [4]. Fig. 3 shows the variation in precision, recall, false
alarms and missed detections for different thresholds tdet. A value
of tdet = 30 yields a precision of 28.6 % while the recall is 16.1 %.
With an oracle VAD and the same tdet a precision of 32.7 % and a
recall of 16.0 % are obtained, while with no VAD, the precision and
recall are 23.7 % and 16.2 % respectively.

We compared the performance of the proposed system to a state-
of-the-art overlap detector based on [6], where intervals of speech,
nonspeech and overlap are modeled as 3 state HMMs and where
each state is modeled by a 32 component Gaussian mixture model
(GMM). Mel-frequency cepstral coefficients (MFCCs) with first dif-
ferential and energy coefficients were used as features which are
computed using a window size of 60ms and a frame shift of 20ms as
in [6]. A set of 23 NIST RT evaluation files, disjoint from the test
set, were used to train the models. Recall was traded off for higher
precision by varying the speech to overlap transition penalty during
Viterbi decoding. The best precision/recall rate for this system is
28.0% / 26.0% and the precision peaks at around 28.0%. The same

System precision (in %) recall (in %)

oracle bases, oracle VAD 32.7 16.0
oracle bases, real VAD 28.6 16.1
oracle bases, no VAD 23.7 16.2
real bases, real VAD 21.2 24.8
HMM 28.0 26.0

Table 1. A summary of precision/recall values on overlap detection
for all the experiments

system when run on AMI SDM corpus using a similar train, tune and
test set as in [4], gives a precision/recall rate of 60.0% / 20.0%.The
low precision rate obtained with both the systems on NIST RT cor-
pora highlight the particularly challenging nature of this corpora for
overlap detection.

3.2. Automatic segmentation

CNSC relies on the availability of pure speech to train speaker bases
and, in the experiments reported above, this was done using refer-
ence transcripts to avoid the influence of errors in an automatically
derived segmentation. We now aim to assess performance using the
output of a practical diarization system, rather than the ground-truth
reference, in an otherwise identical setup. This work was undertaken
using the top-down speaker diarization system reported in [12].

Perhaps the most significant difference between the reference
and the diarization output lies in the number of real and automati-
cally detected speakers which will naturally lead to increased error.
Overlap detection performance using the real diarization output re-
sults in an EER of 37.0%. The DET curve for this setup is also illus-
trated in Figure 2. At an operating point defined by tdet = 30, the
system achieves a precision/recall of 21.2% / 24.8%. The precision
peaks around this value.

Table 1 illustrates a comparative summary of all experiments
on overlap detection using bases obtained from oracle references or
real speaker diarization system outputs. Also shown is the varia-
tion in performance when using an oracle VAD, a real VAD or no
VAD. Performance is also compared to the baseline HMM system.
Naturally, using oracle bases and oracle VAD gives the best results,
and there is a decrease in performance when bases computed from
the output of a real diarization system are used. This is due to the
impurities in speaker training data. An obvious advantage for the
HMM system is the inherit exponential duration decay which allows
statistical-based smoothing, while in our CNSC based approach, the
analysis was done at frame level. However, the fact that our system
performs reasonably well in comparison to the HMM system is very
encouraging and motivates future work in this direction.

4. SPEAKER ATTRIBUTION

We now turn to the attribution of overlapping speech to contributing
speakers. Attribution has the potential to improve the (Diarization
error rate (DER) by reducing missed speech errors in intervals of
speech containing more than a single speaker. We assess attribution
performance independently from overlap detection by using an ora-
cle overlap detection component. For each segment of overlapping
speech, the energy of each speaker is determined from the base ac-
tivations in exactly the same way as described in Section 3.1 for all
frames in the segment. We assume that, in each interval of overlap-
ping speech and as is generally the case in practice, there are exactly
two active speakers. We further assume that they correspond to the



System setup Speaker error (in %)

Baseline diarization system 68.4
GMM posterior based system 44.7
CNSC, Oracle bases 31.5
CNSC, Real bases 40.4

Table 2. Results for speaker attribution. Shown is the speaker error
on all true overlap segments.

two speakers with the highest energy as determined by CNSC acti-
vations. To assess attribution performance, we use a metric which
is adapted from the standard DER formula to focus on speaker error
(SpkErr) only. The speaker attribution error is calculated according
to:

SpkErr =

P
T (k)[max(NRef , NHyp)−NCorr]P

T (k)NRef
(10)

where, T (k) is the duration of the kth overlapping speech segment,
NRef , NHyp and NCorr are the number of speakers in the refer-
ence hypothesis, detection hypothesis and those correctly attributed
to the segment respectively. Note that the metric is time-weighted in
a similar manner as the standard DER.

We first compute the speaker error rate from the diarization sys-
tem output focusing only on intervals of overlapping speech. In this
case the speaker error rate is 68.4% and is naturally high since, with
no provision for overlap attribution, the minimum error is 50%. Then
as a baseline result, we use a state-of-the-art speaker attribution sys-
tem [4], where frame-level GMM posteriors for each speaker ob-
tained from the diarization system are summed over all the frames in
an overlapping interval and the interval is attributed to the two speak-
ers with highest scores. With this system we obtain a speaker error
rate of 44.7%. When the CNSC activations (obtained with speaker
bases computed with reference transcripts) are used for speaker at-
tribution, the resulting speaker error rate falls to 31.5%. When using
speaker bases created with the output of a real diarization system in-
stead of the reference transcripts, the resulting speaker error rate is
40.4%. Thus, using CNSC, the speaker error rate in overlapping in-
tervals is reduced by about 40% relative over the baseline diarization
system, and compared to the GMM posterior score based system, the
results are improved by about 9.6% relative. These results are sum-
marized in Table 2. However, we must note that when performing
speaker attribution experiments with real overlap detection output
with low precision, some errors will be introduced in the falsely de-
tected overlapping segments.

Finally, the contribution of overlap attribution on the overall
DER is shown in Table 3. According to speaker attribution results,
the overlapping intervals in the diarization output were relabelled
with the detected speakers. With oracle overlap detection and real
speaker attribution, the errors due to missed speakers can be reduced
by 64% relative. There is a small increase in false alarms due to some
incorrect attributions, but overall the diarization results improve by
about 6.5% relative.

5. CONCLUSIONS

This paper reports an investigation into the use of convolutive non-
negative matrix factorisation with sparse constraints (CNSC) for the
detection and attribution of overlapping speech in the context of
speaker diarization. The CNSC approach gives overlap detection re-
sults which are comparable to a state-of-the art HMM overlap detec-

System setup DER Missed False alarm SpkErr

Baseline diarization 28.50 6.4 2.9 19.2
CNSC, Oracle bases 26.15 2.3 4.2 19.6
CNSC, Real bases 26.65 2.3 3.6 20.7

Table 3. Influence of overlap attribution, using oracle overlap detec-
tion, on overall DER (%).

tion approach. It is also seen to perform well in the case of attributing
an overlapping speech interval to contributing speakers. A limitation
of the approach relates to the cross-projection of a speaker’s energy
onto the bases of other speakers. This is to be expected since the
bases are purely spectral representations and are thus not entirely
decorrelated across speakers. The application of sparse constraints
alleviates the problem to some extent by encouraging activations to
be concentrated on a small number of bases. Further work is nev-
ertheless required to optimise the number of bases, the convolution
length and sparseness constraints to reduce cross projection. Our
current work aims to integrate CNSC activations into HMM over-
lap detection framework to exploit the benefit of duration modelling.
Future work could include an analysis of different speaker bases to
detect speakers with multiple models in a typical diarization system
and the full integration of CNSC into a regular speaker diarization
framework. This should include a thorough study of the impact of
overlap on speaker diarization.
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