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Abstract This paper investigates the application of game
theory tools in the context of cognitive radio networks (CRN).
Specifically, we propose a resource management strategy
with the objective to maximize a defined utility function
subject to minimize the mutual interference caused by sec-
ondary users (SUs) with protection for primary users (PUs).
In fact, we formulate a utility function to reflect the needs
of PUs by verifying the outage probability constraint, and
the per-user capacity by satisfying the signal-to-noise and
interference ratio (SNIR) constraint, as well as to limit in-
terference to PUs. Furthermore, the existence of the Nash
equilibrium of the proposed game is established, as well as
its uniqueness under some sufficient conditions. Theoreti-
cal and simulation results based on a realistic network set-
ting, and a comparison with a previously published resource
management methods will be provided in this paper. The
reported results demonstrate the efficiency of the proposed
technique in terms of CRN deployment while maintaining
quality-of-service (QoS) for the primary system.
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1 Introduction

Cognitive radio (CR) is an emerging technology in wireless
technology that uses software-defined radio to aim to the
efficient use of the spectrum by exploiting the unused fre-
quency bands at the time and space [1]. A look on the state
of the art shows that CR research area is very open. A par-
ticularly problem in the context of CR, when we seek to op-
timize the secondary system capacity, is to guarantee a qual-
ity of service (QoS) to primary users (PUs) and a certain
QoS to secondary users (SUs). There is a large number of
proposals for all communication layers treating the increase
of restrictions to spectrum utilization [2], but the QoS issue
still has not been clearly defined. In addition, it is unclear
how secondary system opportunism is compatible with the
support of QoS for both, CR systems and primary systems.
The U.S. Federal Communications Commission (FCC) pro-
posed the concept of ”interference temperature” as a way to
have unlicensed transmitters sharing licensed bands without
causing harmful interference [3] [4]. Rather than merely reg-
ulate transmitter power at fixed levels, as it has been done in
the past, the scheme would have governed transmitter power
on a variable basis calculated to limit the energy at victim
receivers, where interference actually occurs. As a practical
matter, however, the FCC abandoned the interference tem-
perature concept recently [5] due to the fact that it is not a
workable concept. While offering attractive promises, CRs
face various challenges, starting from defining the funda-
mental performance limits of this radio technology, in or-
der to achieve the capability of using the spectrum in an
opportunistic manner. Specifically, CR is required to detect
spectrum holes in the spectrum band and to determine if the
spectrum allocation meets the QoS requirements of different
users. This decision can be made by assessing the channel
capacity, known as the most important factor for spectrum
characterization.
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The purpose of this paper is to present an analysis of the
QoS problem along with a proposed solution, while main-
taining a limited scope to provide coherency and depth. The
QoS problem will be tackled in this work by proposing a
resource management strategy based on game theory tools.
The motivation behind doing so is that, in any case, the PU
will not necessarily need all that multi-rate system. In fact,
the PU will experience the SU’s interference, and as long as
all his target rate (depending on his QoS) to be achieved, he
does not care about what he leaves more. In what follows,
we adopt this setting and consider a CR network (CRN) in
which primary and secondary users both attempt to commu-
nicate in a distributed way, subject to mutual interference.
We propose a CR coordination that maximizes the CRN sec-
ondary rate while keeping the interference to the PU accept-
able. Our goal is to realize PU-SU spectrum sharing by op-
timally allocating SU transmit powers, in order to maximize
the total SU throughput under interference and noise im-
pairments, and short term (minimum and peak) power con-
straints, while preserving the QoS of the primary system. In
particular, it is of interest to determine the maximum num-
ber of SUs allowed to transmit threshold above which SUs
can decide to transmit without affecting the PU’s QoS. In
such approaches, each user individually makes its decision
on its transmit power so as to optimize its contribution to the
system throughput. At the core of the concept lies the idea
that the interference is more predictable when the network
is dense, and consequently the resource allocation problem
of a given user becomes more dependent to the average be-
havior, thus facilitating optimization.

Therefor, we propose in this paper a resource manage-
ment strategy with the objective to maximize a defined util-
ity function subject to minimize the mutual interference caused
by SUs with protection for PUs. Specifically, we formulate
a utility function to reflect the needs of PUs by verifying the
outage probability constraint, and the per-user capacity by
satisfying the signal-to-noise and interference ratio (SNIR)
constraint, as well as to limit interference to PUs. Our contri-
bution within this work is the investigation of the QoS issues
from an outage point of view and using a game theory prob-
lem reformulation. Furthermore, the existence of the Nash
equilibrium of the proposed game is established, as well as
its uniqueness under some sufficient conditions.

The paper is organized as follows. In Section 2, we will
provide a rather straightforward classification of resource al-
location strategies attempting to show the diversity and ad-
vantages of these techniques. Two types of resource allo-
cation strategies, centralized and distributed strategies, are
discussed in this section. In Section 3, we will introduce
the game theory approach and present the utility function
to compute the transmitted power of each SU. Section 4 will
introduce a number of theoretical concepts of importance.
It will describe the CRN that will be used throughout this

paper and present three resource management algorithms
based on outage probability that will act as references when
evaluating the proposed approach. In Section 5 the resource
management algorithm based on game theory is presented.
The existence of the Nash equilibrium of the proposed game
is established in Section 6, as well as its uniqueness under
some sufficient conditions. Simulation results and a com-
parison with methods presented in Section 4 are provided in
Section 7, and Section 8 concludes the paper.

2 Resource Management Overview

In this paper we address the resource management problem
in the context of CRN with special emphasis on QoS pro-
visioning in a number of emerging broadband wireless net-
works. Specifically, depending on the choice of implemen-
tations, there are two approaches to allocate the spectrum
resource. The first approach is based on a central controller
that requires information about SUs and channel gains. This
approach is referred as centralized solution. The second ap-
proach doesn’t requires knowledge about the PU and SUs
channels. This approach is so-called distributed solution.
This section overviews the underlying standards and/or tech-
nologies and provides a literature review of related works on
resource management and QoS provisioning in these broad-
band centralized and distributed systems.

The centralized resource allocation have been the main
focus of some research efforts in CRNs. The authors in [6]
for example derived a centralized power control method for
the CRN to maximize the energy efficiency of the SUs and
guarantee the QoS of both the PUs and the SUs. The feasi-
bility condition was derived in [6] and a joint power control
and admission control procedure was suggested such that the
priority of the PUs is ensured all the time. However, in [6]
only one CRN was considered. In [7], the authors considered
spectrum sharing among a group of spread spectrum users
with a constraint on the total interference temperature at a
particular measurement point, and a QoS constraint for each
secondary link. An optimization solution of this problem
was proposed in [7] by using a game theory method. Specif-
ically, the authors defined the secondary spectrum sharing
problem as a potential game which takes different prior-
ity classes into consideration. Firstly, this game is solved
through sequential play. Then a learning automata algorithm
is introduced which only requires a feedback of the utility
value. The same idea was proposed in [8], where the authors
study a centralized auction mechanisms to allocate the re-
ceived powers. They consider an objective function of max-
imizing utility which is a function of SINR. In [9] the au-
thors tried to solve the centralized resource allocation prob-
lem by including a beamforming strategy. In this work, the
primary systems are assumed to tolerate an amount of inter-
ference originating from secondary systems. This amount of
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interference is controlled by a pricing mechanism that pe-
nalizes the secondary systems in proportion to the interfer-
ence they produce on the PUs. Two centralized optimization
frameworks were proposed in [10] in order to solve for the
optimal resource management strategies. In the first frame-
work, authors determine the minimum transmit power that
SUs should employ in order to maintain a certain SINR and
use that result to calculate the optimal rate allocation strat-
egy across channels. In the second framework, both transmit
power and rate per channel are simultaneously optimized
with the help of a bi-objective problem formulation. Though
there have been ample research efforts on centralized re-
source management in CRNs, there is still a lack of a com-
plete framework that considers QoS for SUs as well as re-
source management in a fair manner. One of the objective in
this paper is to take a step towards such a solution.

In a realistic network, centralized system coordination
is hard to implement, especially in fast fading environments
and in particular if there is no fixed infrastructure for SUs.
In fact, centralized channel state information for a dense net-
work involves immense signaling overhead and will not al-
low the extraction of diversity gains in fast-fading channel
components. To alleviate this problem, distributed methods
were proposed in the literature where SUs can get rid of PU
knowledge.

A number of distributed resource allocation strategies
for CRNs have been proposed in literature. In addition to
the two centralized frameworks presented in last section, the
authors in [10] designed a distributed suboptimal joint coor-
dination and power control mechanism to allocate transmit
powers to SUs. A lower bound on SINR is used as a QoS
constraint for SUs. In [11], the authors propose a game the-
oretic framework to analyze the behavior of CRs for dis-
tributed adaptive channel allocation. They define two dif-
ferent objective functions for the spectrum sharing games,
which capture the utility of selfish users and cooperative
users, respectively. The channel allocation problem is mod-
eled in [11] to a potential game which converges to a deter-
ministic Nash equilibrium channel allocation point. Game
theory was applied in [12] to develop a distributed power
allocation algorithm. In this work, each user maximizes its
own utility function (which includes a pricing term) by per-
forming a single-user price-based water-filling. However, in
[12], coexistence of multiple SUs in a channel has not been
considered. Also, the QoS requirement of SUs has been ig-
nored. In [13], the authors studied the distributed multi chan-
nel power allocation for spectrum sharing CRNs with QoS
guarantee. They formulate the problem as a noncooperative
game with coupled strategy space to address both the co-
channel interference among SUs and the interference tem-
perature regulation imposed by primary systems. The au-
thors in [14] presented a general analytical framework, in
which SU’s rate, frequency, and power resource can be jointly

optimized under the interference temperature constraints. This
framework was used to design an optimal distributed re-
source allocation algorithm with low polynomial time com-
plexities in multiuser broadband CRNs. In [15], the authors
focus on designing distributed resource allocation algorithms
for cooperative networks. They proposed two share auction
mechanisms, the SNR auction and the power auction, to
distributively coordinate the relay power allocation among
users. The authors in [15] demonstrate that the SNR auc-
tion achieves the fair allocation, while the power auction
achieves the efficient allocation. In [16], the authors propose
a distributed resource allocation scheme where SUs are pe-
nalized for interfering on the primary systems. The penalty
is proportional to the interference rate produced from the
secondary transmitter to each PU. This mechanism is re-
ferred to as pricing and is interpreted as introducing the ef-
fect of disturbance created from a user as a penalty measure
in his utility function. In this means, the secondary transmit-
ters can be controlled to choose their transmission strategies
satisfying soft interference constraints on the PUs. In [17],
this model of exogenous prices is used to analyze a nonco-
operative game between the SUs.

3 Game Theory Tools

In this section, we will provide the problem reformulation
and will introduce the game model by defining the utility
function to compute the transmitted power of each SU. Game
theory was at first a mathematical tool used for economics,
political and business studies. It helps understand situations
in which decision-makers interact in a complex environment
according to a set of rule [18]. Many different types of game
exists which are used to reflect to analyzed situation for ex-
ample potential games, repeated game, cooperative or non-
cooperative games. In the cognitive radio network (CRN),
the formal game model for the power control can be defined
as follows:

– Players: are the cognitive users (secondary users (SUs)).
– Actions: called also as the decisions, and are defined by

the transmission power allocation strategy.
– Utility function: represents the value of the observed quality-

of-service (QoS) for a player, and is defined later in this
section.

The central idea in game theory is how the decision from
one player will affects the decision-making process from all
other players and how to reach a state of equilibrium that
would satisfy most of the players. A well known contribu-
tor in the field is Nash for the Nash equilibrium [19]. The
theory shows that you can reach a state equilibrium for your
system where all decisions are set, unchanging and is the
best possible situation for the players.
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CR need to perform sophisticated adaptation and dy-
namically learn from the environment. This situation makes
the learning process a very complicated one comparable to
situation found in economics. Game theory is already used
in other field of communication to better understand for ex-
ample congestion control, routing, power control, topology
control and trust management [20]. Our interests rest in its
use for power control as it can be considered a game with
fixed number of players where each tries to optimize their
power levels. There are a number of properties that makes
this problem appropriate for a cognitive radio game model:

– The player’s payoff is a function of her own transmit
power level and her signal-to-noise and interference ra-
tio (SINR). The player’s SINR is a function of her own
transmit power and the transmit powers of the other play-
ers in the cell.

– When a player increases her power level, this will in-
crease her own SINR, but will decrease the SINRs of all
other players.

– For a fixed SINR, the players prefer lower power levels
to higher ones. That is, players wish to conserve power
and extend their battery life when possible.

– For a fixed power level, players prefer higher SINR to
lower one. That is, players want the best possible chan-
nel conditions for a given expenditure of power.

There are many ways to cope with these issues such as to
add restriction to the use of the power resource by charging
it to users. This is done by adding a cost component to the
payoff function to add fairness to the network. Another idea
is to model the scenario as a repeated game [20].

In this paper we formulate the problem of resource allo-
cation in the context of a CRN to reflect the needs of PUs
and SUs. We consider the primary uplink of a single CRN,
where cognitive transmitters transmit signals to a number of
SUs, while the primary BS receives its desired signal from
a primary transmitter and interference from all the cognitive
transmitters.

To resolve the problem of resource allocation, we pro-
pose a utility function that meets the objective to maximize
the SUs capacity, and the protection for PUs. Specifically,
we define a payoff function that represents the SNIR con-
straint, and a price function specifies the outage probability
constraint. The utility function is defined as:

utility function = payoff function− price function

We introduce a payoff to express the capacity need of SU
m, and a price function to represent the protection for PUs
by means of the outage probability. And each SU adjusts
its transmitted power to maximize its utility function. There-
fore, we will present in this paper a power allocation algo-
rithm that maximize the defined utility function to compute
the transmitted power of each SU.

4 Primary Outage-based Resource Allocation

In this section we will present the context of this study. We
will start by the channel model and the primary/secondary
performance metrics. Then, we will present three resource
allocation algorithms based on outage probability.

Consider the uplink of a CRN that consists of a PU, a
base station (BS), and M pairs of SUs randomly distributed
over the system [1]. The channel gains are i.i.d random vari-
able. Throughout this paper, we will use the following nota-
tion:

– the index of SUs m lies between 1 and M ,
– hl,m denotes the channel gain from SU l to the desired

user m,
– the data destined from SU m is transmitted with power

pm and a maximum power Pmax,
– hpu,m denotes the channel gain from the PU indexed by

pu to the desired user m,
– the data destined from the primary system is transmitted

with power ppu.

In the coverage area of the primary system, there is an in-
terference boundary within which no SUs can communicate
in an ad-hoc manner. Thus, as can be seen in Fig. 1, for
the impairment experienced by the primary system to be as
small as possible, a SU must be able to detect very reliably
whether it is far enough away from a primary base station,
i.e., in the area of possible cognitive radio operation. The
expression of the PU instantaneous capacity is

Cpu = log2




1 +
ppu|hpu,pu|2

M∑
m=1

pm|hm,pu|2 + σ2




(1)

where σ2 is the ambient noise variance. On the other hand,
by making SUs access the primary system spectrum, the
mth SU experiences interference from the PU and all neigh-
boring co-channel SU links that transmit on the same band.
Accordingly, the mth SU instantaneous capacity is given by:

Cm = log2 (1 + SINRm) (2)

where

SINRm =
pm|hm,m|2

M∑

l=1
l 6=m

pl|hl,m|2 + ppu|hpu,m|2 + σ2

(3)

SUs need to recognize their communication environment
and adapt the parameters of their communication scheme in
order to maximize the per-user cognitive capacity, expressed
as

Csum =
M∑

m=1

Cm (4)
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Fig. 1 The cognitive radio network with N primary users and M sec-
ondary users attempting to communicate with their respective pairs
in an ad-hoc manner during a primary system transmission in uplink
mode, subject to mutual interference.

while minimizing the interference to the PUs, in a distributed
fashion. The sum here is made over the M SUs allowed to
transmit [21] [22]. Moreover, we assume that the coherence
time is sufficiently large so that the channel stays constant
over each scheduling period length. We also assume that
SUs know the channel state information (CSI) of their own
links, but have no information on the channel conditions of
other SUs. No interference cancelation capability is consid-
ered. Power control is used for SUs both in an effort to pre-
serve power and to limit interference and fading effects. The
interference power (Intf) is given by:

Intfm =
M∑

l=1
l 6=m

pl|hl,m|2 + ppu|hpu,m|2 + σ2 (5)

Combining (3) and (5), we define the SINR as a function of
Intf:

SINRm =
pm|hm,m|2

Intfm
(6)

and

pm =
SINRmIntfm
|hm,m|2 (7)

The protection for PU must be guaranteed in a CRN. This
protection is guaranteed if the sum of all SUs transmitters’
powers is not larger than the interference constraint PT . Then,
PU verifies his outage probability constraint. The interfer-
ence constraint is given by:
M∑

m=1

pm|hpu,m|2 ≤ PT (8)

and the notion of outage probability defined as the probabil-
ity that the capacity of the user is below the transmitted code
rate [23]. In the proposed framework, the outage probability
can be expressed as [24]:

Pout ≡ Prob {Cpu ≤ Rpu} ≤ q, (9)

where Rpu is the PU transmitted data rate and q is the max-
imum outage probability. The information about the outage
failure can be carried out by a band manager that mediates
between the primary and secondary users [2], or can be di-
rectly fed back from the PU to the secondary transmitters
through collaboration and exchange of the CSI between the
primary and secondary users as proposed in [25].

In this work, we will propose a resource management
strategy based on outage probability. Specifically, we allow
SUs to transmit simultaneously with the PU as long as the
interference from the SUs to the PU that transmits on the
same band remains within an acceptable range. We impose
that SUs may transmit simultaneously with the PU as long as
the PU in question does not have his QoS affected in terms of
outage probability. We consider that PUs operate at a desired
rate (depending on their respective QoS demands). Based on
PU channel statistics, we determine the outage failure or in
other words the probability that the PU of interest is actu-
ally under that rate. From a practical point of view the out-
age probability as well as the requested rate can be broad-
casted before the start of the communication by the primary
system, and it is used as a preamble for the PU to get in-
formed which data rate is requested. This preamble can also
be overheard by SUs who can then learn about these outage
values. The proposed method guarantees also a certain QoS
to SUs and ensures the continuity of service even when the
detected spectrum holes become occupied by the PU, this is
done by the outage probability control. Three resource man-
agement strategies were proposed in the literature using the
outage probability control. A centralized algorithm was pre-
sented in [26,27]. The idea in [26] and [27] is to adopt a QoS
guarantee to the PU by means of an outage constraint. This
knowledge is obtained with a centralized mode where the
resource allocation system would require information from
a third party (i.e. central database maintained by regulator or
another authorized entity) to schedule SUs coming. In fact,
to compute the Pout, the CR system requires knowledge of
the PU and SUs channels. In [21], the authors proposed a
distributed manner to compute the outage probability with-
out exchange of information between the primary and sec-
ondary users. In [28], the authors adopt the same frame-
work as in [26] and [21] by using the outage probability
as protection constraint for the PU. They proposed in [28]
a centralized user selection strategy combined with an effi-
cient transmit beamforming technique using a multiuser SU
system. The proposed strategy tries to maximize the system
throughput and to satisfy the SINR constraint, as well as to
limit interference to the PU. The three algorithms presented
in [26], [27] and [21] will serve as references when eval-
uating the performance of the game theory based resource
management approach proposed in this paper.
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5 Power Allocation Algorithm

We derive in this section the utility function: we define a
payoff function specifies the SU capacity constraint and a
price function that represents the interference constraint as a
function of the outage probability constraint. Therefore, the
price function is given by (2), and we will derive here the
equation of the interference constraint PT .

The margin of PT−
∑M

l=1
l 6=m

pl|hpu,l|2 is the maximum in-

terference that SU m could generate under the description of
(8). Divide pm|hpu,m|2 by PT −

∑M
l=1
l 6=m

pl|hpu,l|2, we found

the interference level expression:

LIntfm =
pm|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hpu,l|2
(10)

which is a normalized value. As long as this ratio ∈ [0, 1],
the protection for PU is met. We compute now PT as a func-
tion of the outage probability.

To proceed further with the analysis and for the sake of
emphasis, we introduce the PU average channel gain esti-
mate Gpu based on the following decomposition:

hpu,pu ≡ Gpu ∗ h′pu,pu (11)

where h′pupu is the random component of channel gain and
represents the normalized channel impulse response tap. This
gives us the following PU outage probability expression in
an interference-limited context:

Pout = Pr





log2




1 +
ppuG2

pu|h′pupu|2
M∑

m=1

pm|hm,pu|2



≤ Rpu





' Pr





ppuG2
pu|h′pu,pu|2

M∑
m=1

pm|hm,pu|2
≤ 2Rpu − 1





' Pr




|h′pu,pu|2 ≤

(
2Rpu − 1

)




M∑
m=1

pm|hm,pu|2

G2
puppu







(12)

From now on we assume for simplicity of analysis that the
channel gains are i.i.d rayleigh distributed. However, the re-
sults can be immediately translated into results for any other

channel model by replacing by the appropriate probability
distribution function. Continuing from (12), we have:

Pout '
∫

(
2Rpu − 1

)




M∑
m=1

pm|hm,pu|2

G2
puppu




0

exp(−t)dt

(13)

Finally, we get the following outage constraint:

Pout ' 1− exp



− (

2Rpu − 1
)




M∑
m=1

pm|hm,pu|2

G2
puppu







(14)

Replacing the interference constraint equation in (14), we
can express the probability outage as:

Pout = 1− exp
[
− (

2Rpu − 1
) PT

G2
puppu

]
(15)

Then, the corresponding interference constraint is:

PT =
ppuG2

pu

1− 2Rpu
ln (1− Pout) (16)

We introduce now a utility function for which each SU ad-
justs its transmitted power in order to maximize it. It is com-
posed of a payoff function expressed as the capacity Cm of
the SU, and of a price function composed of the interference
level to the PU and the power consumption.

Then, the utility function is expressed as follow:

Um = Cm −




pm|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

(17)

The parameter am is adjustable to have a comparable values,
i.e. the payoff function value and the price function value.
This parameter gives the flexibility needed to adjust the SU
capacity over the interference to the PU. We choose am < 0.
It could be easily obtained that the price function decreases
as the ratio LIntfm increases. This fact is caused by the neg-
ative property of am.

Mathematically, the game G can be expressed as:

Find pm|m=1,...,M = arg max
pm

Um(pm, P−m) (18)
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subject to:



∑M
m=1 pm|hpu,m|2 ≤ PT

Pout ≤ q

0 ≤ pm ≤ Pmax

(19)

Recall that pm denotes the strategy adopted by SU m and
P−m = (pl)l 6=m,l∈{1,...,M} denotes the strategy adopted by
the other SUs. We replace the capacity by expression given
by (2) and use (7) to obtain the following equation:

Um = log2 (1 + SINRm)−




|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

×
(

SINRmIntfm
|hm,m|2

)am

(20)

We are going to maximize the utility function in terms of
the SINR, which is equivalent to the transmitted power. The
solution of the system is found by calculating the derivatives
of Um with respect to the signal-to-noise and interference
ratio parameters SINRm:

∂ Um

∂ SINRm
=

1
(1 + SINRm) ln 2

−




|hpu,m|2

PT −
M∑

l=1
l 6=m

plhl,m




am

×am

(
SINRmIntfm
|hm,m|2

)am−1 Intfm
|hm,m|2 (21)

We can express the solution of (21) as:

(1 + SINRm) SINRam−1
m =

1
amβm ln 2

(22)

where:

βm =




|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

(
Intfm
|hm,m|2

)am

(23)

denoting the slope of the price function. Let f(SINRm) =
(1 + SINRm) SINRam−1

m . Finally, we obtain the following
set of equalities:

SINRm = f−1

(
1

amβm ln 2

)
(24)

The maximization problem is dependent on am which is de-
fined in the utility function as an adjustment parameter to
the price function. For simulation results am = −0.2. It was
chosen to stay with this value after different simulations to
show its influence on the obtained results.

6 Existence and Uniqueness of the Nash Equilibrium

In the proposed game, each SU chooses an appropriate power
to maximize its utility function. In this context, it is impor-
tant to ensure the stability of the system. A concept which
relates to this issue is the Nash equilibrium. As definition
in [19], a pure strategy profile {p∗l }l 6=m,l∈{1,...,M} is a Nash
equilibrium of the proposed game if, for every player m (i.e.
SU m):

Um(p∗m, P∗−m) ≥ Um(pm, P∗−m), ∀m ∈ {1, ..., M} (25)

A Nash equilibrium can be regraded as a stable solution,
at which none of the users has the incentive to change its
power pm.

6.1 Existence of the Nash Equilibrium

Theorem 1: Game G admits at least one Nash equilibrium.
proof : The conditions for the existence of Nash equilib-

rium in a strategic game are given in [29]:

1. The set Pm is a nonempty, convex, and compact subset
of some Euclidean space for all m.

2. The utility function Um(pm, P−m) is continuous on P
and quasi-concave on Pm.

According to the above description of the strategy space, it
is straightforward to see that Pm is nonempty, convex and
compact. Notice that Um(pm, P−m) is a linear function of
either pm, which means the second condition is satisfied.
Hence, game G admits at least one Nash equilibrium.

6.2 Uniqueness of the Nash Equilibrium

Theorem 2: Game G always possesses a unique Nash equi-
librium under the sufficient conditions.

proof : It’s established in [30] that if the utility function
Um(pm) : (pm)m∈{1,...,M} is a standard function, then the
Nash equilibrium in this game will be unique. A function
f(x) is said to be a standard function if it satisfies the fol-
lowing three properties [30]:

1. Positivity: f(x) > 0.
2. Monotonicity: If x ≥ x′, then f(x) ≥ f(x′).
3. Scalability: For all µ > 1, µf(x) ≥ f(µx).

The positivity is obviously satisfied by adjusting parameter
am.

Considering pm ≥ p′m, we have

Cm(pm) ≥ Cm(p′m) (26)
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Using the propriety that am < 0, we can obtain that



pm|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

≤




p′m|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

(27)

According to (26) and (27), the monotonicity property is
proved ∀m ∈ {1, ..., M}.

For all µ > 1, it’s got that:

µCm(pm) = µ log2 (1 + SINRm)

= log2 (1 + SINRm)µ

≥ log2 (1 + µSINRm) = Cm(µpm) (28)

Since am < 0, we have also:



µpm|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

=µam




pm|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

≤µ




pm|hpu,m|2

PT −
M∑

l=1
l 6=m

pl|hl,m|2




am

(29)

Finally, according to (28) and (29) the scalability property is
proved. Therefore, the proposed game G always possesses a
unique Nash equilibrium.

7 Performance Evaluation

This section will provide a number of simulations aimed at
assessing the performance of the proposed method in com-
parison with the reference methods presented in Section 4.
To go further with the analysis, we resort to realistic network
simulations. Specifically, we consider a CRN as described
in Fig. 1 with one PU and M SUs attempting to communi-
cate during a transmission, subject to mutual interference.
A hexagonal cellular system functioning at 1.8 GHz with
a primary cell of radius R meters and a primary protection
area of radius Rp meters is considered. Secondary transmit-
ters may communicate with their respective receivers of dis-
tances d < Rp from the BS. Channel gains are based on
the COST-231 path loss model including log-normal shad-
owing with standard deviation of 10 dB, plus fast-fading
assumed to be i.i.d. circularly symmetric with distribution
CN (0, 1) [31].

The performance of the proposed strategy is evaluated
by Monte Carlo simulations (ITmax = 104). It is assumed
that the maximum outage probability q = 1% for all out-
age probability-based algorithms. We considered also that
the radius of the secondary cell R = 1000 meters and the
radius of the primary protection area Rp = 600 meters. The
derivation of the maximum number of SUs allowed to trans-
mit using the game theory algorithm is based on the average
estimation channel gain Gpu. From the locations of the users
in the two-dimensional plane and the propagation character-
istics of the environment, we can estimate this average chan-
nel gain. This value is estimated assuming a wireless ad hoc
network affected by a large number of interferers.

7.1 Number of active SUs

In Fig. 2, the number of active SU links under the proposed
algorithm as a function of the total number of users, for a tar-
get outage probability = 1%, tradeoff variable am = −0.3
and a rate = 0.3, is depicted. It can be seen from the fig-
ure that increasing the number of SUs yields improvements
in the number of active users. Asymptotically, i.e., as the
number of SUs goes large, the number of active SUs keeps
constant due to the influence of interference impairments on
the PU’s QoS. We also compare the results obtained by the
proposed method to those obtained using the distributed bi-
nary power allocation [21]. It can be observed that the pro-
posed scheme allows almost 5 additional active SUs more
than the binary power allocation scheme. As an example,
we get 12 and 7 active SUs for 25 potential SUs for the pro-
posed method and the one presented in [21], respectively.

7.2 QoS management

Our main contribution within this work is the QoS man-
agement of the CR system. The originality in the proposed
method is that we guarantee a QoS to PU by maintaining
the PU’s outage probability unaffected in addition to a cer-
tain QoS to SUs and ensuring the continuity of service even
when the spectrum sub-bands change from vacant to occu-
pied. Thus by the outage probability control, if we have a
vacant spectrum holes in the PU band, we set the outage
probability Pout = 1 to exploit the available spectrum band
by SUs, and if we have occupied sub-bands, the outage prob-
ability is set to Pout = q depending on the PU’s QoS.

In Table 1 we summarize the number of active SUs ver-
sus the maximum outage probability q (i.e. the absolute limit)
ranging between 0.001 and 1. From this results, we remark
that, increasing the maximum outage probability produces
improvements in the number of active SUs: for a maximum
outage probability equal to 3%, the number of allowed SUs
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Fig. 2 Number of active SUs vs. number of SUs at rate = 0.3 bits/s/Hz,
a tradeoff variable am = −0.3 and an outage probability = 1% in the
uplink (the uplink distributed binary power allocation method and the
proposed method).

Table 1 Average of number of active SUs for different maximum out-
age probability values.

q = 1% q = 5% q = 10% q = 100%

Number
of active 1.5 6.02 6.9 7
SUs

to transmit is equal to 5 and for q = 100%, the number
of active SUs is equal to the maximum number of SUs; as
the number of SUs goes large, the number of active SUs
keeps constant due to the influence of interference impair-
ments on the PU’s QoS. This tends to confirm the intuition
from formula (15) where the number of active SUs is always
upper-bounded by M̃theory in the distributed case, and PU
outage probability protection given by the maximum outage
q. From the presented results, we verified that we can main-
tain a QoS guarantee to the PU.

In order to validate our theoretical derivation, we also
compare the outage probability defined in (15) for both the
proposed method and the distributed binary power allocation
method. As an example we carry out simulations at PU rate
= 0.3 bits/s/Hz. First, it is clear from Fig. 3 that the outage
probability using both schemes are similar. We also remark
that, for the outage probability of interest, the number of
allowed SUs to transmit is equal to 18 SUs. Now, how about
the Nash equilibrium?

7.3 Power Control

The motivation behind the user selection technique is that,
by opportunistically adapting their transmit power with the
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Fig. 3 The uplink outage probability as function of the number of SUs
for a target outage probability = 1%, a tradeoff variable am = −0.3
and a rate = 0.3 bits/s/Hz (the uplink distributed binary power alloca-
tion method and the proposed method).

Table 2 Average sum rate for different maximum outage probability
values.

q = 1% q = 5% q = 10% q = 100%

Average
sum rate 124.2 264.1 411.8 736.5
(Mbit/s)

guide of the binary power allocation policy, SUs can maxi-
mize the achievable sum rate under the constraint of main-
taining the outage probability of the PU not degraded. There-
fore, we use a simple binary power allocation control: The
power pm of the m-th SU transmitter is selected from the bi-
nary set {0, Pmax}. The proposed strategy tries in a first step
to maximize the system throughput and to satisfy the signal-
to-interference ratio (SIR) constraint. In the proposed user
selection algorithm, SUs are first pre-selected to maximize
the per-user sum capacity subject to minimize the mutual in-
terference. Each SU verifies the SIR constraint and remains
active or inactive during the next time slot: If the SU is ac-
tive, he allowed to transmit with a power pm = Pmax, else
pm = 0.

7.4 The throughput

Table 2 presents the average sum rate computed for dif-
ferent values of maximum outage probability q. From Ta-
ble 2 we remark that increasing maximum outage probabil-
ity threshold increase in sum rate because the increase in
degree of freedom more than compensates for the decrease
in SINR due to interference. However, reaching a certain
values of maximum outage probability threshold, the sum
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rate stabilizes. In addition, the current results claim that in
CRN, when one attempts to maximize the number of active
SUs (i.e. the outage probability threshold), the cognitive rate
degrades asymptotically. Typically, there is a fundamental
trade-off between sum rate maximization and number of ac-
tive SUs maximization.

7.5 Nash equilibrium

In general, a Nash equilibrium is a profile of strategies such
that each player’s strategy is a best response to the other
players’ strategy. Thus, no player (i.e. SU) has the incentive
to leave the Nash equilibrium, as a deviating action would
imply a reduction of its own utility function. Therefore, the
Nash equilibrium is a value for the game’s stability. Hence,
it can be seen as a lower limit for the QoS that can be guar-
anteed. As depicted in Fig. 3, depending on QoS to the PU,
a unique Nash equilibrium is found. This is shown in the
saturation state.

8 Conclusion

In this paper, we explored the idea of combining game the-
ory with resource allocation in CRN to maximize the SU ca-
pacity while maintaining a QoS to the PU. Our contribution
within this paper is to define a utility/pricing strategy that
meets the objective to maximize the SUs capacity, and the
protection for PUs by means of outage probability. Indeed,
we discussed the existence of the Nash equilibrium of the
proposed game, as well as its uniqueness. We demonstrated
that the proposed game admits one and only one Nash equi-
librium. Simulation results show that the proposed method
exhibits a significant number of cognitive users able to trans-
mit while minimizing interference to guarantee a QoS for
the PU. We also compare the results obtained by the pro-
posed method to those obtained using a binary power alloca-
tion method. The reported results demonstrate the efficiency
of the proposed technique to maximize the SU rate while
maintaining a QoS to PUs.
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