
2012-ENST

EDITE - ED 130

Ph.D. ParisTech

D I S S E R T A T I O N

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy from

TELECOM ParisTech

Specialization « Internet and System’s Security »

presented and defended by

Leyla BILGE
on the 15th of December 2011

Network Based Botnet Detection

Thesis supervisor : Prof. Engin Kirda

Jury
Mr. Herbert BOS, Prof., Vrije Universiteit, Amsterdam Reviewer
Mr. Christopher Kruegel, Prof., University of California, Santa Barbara Reviewer
Mr. Marc Dacier, Prof., Symantec Examiner
Mr. Refik Molva, Prof., Eurecom, Sophia Antipolis Examiner

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

2012-ENST

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Sécurité d’Internet et des systèmes »

présentée et soutenue publiquement par

Leyla BILGE
le 15 Décembre 2011

La Détection des Botnet par l’Analyse de Réseau

Directeur de thèse : Prof. Engin KIRDA

Jury
Mr. Herbert BOS, Prof., Vrije Universiteit, Amsterdam Rapporteur
Mr. Christopher Kruegel, Prof., University of California, Santa Barbara Rapporteur
Mr. Marc Dacier, Prof., Symantec Examinateur
Mr. Refik Molva, Prof., Eurecom, Sophia Antipolis Examinateur

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

Bubacığıma...

Abstract

The days when the Internet used to be an academic network with no
malicious activity are long gone. Today, there is a high incentive for cyber-
criminals to engage in malicious, profit-oriented illegal activity on the Inter-
net. A popular tool of choice for digital criminals today are bots. Compared
to other types of malware, the distinguishing characteristic of a bot is its
ability to establish a command and control (C&C) channel that allows an
attacker to remotely control or update a compromised machine. A number
of bot-infected machines that are combined under the control of a single,
malicious entity are referred to as a botnet. Such botnets are often abused
as platforms to launch denial of service to send spam or to host scam pages.

In this thesis, we propose three network-based botnet detection tech-
niques. Each technique models the detections by analyzing different types
of network data : the first detection technique performs packet level inspec-
tion. The second one analyzes the DNS traffic to find the domains that are
abused for different kinds of malicious purposes including being assigned for
the command and control servers. And finally, the last one detects command
and control servers by analyzing NetFlow data.

We propose a detection approach to identify single, bot-infected ma-
chines without any prior knowledge about command and control mecha-
nisms or the way in which a bot propagates. Our detection model leverages
the characteristic behavior of a bot, which is that it (a) receives commands
from the botmaster, and (b) carries out some actions in response to these
commands. The basic idea of our system is that we can generate detection
models by observing the behavior of bots that are captured in the wild.
Based on the observations of commands and responses, we generate detec-
tion models that can be deployed to scan network traffic for similar activity,
indicating the fact that a machine is infected by a bot.

We introduce a passive DNS analysis approach and a detection system,
Exposure, to effectively and efficiently detect domain names that are in-
volved in malicious activity. We use a set of features that allow us to charac-

i

ii Abstract

terize different properties of DNS names and the ways that they are queried.
Our experiments with a large, real-world data set consisting of 100 billion
DNS requests, and a real-life deployment for two weeks in an ISP show that
our approach is scalable and that we are able to automatically identify un-
known malicious domains that are misused in a variety of malicious activity
(such as for botnet command and control, spamming, and phishing).

Finally, we present Disclosure, a large-scale, wide-area botnet detec-
tion system that incorporates a combination of novel techniques to overcome
the challenges imposed by the use of NetFlow data. In particular, we iden-
tify several groups of features that allow Disclosure to reliably distinguish
C&C channels from benign traffic using NetFlow records : (i) flow sizes,
(ii) client access patterns, and (iii) temporal behavior. We demonstrate that
these features are not only effective in detecting current C&C channels, but
that these features are relatively robust against expected countermeasures
future botnets might deploy against our system. Furthermore, these features
are oblivious to the specific structure of known botnet C&C protocols.

Résumé

La période ou Internet était un réseau universitaire sans activités malveil-
lantes est révolue depuis longtemps. De nos jours, les cyber-criminels ont
beaucoup plus de raisons et de motivations pour conduire des activités
illégales à but lucratif. Un des outils les plus reconnus pour les criminels
numériques sont les bots. Un botnet correspond à un ensemble de plusieurs
machines ”infectées” qui sont sous le contrôle d’une seule entité malveillante.
Ces botnets sont souvent utilisées comme des plateformes pour lancer des
attaques de déni de service, pour envoyer des spams ou pour héberger des
pages d’arnaques.

Cette thèse propose trois techniques de détection de botnet en se bas-
ant sur l’analyse du réseau. Chaque technique modélise ces détections en
analysant différents types de données : la première technique effectue une
ispection des données au niveau paquet. La deuxième technique analyse
le traffic DNS pour retrouver des domaines qui sont affectés pour des fins
malveillantes notamment par des serveurs de commandes et de contrôle. En-
fin, la dernière technique détecte des serveurs de commande et de contrôle
en analysant les données du flux réseau.

iii

iv Résumé

Table des matières

Abstract . i

Résumé . iii

Contents . v

List of Figures . ix

List of Tables . x

Acronyms . xiii

1 Introduction 1

1.1 Botnet Detection Through Network Level Packet Inspection . 3

1.2 Botnet Detection Through Passive DNS Analysis 5

1.3 Botnet Command and Control Server Detection Through Net-
flow Analysis . 7

1.4 Contributions . 9

1.5 Outline . 10

2 The Malware Evolution : Botnets 11

2.1 Botnet Characteristics . 12

2.1.1 Botnet Command and Control Infrastructures 12

2.1.2 Bot Propagation Mechanisms 15

2.1.3 Malicious Activites . 16

2.2 Historical Evolution of Botnets 19

3 State of the Art 23

3.1 General malware detection . 23

3.2 Network intrusion detection 24

3.3 Signature generation . 24

3.4 Botnet analysis and defense 25

3.5 Using DNS Analysis Techniques for Detecting Botnets 26

3.5.1 Identifying Malicious Domains 26

v

vi Table des matières

3.5.2 Identifying Infected Machines by Monitoring Their DNS
Activities . 28

3.5.3 Generic Identification of Malicious Domains Using Pas-
sive DNS Monitoring 28

3.6 Anomaly Detection Through NetFlow Analysis 28

3.7 Botnet Detection with NetFlow Analysis 30

4 Botnet Detection Through Network Level Packet Inspec-
tion 31

4.1 System Overview . 32

4.1.1 Detection Models . 32

4.1.2 Model Generation . 34

4.2 Analyzing Bot Activity . 36

4.2.1 Locating Bot Responses 36

4.2.2 Extracting Model Generation Data 39

4.3 Generating Detection Models 40

4.3.1 Command Model Generation 41

4.3.2 Response Model Generation 43

4.3.3 Mapping Models into Bro Signatures 44

4.4 Evaluation . 44

4.4.1 Capturing Bot Traffic 45

4.4.2 Generating Signatures 46

4.4.3 Detection Capability 48

4.4.4 Real-World Deployment 49

4.4.5 Examples And Comparison To Hand-tuned Signatures 51

4.5 Limitations . 54

5 Botnet Detection Through Passive DNS Analysis 55

5.1 Overview . 56

5.1.1 Extracting DNS Features for Detection 56

5.1.2 Architecture of EXPOSURE 57

5.1.3 Real-Time Deployment 58

5.2 Feature Selection . 58

5.2.1 Time-Based Features 58

5.2.2 DNS Answer-Based Features 63

5.2.3 TTL Value-Based Features 64

5.2.4 Domain Name-Based Features 65

5.3 Building Detection Models . 66

5.3.1 Constructing the Training Set 66

5.3.2 The Initial Period of Training 67

Table des matières vii

5.3.3 The Classifier . 67
5.4 Evaluation . 69

5.4.1 DNS Data Collection for Offline Experiments 69
5.4.2 Evaluation of the Classifier 70
5.4.3 Experiments with the Recorded Data Set 71
5.4.4 Real-World, Real-Time Detection with EXPOSURE . 73
5.4.5 Comparison with Previous Work 75

5.5 Real-World Deployment of EXPOSURE 78
5.6 Limitations . 81

6 Botnet Command and Control Server Detection Through
Netflow Analysis 83
6.1 System Overview . 84
6.2 Feature Selection and Classification 85

6.2.1 NetFlow Attributes . 85
6.2.2 Disclosure Feature Extraction 87
6.2.3 Building the Detection Models 91

6.3 False Positive Reduction . 92
6.4 Evaluation . 94

6.4.1 The NetFlow Data Sets 95
6.4.2 The Ground-Truth Data Sets 95
6.4.3 Labeled Data Set Detection and False Positive Rates . 96
6.4.4 Real-Time Detection 99
6.4.5 Performance Evaluation 102
6.4.6 Deployment Considerations 102
6.4.7 Resilience to Evasion 103

7 Concluding Remarks 105

Appendices 107

A Résumé étendu 109
A.1 Détection Botnet Par Packet Inspection Réseau 111
A.2 Détection Botnet par DNS Analyse Passive 113
A.3 Détection des Serveurs de Commande et de Contrôle en Analysant

les Données du Flux Réseau 116
A.4 Contributions . 118

viii Table des matières

Table des figures

2.1 Star C&C Topology . 13

2.2 Multi-Server C&C Topology 14

2.3 Hierarchical C&C Topology 14

2.4 Random C&C Topology . 15

4.1 Automatically-generated Bro signature and corresponding be-
havior profile for an IRC bot. 47

4.2 Automatically-generated Bro signature and corresponding be-
havior profile for Kraken. 51

4.3 Hand-tuned Snort signature for a family of HTTP bots. . . . 52

4.4 Automatically-generated Bro signature and corresponding be-
havior profile for the Storm Worm. 52

4.5 Hand-tuned Snort signature for the Storm Worm. 52

4.6 Automatically-generated detection model for an IRC bot us-
ing encrypted communication. 53

5.1 Overview of EXPOSURE 57

5.2 Percentage of miss-classified instances 68

5.3 Classification accuracy. (AUC=Area Under the ROC Curve) 70

5.4 The effect of the minimum request count on detection rate . . 71

5.5 The first time a domain is queried and the first time it is
detected . 75

5.6 Number of IP addresses mapped to the malicious domains
detected by EXPOSURE . 78

5.7 Number of domains detected on a daily basis by EXPOSURE 79

5.8 The percentage of malicious domains with specific top-level
domains . 80

5.9 The distribution of malicious domains according to their lifetime 81

ix

x Table des figures

6.1 The system architecture of Disclosure. In the training phase
(upper half), labeled training samples are used to build detec-
tion models. In the detection phase (lower half), the detection
models are used to classify IP addresses as benign or associ-
ated with C&C communications. 84

6.2 Detection rates (DT) and false positive (FP) rates for dif-
ferent feature combinations. We note that the DT :FP ratio
is most favorable when all features are used in the detection
procedure. 90

6.3 Area under ROC curves with different training set lengths for
N1 and N2. 97

6.4 Classification accuracy for each data set (N1 and N2) with
MinFlows ∈ {20, 50}. 98

6.5 Port distributions of the C&C servers detected by Disclo-
sure for both N1 and N2, with and without AS reputation
scores. 101

Liste des tableaux

4.1 Network features to characterize bot behavior. 37
4.2 Number of detection models (DM) and token sequences (TS)

for each bot family. 46
4.3 Results from real-world deployments. 49
4.4 Comparison of the detection performance of our detection

models vs. BotHunter. 51

5.1 Features.(LMS = Longest Meaningful Substring) 59
5.2 Tests for False Positives . 74
5.3 Information on the detected malicious domains 76

6.1 Summary statistics for each of the two NetFlow data sets for
N1 and N2. 94

6.2 IP addresses in our labeled data set derived from data ob-
served in N1 and N2. 95

6.3 Servers flagged as malicious by Disclosure for each of the
networks N1 and N2 (without incorporating reputation scores). 99

6.4 Servers flagged as malicious by Disclosure for each of the
networks N1 and N2 (incorporating reputation scores). 100

xi

xii Liste des tableaux

Acronyms

These are the main acronyms used in this document. The meaning of an
acronym is usually indicated once, when it first occurs in the text.

C&C Command and Control
P2P Peer-to-peer
DNS Domain Name System
TTL Time to Live
IRC Internet Relay Chat
HTTP Hypertext Transform Protocol
AUC Area Under the ROC Curve
DT Detection Rate
FP False Positives Rate
LMS Longest Meaningful Substring
SCADA Supervisory Control and Data Acquisition
AV Anti Virus
ISP Internet Service Provider
DDoS Distributed Denial of Service Attack
DGA Domain Generation Algorithm
IDS Intrusion Detection System
URL Uniform Resource Locator
CPD Change Point Detection Algorithm
SMTP Simple Mail Transfer Protocol
AS Autonomous System

xiii

xiv Acronyms

Chapitre 1

Introduction

The days when the Internet used to be an academic network with no
malicious activity are long gone. Today, the Internet has become a critical
infrastructure, and it now plays a crucial role in communication, finance,
commerce, and information retrieval. It has been reported that there are
more than 2.7 billion web pages on the Internet now [108].

Unfortunately, as a technology becomes popular, it also attracts people
with malicious intentions. In fact, digital crime is a growing challenge for
law enforcement agencies. As Internet-based attacks are easy to launch and
difficult to trace back, such crimes are not easy to prosecute and bring to
justice. As a result, there is a high incentive for cyber-criminals to engage
in malicious, profit-oriented illegal activity on the Internet. Regrettably, the
number and sophistication of Internet-based attacks have been steadily in-
creasing in the last ten years [97].

A popular tool of choice for digital criminals today are bots. A bot is a
type of malware that is created with the intent of compromising and taking
control of hosts on the Internet. It is typically installed on the victim’s
computer by either exploiting a software vulnerability in the web browser or
the operating system or by using social engineering techniques to trick the
victim into installing the bot herself. Compared to other types of malware,
the distinguishing characteristic of a bot is its ability to establish a command
and control (C&C) channel that allows an attacker to remotely control or
update a compromised machine [40]. A number of bot-infected machines

1

2 Chapitre 1 Introduction

that are combined under the control of a single, malicious entity (called
the botmaster) are referred to as a botnet. Such botnets are often abused as
platforms to launch denial of service attacks [71], to send spam [54, 84], or
to host scam pages [13]. Using a botnet, the attackers also typically steal
sensitive information on a victim’s machine (e.g., credit card numbers, chat
logs, social network account credentials, etc.) [92].

Botnets have also been reported to have been used in attacks against na-
tions – both intentionally, and by coincidence. For example, in 2007, there
was a deliberate and organized bot-based distributed denial of service attack
against the critical infrastructures of Estonia [41]. In 2009, Conficker infected
the computers of three European armies. Hence, French fighter planes were
prevented from taking off, the networks of the British and German army
bases were partially shutdown, and a number of UK police forces had to dis-
connect their networks from the Internet [98]. Recently, the Stuxnet botnet
attacked a critical infrastructure of a specific nation [74,96]. In fact, Stuxnet
appears to have been written specifically to attack a particular brand of
Supervisory Control and Data Acquisition (SCADA) systems. SCADA sys-
tems are typically responsible for the operation of key components in power
plants, pipelines, power distribution networks, and other similar industrial
systems.

Traditional means of defense against bots rely on anti-virus (AV) soft-
ware installed on end-users’ machines as well as other type of malware.
Unfortunately, as the existence of numerous botnets demonstrates, these
systems are insufficient. The reason is that they rely on signatures of known
samples, a well-documented limitation [32] that makes it difficult to keep
up with the fast evolution of malware. To mitigate this limitation, a num-
ber of host-based defense systems have been introduced. These systems use
static [33, 62] or dynamic [59, 111] code analysis techniques to capture the
behavior of unknown programs. By comparing the observed behavior to a
model that specifies characteristics of certain types of malware, previously
unknown instances of malicious code can be identified. However, although
useful, these systems are problematic in practice, as they incur a consider-
able runtime overhead and require each user to install the analysis platform.

To complement host-based analysis techniques, it is desirable to have a
network-based detection system available that can monitor network traffic
for indications of bot-infected machines. In practice, network-based detec-
tion systems are more preferable than host-based ones. One reason is that
network-based detection systems have a complete visibility over the network
while host-based techniques target only single individuals. Unfortunately, in
the security ecosystems, users are usually the weakest link. Therefore, the

1.1 Botnet Detection Through Network Level Packet Inspection 3

network administrators often employ network-based detection systems that
can be deployed to a vantage point in the network. In this way, they are able
to monitor the network activities of all individuals without giving privelages
to the computers that have already been protected by a host-based malware
detection system.

Another reason is that the nature of botnets is prone to network-based
detection systems. The characteristic feature of botnets is the command and
control protocol they adopt. As the command and control infrustructure re-
lies on a network communication, therefore observable in the network traffic,
it is considered to be the tender spot of botnets. Even if botmasters apply
some obfuscation techniques to hide the semantics of the command and con-
trol protocol, since it is transmitted over network, the packets remain in the
network.

On these grounds, in this thesis we propose three network-based botnet
detection techniques. Each technique models the detections by analyzing
different types of network data : the first detection technique performs packet
level inspection. The second one analyzes the DNS traffic to find the domains
that are abused for different kinds of malicious purposes including being
assigned for the command and control servers. And finally, the last one
detects command and control servers by analyzing NetFlow data.

1.1 Botnet Detection Through Network Level Packet
Inspection

Previous work to detect bots performing network-level packet inspection
has proceeded along two main lines : The first line of research uses vertical
correlation techniques. These techniques focus on the detection of individual
bots, typically by checking for traffic patterns or content that reveal com-
mand and control traffic or malicious, bot-related activities. These systems
require prior knowledge about the command and control channels and the
propagation vectors of the bots that they can detect. For example, Rishi [49]
analyzes IRC traffic for nicknames that are frequently used by bots, while the
system proposed by Binkley and Singh [26] checks for suspicious IRC traffic
statistics. BotHunter [52] is more advanced in that the tool combines alerts
from both anomaly-based and signature-based intrusion detection systems
to identify bot-related traffic. Nevertheless, as pointed out by the authors
in a follow-up paper [51], BotHunter relies on the fact that the “bot behav-
ior follows a pre-defined infection life cycle dialog model,” which is geared
toward bots that use random scanning and well-known bot commands.

4 Chapitre 1 Introduction

The second line of research to detect bots uses horizontal correlation
approaches to analyze the network traffic for patterns that indicate that two
or more hosts behave similarly. Such similar patterns are often the result of
a command that is sent to several members of the same botnet, causing
the bots to react in the same fashion (e.g., by starting to scan or to send
spam). The salient property of techniques that use horizontal correlation,
such as BotSniffer [53], BotMiner [51], and TAMD [86], is that they do
not require a priori information about the way in which the command and
control channel is implemented. The drawback of these approaches is that
they cannot detect individual bots. That is, it is necessary that at least
two hosts in the monitored network(s) are members of the same botnet.
Given the general trend towards smaller botnets [36] and the possibility
for a botmaster to assign two bots in the same network range to different
botnets, this is a significant drawback.

The first botnet detection technique [109] presented in this thesis pro-
poses a detection approach to identify single, bot-infected machines without
any prior knowledge about command and control mechanisms or the way in
which a bot propagates. Our detection model leverages the characteristic be-
havior of a bot, which is that it (a) receives commands from the botmaster,
and (b) carries out some actions in response to these commands. Similar to
previous work, we assume that the command and response activity results
in some kind of network communication that can be observed.

The basic idea of our system is that we can generate detection models by
observing the behavior of bots that are captured in the wild. More precisely,
by launching a bot in a controlled environment and recording its network ac-
tivity (traces), we can observe the commands that this bot receives as well as
the corresponding responses. To this end, we present techniques that allow
us to identify points in a network trace that likely correlate with response
activity. Then, we analyze the traffic that precedes this response to find the
corresponding command. Based on the observations of commands and re-
sponses, we generate detection models that can be deployed to scan network
traffic for similar activity, indicating the fact that a machine is infected by
a bot. Our approach produces specific detection models that are tailored
to bot families or groups of bots related by a common C&C infrastructure.
Because the system is automated, however, it is easy to quickly generate
new models for bots that implement novel commands and responses. This is
independent of any prior knowledge of the protocol or the commands that
the bot uses.

1.2 Botnet Detection Through Passive DNS Analysis 5

1.2 Botnet Detection Through Passive DNS Anal-
ysis

Since the first malware appeared in the wild, there is an ongoing arms-
race between malware authors and malware defense mechanisms. Each time
a malware detection system was developed, malware modified itself to evade
these systems. As a result, this arms-race caused the malware evolution.

Botnets are one another type of malware. They also developed techniques
to thwart existing botnet detection mechanisms. As a first step, they applied
encryption or obfuscation to hide the internals of their C&C infrastructure.
Unfortunately, most of the botnet detection systems that perform network-
level packet inspection, including our system that we described above, are
limited in the fact that they cannot cope with botnets that obfuscate/en-
crypt their traffic. Therefore, the need for a new complementary botnet
detection system is obvious.

One of the technical problems that attackers face when designing their
malicious infrastructures is the question of how to implement a reliable and
flexible server infrastructure, and command and control mechanism. Iron-
ically, the attackers are faced with the same engineering challenges that
global enterprises face that need to maintain a large, distributed and re-
liable service infrastructure for their customers. For example, in the case
of botnets, the attackers need to efficiently manage remote hosts that may
easily consist of thousands of compromised end-user machines. Obviously,
if the IP address of the command and control server is hard-coded into the
bot binary, there exists a single point of failure for the botnet. That is, from
the point of view of the attacker, whenever this address is identified and is
taken down, the botnet would be lost.

The Domain Name System (DNS) is a hierarchical naming system for
computers, services, or any resource connected to the Internet. Clearly, as it
helps Internet users locate resources such as web servers, mailing hosts, and
other online services, DNS is one of the core and most important compo-
nents of the Internet. Unfortunately, besides being used for obvious benign
purposes, domain names are also popular for malicious use. For example,
domain names are increasingly playing a role for the management of botnet
command and control servers, download sites where malicious code is hosted,
and phishing pages that aim to steal sensitive information from unsuspecting
victims.

In order to better deal with the complexity of a large, distributed infras-
tructure, botnets have been increasingly making use of domain names. By

6 Chapitre 1 Introduction

using DNS, botmasters acquire the flexibility to change the IP address of
the malicious servers that they manage. Furthermore, they can hide their
critical servers behind proxy services (e.g., using Fast-Flux [100]) so that
their malicious server is more difficult to identify and take down.

Using domain names gives botnet controllers the flexibility of migrating
their servers with ease. That is, the botnet infrastructures become more
“fault-tolerant” with respect to the IP addresses where they are hosted.

Our key insight is that as malicious services (e.g. botnets) are often as
dependent on DNS services as benign services, being able to identify ma-
licious domains as soon as they appear would significantly help mitigate
many Internet threats that stem from botnets. Also, our premise is that
when looking at large volumes of data, DNS requests for benign and mali-
cious domains should exhibit enough differences in behavior that they can
automatically be distinguished.

With our second botnet detection technique [25], we introduce a passive
DNS analysis approach and a detection system, EXPOSURE, to effectively
and efficiently detect domain names that are involved in malicious activity.
We use 15 features (9 of which are novel and have not been proposed before)
that allow us to characterize different properties of DNS names and the ways
that they are used (i.e., queried).

Note that researchers have used DNS before as a way to analyze, mea-
sure and estimate the size of existing botnets in the past (e.g., [48, 56, 93]).
Some solutions have then attempted to use DNS traffic to detect malicious
domains of a certain type (e.g., [78,100]). However, all these approaches have
only focused on specific classes of malware (e.g., only malicious Fast-Flux
services). Our approach, in comparison, is much more generic and is not
limited to certain classes of attacks (e.g., only botnets).

In our approach, based on features that we have identified and a training
set that contains known benign and malicious domains, we train a classi-
fier for DNS names. Being able to passively monitor real-time DNS traffic
allows us to identify malware domains that have not yet been revealed by
pre-compiled blacklists. Furthermore, in contrast to active DNS monitor-
ing techniques (e.g., [100]) that probe for domains that are suspected to be
malicious, our analysis is stealthy, and we do not need to trigger specific
malicious activity in order to acquire information about the domain. The
stealthy analysis that we are able to perform has the advantage that our ad-
versaries, the cyber-criminals, have no means to block or hinder the analysis
that we perform (in contrast to approaches such as in [100]).

To date, only one system has been proposed that aims to detect malicious
domains generically using passive DNS analysis. In a concurrent and inde-

1.3 Botnet Command and Control Server Detection Through Netflow Analysis7

pendent work that was very recently presented by Antonakakis et al. [14],
the authors present Notos. Notos dynamically assigns reputation scores to
domain names whose maliciousness has not been discovered yet. In com-
parison, our approach is not dependent on large amounts of historical ma-
liciousness data (e.g., IP addresses of previously infected servers), requires
less training time, and unlike Notos, is also able to detect malicious domains
that are mapped to a new address space each time and never used for other
malicious purposes again.

1.3 Botnet Command and Control Server Detec-
tion Through Netflow Analysis

Although EXPOSURE performs well in detecting botnets that utilize
DNS names for contacting the C&C server, one current problem of the
system is that it is evadable if the botnet’s DNS usage is designed to be
similar to benign servers’ (e.g., normal TTL values, a mapping to a small
number of IPs, etc.). A second problem with DNS-based detection is that
a request from the client to a malicious DNS domain does not necessarily
indicate that the client has been infected. In fact, such a request might
have been simply caused by a failed infection attempt. Furthermore, there
is also a chance that the queried domain is not really malicious (e.g., if the
attackers are using a benign, compromised domain to host a C&C server). A
third problem is that a DNS query for a malicious domain might be cached
and hence, might not appear in the monitored DNS traffic. As a result,
connections by the compromised hosts to the C&C server may be missed.

One other problem all previous network-based botnet detection tech-
niques share is that they do not scale beyond a single administrative do-
main while retaining useful detection accuracy, even though, they are effec-
tive under certain circumstances. This limitation restricts the application of
automated botnet detection systems to those entities that are informed or
motivated enough to deploy them. Thus, we have the current state of bot-
net mitigation, where small pockets of the Internet are fairly well protected
against infection while the majority of endpoints remain vulnerable.

This situation is not ideal. Botnets are an Internet-wide problem that
spans individual administrative domains and, therefore, a problem that re-
quires an Internet-scale solution. In particular, botnets can continue to wreak
havoc upon the Internet despite the deployment of localized detection sys-
tems by focusing on propagation through less well-protected populations.

Two of the primary factors preventing the development of effective large-

8 Chapitre 1 Introduction

scale, wide-area botnet detection systems are seemingly contradictory. On
the one hand, technical and administrative restrictions result in a general
unavailability of raw network data that would facilitate botnet detection on a
large scale. On the other hand, were this data available, real-time processing
at that scale would be a formidable challenge. While the ideal data source
for large-scale botnet detection does not currently exist, there is, however,
an alternative data source that is widely available today : NetFlow data [35].

NetFlow data is often captured by large ISPs using a distributed set
of collectors for auditing and performance monitoring across backbone net-
works. While it is otherwise extremely attractive, NetFlow data imposes
several challenges for performing accurate botnet detection. First, and per-
haps most critically, NetFlow records do not include packet payloads ; rather,
flow records are limited to aggregate metadata concerning a network flow
such as the flow duration and number of bytes transferred. Second, Net-
Flow records are half-duplex ; that is, they only record one direction of a
network connection. Third, NetFlow data is often collected by sampling the
monitored network, often at rates of several orders of magnitude or more,
removed from real traffic.

Each of these characteristics of NetFlow data complicates the develop-
ment of an effective botnet detector over this domain. The detector must
be able to distinguish between benign and malicious network traffic with-
out access to network payloads, which is the component of network data
that carries direct evidence of malicious behavior. The detector must also
be able to recognize weak signals indicating the presence of a botnet due to
the combined effects of half-duplex capture and aggressive sampling.

As a novel follow-up work to our previous botnet detection techniques, in
the third part of the thesis we present Disclosure, a large-scale, wide-area
botnet detection system that incorporates a combination of novel techniques
to overcome the challenges imposed by the use of NetFlow data. In partic-
ular, we identify several groups of features that allow Disclosure to reli-
ably distinguish C&C channels from benign traffic using NetFlow records :
(i) flow sizes, (ii) client access patterns, and (iii) temporal behavior. We
demonstrate that these features are not only effective in detecting current
C&C channels, but that these features are relatively robust against expected
countermeasures future botnets might deploy against our system. Further-
more, these features are oblivious to the specific structure of known botnet
C&C protocols.

While the aforementioned features are sufficient to capture core charac-
teristics of generic C&C traffic, they also generate false positives in isola-
tion. To reduce Disclosure’s false positive rate, we incorporate a number

1.4 Contributions 9

of external reputation scores into our system’s detection procedure. These
additional signals function as a filter that reduces Disclosure’s false posi-
tive rate to a level where the system can feasibly be deployed on large-scale
networks.

1.4 Contributions

In summary, this thesis makes the following contributions :

– We present three network-based botnet detection techniques that per-
form their analysis on different types of data : full network traffic, DNS
traffic and NetFlow traffic.

– We present a botnet detection system that performs network level
packet inspection. This system is a fully automated mechanism that
generates bot detection models by observing the actual behavior of
bot instances in a controlled environment, without making assump-
tions about the C&C mechanisms. This work has been published in
ESORICS 2009.

– With the experiment we performed with the first detection method,
we demonstrate the feasibility of our approach by generating detection
models for various bot families (including those controlled via IRC and
HTTP, as well as P2P). These models are effective in detecting bots
with few false positives.

– We present another novel analysis technique for the detection of ma-
licious domains that is based on passive DNS request analysis. Our
technique does not rely on prior knowledge about the kind of ser-
vice the malicious domain provides (e.g., phishing, Fast-Flux services,
spamming, botnets that use a domain generation algorithm, etc.). This
is significantly different from existing techniques that only target Fast-
Flux domains used in botnet operations. Furthermore, our approach
requires less training time, and less training data than Notos [14], and
does not have some of its limitations. This work has been published
in NDSS 2011.

– We describe the implementation of our real-time detection system
which we call EXPOSURE. Our experimental results show that the
technique we propose is scalable, and is able to accurately distinguish
between malicious and benign domains with a low false positive rate.

– We present Disclosure, a large-scale, wide-area botnet detection sys-
tem that reliably detects botnet C&C channels in readily-available
NetFlow data using a novel set of robust statistical features. In partic-

10 Chapitre 1 Introduction

ular, Disclosure does not assume a priori knowledge of particular
C&C protocols.

– We incorporate several external reputation systems into Disclosure’s
detection procedure to further refine the accuracy of the system.

– We evaluate Disclosure over two real-world networks, and demon-
strate its ability to detect both known and unknown botnet C&C
servers at scales not previously achieved.

1.5 Outline

This dissertation is organized as follows :

Chapter 2 : The malware evolution : Botnets
In this chapter, we explain the botnet infrastructures, command and

control topologies and the historical botnet evolution.

Chapter 3 : State of The Art In this chapter, we explain the most
recent work on botnet related malware analysis topics.

Chapter 4 : Botnet Detection Through Network Level Packet
Inspection In this chapter, we present our first botnet detection technique.
This technique performs network-level packet inspection to generate detec-
tion models for bot infected machines.

Chapter 5 : Botnet Detection Through Passive DNS Analysis
In this chapter we explain EXPOSURE, a real-time detection system that
aims to identify domains that are abused for nefarious purposes such as
being used for a botnet C&C server, as a dropzone to collect the sensitive
information sent by bots.

Chapter 6 : Detecting Botnet Command and Control Servers
Through NetFlow Analysis In this chapter we explain DISCLOSURE,
a system that detects botnet C&C servers performing NetFlow analysis.

Finally, in Chapter 7, concluding remarks are given.

Chapitre 2

The Malware Evolution :
Botnets

A botnet is a network that consists of a large number of compromised
machines that have the ability to be controlled by malicious entities. These
compromised machines are typically termed as bots. They are also known
as zombies or drones. The botnet controller (i.e. botmaster, bot herder) sets
a command and control channel (C&C channel) to command her bots to
perform malevolent activities such as sending spam, launching denial of ser-
vice attacks, stealing sensitive information from the user of the compromised
machine. Unlike other types of attacks, botnets which may consist of thou-
sands of compromised hosts can assemble a tremendous volume of aggregate
computing power and can perform a variety of attacks against a wide range
of targets.

In many respects, the botnets found in the wild today are a hybrid of
previous malware. However, the C&C mechanism they have distinguishes
them from other type of malware. The command and control protocol not
only allows the attackers to remotely control their bots for nefarious purposes
but also gives them a great flexibility to change their malicious infrastructure
completely against emerging botnet detection mechanisms.

Botnets typically infect victim computers with many different techniques.
Most typical infection schemes include exploiting known vulnerabilities, lur-
ing the Internet users to click links by applying social engineering techniques

11

12 Chapitre 2 The Malware Evolution : Botnets

and drive-by-downloads. Botnets inherits the propagation mechanisms from
worms which are known to be their ancestors.

2.1 Botnet Characteristics

Today, the botnet characteristics are still not well understood. Botnets
are still continuing their evolution, therefore accepted as an emerging threat.
Botnets exhibit all characteristics of other classes of malware such as worms,
trojan horses, rootkits etc. However, their defining characteristic is the com-
munication channel established between the botmasters and the bots. In the
following sections, while we will mostly focus on the communication topolo-
gies botnets have, we will also briefly explain other characteristics such as
bot propagation, exploitation and attack mechanisms.

2.1.1 Botnet Command and Control Infrastructures

The botnet command and control infrastructure gives the bots the ability
to communicate with the botmaster(s). In the wild, there are many different
type of botnets that vary in size, in malicious activities they perform and
in network topologies they construct. Consequently, they use various C&C
topologies.

Most of the botnet detection techniques leverage the existence of the
command and control action in the network. While some try to identify the
command and control channel to find the location of the C&C server, others
tackle the problem of finding the infected machines (i.e. bots). That is, the
component of botnets that is attacked by botnet defense mechanisms is the
command and control protocol. The response of botnet creators for evasion
is to enhance their command and control topology. Therefore, the botnet
evolution is realized through the enhancements made on the command and
control topology.

The command and control topologies that are widely employed can be
categorized in two main groups : centralized and decentralized command
and control. Star, multi-server and hierarchical C&C topologies fall in to the
centralized C&C topologies. On the other hand, the random C&C topology
is decentralized.

– Star C&C Topology. Star topology has a centralized C&C server
in botmaster’s control as seen in Figure 2.1. All bot agents connect
to this server to receive the commands. The typical behavior of newly
bot infected machine is to establish the connection with the C&C
server to join the botnet. This preconfigured behavior is also known

2.1 Botnet Characteristics 13

Figure 2.1: Star C&C Topology

as ”phoning home”. Employing star topology allows the botnet an
efficient command and control transfer. However, if the server fails,
the botnet fails. Therefore, it is very vulnerable for the shutdowns.
IRC bots and HTTPs usually employ the star topology.

– Multi-Server C&C Topology. Multi-Server C&C Topology is an
extended version of star C&C topology. It has multiple C&C servers
that are responsible for maintaining subsets of the botnet as seen in
Figure 2.2. The C&C servers in the topology communicate among
themselves to integrate the sub-botnets. This topology is more robust
than the star topology since it is more tolerant to the failures. If a
number of the severs fail, the remaining servers maintain the integrity.
Typically, the botmasters distribute the C&C servers in different coun-
tries such that the bots in those locations can communicate with the
server in an efficient manner.

– Hierarchical C&C Topology. In this topology, there is a hierarchy
among the bots. At the infection phase, the bot either transforms to a
proxy or a bot that contributes to the malicious activities commanded
by the botmaster. The proxy bots are responsible for forwarding the
commands they receive to the botnet. The components the bots are
in contact with in the botnet are the proxy bots and not the botmas-
ter. The real C&C servers are hidden behind the proxies as it is in
Figure 2.3. Therefore, the bots are not aware of the rest of the botnet
and where the C&C server is located.
Botnets that employ hierarchical C&C topology are very difficult to
take down and reverse-engineer to make estimations about the size
and the structure of it. Because, even if one of the bots is captured
by researchers, it is impossible to get more information than the IP

14 Chapitre 2 The Malware Evolution : Botnets

Figure 2.2: Multi-Server C&C Topology

Figure 2.3: Hierarchical C&C Topology

address or the domain name of the responsible proxy bot.
Hierarchical C&C topologies also allows the botmaster to split the
botnet to sub-botnets such that she can rent or sell services to other
botmasters. Clearly, this type of topology brings several advantages
to the botnet owners. However, there can be an acceptable latency
during transmitting the command to the bots due to the fact that the
commands traverse through multiple points. This delay makes some
malicious activities difficult to be realized.

– Random C&C Topology. The random C&C topology is not a cen-
tralized topology as the topologies we listed above, but decentralized
as seen in Figure 2.4. The commands are not distributed from a cen-
tral point. All bots play a role on sending the command to the botnet.
When a bot receives a command, it immediately triggers the command

2.1 Botnet Characteristics 15

Figure 2.4: Random C&C Topology

propagation module that transmits the command to its neighbors. One
good example for botnets with random C&C topologies are peer-to-
peer botnets.
Botnets with random C&C topology are more flexible for shutdowns
because they do not have a centralized C&C server and multiple paths
to conduct the commands. However, once one of the bot agent is com-
promised by researchers or malware analyzers, by reverse-engineering,
it is relatively easier to identify other members of the botnet. The
reasoning behind this is that if the malware analyzers are able to
reverse-engineer the algorithm, they can join the botnet and start
communicating with the other bot infected machines.

2.1.2 Bot Propagation Mechanisms

One crucial phase in lifecycle of botnets is the infection phase. The mal-
ware infection might be realized in different ways : exploiting vulnerabilities
on the host, luring the user into clicking a malicious URL, and employing
social engineering techniques. Among these infection techniques, infection
through vulnerability exploitation does not require a user interaction.

Typically botnets that propagate through exploiting known or zero-day
vulnerabilities include a scanning component that is responsible for find-
ing new vulnerable machines to be infected. There exists several scanning
mechanisms that can be categorized into two groups : horizontal and vertical
scanning mechanisms. Horizontal scanning mechanism scans a single point
in a specified address space. In contrast, vertical scanning mechanisms scan
a port range on a single IP address. In order to find the IP address or the
range to be scanned, the flowing methods are widely used :

– Random Scanning : The target to be scanned is determined by

16 Chapitre 2 The Malware Evolution : Botnets

a random number generator. Thus, the effectiveness of the scanning
strictly depends on the random number generator. Since it is quite
difficult to develop a random number generator that can find vulnera-
ble hosts or valid IP addresses, random scanning is not as effective as
other scanning methods.

– Permutation Scanning : One reason why random scanning is not
effective enough is because of the overlap it produces. Permutation
Scanning was designed to deal with the problem of overlaps. It applies
simple cryptography such that each malware sample can generate dif-
ferent sets of target IP addresses. The list of IP addresses are computed
by a pseudo - random permutation function that takes a private key
as parameter. In this way, permutation scanning solves the overlap
problem by using cryptography.

– Hit-List Scanning : Hit-list scanning is the most efficient scanning
technique. This is because the hit-list comes hard-coded in the mal-
ware. Since the binary includes the list, the size of the binary can be
unacceptably large. During the spreading process, the IP addresses
already scanned are removed from the list in the binary. Therefore,
the size of the binary decreases in time. Obviously, since each malware
sample receives different snippets from the list, hit-list scanning does
not have the overlapping problem.

– Combining the Techniques : Some of the more sophisticated worms
seen in the wild, such as Warhol worm, employ a combination of
scanning techniques. For example, Warhol by combining permutation
scanning and hit-list scanning was able attack all vulnerable machines
in the world in less than fifteen minutes.

Although current botnets employ more sophisticated techniques to find
and infect their victims, historically, very famous botnets such as Agobot,
SDBot, SpyBot and GTBot had fairly simple propagation mechanisms that
apply vertical and horizontal scanning. In order to detect such botnets, it is
possible to develop statistical finger printing methods to identify bot scans.

2.1.3 Malicious Activites

The primary goals of botnets include information dispersion, informa-
tion harvesting and information processing. Information dispersion attacks
includes sending spam, launching distributed denial of service attacks and
click fraud. On the other hand, information harvesting involves attacks that
steal sensitive information from the infected hosts to obtain identity data,
financial data, private data, e-mail address books or any other type of data

2.1 Botnet Characteristics 17

may exist on the host. Main intention of information processing is to use
the distributed structure of botnets to crack passwords, hashes etc.

Although some botmasters construct their botnets for fun or fame, the
majority of current botnets do for financial gain. For example, an organiza-
tion that needs to advertise its products might wish to pay a botmaster to
make its advertisements sent through spam. As another example ; the stolen
secret information might be directly used by the botmaster or sold to third
parties.

Distributed Denial of Service Attacks

Botnets are widely used to perform distributed denial of service attacks
(DDoS). A DDoS attack is an attack that targets either a computer or a
network to make a resource unavailable to its users. Typically, the loss of
the service or network connectivity is realized by consuming the bandwidth
of the network or overloading the network stack of the computer. A DDoS
attack can be performed in a number of different ways. Some of these tech-
niques are listed as :

– Consuming the computational resources, e.g. bandwidth, disk space
or processor time.

– Corrupting the configuration information such as routing table con-
figuration.

– Disrupting the state information, such as unsolicited resetting of TCP
sessions.

– Obstructing the communication media in order to prevent the users
from communicating each other.

Today, it is very easy to mount DDoS attacks with the help of off-the-
shelf tools [44] . There are different kinds of attacks that target the TCP,
the UDP or protocols at higher level in the network stack :

1. TCP SYN flooding : TCP SYN flooding attack is performed by
sending several connection requests to target computer in order to
stress the processing ability. The half open connections on the target
machine exhaust the data structures in the kernel. Thus, the computer
cannot accept new connections.

2. UDP flooding : The attacker aims to consume the network band-
width and computational resources by sending a large number of UDP
packets to several ports.

3. DDoS attacks targeting high-level protocols : DDoS attacks are
the most dangerous form of DoS attacks. They are not only restricted

18 Chapitre 2 The Malware Evolution : Botnets

to the web services. By creating more specific attacks that target high-
level protocols, more effective results can be obtained. The web spi-
dering attack, which starts from a given web site and then recursively
requests all links on that site, is a good example for DDoS attacks that
target high-level protocols.

During last ten years, Internet users faced several serious DDoS attacks.
In February 2000, an attacker launched DDoS attacks on several e-commerce
companies and web sites. The attacks deactivated the service of the servers
for several hours. Later, the threat of the DDoS attacks turned into real
cybercrime. For example, a botnet targeted a betting company during the
European soccer championship in 2004 and demanded money in exchange
of letting the system operate again.

Spam

E-mail spamming, a.k.a. bulk e-mail or junk e-mail, is an attack that
sends massive volumes of nearly identical messages to recipients by e-mail.
Generally, such messages have commercial content. An e-mail is spam only
if it is unsolicited and sent in bulk. E-mail addresses used by the spammers
are collected by chat rooms, newsgroups, websites and the malware that
harvest e-mail addresses from the users’ address books.

It has been reported that 80% of the spam e-mails are sent by botnets.
Typically, bots start a SOCKS v4/v5 proxy on the compromised host in
order to use it for sending spam e-mails. Once they receive the spaming
activation command by the botmaster, thousands of members of the botnet
initiate a large-scale spam activity on the Internet.

In order to identify valid mail addresses, some botnets concentrate only
on harvesting valid e-mail addressed. Such botnets sell the lists they gathered
to spammer botnets. Besides collecting the infected users’ e-mail addresses,
botnets crawl web to gather e-mail addresses from web sites, newsgroups,
special-interest group (SIG) postings, and chat-room conversations.

Click Fraudulence

In addition to the malicious activities that directly are involved in at-
tacks, botnets can perfom click fraudulence. Click fraudulence is performed
by automatically and periodically querying particular websites to increase
the number of clicks to increase the search scores of the website or manipu-
late the votes.

2.2 Historical Evolution of Botnets 19

Identity Theft

To steal that sensitive information from infected hosts, botnets install
keyloggers or sniff the traffic. Moreover, they install simple programs that
collects usernames and passwords from the host, and by sniffing the network
traffic passwords of other users in the network.

Phishing Mails

Phishing is one type of identity theft attack which aims to compromise
sensitive information (e.g., passwords, credit card numbers) by masquerad-
ing as a trustworthy entity in an electronic communication. Phishing attacks
use sophisticated social engineering techniques to persuade users to give their
secret information. There are different types of phishing attacks :

– Spoofing Mails and Web Sites : The earliest phishing attacks were
e-mail based. The attackers were trying to persuade the victim users
to send their passwords and account information by sending spoofed
e-mails. Although there are still many users that can be deceived by
phishing mails, most users are aware that sensitive information must
not be sent by e-mails. Thus, the attackers employed more sophisti-
cated phishing techniques to deceive the victims. For example, some
phishing attacks combine phising mails and websites by sending the
URL of the phishing web page in mail that apper to come from a
legitimate orginization. After the user clicks the link in the mail, the
e-mail directs the user to a web site that looks identical to a familiar
web site. Then, the user perform his normal actions, such as logging
into the site or sending account information. Clearly, this reveals all
the secret information to the attacker.

– Exploit Based Phishing Attacks : Exploit Based Phishing Attacks
are more complicated in their nature, because, they exploit known vul-
nerabilities to install a backdoor. The backdoor collects the sensitive
information and sends it back to the attackers.

2.2 Historical Evolution of Botnets

Today, botnets are known to be the most sophisticated malware. Iron-
ically, the earliest bots were invented for benign purposes. These bots op-
erated on the IRC [55] network, which was developed in the late 1980s.
The IRC platform allows data dissemination among a large number of users
with point-to-point or point to multi-points communication schemes. The

20 Chapitre 2 The Malware Evolution : Botnets

bots created in the IRC network were used for entertaining users by offering
them game and messaging services.

Unfortunately, not long after, the first malicious botnet, GTbot, emerged
in the wild. The command and control infrastructure GTbot had was based
on Microsoft IRC client, mIRC.exe, with slight modifications. Afterwards,
in late 1999, SANS Institute researchers discovered remotely executable code
on thousands of Windows machines. They were inspired by remote control
nature of the code while they were naming the infected computers as robots,
which later is shortened to bot.

Before 2004, most of the famous botnets such as SDbot, Agobot, Spy-
bot had IRC-based command and control infrastructures. However, existing
effective botnet detection methods against IRC-based botnets lead the bot-
nets to evolve and build more sophisticated command and control topologies
such as peer-to-peer (P2P) structures. Instead of using IRC as C&C pro-
tocol, they adapted different protocols (e.g., HTTP). Moreover, in order to
be more robust and fault tolerant against shutdowns, they built Fast Flux
Service Networks.

The most critical requirement for a botnet is to have a reliable C&C
infrastructure to avoid it’s bots transformed to zombies when connection
with the C&C server cannot be established. The first botnets seen in the
wild had centralized C&C servers whose IP addresses were hard coded in the
bot binaries. Such botnets were very vulnerable for the shutdowns. Because,
to take the complete botnet down, it was enough to blacklist the IP address
of the C&C server or shut it down.

Botnet designers developed a number of techniques to provide a malicious
infrastructure whose members (i.e., bot agents) remain always connected to
the botnet. These techniques not only resulted the botnet evolution but also
made the botnets more resilient and robust against shutdowns.

The most effective technique for increasing the lookup resilience is called
fluxing. The fluxing can be implemented in two ways : IP fluxing and domain
fluxing. IP fluxing is realized by assigning a large amount of IP addresses to
a single domain name. The botnets that employ IP fluxing abuse the Round
Robin feature of Domain Name System (DNS). Typically the botnet opera-
tors set the Time-to-Live (TTL) value of the domain to a lower value (e.g.
less than 300 seconds) and each time the domain receives a query a different
list of IP addresses is returned.

There exists two types of IP fluxing methods : single-flux and double-flux.
Single-flux employs the simple IP fluxing method. That is, a domain name is
associated with hundreds or even thousands of IP addresses and each time a
different set of them is returned with in the DNS record. Double-flux, which

2.2 Historical Evolution of Botnets 21

is a more sophisticated version of single-flux, fluxes both the IP addresses
of the domain name and the IP addresses of the DNS server.

Domain flux, on the other hand, associates a large number of domain
names with a single or a few IP addresses or the C&C servers. Domain fluxing
is realized either by domain wildcarding or domain generation algorithms.
The domain wildcarding abuses the native DNS option to wildcard (i.e.,
*) a higher domain level and associates all sub domains to the same IP
address. This features is employed mostly by spambots and botnets that
apply phishing techniques in their attacks to hide the sub domains that
include randomly generated strings. During the recent years, botnets started
to apply domain fluxing techniques in which the bot agents generate the
domain name to be contacted at a specific time by a domain generation
algorithm (DGA). The basic idea is that the botnet operators register a
large number of domain names and associate each of them with the C&C
server at a specific time. The domain generation module that comes within
the bot binary generates the domain of the C&C server taking the current
time as parameter. The domains that are generated by a DGA typically
have very short life such as one day. Therefore, it is very hard to investigate
these domains to track the location of the C&C servers. Conficker botnet [80]
that was one of the ten most wanted botnets in 2009 and 2010 deploys DGA
modules to its bot agents.

22 Chapitre 2 The Malware Evolution : Botnets

Chapitre 3

State of the Art

Malware, and botnets in particular, pose a significant threat to the se-
curity of the Internet. As a result, there has been a strong interest in the re-
search community to develop adequate defense solutions. Because this thesis
proposes three botnet detection techniques that perform analysis on network
packets, DNS data and NetFlow data, it naturally touches on a number of
related research areas.

3.1 General malware detection

Since bots are a certain type of malware, previous work in identifying
malicious code is directly relevant. The most common approach to fight
malicious software are commercial anti-virus scanners. Anti-virus scanners
mostly rely on syntactic signatures that match parts of known malware sam-
ples. As a result, these systems cannot identify previously unknown malware
programs or simple variations of existing ones [32].

To address the limitations of signature-based malware detection, re-
searchers have proposed behavior-based techniques. These techniques at-
tempt to characterize a program’s behavior in a way that is independent of
its binary representation. Christodorescu et al. use static program analysis
techniques to identify semantically equivalent operations in malware vari-
ants [33]. Because malware authors can use code obfuscation techniques or
self-modifying code, static malware analysis is difficult [72]. To address this

23

24 Chapitre 3 State of the Art

shortcoming, researchers have proposed dynamic approaches [59, 111] that
monitor the execution of a program to identify malicious behaviors.

While the aforementioned techniques are powerful in detecting even pre-
viously unknown malware instances, they require extensive analysis of each
suspicious program. This not only incurs a considerable performance over-
head, it also requires that the analysis system is installed on every machine
that should be protected. With the systems presented in this thesis, we pro-
vide network-based solutions that are more efficient compared to host-based
malware detection systems.

3.2 Network intrusion detection

The purpose of network intrusion detection systems (IDS) is to monitor
the network for the occurrence of attacks. Clearly, this is very similar to
the purpose of our first detection technique that analyze network traffic for
the presence of signs that indicate bot-infections. In fact, we directly encode
our detection models in the signature language of Bro [77], a well-known,
network-based IDS.

Of course, both the ideas of content-based analysis and modeling network-
level properties to detect anomalies are not novel. Content-based analysis
has been used by signature-based IDSs (such as Snort [88] or Bro) for years.
Also, network-level properties (such as the number of flows or the number
of bytes that were transferred) have been used extensively to model normal
network traffic and to detect deviations that indicate attacks [69]. Our work
complements existing network-based IDSs by automatically generating the
inputs needed by these systems to detect machines that are infected by bots.

3.3 Signature generation

As part of our detection model generation in our first botnet detection
system, we extract token signatures from network traffic. Research on such
automated signature generation started with the work on Early Bird [89]
and Autograph [58], and has later been extended with Polygraph [75] and
Hamsa [63]. Of course, extracting command tokens is only a small part of the
entire model generation process. In fact, we first have to record bot activity,
identify likely bot responses, extract the corresponding traffic snippet, and
cluster them based on behavioral similarities. Only then can we extract
common tokens, using an improved version of previous algorithms.

3.4 Botnet analysis and defense 25

3.4 Botnet analysis and defense

In addition to general research on malware detection, there is work that
specifically focuses on the analysis [36, 48, 54, 83] and detection [26, 49, 51–
53,56,86,95] of botnets.

A number of botnet detection systems perform horizontal correlation.
That is, these systems attempt to find similarities between the network-level
behavior of hosts. The assumption is that similar traffic patterns indicate
that the corresponding hosts are members of the same botnet, receiving the
same commands and reacting in lockstep. While initial detection propos-
als [53, 56] relied on some protocol-specific knowledge about the command
and control channel, subsequent techniques [51, 86] remove this shortcom-
ing. The main limitation of systems that perform horizontal correlation is
that they need to observe multiple bots of the same botnet to spot behav-
ioral similarities 1. This is significant because botnets decrease in size [36],
it becomes more difficult to protect small networks, and a botmaster can
deliberately place infected machines within the same network range into
different botnets.

A second line of research explored vertical correlation, a concept that de-
scribes techniques to detect individual bot-infected machines. One system,
called Rishi [49], attempts to detect bots based on the structure of nick-
names in IRC traffic. Other techniques [26, 95] aim to identify suspicious
IRC connections based on traffic properties. In all cases, the detection ap-
proaches focus specifically on botnets that use IRC for their command and
control. The most advanced system is BotHunter [52], which correlates the
output of three IDS sensors – Snort [88], a payload anomaly detector, and
a scan detection engine. A closer analysis of the results (which are publicly
available [39]) reveals that the detection capability of BotHunter strongly
relies on the human-created Snort rules.

The first botnet detection technique presented in this thesis performs ver-
tical correlation as well as BotHunter does. Our technique, on the contrary
to BotHunter, generates detection models completely automated. Moreover,
the stages that are used by BotHunter to characterize the life cycle of a bot
focus on scanning and remote exploiting. Our system, on the other hand,
does not rely on a specific bot propagation strategy and does not require
previous knowledge about command and control channels.

Independently and concurrently to our work, a paper [54] has presented
the idea of running bots in a controlled environment (called Botlab). The

1. With the exception of a narrow, special case presented in [53].

26 Chapitre 3 State of the Art

proposed system is similar to ours in that bots are executed and monitored.
The difference is that Botlab is exclusively focused on spam botnets and uses
the monitored activity (in addition to other inputs) to produce information
about spam mails (such as malicious URLs in the mail body). However,
the approach does not provide any information about bot commands or
responses, and it is not designed to detect bot infected machines. Thus, the
goals are very different from our system.

3.5 Using DNS Analysis Techniques for Detecting
Botnets

The Domain Name System (DNS) has been increasingly being used by
attackers to maintain and manage their malicious infrastructures. As a re-
sult, recent research on botnet detection has proposed number of approaches
that leverage the distinguishing features between malicious and benign DNS
usage. The second botnet detection technique (EXPOSURE) presented in
this thesis uses passive DNS analysis to identify domains that are involved
in malicious activities such as being the command and control server of a
botnet.

The first study [105] in this direction proposed to collect real-world DNS
data for analyzing malicious behavior. The results of the passive DNS anal-
ysis showed that malicious domains that are used in Fast-Flux networks
exhibit behavior that is different than benign domains. Similarly, Zdrnja et
al. [112] performed passive monitoring to identify DNS anomalies. In their
paper, although they discuss the possibility of distinguishing abnormal DNS
behavior from benign DNS behavior, the authors do not define DNS features
that can be used to do so.

In general, botnet detection through DNS analysis follows two lines of re-
search : The first line of research tries to detect domains that are involved in
malicious activities. The goal is to identify infected hosts by monitoring the
DNS traffic. The second line of research focuses on the behaviors of groups
of machines in order to determine if they are infected (e.g., a collection of
computers always contact the same domain repeatedly).

3.5.1 Identifying Malicious Domains

To detect malicious domains, previous approaches make use of passive
DNS analysis, active DNS probing, and WHOIS [2] information. For exam-
ple, recent work by Perdisci et al. [78] performs passive DNS analysis on

3.5 Using DNS Analysis Techniques for Detecting Botnets 27

recursive DNS traffic collected from number a number of ISP networks with
the aim of detecting malicious Fast-Flux services. Contrary to the previous
work [61, 73, 76, 100], Perdisci’s work does not rely on analyzing blacklisted
domains, and domains that are extracted from spam mails. EXPOSURE
significantly distinguishes itself from theirs as we are able to detect all dif-
ferent kinds of malicious domains such as phishing sites, spamming domains,
dropzones, and botnet command and control servers. We do not only focus
on detecting Fast-Flux service networks.

A second branch of study that aims to detect malicious domains [68,100]
leverages active DNS probing methods. That is, the domains that are ad-
vertised to be malicious by various sources (e.g. spam mails) are repeatedly
queried to detect the abnormal behavior. The main drawback of active DNS
analysis is the possibility of being detected by the miscreants who manage
the domains under analysis. Passive DNS analysis, in comparison, is more
stealthy because of its non-intrusiveness characteristics.

Based on URL features they extract from spam mails, Ma et. al. [68]
study a number of statistical methods for machine learning for classifying
websites. In particular, they analyze spam URLs according to their lexical
construction, and the information contained in the host name part of the
URL. To obtain the information from the host name, they perform active
probing to determine the number of IP addresses associated with the do-
main. Once they obtain the IP address list, they analyze the location of
the IP address and to which ASN it belongs to. The main limitation of
this system is that it performs the analysis only based on the domains that
are included in spam mails. Hence, the system cannot see other classes of
malicious domains such as command and control servers.

Another type of study on detecting malicious domains leverages prop-
erties inherent to domain registrations and their appearance in DNS zone
files [46]. That is, they associate the registration information and DNS zone
properties of domains with the properties of known blacklisted domains for
proactive domain blacklisting. This method completely relies on historical
information. Therefore, it is not able to detect domains that do not have any
registration information and DNS zone commonalities with known black-
listed domains. On the other hand, our work, which does not require any
historical information, is able to detect such domains.

28 Chapitre 3 State of the Art

3.5.2 Identifying Infected Machines by Monitoring Their DNS
Activities

In [31], the authors propose an anomaly-based botnet detection mecha-
nisms by monitoring group activities in the DNS traffic of a local network.
The authors claim that there exist distinguishing features to differentiate
DNS traffic generated by botnets and benign clients. Similarly, [102] also
attempts to identify botnet DNS access behavior in a local network. The
authors use a bayesian algorithm. In comparison to these existing works, we
aim to identify malicious domains from DNS traffic in general, and do not
only focus on botnets.

3.5.3 Generic Identification of Malicious Domains Using Pas-
sive DNS Monitoring

To date, there are two systems proposed that aim to detect malicious
domains using passive DNS analysis as well as EXPOSURE. In a concurrent
and independent work presented by Antonakakis et al. [14], the authors
present Notos. Notos dynamically assigns reputation scores to domain names
whose maliciousness has not been discovered yet.

We have compared EXPOSURE with Notos in the evaluation section
of Chapter 5. EXPOSURE eliminates several shortcomings of Notos. It
does not require a wide overview of malicious activities on the Internet, a
much shorter training time, and is able to classify domains that Notos would
miss-classify.

The second work was proposed after EXPOSURE and Notos by Anton-
akakis et. al. [15]. The malware domains detection system, which is named
as Kopis, employs DNS data collected from upper DNS hierarchy. Therefore,
they were able to analyze global DNS query resolution patterns. Kopis lever-
ages the fact that in their data the IP addresses of the clients who issued the
DNS queries are visible. Although Kopis performs well to detect emerging
new botnets, it cannot be deployed as a real-time botnet detection system
on a local network. On the other hand, EXPOSURE can be also deployed
in an independent network to monitor clients DNS activity.

3.6 Anomaly Detection Through NetFlow Analy-
sis

To date, there has been a considerable amount of research on anomaly de-
tection using NetFlow analysis. While some of the works proposed anomaly

3.6 Anomaly Detection Through NetFlow Analysis 29

detection methods to detect specific kinds of malware such as worms [103],
others tried to propose more general approaches to distinguish malicious
traffic from benign traffic [29,43,90].

Wagner et al. [103] present an entropy-based approach to identify fast
worms in real-time network traffic by calculating the entropies of traffic pa-
rameters such as IP addresses. They detect massive network activities by
observing the changes in the entropy of the traffic. Dewaele et al. [43] extract
sub-traces from randomly chosen traffic traces, model them using Gamma
laws, and identify the anomalous traces by tuning the deviations in the pa-
rameters of the models. When the anomalous sub-traces are identified, the
authors detect the anomalous source and destination IP addresses by ana-
lyzing flows that match the intersection of addresses that hash into anoma-
lous sub-traces. Brauckhoff et al. [29] present a histogram-based anomaly
detector that identifies anomalous flows by combining various information
extracted from multiple histogram-based anomaly detectors.

Another NetFlow-based anomaly detection method for distinguishing
malicious and benign network traffic was proposed by Sperotto et al. [90].
The authors analyzed the time series constructed from both flow and packet
sizes, and tested them to find whether they were sufficient for detecting
general intrusions. Their analysis results show that it sufficient to employ
one type of time series for some attacks, but that multiple time series need
to be combined for more accurate results.

Rehak et al. [85] propose a system that deploys trust modeling to de-
crease the high error rates network based anomaly detection techniques en-
gender. The system deploys multiple agents each of which applies one of the
existing anomaly based detection methods. The anomaly values determined
by the agents are averaged to produce more accurate results.

Another line of research on NetFlow-based anomaly detection focuses on
the analysis of the impact of sampling methods used to decrease the input
data rate to a manageable volume. Mai et al. [70] analyze a set of sampling
techniques applied for collecting, recording, or forwarding NetFlow traffic
to identify the best sampling rate for the most accurate anomaly detection.
The authors experiment with two classes of anomalies (i.e., volume anomaly
and port-scans). The results of their evaluation show that all types of sam-
pling techniques introduce a significant bias on anomaly detection. Another
work [30] studied the impact of packet sampling on anomaly detection met-
rics such as the number of bytes, packets, and flows. The authors claim that
packet sampling does not affect anomaly detection metrics such as the num-
ber of bytes or the number of packets, but that it significantly changes the
number of flows. They also evaluate the impact of packet sampling and they

30 Chapitre 3 State of the Art

conclude that entropy-based anomaly detection systems are more resilient
to packet sampling because the sampling still preserves the distributional
structure. Note that with Disclosure, we performed two sets of experi-
ments : a set with sampled NetFlows, and a set with unsampled NetFlows.
We also show that even if the sampling degrades the anomaly detection in
the specific case of botnet identification, it is still possible to distinguish
malicious botnet traffic from benign ones if the NetFlow data set that is
used is sufficiently large.

3.7 Botnet Detection with NetFlow Analysis

Only a few papers exist that propose to use NetFlow analysis to specifi-
cally detect botnets. For example, Livadas et al. [67] propose a system that
identifies the command and control traffic of IRC-based botnets by using
machine learning-based classification methods.

Francois et al. [47] present instead a NetFlow-based method that uses the
PageRank algorithm to detect peer-to-peer botnets. In their experiments,
the authors created synthetic bot traces that simulate the NetFlow behavior
of three P2P botnet families.

Both works succeeded in the identification of a specific type of botnet
traffic, IRC in the first case and peer-to-peer in the second. Disclosure,
on the other hand, can successfully detect C&C servers without any prior
knowledge about the internals of the C&C protocol. Moreover, our experi-
ments shows how Disclosure can be used to perform real-time detection
on large datasets.

Chapitre 4

Botnet Detection Through
Network Level Packet
Inspection

In this chapter, we present a system that aims to detect bots, indepen-
dent of any prior information about the command and control channels or
propagation vectors, and without requiring multiple infections for correla-
tion. Our system relies on detection models that target the characteristic
behavior of every bot – the fact that it receives commands from the bot-
master to which it responds in a specific way. A key feature is that these
detection models are generated automatically. To this end, our system ob-
serves the network traffic that is generated by actual bot instances in a
controlled environment. In these traffic traces, we first identify points in
time that likely correspond to response activity. Then, we extract the corre-
sponding commands that trigger these activities. We have implemented the
proposed approach and demonstrate that it can extract effective detection
models for a variety of different bot families. These models are precise in
describing the activity of bots and raise very few false positives.

31

32Chapitre 4 Botnet Detection Through Network Level Packet Inspection

4.1 System Overview

This section provides an overview of our approach to generate network-
based detection models to identify bot-infected machines.

The input to our system is a collection of bot binaries. These bina-
ries are collected in the wild, for example, via honeynet systems such as
Nepenthes [16], or through Anubis [19], a malware collection and analysis
platform. The output of our system is a number of models that can be used
to detect instances of different bot families.

The basic idea of our system is to launch a bot in a controlled environ-
ment and let it connect to the Internet. Then, we attempt to identify the
commands that this bot receives as well as its responses to these commands.
Afterwards, these observations are translated into detection models that an-
alyze network traffic for symptoms of bot-infected machines. The two main
questions that arise are : (a) how are detection models specified, and (b),
how can we generate these models based on observing bot activity ?

4.1.1 Detection Models

The goal of a detection model is to specify network traffic activity that
is indicative of the presence of a bot-infected machine.

Stateful models. In our system, a detection model has two states. The first
state of the model specifies signs in the network traffic that indicate that
a particular bot command is sent. For example, such a sign could be the
occurrence of the string .advscan, which is a frequently-used command to
instruct an IRC bot to start scanning. Once such a command is identified, the
detection model is switched into the second state. This second state specifies
the signs that represent a particular bot response. Such a sign could be the
fact that the number of new connections opened by a host is above a certain
threshold, which indicates that a scan is in progress. When a model is in the
second state and the system identifies activity that matches the specified
behavior, a bot infection is reported. If no activity is found that matches
the specification of the second state for some time period t, the model is
switched back to the first state. Note that we maintain a different (logical)
model instance for each host that is monitored. That is, when a command
is found to be sent to host x, only the model for this host is switched to
the second state. Therefore, there is no correlation between the activity of
different hosts. For example, when a scan command is sent to host x, while
immediately thereafter, host y initiates a scan, no alert is raised.

We make use of a stateful model that only labels a host as bot-infected

4.1 System Overview 33

if the system detects that a command is sent to the host and it witnesses a
response within a certain period of time. This directly reflects the character-
istic behavior of bots, which remotely receive commands from a botmaster
and react accordingly. A stateful model has the advantage that we can use
less restrictive specifications to capture both the command and the bot re-
sponse, without risking an unacceptably high number of false positives. On
the downside, our approach also represents a possible weakness that a bot-
master can leverage to thwart detection. More precisely, a bot can delay the
response to a command until after the detection model was switched back to
the first state. This is a limitation that we share with previously-proposed
systems [52,53]. The reader is referred to Section 4.5 for a discussion of this
limitation and possible solutions.

In general, there are two possible approaches to specify commands and
responses in the different states of the detection model : content-based and
network-based specifications. Content-based specifications are basically sig-
natures. In its simplest form, we can provide a sequence of characters (i.e.,
a token) that has to be present in the network traffic. Of course, more so-
phisticated alternatives are possible, such as allowing regular expressions,
or providing additional information about where a token is expected within
the network stream. Network-based specifications focus on properties of the
network activity that a host is engaged in. This is similar to anomaly-based
intrusion detection systems. Simple models might only take into account
the number of connections, while more sophisticated ones can also capture
properties such as the number of characters that are transferred, the ports
or protocols that are used, or entropy measurements of packets.

In our current system, we use content-based specifications to model com-
mands and network-based specifications to model responses. This is a nat-
ural approach, where signatures capture commands and network models
reflect the network activities due to responses (such as scanning, mass mail-
ing, or binary downloads). However, observe that our general detection ap-
proach allows for alternative implementations. For example, one could use
network-based properties to model commands. This might be advantageous
when botnets use encrypted command and control channels. In that case,
network-based properties could capture the frequency in which packets are
exchanged, the size of packets, or the fact that encrypted payload is ex-
changed.

34Chapitre 4 Botnet Detection Through Network Level Packet Inspection

4.1.2 Model Generation

Given our notion of detection models, the question is how these models
can be generated automatically. As mentioned previously, we do this based
on the observation of bot activity. More precisely, for each bot binary, we first
record a trace of its network activity over a certain period of time. Based on
a trace, we have to identify those points where the bot receives a command
and responds appropriately. This is not straightforward, since we do not
want to assume any prior knowledge about the way in which the bots and
the botmaster communicate. Also, it is possible and common that one trace
contains a variety of commands with different responses. Thus, the problem
of extracting detection models is quite different from previous signature
generation algorithms [58, 63, 75] that simply extract common tokens from
a set of network traces.

Finding responses. Our key insight for being able to identify previously
unknown commands in a network trace is that we attack the problem from
the opposite side. That is, instead of checking the traces for commands, we
first look for the activity that indicates that a response has occurred. The
reason for this approach is that a response launched by a bot is often more
visible in the network trace than an incoming command. While a bot is in
an idle state (i.e., it is not fulfilling requests of its botmaster), the network
activity is typically limited to the traffic required to participate in the botnet
(e.g., by exchanging IRC information or by polling web pages). However,
when a command is issued, the bot has to act accordingly. This action
almost always leads to additional network activity, for example, because the
bot engages in scanning, downloads additional components, or sends mails.
This activity stands out from the background noise and can be detected as
an anomaly.

Once a bot response is identified, it is characterized by a behavior profile.
More precisely, a behavior profile models various properties of the network
traffic that is associated with a bot response. More details on recording bot
traffic and locating responses are presented in Section 4.2.

Finding commands. By scanning the trace for network anomalies, we can
identify those points in time at which a bot has demonstrated a response.
As a result, the network traffic before this point must contain the command
that has caused this response. Thus, before each point at which a significant
change in traffic behavior is detected, we extract a snippet, a small section
of the network trace.

Typically, different commands will lead to responses that are different.
Therefore, in a next step, we cluster those traffic snippets that lead to similar

4.1 System Overview 35

responses, assuming that they contain the same command. Once clusters of
related network snippets have been identified, we search them for sets of
common (string) tokens. As our results demonstrate, these tokens frequently
represent the bot commands and can be used for detection. Section 4.3
provides more details on the way in which traffic snippets are clustered and
analyzed for common bot commands.

Putting it all together. Extracted tokens can be directly used to rep-
resent the bot command in the first state of the detection model. For the
second state (i.e., to specify the response), we leverage the network behavior
profiles that characterize bot response activity. Thus, in our current system,
a bot detection model consists of a set of tokens that represent the bot
command, followed by a network-level description of the expected response.
These models can be readily deployed on the network and can identify an
infected host once this host receives a known command and responds as
expected.

Bot families. An important question that has been omitted so far is what
happens when our system has to generate detection models for multiple bot
binaries. The simplest approach is to analyze the network traces for each
bot individually. In this case, only a single bot program is considered, and
similar responses are very likely caused by the same command. However, this
approach is not optimal for two reasons. First, when checking only a single
trace, there might not be sufficient command-response pairs available to
extract meaningful signatures. The second drawback is that due to botnet-
specific artifacts (such as an IRC channel name) present in many of the
snippets, the produced token signatures would likely match traffic from one
specific botnet only. Thus, it is desirable to combine samples from different
botnets into bot families, as long as they use the same C&C mechanism.

The partitioning of samples into bot families can be performed either
manually, based on malware names assigned by anti-virus scanners, or based
on behavioral similarities. For example, previous work has introduced host-
based analysis systems that can find similar malware instances based on the
system calls that these malware programs invoke [17, 20, 87]. Moreover, the
partitioning step does not need to be perfect. Our system can tolerate the
case in which the pool of bot network traces is polluted.

For the following discussion, we assume that the set of bot samples has
already been divided into consistent groups. Of course, the system is nei-
ther provided with any information about the way in which commands are
exchanged, nor how and when responses are launched.

36Chapitre 4 Botnet Detection Through Network Level Packet Inspection

4.2 Analyzing Bot Activity

As a first step to creating bot detection models, our system requires
captures of the network traffic that the bot-infected machines create. To
this end, we run each bot binary in a controlled environment with Internet
access for a period of several days. The goal is to let the bot connect to its
C&C mechanism and keep it running long enough to observe a representative
collection of the different bot commands and the activities they trigger. The
observed traffic should contain the most frequently used commands, since
these are the most helpful detection targets. On the other hand, the absence
of rarely used commands is acceptable, since detection models targeting
these commands would also rarely trigger when deployed.

Note that we made a deliberate decision to observe the behavior of bots
when they are connected to the actual botnet. This allows us to detect
command and control traffic without any prior knowledge of the protocol and
the commands that are used between the bot and the botmaster. Previous
work [83] has proposed techniques to force bots to respond by exposing them
to a barrage of likely IRC commands. While this might trigger a response
quicker than in our case (and even provide the correct keyword), it only
works when protocol and command tokens are known.

Further technical details regarding our solution for recording bot traffic
traces are presented in the Appendix. In this section, we discuss how these
traces are analyzed for the presence of response activity. Once the response
activity is located, we can extract a snippet from the network traffic that
precedes the start of the response and thus, likely contains the corresponding
command. Moreover, we can collect behavior profiles, which describe the
properties of the bot response behavior.

4.2.1 Locating Bot Responses

Once a network trace is collected, the next step is to locate the points
within this trace where the bot executes responses to previously received
commands. We do this by checking for sudden changes in the network traffic
(e.g., a surge in the number of packets, or the fact that many different hosts
are contacted). The assumption is that such changes indicate bot activity
that is launched when a command is received. Of course, this implies that
we can only detect bot responses (and hence, commands) that lead to a
change in network behavior. However, most current bot responses, such as
sending spam mails, executing denial of service attacks, uploading stolen
information, or downloading additional components, fall into this category.

4.2 Analyzing Bot Activity 37

Of course, it is possible that there are changes in the traffic that are not
caused by commands. For example, a scan might end when the list of victims
is exhausted. Our system will also consider the end of the scan as a potential
response, and mark the location appropriately. Fortunately, this is of little
concern, because it is likely that the subsequent analysis will fail to find an
appropriate command for this (inexistent) response. Sometimes, however,
interesting detection models can be generated in such cases. For example,
once a bot has finished scanning, it often sends a status notification to the
botmaster, which can be recognized as an interesting content signature.

Locating bot responses in a network trace can be treated as a change
point detection (CPD) problem. CPD algorithms operate on time series,
that is, on chronologically ordered sequences of data values. Their goal is to
find those points in time at which the data values change abruptly. Change
point detection has been used previously to recognize spreading worms [110]
and denial of service attacks [104]. However, we are not aware of any prior
work that used it in the context of botnet detection.

To be able to apply a CPD algorithm, we first have to convert a traffic
trace into a time series. To this end, the network traffic is partitioned into
consecutive time intervals of equal length (our choice of a concrete interval
length will be discussed later). Then, we compute a numeric description in
form of a vector that represents the network traffic for each interval. For
this, we extract a number of low-level features from the network traffic.
Each feature captures a different aspect of the network traffic and translates
into one element of the vector. Currently, we consider eight network traffic
features :

1 Number of packets

2 Cumulative size of packets (in bytes)

3 Number of different IPs contacted

4 Number of different ports contacted

5 Number of non-ASCII bytes in payload

6 Number of UDP packets

7 Number of HTTP packets (destination port 80)

8 Number of SMTP packets (destination port 25)

Table 4.1: Network features to characterize bot behavior.

Using the features shown in Table 4.1, we can characterize the bot’s
behavior during a given time interval. The characterization of bot activity is
designed in a generic fashion, taking into account general features such as the

38Chapitre 4 Botnet Detection Through Network Level Packet Inspection

number of packets, number of different machines contacted, or the number
of (binary) bytes in network streams. In addition, we include two features
that are derived from our domain knowledge of common bot responses : the
numbers of SMTP and HTTP packets. The reason is that sending spam
mails typically results in a surge of SMTP packets. The HTTP feature was
initially considered as helpful to detect cases in which a bot downloads
additional components via this channel. However, also currently unknown
bot activity could be captured by our features, and it is certainly easy to
add additional ones.

For every time interval, we calculate a vector that stores the absolute
value for each feature. For example, when 50 packets are seen during a certain
time interval, the corresponding element of the vector (number of packets)
is set to 50. We call this vector a traffic profile of the bot for this time
interval. To be able to compare behaviors obtained from different traces,
this vector is normalized with regard to the maximum that was observed for
the corresponding feature. This yields a value between 0 and 1 for all vector
elements.
Change point detection. Once a network trace is converted into a se-
quence of traffic profiles, we apply a CPD algorithm to locate points that
indicate interesting changes in the traffic. For this, we use CUSUM (cumu-
lative sum), a well-known, robust algorithm that is known to deliver good
results for many domains [18]. In principle, CUSUM is an online algorithm
that detects changes as soon as they occur. Since we have the complete net-
work trace (time series) available, we can leverage this fact and transform
CUSUM into an off-line algorithm. This allows CUSUM to “look into the
future” when a decision needs to be made, and thus, yields more precise
results.

The algorithm to identify change points works as follows : First, we
iterate over every time interval t, from the beginning to the end of the time
series. For each interval t, we calculate the average traffic profile P−t for the
previous ε = 5 time intervals and the traffic profile P+

t for the subsequent
ε intervals. Then, we compute the distance d(t) between P−t and P+

t . The
distance between two traffic profiles is defined as the Euclidean distance
between the corresponding vectors. More precisely :

P−t =

ε∑
i=1

Pt−i
ε

P+
t =

ε∑
i=1

Pt+i
ε

d(t) =

√√√√dim∑
1

∣∣P−t − P+
t

∣∣2 (4.1)

The ordered sequence of values d(t) forms the input to the CUSUM

4.2 Analyzing Bot Activity 39

algorithm. Intuitively, a change point is a time interval t for which d(t) is
sufficiently large and a local maximum.

The CUSUM algorithm requires two parameters. One is an upper bound
(local max) for the normal, expected deviation of the present (and fu-
ture) traffic from the past. For each time interval t, CUSUM adds d(t) −
local max to a cumulative sum S. The second parameter determines the
upper bound (cusum max) that S may reach before a change point is
reported. To determine a suitable value for local max, we require that
each individual traffic feature may deviate by at most allowed avg dev =
0.04. Based on this, we can calculate the corresponding value local max =√
dim× allowed avg dev2. For cusum max, we use a value of 0.25. We em-

pirically determined the values for allowed avg dev and cusum max. How-
ever, note that these values are robust and yield good results for a large
variety of traffic produced by hundreds of different malware instances that
belong to different bot types (IRC, HTTP, and P2P bots).

It is possible that the cumulative sum S exceeds cusum max for a num-
ber of consecutive time intervals. To locate the actual change point in this
case, we take that interval for which d(t) is maximal (since it is the time
interval with the greatest discrepancy between past and future traffic com-
position). The precision with which a change point can be located also de-
pends on the length of the time intervals. Shorter intervals increase the
precision. Unfortunately, they also increase the probability that small traffic
variations (e.g., bursts) are misinterpreted as a change point. This could
introduce unwanted noise into the subsequent model generation process. To
find a suitable length for the time intervals, we experimented with a variety
of values between 20 and 100 seconds. We chose an interval of 50 seconds
since it delivered the best results in our tests.

4.2.2 Extracting Model Generation Data

We assume that each change point indicates the time when a bot has
received a command and initiated the corresponding response. Based on this
assumption, we leverage change points to extract two pieces of information
that are needed for the subsequent model generation step.

First, we extract a snippet of the traffic that is likely to contain the
command that is responsible for the observed change. Clearly, the snippet
contains the traffic within the time interval where the change point is lo-
cated. Moreover, we take the first 10 seconds of the following interval. The
reason is that when a change point occurs very close to the boundary be-
tween two intervals, the CPD algorithm might select the wrong one. To

40Chapitre 4 Botnet Detection Through Network Level Packet Inspection

compensate for this potential imprecision, the start of the subsequent traffic
interval is included. Finally, we include the last 30 seconds of the previous
interval, in order to cover typical command response delays. As a result,
each snippet contains 90 seconds of network traffic.

The second piece of information required for creating a detection model
is a description of the bot response behavior. To this end, we extract a
response behavior profile. The behavior profile captures the network-level
activities of the bot once a command is received. This profile is computed
by taking the average of the traffic profile vectors over the complete period
where the bot carries out its response. This period is considered to be the
time from the start of the current response to the next change in behavior.
That is, once the network traffic changes again, we assume that the bot has
finished its task or received another command.

4.3 Generating Detection Models

Given a set of network traffic snippets, together with their associated re-
sponse behavior profiles, we automatically generate suitable detection mod-
els. Recall that detection models should embody the correlation of two
events : The first event is the appearance of a command in the network
traffic. The second event is the appearance of a subsequent response. The
patterns that each of the two events have to match are represented sepa-
rately in our model.

At this point, the set of snippets contains a mix of network traffic that
consists of different commands and some contents that are specific to the
C&C protocol. For subsequent processing performed by the token extraction
algorithm, we require a two-phase clustering : First, we arrange snippets
such that those are put together in a cluster that likely contain the same
command. Afterwards, we group the contents of the snippets in each cluster
such that elements in a group share commonalities that can be leveraged by
the token extraction algorithm (described in Section 4.3.1).

To cluster similar snippets (the first step), we make the following as-
sumption : The network traffic of a bot responding to a certain command
will look similar to the traffic generated by this bot executing the same
command at some later time. On the other hand, the same bot executing a
different command will generate traffic that looks different. That is, there is
a correspondence between the command that is sent and the response that
is invoked. This assumption can be leveraged by clustering the snippets ac-
cording to the behaviors that we believe to be a response. That is, the goal is
to find behavior clusters, where each such cluster represents a certain kind of

4.3 Generating Detection Models 41

bot activity, such as a scanning period, or a denial of service attack, or any
other kind of distinguishable network activity. Once such clusters have been
found, we can expect that most snippets that are part of the same cluster
contain common parts that are either directly responsible for triggering the
bot reaction (the command itself), or at least always have to appear in order
for a bot to react that way.

To identify clusters of related activity, we perform hierarchical cluster-
ing [42] based on the normalized response behavior profiles. The clustering
is stopped when the minimal distance between any two clusters exceeds a
threshold of 0.005. This threshold is empirically chosen such that only closely
related snippets are clustered together. However, when unrelated snippets
end up in the same cluster, the command token extraction algorithm will
search for shared strings that do not exist, possibly producing incorrect re-
sults.

After the clustering step, each cluster holds a set of snippets that likely
contain a command that lead to the same response. In the next step, these
snippets are used to extract the model of the bot command (as described
in Section 4.3.1). The response behaviors associated with the snippets are
then used to model the response activity (as discussed in Section 4.3.2).

4.3.1 Command Model Generation

The objective of the command model generation step is to identify com-
mon elements in a set of network snippets that belong to a particular behav-
ior cluster. These common elements are a set of character strings (tokens)
that appear in the payloads of network connections. In particular, we are
interested in finding tokens that appear frequently in the traffic snippets,
since there is a chance that they encode bot commands.

To extract likely bot commands from network traces, we use a signa-
ture generation technique that produces token sequences. A token sequence
consists of an ordered set of tokens. That is, the tokens have to appear in
a certain order, but there can be arbitrary characters between each token.
Token sequences can be easily encoded as regular expressions (which can
serve directly as input to a network intrusion detection system).

To find common tokens in a set of network snippets, we use the longest
common subsequence algorithm (based on suffix arrays). Unfortunately, the
algorithm outputs a token sequence only if this sequence is present in all
network traces. Thus, we cannot apply the algorithm directly. The reason
is that we cannot require that all traffic snippets contain the same com-
mand. For example, it is possible that different commands lead to a similar

42Chapitre 4 Botnet Detection Through Network Level Packet Inspection

response, and hence, the corresponding snippets end up in the same clus-
ter. Another problem might be due to an incorrectly detected change point,
which can cause an unrelated snippet to become part of a cluster. Therefore,
we require a second clustering refinement step that groups similar network
packet payloads within each behavior cluster (i.e., snippets that lead to sim-
ilar response behavior).

For the second clustering step, we employ a standard complete-link, hier-
archical clustering algorithm to find payloads that are similar. The algorithm
starts by putting each payload into a separate cluster. Then, a matrix is con-
structed that stores the similarity between each pair of clusters. We define
the similarity S between two payloads P1 and P2 that share n common
tokens t1, . . . , tn as :

S =
n∑
i=1

(
len(ti)

len(P1)
+

len(ti)

len(P2)

)
/2 (4.2)

Once the similarity matrix is computed, the algorithm switches to the
merging phase. During this phase, similar clusters are successively merged
into larger clusters. Two clusters are merged only if the payloads in the
clusters have a similarity score greater than a minimum threshold δ. The
value for δ is the average of the similarity scores in the similarity matrix.

The longest common subsequence algorithm is applied to each set of sim-
ilar payloads, generating one token sequence per set. Recall that the second
clustering step is performed individually for each behavior cluster. Thus,
it is possible (and common) that multiple token sequences are associated
with a single behavior cluster. Each of these token sequences represents a
potential command that leads to network activity that the corresponding
response behavior profile captures.

Some of the generated token sequences may be overly generic. That
is, they are likely to match on benign traffic frequently. To improve the
precision of our detection models, these token sequences should be identified
and removed. This can be done in an automated fashion by matching all
generated token sequences against network traffic that is known to be benign.
Every match of a token sequence on the benign traffic is clearly undesirable,
and thus, suggests to discard the token sequence. To identify as many of the
false positive candidates as possible, the benign traffic pool should cover a
broad range of protocols and transmitted content. For our experiments, we
recorded the traffic at the Secure Systems Lab in Vienna for a duration of
one day. The network is well administrated and used exclusively by computer
science personnel that is generally security-aware. It is thus safe to assume

4.3 Generating Detection Models 43

that all traffic is benign. In addition to removing token sequences that match
benign traffic, we remove all token sequences whose longest token is shorter
than five bytes. This is done because token sequences consisting only of very
short tokens will trigger frequently just by chance, e.g., when large amounts
of binary or encrypted data are transmitted.

4.3.2 Response Model Generation

The second part of our detection model consists of a network-based de-
scription of the bot response. This description should capture the kind of
network activity that is expected to be shown by a bot after the command
has been received.

The input to this step is a behavior cluster. Recall that a behavior cluster
is created by grouping similar response behavior profiles and their associ-
ated snippets. We generate the bot response model for a behavior cluster
by computing the element-wise average of the (vectors of the) individual
behavior profiles. The result is another behavior profile vector that cap-
tures the aggregate of the behaviors combined in the respective behavior
cluster. As such, this behavior profile is suitable to model the expected bot
response behavior associated with the bot commands that are described by
the content-based models extracted from the snippets.

In the previous section, we have mentioned that each token sequence
must contain tokens of a minimal length (five bytes) to become part of
a detection model, otherwise it might trigger too frequently on legitimate
network traffic. A similar consideration applies to response models. More
precisely, in some cases, the behavior profile of a bot response can be ex-
ceeded by sending a few HTTP packets or by contacting two other hosts.
Clearly, such traffic is easily produced by regular users (e.g., surfing the web
or using an instant messaging client). Thus, we introduce minimal bounds
for certain network features. In particular, we define a threshold of 1,000 for
the number of UDP packets that are sent within one time interval (50 sec-
onds), 100 for HTTP packets, 10 for SMTP packets, and 20 for the number
of different IPs. When a response profile exceeds none of these thresholds,
the corresponding behavior cluster (and its token sequences) are not used to
generate a detection model. This technique removes a small number of weak
profiles that could potentially result in a large number of false positives.

44Chapitre 4 Botnet Detection Through Network Level Packet Inspection

4.3.3 Mapping Models into Bro Signatures

Bro is a network intrusion detection system designed to passively mon-
itor network activity for suspicious or irregular events [77]. One of its key
features is the integrated policy and signature scripting language, which en-
ables custom rules for intrusion detection. Due to its flexibility, Bro is an
appropriate platform to implement our detection models.

To map a detection model into a Bro specification, we have to encode
the model’s set of token sequences as well as its behavior profile. For each
token sequence, one Bro signature is generated. The signature consists of
the concatenation of the individual tokens of a token sequence, using the
’.*’ regular expression operator. That is, the sequence of the three to-
kens “this”, “is”, and “blue” would be represented as the regular expres-
sion “.*this.*is.*blue.*”. Also, each signature is restricted to match only
on inbound or outbound traffic, depending on the bot traffic it had been
generated from.

When a token sequence matches, the corresponding detection model is
advanced to the second state. At this point, Bro starts to record the traffic
of the host that triggered a signature. This is done for a duration of 50
seconds. Then, the system creates a profile from the recorded traffic, using
the following four features : number of UDP packets, number of HTTP
packets, number of SMTP packets, and number of unique IP addresses.
When the observed traffic exceeds, for at least one of these four features,
the corresponding value stored in the response profile, we consider this a
match. In that case, the host is considered to be bot-infected, and an alert
is raised.

4.4 Evaluation

The purpose of the evaluation is to demonstrate that our system gener-
ates detection models that are capable of detecting bot-infected hosts with
a low false positive rate. In this section, first we will explain how we cap-
tured the bot traffic that we analyzed for extracting our botnet detection
models. Afterwards, we will present our results and compare them with the
most relevant network-based botnet detection system (i.e. BotHunter). We
will conclude the section with showing some example signatures our system
produced.

4.4 Evaluation 45

4.4.1 Capturing Bot Traffic

When recording bot traffic traces, it is difficult to predict the required
amount of time to obtain a representative collection of bot commands and
according responses, since it depends on the degree and kind of activity of
the botmaster during the observation period. In our experiments, we decided
to aim for a capture period of five days. This ensures that we have a good
chance of observing a large variety of different commands. However, most
bots receive (common) commands after a short time, often within minutes.
Thus, we can start to produce a first set of detection models quickly. Then,
we wait for several days to capture less frequent commands as well.

Because of the long runtime of the bots as well as our desire to collect as
many traces as possible, an important goal when designing the execution en-
vironment was to support as many parallel bot instances as possible. We set
up a VMware environment on a server with two Intel Xeon 1.86GHz Quad-
core processors, 8 GB of memory, and 300 GB of Raid5 disk space. Each
VM is running a fully-patched instance of Windows XP with service pack 2,
and is able to run with as little as 64 MB main memory. Using this setup,
we are able to simultaneously run up to 50 virtual machine instances on our
server.

Each of the guest virtual machines is assigned a static, public IP address,
and infected with one bot. All network traffic is captured on the host. Since
there are no other applications that run and generate network traffic, the
bot accounts for all observed network traffic under its host VM’s IP address.
Of course, a bot requires Internet connectivity, so that it can connect to
the command and control infrastructure and receive commands from the
botmaster. However, at the same time, we do not wish the bots that we
are analyzing to engage in serious and destructive malicious activity such
as denial of service attacks. Thus, we have a firewall that rate-limits all
outbound network traffic. After each five days capturing period, all VMs
are deleted and recreated in a clean state, before the next set of bot samples
is executed.

The fact that we use VMware to execute bots could be considered a
potential limitation. It is well-known that VMware is easy to fingerprint,
and we are aware that a bot could detect our system. However, the problem
of VMware detection is not a conceptual limitation of our approach. In future
versions, we could use another virtual machine or run the bots directly on
real hardware.

We collected a set of 416 different (based on MD5 hash) bot samples. We
obtained these malware programs through Anubis, a public malware analy-

46Chapitre 4 Botnet Detection Through Network Level Packet Inspection

sis service [19]. Thus, the samples originate from a wide range of sources and
include bots manually submitted by users, binaries collected with the help
of honeypots and spam traps, as well as contributions from malware anal-
ysis organizations (such as ShadowServer.org). The collection period was
more than 8 months. All bot samples were executed in our traffic capturing
environment, each producing a traffic trace with a length of five days.

4.4.2 Generating Signatures

The bot traffic traces that were collected were divided into families of
bots. This was a manual process, based on the content of the traces. However,
this step could be automated in the future [17,20]. The classification process
yielded a total of 16 different IRC bot families (with 356 traffic traces) and
one HTTP bot family consisting of samples of Kraken (also known as Bobax,
with 60 traffic traces). In addition, we obtained 30 network captures for the
Storm Worm (also known as Peacomm and Zhelatin), which is the most well-
known example of a botnet that uses a peer-to-peer protocol for its C&C
communication [50]. The Storm Worm captures were separately generated
at the University of Mannheim. Thus, in total, there were 446 network traces
available as input for our detection model generation process.

Bot family #DM #TS Bot family #DM #TS

IRC1 4 57 IRC2 9 50
IRC3 2 11 IRC4 4 94
IRC5 1 8 IRC6 1 20
IRC7 8 53 IRC8 3 72
IRC9 3 17 IRC10 2 7
IRC11 11 35 IRC12 7 21
IRC13 2 8 IRC14 5 38
IRC15 3 24 IRC16 1 1
HTTP 2 5 STORM 2 110

TOTAL 70 631

Table 4.2: Number of detection models (DM) and token sequences (TS) for
each bot family.

Using these 446 network traces, our system produced a total of 70 detec-
tion models. A more precise breakdown of this number for the different bot
families is shown in Table 4.2. The table also shows the numbers of token
sequences produced. Recall from Section 4.3.1 that there can be multiple
token sequences associated with a single detection model, but it is sufficient

4.4 Evaluation 47

that a single one triggers to switch the model into the second state (where
it checks for suspicious response activity). As can be seen, our system suc-
ceeded in producing at least one detection model for each bot family. This
is particularly interesting when considering that Storm (Peacomm) uses en-
crypted commands. When examining the Storm signatures, we observed
that our system correctly identified that the byte string “.mpg;size=” is
characteristic for this bot type. That is, even though we cannot precisely
identify a command in the network trace, our algorithm is able to extract
specific artifacts of the bot communication. Also, it should be noted that this
automatically-generated token sequence is very close to the human-specified
signature in Snort [88], a popular network intrusion detection system.

To understand the quality of our automatically-generated detection mod-
els, we compared them to the human-developed bot and C&C signatures
used by Snort. This serves as an initial, qualitative assessment to determine
whether the signatures are “reasonable” and match traffic that a human
analyst would associate with bot activity. In many cases, we found that the
signatures were very similar to the human-created references, which con-
firms that our approach is capable of delivering intuitively correct results.
This was true for signatures for all three bot classes (IRC, HTTP, and P2P)
that we examined. In other cases, we found that our signatures were overly
specific, and contained artifacts of a particular bot that was analyzed (e.g.,
IRC channel names, IP addresses, time stamps). However, it is typically
not problematic to include such specific signatures. While they likely do not
detect any bots, they typically do not contribute to false alarms either.

signature irc1-000-2 {

dst-ip == local_nets

payload /.* PRIVMSG #.* :\.asc .*5 0 .*/

}

#DIFFERENT IPS > 20

Figure 4.1: Automatically-generated Bro signature and corresponding be-
havior profile for an IRC bot.

An example of an automatically-generated detection model for a family
of IRC bots is shown in Figure 4.1. The token sequence consists of three
tokens that need to be identified in an inbound IP packet. The first token
(PRIVMSG #) contains a part of the IRC protocol header for transmitting a
message. This token restricts the signature to match only on IRC traffic.
The second token (:.asc) contains the command that instructs the receiv-

48Chapitre 4 Botnet Detection Through Network Level Packet Inspection

ing bot to begin scanning. The third token (5 0) contains parameters for
the scan command. At first, it might seem that this token makes the signa-
ture overly restrictive. However, very often, the same set of parameters is
used for a command. Thus, this is not a significant restriction. In compar-
ison, a human-created Snort signature matches on “PRIVMSG .*:.*asc”.
The network behavior that needs to be matched in the second detection
phase (once the token sequence has been identified in the traffic) requires
that a host contacts more than 20 distinct IPs within a time period of 50
seconds. This reflects the scan that a bot initiates when receiving the .asc

command. Only if this second condition is fulfilled as well, the host is re-
ported as bot-infected.

For additional examples of HTTP and P2P detection models, as well as
encrypted C&C channels, the reader is referred to the Appendix.

4.4.3 Detection Capability

To obtain a quantitative measure for the capability of our detection
models to identify bot-related traffic, we decided to split our set of 446
network traces into training sets and test sets. Each training set contained
25% of one bot family’s traces, while the corresponding test set contained the
remaining ones. We used the training sets to generate a new set of detection
models. Then, this new set of models was loaded into Bro, and we analyzed
the traffic traces in the test sets. In total, this procedure was performed four
times per family (four-fold cross validation).

Our system reported a bot infection for 88% of the analyzed traces. The
remaining 12% of traces did not trigger even a token sequence match. For
all traces that did lead to at least one token sequence match, the behavior
profile matching phase triggered as well, thus, correctly confirming the bot
infection.

To further put the detection results into context, we decided to perform
a comparison between our system and BotHunter [52]. BotHunter is the cur-
rent state-of-the-art tool for detecting individual bot infections. The system
uses a number of phases that model different aspects of the bot life cycle
(such as spreading, C&C, and malicious activity). To detect bot commands,
BotHunter relies on manually-developed signatures (mainly the database
of Snort and some custom signatures). To determine the performance of
BotHunter, we ran its latest version (v1.0.2, with default settings) on all
446 bot traffic traces. BotHunter identified signs of bot infections for 69% of
the traces. The automatically generated signatures produced by our system
thus outperform BotHunter by nearly 20%.

4.4 Evaluation 49

IP space Avg. pkts/h Days IPs flagged Total alerts Alerts/day

Aachen 2,048 40M 55 0 0 0
Greece 4,096 17M 102 11 60 0.59
BotHunter 4,096 17M 6 60 5,849 974.34
BotHunter w/o Blist 4,096 17M 6 5 60 10.00

Table 4.3: Results from real-world deployments.

4.4.4 Real-World Deployment

To analyze the amount of false positives that our detection models gen-
erate, we extensively evaluated our system in two real-world network envi-
ronments. More precisely, we deployed one Bro sensor with our detection
models in front of the residential homes of RWTH Aachen University and
one sensor at a Greek university network. In Aachen, our system monitored
a densely-populated /21 network (2K IPs) for a duration of 55 days. In
Greece, we monitored a medium-populated /20 network (4K IPs) for 102
days. On average, we observed about 40 million packets per hour in Aachen,
while the number in Greece was about 17 million packets. Thus, our exper-
imental evaluation comprises the analysis of traffic in the order of 94 billion
network packets over a period of over three months at two different sites in
Europe.

The results of our evaluation are summarized in Table 4.3. Our deploy-
ment in Aachen yielded no alerts at all over a duration of two months. There
were 130 token sequence matches, which were all correctly invalidated by the
behavior profile matching phase. This demonstrates the importance of the
second phase of our detection models : Random token sequence matches do
not lead to an alert, because without the expected bot response, the behavior
profile will not be matched.

In the Greek network, our system raised only few alerts, and over a period
of over three months, reported a total of 11 hosts (IPs) as bot-infected. These
11 hosts were responsible for 60 alerts. To verify whether these alerts are
false positives or indications of true bot infections, we performed manual
analysis of the traffic that caused the alarms. In most cases, this led us to
the conclusion that an alarm was a false positive. This is also supported by
the fact that both networks are well-maintained and bot infections are very
rare. However, a definite decision is difficult to make, since we did not have
access to the actual hosts.

Typically, all machines that are reported as bot infected must be manu-
ally inspected. Thus, it is important that the system does not overload the

50Chapitre 4 Botnet Detection Through Network Level Packet Inspection

administrator with incorrect warnings. Considering the average number of
alerts per day that our system reports as well as the number of reported IP
addresses (shown in Table 4.3), we believe that this goal is clearly met.

Again, in order to set our results in relation with the current state-of-the-
art BotHunter, we deployed a BotHunter sensor in the Greek network (we did
not obtain permission to install such a sensor in Aachen). Unfortunately, due
to performance limitations, we could run either BotHunter or our system on
the machine that was provided to us, but not both systems at the same time.
Thus, we deployed BotHunter for a period of only six days. Nevertheless, we
feel that this period is sufficiently long to draw meaningful conclusions.

The comparison with BotHunter is instructive. We can see that an off-
the-shelf BotHunter installation reports almost one thousand alerts per day.
Within a period of only six days, 60 different IP addresses are reported as
bot infected, each of which would require manual inspection. Given this very
high number of false alerts, we investigated the reasons and even attempted
to tweak BotHunter to improve its performance. On closer inspection of
the alerts, we observed that a significant amount of them are due to two
components (phases). These rely on blacklists of known DNS names and
IP addresses that are related to malware domains and C&C servers. In an
attempt to reduce the amount of BotHunter’s false positives, we disabled
these two components. An accordingly modified Bothunter setup produced
only 10 alerts per day, reporting a total of 5 IP addresses as bot infected
during the six day period. While, in contrast to the off-the-shelf setup, the
amount of alerts is now manageable by a human administrator, BotHunter
still does not reach the low number of false alerts our system generates.

Additionally, disabling the two components that are responsible for the
vast majority of false alerts has a significant negative impact on BotHunter’s
detection capabilities. When rerunning the experiments on the bot traces
using the modified version of BotHunter, the number of bots that BotHunter
detects drops to only 39%.

Finally, a large fraction (89%) of the alerts raised by our system in
the real-world deployments were triggered by only three different detection
models. The situation is different for BotHunter : We observed 155 different
matching BotHunter C&C signatures during the evaluation in the Greek
network. This large diversity of matching signatures makes it difficult to
disable a few BotHunter models that are responsible for the bulk of false
positives.

A summary of the results of our evaluation are presented in Table 4.4.
Our automatically generated detection models clearly outperform the state-
of-the-art solution for single bot detection, BotHunter, which relies on sig-

4.4 Evaluation 51

Our detection models BotHunter

Detection rate on bot traces 88% 69%
Incorrectly detected IPs in real-world traffic 11 60

Table 4.4: Comparison of the detection performance of our detection models
vs. BotHunter.

natures hand-crafted by human experts.

4.4.5 Examples And Comparison To Hand-tuned Signatures

In the following, we present examples of automatically-generated detec-
tion models and compare them to human-generated signatures.

signature http-000-2 {

src-ip == local_nets

payload /.*GET \/reg\?u=1.*&v=187&s=.*&su=.*p=0&e=0&o=0&a=0&wr=75

HTTP\/1\.1 \x0d\x0aUser-Agent: Mozilla\/4\.0

\(compatible; MSIE 6\.0; Windows NT 5\.1\)

\x0d\x0aHost: .*/

}

#HTTP PACKETS > 440

Figure 4.2: Automatically-generated Bro signature and corresponding be-
havior profile for Kraken.

An example signature for a family of HTTP bots is shown in Figure 4.2.
In contrast to IRC bots, where the botmaster pushes the command to the
bots, an HTTP bot periodically queries the command & control server and
pulls commands. The token sequence can recognize the characteristic HTTP
request issued by Kraken bots. Since the request to (and not the response
from) the C&C server is searched for, the signature matches on outbound
traffic. The corresponding hand-tuned Snort signature is shown in Figure 4.3.

Both signatures should match on (almost) the same set of bot requests.
Note that our signature contains some additional parts that belong to the
HTTP protocol. Interestingly, these artifacts implicitly encode that the sig-
nature is supposed to match in the context of an HTTP request, a fact that
needs to be explicitly encoded in the Snort signature. Also, our signature
contains more specific information about the typical requests issued by a
bot, e.g., that certain variables are always set to 0 in a request. Moreover,
the behavior profile requires to see at least 440 HTTP packets within the

52Chapitre 4 Botnet Detection Through Network Level Packet Inspection

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS

(msg: "E4[rb] BLEEDING-EDGE BOTNET HTTP Botnet reg";

flow: established;uricontent:"/reg?u="; nocase;

content:"&v="; nocase; within: 15; content:"&s=";

nocase; within: 15; content:"&su="; nocase; within: 15;

content:"&p="; nocase; within: 15; classtype: trojan-activity;

reference:url,www.honeynet.org/papers/bots;

sid:2001899; rev:7;)

Figure 4.3: Hand-tuned Snort signature for a family of HTTP bots.

observation period of 50 seconds.

signature storm_u2-000-12 {

src-ip == local_nets

payload /.*\.mpg;size=.*/

}

#DIFFERENT IPS > 438 || #UDP PACKETS > 7445 || #SMTP PACKETS > 1720

Figure 4.4: Automatically-generated Bro signature and corresponding be-
havior profile for the Storm Worm.

The system was also successful in producing a signature for the Storm
Worm (for this signature, please refer to Figure 4.4). Generating signatures
for this bot is a challenging task. First, the commands are not sent by a
central server as with IRC and HTTP bots, but the communication infras-
tructure relies on a peer-to-peer network. Second, the botnet uses an authen-
tication scheme which is XOR-encrypted and afterwards, all communication
between the peers is compressed with zlib, a data compression library.
Thus, our approach of detecting fixed tokens, which represent commands
in the network stream, seems to fail : Due to encryption and compression,
there are actually no fixed commands we can detect. Nevertheless, our sys-
tem generated a token sequence that is also very close to the human-specified
signature in Snort (see Figure 4.5).

alert udp $HOME_NET 1024:65535 -> $EXTERNAL_NET 1024:65535

(msg:"E7[rb] BOTHUNTER Storm(Peacomm) Peer Coordination Event

[SEARCH RESULT]"; content:"|E311|"; depth:5; rawbytes;

pcre:"/[0-9]+\.mpg\;size\=[0-9]+/x"; rawbytes;

classtype:bad-unknown; sid:9910013; rev:99;)

Figure 4.5: Hand-tuned Snort signature for the Storm Worm.

4.4 Evaluation 53

Our algorithm correctly identifies that the byte string .mpg;size= is
characteristic for this bot type and the Snort signature also uses this spe-
cific token sequence for detecting Storm. Thus, our signature captures the
same properties of the communication phase, and the detection accuracy
is comparable to a human-generated signature. Even if we cannot precisely
identify a command in the network trace, our algorithm is able to extract
characteristic artifacts of the bot communication. Furthermore, this signa-
ture confirms that we do not depend on knowledge about the actual com-
munication protocol of the bot, but can generate signatures for arbitrary
botnets.

The behavior profile reflects the participation in the P2P network, which
comes with a high number of contacted IP addresses as well as with a high
number of UDP packets. Also, it captures the fact that Storm is frequently
used for sending spam mails. The profile requires to observe within a time
period of 50 seconds more than 438 different contacted IPs, or more than
7,445 UDP packets, or more than 1,720 SMTP packets.

signature irc6-003-0 {

dst-ip == local_nets

payload /.*:x\.hub\.x 332 .*##russia## : =PIzNr8s

Xrm9CDF43axRn\+tNXcpoePVswOp3KTBdze\+6iX7Af3qMy34Y7W5pm.*/

}

#DIFFERENT IPS > 27

Figure 4.6: Automatically-generated detection model for an IRC bot using
encrypted communication.

Moreover, we have generated a number of signatures for bots that use
encrypted and obfuscated commands over IRC. An example is shown in
Figure 4.6. Instead of using plain IRC, these botnets send the commands over
IRC in an encrypted form. That is, the botmaster encrypts the command
using a specific key and sends it to the IRC channel. Each bot has the
decryption key embedded in the binary, decrypts the command, and then
executes it.

The token sequence contains botnet specific IRC header artifacts like the
channel name and a part of the user name. Also it contains the byte sequence
’332’, which indicates that an IRC topic message should be matched. The
command itself is not intelligible for a human, however, the behavior profile
which requires the observation of at least 27 different IP addresses points
toward a scan.

54Chapitre 4 Botnet Detection Through Network Level Packet Inspection

Note that encrypted IRC botnets prohibit the use of gray-box testing ap-
proaches to trigger responses (such as those introduced by Rajab et al. [83]).
Since we have no knowledge about the decryption key, it is very unlikely that
we can send valid command tokens. Therefore, it is necessary to monitor the
bot in a controlled environment and observe the actual commands sent by
the botmaster.

4.5 Limitations

Although our current system is able to effectively detect real-world bot-
nets, we note that it has several limitations. In this section, we discuss the
limitations and present possible solutions.

To evade detection, a botmaster may instruct his bots to wait for a
certain amount of time before reacting to the command (i.e., he might launch
a threshold attack [91]). As a result, our analysis could miss the connection
between a command and the appropriate response, both when generating
detection models or once the models are deployed. Many other comparable
systems rely on a time window of some sort, and thus, are vulnerable to this
same attack [51–53, 86]. A possible way of handling this evasion attempt is
to randomize the time window, making it harder for the adversary to select
an appropriate delay. Also, long time delays reduce the usefulness of botnets
and increase the difficulty for the attacker [53,91].

Another limitation of our current implementation is that it uses content-
based analysis to detect command tokens. Thus, the system has problems
with encrypted command channels. This is a limitation that our approach
shares with all previous techniques that aim to detect single bots [26,49,52].
To avoid this problem, the most promising approach is to use network-
level properties to recognize commands. Interestingly, even in the current
version, our system can sometimes identify artifacts that are present in en-
crypted traffic (as presented in the Appendix). The best example is Storm,
for which our system extracts a “command” token that is characteristic
for this bot. Also, our system is resistant to simple obfuscation schemes in
which a human-readable command is mapped to some unintelligible string.
In fact, we have generated token sequences for IRC bot families that match
obfuscated commands. This is different from previous approaches, such as
BotHunter [52], that deploy manually-developed signatures and thus, can
be thwarted by bots that use non-standard commands.

Chapitre 5

Botnet Detection Through
Passive DNS Analysis

The domain name service (DNS) plays an important role in the operation
of the Internet, providing a two-way mapping between domain names and
their numerical identifiers. Given its fundamental role, it is not surprising
that a wide variety of malicious activities involve the domain name service
in one way or another. For example, bots resolve DNS names to locate their
command and control servers, and spam mails contain URLs that link to
domains that resolve to scam servers. Thus, it seems beneficial to monitor
the use of the DNS system for signs that indicate that a certain name is
used as part of a malicious operation.

In this chapter, we introduce EXPOSURE, a system that employs large-
scale, passive DNS analysis techniques to detect domains that are involved
in malicious activity. We use 15 features that we extract from the DNS
traffic that allow us to characterize different properties of DNS names and
the ways that they are queried.

Our experiments with a large, real-world data set consisting of 100 billion
DNS requests, and a real-life deployment for two weeks in an ISP show that
our approach is scalable and that we are able to automatically identify un-
known malicious domains that are misused in a variety of malicious activity
(such as for botnet command and control, spamming, and phishing).

55

56 Chapitre 5 Botnet Detection Through Passive DNS Analysis

5.1 Overview

The goal of EXPOSURE is to detect malicious domains that are used
as part of malicious operations on the Internet. To this end, we perform
a passive analysis of the DNS traffic that we have at our disposal. Since
the traffic we monitor is generated by real users, we assume that some of
these users are infected with malicious content, and that some malware com-
ponents will be running on their systems. These components are likely to
contact the domains that are found to be malicious by various sources such
as public malware domain lists and spam blacklists. Hence, by studying the
DNS behavior of known malicious and benign domains, our goal was to iden-
tify distinguishable generic features that are able to define the maliciousness
of a given domain.

5.1.1 Extracting DNS Features for Detection

Clearly, to be able to identify DNS features that allow us to distinguish
between benign and malicious domains, and that allow a classifier to work
well in practice, large amounts of training data are required. As the offline
dataset, we recorded the recursive DNS (i.e., RDNS) traffic from Security
Information Exchange (SIE) [7]). We performed offline analysis on this data
and used it to determine DNS features that can be used to distinguish
malicious DNS features from benign ones. The part of the RDNS traffic we
used as initial input to our system consisted of the DNS answers returned
from the authoritative DNS servers to the RDNS servers. An RDNS answer
consists of the name of the domain queried, the time the query is issued, the
duration the answer is required to be cached (i.e., TTL) and the list of IP
addresses that are associated with the queried domain. Note that the RDNS
servers do not share the information of the DNS query source (i.e. the IP
address of the user that issues the query) due to privacy concerns.

By studying large amounts of DNS data, we defined 15 different features
that we use in the detection of malicious domains. 6 of these features have
been used in previous research(e.g., [76, 78, 100]), in particular in detect-
ing malicious Fast-Flux services or in classifying malicious URLs [68]. The
features that we use in the detection and our rationale for selecting these
features are explained in detail in Section 6.2.

5.1 Overview 57

Figure 5.1: Overview of EXPOSURE

5.1.2 Architecture of EXPOSURE

Figure 5.1 gives an overview of the system architecture of the EXPO-
SURE. The system consists of five main components :

The first component, the Data Collector, records the DNS traffic pro-
duced by the network that is being monitored.

The second component is the Feature Attribution component. This com-
ponent is responsible for attributing the domains that are recorded to the
database with the features that we are looking for in the DNS traffic.

The third component, the Malicious and Benign Domains Collector,
works independently of, and in parallel to the Data Collector Module. It
collects domains that are known to be benign or malicious from various
sources. Our benign domains sets are composed of information acquired
from Alexa [4] and a number of servers that provide detailed WHOIS [2]
data. In contrast, the malicious domain set is constructed from domains
that have been reported to have been involved in malicious activities such
as phishing, spamming, and botnet infections by external sources such as
malwaredomains.com, Phishtank ([79]), and malware analyzers such as
Anubis [21]). Note that these lists are constantly updated, and become even
more comprehensive over time. The output of the Malicious and Benign
Domains Collector is used to label the output of the Feature Attribution
component.

Once the data is labeled, the labeled set is fed into the fourth component :
The Learning Module. This module trains the labeled set to build malicious
domain detection models. Consequently, these models, and the unlabeled
domains, become an input to the fifth component : The Classifier.

The Classifier component takes decisions according to the detection mod-
els produced by the Learning component so that the unlabeled domains are
grouped into two classes : domains that are malicious, and those that are

58 Chapitre 5 Botnet Detection Through Passive DNS Analysis

benign.

5.1.3 Real-Time Deployment

The deployment phase of EXPOSURE consists of two steps. In the first
step, the features that we are interested in are monitored and the classifier is
trained based on a set of domains that are known to be benign or malicious.
In a second step, after the classifier has been trained, the detection starts
and domains that are determined to be suspicious are reported. Note that
after an initial period of seven days of training 1, the classifier is retrained
every day. Hence, EXPOSURE can constantly keep up with the behavior
of new malware.

5.2 Feature Selection

To determine the DNS features that are indicative of malicious behav-
ior, we tracked and studied the DNS usage of several thousand well-known
benign and malicious domains for a period of several months (we obtained
these domains from the sources described in Section 5.3). After this analysis
period, we identified 15 features that are able to characterize malicious DNS
usage. Table5.1 gives an overview of the components of the DNS requests
that we analyzed (i.e., feature sets) and the features that we identified. In
the following sections, we describe these features and explain why we believe
that they may be indicative of malicious behavior.

5.2.1 Time-Based Features

The first component of a DNS record that we analyze is the time at which
the request is made. Clearly, the time of an individual request is not very
useful by itself. However, when we analyze many requests to a particular
domain over time, patterns indicative of malicious behavior may emerge. In
particular, we examine the changes of the volume (i.e., number) of requests
for a domain. The time-based features that we use in our analysis are novel
and have not been studied before in previous approaches.

One of our insights is that malicious domains will often show a sudden
increase followed by a sudden decrease in the number of requests. This is
because malicious services often use a technique called domain flux [93]

1. We have experimentally determined the optimal training period to be seven days
(see Section 5.3.2.)

5.2 Feature Selection 59

Feature Set # Feature Name

1 Short life
Time-Based 2 Daily similarity

Features 3 Repeating patterns
4 Access ratio

5 Number of distinct IP addresses
DNS Answer-Based 6 Number of distinct countries

Features 7 Number of domains share the IP with
8 Reverse DNS query results

9 Average TTL
TTL 10 Standard Deviation of TTL

Value-Based 11 Number of distinct TTL values
Features 12 Number of TTL change

13 Percentage usage of specific TTL ranges

Domain Name- 14 % of numerical characters
Based Features 15 % of the length of the LMS

Table 5.1: Features.(LMS = Longest Meaningful Substring)

to make their infrastructures more robust and flexible against take downs.
Each bot may use a domain generation algorithm (DGA) to compute a list
of domains to be used as the command and control server or the dropzone.
Obviously, all domains that are generated by a DGA have a short life span
since they are used only for a limited duration. Examples of malware that
make use of such DGAs are Kraken/Bobax [12], the Srizbi bots [107] and the
Conficker worm [80]. Similarly, malicious domains that have recently been
registered and are involved in scam campaigns will show an abrupt increase
in the number of requests as more and more victims access the site in a short
period of time.

To analyze the changes in the number of requests for a domain during
a given period of time, we divide this period into fixed length intervals.
Then, for each interval, we can count the number of DNS queries that are
issued for the domain. In other words, the collection of DNS queries that
target the domain under analysis can be converted into time series (i.e.,
chronologically ordered sequences of data values). Hence, we can leverage
off-the-shelf algorithms [18]. We perform our time series analysis on two
different scopes : First, we analyze the time series globally. That is, the
start and end times of the time series are chosen to be the same as the

60 Chapitre 5 Botnet Detection Through Passive DNS Analysis

start and the end times of the entire monitoring period. Second, we apply
local scope time series analysis where the start times and end times are the
first and last time the domain is queried during the analysis interval. While
the global scope analysis is used for detecting domains that either have a
short life or have changed their behavior for a short duration, the local scope
analysis focuses on how domains behave during their life time.

A domain is defined to be a short-lived domain (i.e., Feature 1) if it is
queried only between time t0 and t1, and if this duration is comparably
short (e.g., less than several days). A domain that suddenly appears in the
global scope time series and disappears after a short period of activity has a
fairly abnormal behavior for being classified as a benign domain. Normally,
if a domain is benign, even if it is not very popular, our thesis is that the
number of queries it receives should exceed the threshold at least several
times during the monitoring period (i.e., two and a half months in our
experiments). Therefore, its time series analysis will not result in an abrupt
increase followed by a decrease as the time series produced by a short-lived
domain does.

The main idea behind performing local scope analysis is to zoom into
the life time of a domain and study its behavioral characteristics. We mainly
focus on three features (i.e., Features 2, 3, 4) that may distinguish malicious
and benign behavior either by themselves or when used in conjunction with
other features. All the features involve finding similar patterns in the time
series of a domain. Feature 2 checks if there are domains that show daily
similarities in their request count change over time (i.e., an increase or de-
crease of the request count at the same intervals everyday). Feature 3 aims
to detect regularly repeating patterns. Finally, Feature 4 checks whether the
domain is generally in an “idle” state (i.e., the domain is not queried) or is
accessed continuously (i.e., a popular domain).

The problem of detecting both short-lived domains and domains that
have regularly repeating patterns can be treated as a change point detec-
tion (CPD) problem. CPD algorithms operate on time series and their goal
is to find those points in time at which the data values change abruptly.
The CPD algorithm that we implemented [18] outputs the points in time
the change is detected and the average behavior for each duration. In the
following section, we explain how we interpret the output of the CPD to
detect the short-lived domains and the domains with regularly repeating
patterns.

5.2 Feature Selection 61

Detecting abrupt changes

As CPD algorithms require the input to be in a time series format,
for each domain, we prepare a time series representation of their request
count change over time. Our interval length for each sampling point is 3600
seconds (i.e., one hour). We chose 3600 seconds as the interval length after
experimenting with different values (e.g., 150, 300 etc.).

Before feeding the input directly into the CPD algorithm, we normalize
the data with respect to the local maximum. Then, we make use of the well-
known CUSUM (cumulative sum) robust CPD algorithm that is known to
deliver good results for many application areas [18]. CUSUM is an online
algorithm that detects changes as soon as they occur. However, since we
record the data to a database before analyzing it, our offline version of the
CUSUM algorithm yields even more precise results (i.e., the algorithm knows
in advance how the “future” traffic will look like as we have already recorded
it).

Our algorithm to identify change points works as follows : First, we
iterate over every time interval t = 3600 seconds, from the beginning to the
end of the time series. For each interval t, we calculate the average request
count P−t for the previous ε = 8 time intervals and the traffic profile P+

t for
the subsequent ε intervals. We chose ε to be 8 hours based on the insight
that a typical day consists of three important periods : working time, evening
and night. Second, we compute the distance d(t) between P−t and P+

t . More
precisely :

P−t =
ε∑
i=1

Pt−i
ε

P+
t =

ε∑
i=1

Pt+i
ε

d(t) =
∣∣P−t − P+

t

∣∣ (5.1)

The ordered sequence of values d(t) forms the input to the CUSUM
algorithm. Intuitively, a change point is a time interval t for which d(t) is
sufficiently large and is a local maximum.

The CUSUM algorithm requires two parameters. The first parameter
is an upper bound (local max) for the normal, expected deviation of the
present (and future) traffic from the past. For each time interval t, CUSUM
adds d(t) − local max to a cumulative sum S. The second parameter de-
termines the upper bound (cusum max) that S may reach before a change
point is reported. To determine a suitable value for local max, we require
that each individual traffic feature may deviate by at most allowed avg dev =
0.1. Based on this, we can calculate the corresponding value local max =√
dim× allowed avg dev2. Since in our application, there is only one di-

mension, the local max = allowed avg dev. For cusum max, we use a

62 Chapitre 5 Botnet Detection Through Passive DNS Analysis

value of 0.4. Note that we determined the values for allowed avg dev and
cusum max based on empirical experiments and measurements.

The CPD algorithm outputs the average request count for each period
a change is detected and the time that the change occurs. Since we employ
the CPD algorithm for two purposes (namely to detect short-lived domains
and domains that have repeating patterns), we run it twice. We first use the
global scope time series and then the local scope time series as input. When
the CPD is run with global time series, it can detect short-lived domains.
Short-lived domains tend to have two sudden behavioral changes, whereas
domains that are continuously queried have multiple change points. On the
other hand, to detect the domains with repeating patterns on their local
scope time series, we associate the number of the changes and the standard
deviation of the durations of the detected changes.

Detecting similar daily behavior

A typical technique to measure the level of similarity of two time series
is to calculate the distance between them [57]. To determine whether a
domain produces similar time series every day, we calculate the Euclidean
Distance between every pair of time series of a domain. Euclidean Distance is
a popular distance measuring algorithm that is often used in data mining [22,
101,113].

We first need to break the local time series produced for each domain
into daily time series pieces. Each day starts at 00 :00 am and finishes at
23 :59 pm. Assuming that a domain has been queried n days during our
analysis period, and di,j is the Euclidean Distance between ith day and jth
day, the final distance D is calculated as the average of (n− 1) ∗ (n− 2)/2
different distance pairs, as shown in the following formula :

D = (

n∑
i=1

n∑
j=i+1

di,j)/((n− 1) ∗ (n− 2)/2) (5.2)

Using the Euclidean Distance, the results are sensitive to small variations
in the measurements (e.g., 1000 requests between 9 and 10 am compared to
1002 requests between the same time period may fail to produce a correct
similarity result although the difference is not significant). A common tech-
nique to increase the correctness of the results is to apply preprocessing
algorithms to the time series before calculating the Euclidean Distance [34].
In our preprocessing step, we transform the time series T = t1, t2, ..., tn,

5.2 Feature Selection 63

where n is number of intervals, into two phases. In the first phase, we per-
form offset translation by subtracting the mean of the series from each value
(i.e., T = T − mean(T)). In the second phase, we scale the amplitude by
dividing each value by the variance (i.e., T = (T −mean(T))/std(T)) [34].

5.2.2 DNS Answer-Based Features

The DNS answer that is returned by the server for a domain generally
consists of several DNS A records (i.e., mappings from the host to IP ad-
dresses). Of course, a domain name can map to multiple IP addresses. In
such cases, the DNS server cycles through the different IP addresses in a
round robin fashion [1] and returns a different IP mapping each time. This
technique is useful in practice for load balancing.

Malicious domains typically resolve to compromised computers that re-
side in different Autonomous Systems (ASNs), countries, and regions. The
attackers are opportunistic, and do not usually target specific countries or
IP ranges. Whenever a computer is compromised, it is added as an asset to
the collection. Also, attackers typically use domains that map to multiple
IP addresses, and IPs might be shared across different domains.

With this insight, we extracted four features from the DNS answer (i.e.,
feature set F2). The first feature is the number of different IP addresses that
are resolved for a given domain during the experiment window (Feature
5). The second feature is the number of different countries that these IP
addresses are located in (Feature 6). The third feature is the reverse DNS
query results of the returned IP addresses (Feature 7). The fourth feature
(Feature 8) is the number of distinct domains that share the IP addresses
that resolve to the given domain. Note that Features 5, 6, and 7 have been
used in previous work (e.g., [?, 14, 78,100]).

Although uncommon, benign domains may also share the same IP ad-
dress with many other domains. For example, during our experiments, we
saw that one of the IP addresses that belongs to networksolutions.com is
shared by 10, 837 distinct domains. This behavior is sometimes exhibited by
web hosting providers and shared hosting services.

To determine if an IP is used by a shared hosting service, we query
Google with the reverse DNS answer of the given IP address. Legitimate
web hosting providers and shared hosting services are typically ranked in
the top 3 query answers that Google provides. This helps us reduce false
positives.

64 Chapitre 5 Botnet Detection Through Passive DNS Analysis

5.2.3 TTL Value-Based Features

Every DNS record has a Time To Live (TTL) that specifies how long the
corresponding response for a domain should be cached. It is recommended
that the TTL is set to between 1 and 5 days so that both the DNS clients
and the name servers can benefit from the effects of DNS caching [3].

Systems that aim for high availability often set the TTL values of host
names to lower values and use Round-Robin DNS. That is, even if one of
the IP addresses is not reachable at a given point in time, since the TTL
value expires quickly, another IP address can be provided. A representative
example for such systems are Content Delivery Networks (CDNs).

Unfortunately, setting lower TTL values and using Round-Robin DNS
is useful for the attackers as well. Using this approach, malicious systems
achieve higher availability and become more resistant against DNS blacklist-
ing (DNSBL) [5] and take downs. For example, Fast-Flux Service Networks
(FFSN) [100] are malicious systems that abuse Round-Robin DNS.

Most techniques to detect FFSNs are based on analyzing abnormal usage
patterns of Round-Robin DNS. More precisely, to label a domain as being a
member of an FFSN, previous research [78,100] expects to observe a low TTL
usage combined with a constantly growing DNS answers list (i.e., distinct
IP addresses).

We extracted five features from the TTL value included in the DNS
answers (see Table 5.1). The average TTL usage feature (Feature 9) was
introduced in previous research [78]. The rest of the features (i.e., Features
10, 11, 12, 13) have not been used before in previous work.

During our experiments with large volumes of DNS traffic, we observed
that frequent TTL changes are exhibited by malicious networks that have
a sophisticated infrastructure. In such networks, some of the bots are se-
lected to be proxies behind which other services (e.g., command and control
servers) can be hidden. The managers of such malicious networks assign dif-
ferent levels of priorities to the proxy bots by setting lower TTL values to
the hosts that are less reliable. For example, there is a good chance that a
proxy running on an ADSL line would be less reliable than a proxy running
on a server running in a university environment.

To determine the validity of our assumption about this type of TTL be-
havior, we tracked the Conficker domains for one week. We observed that
different TTL values were returned for the IPs associated with the Conficker
domains. While the static IP addresses have higher TTL values, the dy-
namic IP addresses, that are most probably assigned to home computers by
Internet service providers, have lower TTL values (e.g., adsl2123-goland.net

5.2 Feature Selection 65

would have a lower TTL value than a compromised host with the domain
name workstation.someuniversity.edu).

We observed that the number of TTL changes and the total number of
different TTL values tend to be significantly higher in malicious domains
than in benign domains. Also, malicious domains exhibit more scattered
usage of TTL values. We saw that the percentage for the usage of some
specific ranges of TTL values is often indicative of malicious behavior. Based
on our empirical measurements and experimentations, the TTL ranges that
we investigate are [0, 1), [1, 10), [10, 100), [100, 300), [300, 900), [900, inf).
Malicious domains tend to set their TTL values to lower values compared
to benign domains. In particular, the range of [0, 100) exhibits a significant
peak for malicious domains.

5.2.4 Domain Name-Based Features

Benign services usually try to choose domain names that can be easily
remembered by users. For example, a bank called “The Iceland Bank” might
have a domain name such as “www.icelandbank.com”. In contrast, attackers
are not concerned that their domain names are easy to remember. This is
particularly true for domain names that are generated by a DGA.

The main purpose of DNS is to provide human-readable names to users
as they often cannot memorize IP addresses of servers. Therefore, benign
Internet services tend to choose easy-to-remember domain names. In con-
trast, having an easy-to-remember domain name is not a concern for people
who perform malicious activity. This is particularly true in cases where the
domain names are generated by a DGA. To detect such domains, we ex-
tracted two features from the domain name itself : First, the ratio of the
numerical characters to the length of the domain name (Feature 14), and
second, the ratio of the length of the longest meaningful substring (i.e., a
word in a dictionary) to the length of the domain name (Feature 15).

Note that there exist popular domains such as yahoo.com and google.com
that do not necessarily include “meaningful” words. In order to gain a higher
confidence about a domain, we query Google and check to see if it returns
a hit-count for a domain that is above a pre-defined threshold.

When analyzing a domain, we only focus on the second level domains
(i.e., SLD). For example, for x.y.server.com, we would take server.com. To
detect domain names that have been possibly automatically generated, we
calculate the percentage of numerical characters (Feature 14) and the ratio
of the length of the longest meaningful substring to the total length of the
SLD (Feature 15). To extract all possible meaningful substrings from an

66 Chapitre 5 Botnet Detection Through Passive DNS Analysis

SLD, we check the English dictionary.

As some benign domains in China and Russia consist of combinations of
alphabetical and numerical characters, Feature 15 produces a high positive
rate. However, when Features 14 and 15 are combined, the false positives
decrease. Also, for domains that are determined to be suspicious, we check
how many times it is listed by Google. The reasoning here is that sites that
are popular and benign will have higher hit counts.

5.3 Building Detection Models

5.3.1 Constructing the Training Set

The quality of the results produced by a machine learning algorithm
strongly depends on the quality of the training set [99]. Our goal is to develop
a classifier that is able to label domains as being benign, or malicious. Thus,
we require a training set that contains a representative sample of benign
and malicious domains. To this end, we studied several thousand malicious
and benign domains, and used them for constructing our training set.

We collected malicious domains from multiple sources. Specifically, we
obtained malicious domains from malwaredomains.com [45], the Zeus Block
List [66], Malware Domains List [65], Anubis [21] reports, a list of do-
mains that are extracted from suspected to be malicious URLs analyzed
by Wepawet [37], and Phishtank [79]. We also used the list of domains that
are generated by the DGAs of the Conficker [80] and Mebroot [93] (i.e.,
Torpig) botnets. These malicious domain lists represent a wide variety of
malicious activity, including botnet command and control servers, drive-by
download sites, phishing pages, and scam sites that can be found in spam
mails.

Note that we are conservative when constructing the malicious domain
list. That is, we apply a preliminary check before labeling a domain as being
malicious and using it in our training set. Malicious domain sources such
as Wepawet and Phishtank operate on URLs that have been submitted by
users. Hence, while most URLs in these repositories are malicious, not all of
them are. Also, while some third level domains (3LD) of a domain extracted
from a URL may behave maliciously, the rest may not (e.g., a.x.com might
be malicious, while x.com might be benign).

Assuming that a domain that is suspected to be malicious either by
Wepawet or Phishtank has ttotal possible 3LDs (number of distinct 3LD
recorded by EXPOSURE during the analysis period) and tmal 3LDs are
thought to be malicious, we choose the domain to be representative for a

5.3 Building Detection Models 67

malicious behavior only if tmal/ttotal is greater than 0.75 (i.e., only if 75%
of the 3LDs have been reported to be involved in malicious activities). The
initial malicious domain list that we generated consists of 3500 domains.

As discussed in detail in Section 5.4.1, we assume that all of the Alexa
top 1000 domains and domains that we have observed on our sensors that
are older than one year are benign. Therefore, we construct our initial benign
domain list using these domains. However, to ensure that our benign domain
list does not include any domain that might have been involved in malicious
activity, we perform a two-step verification process.

First, we compare all the domains in the benign domain list with the
malicious domain list and with the tools that test domains for their ma-
liciousness, specifically with McAffee Site Advisor and Norton Safe Web.
Second, we also cross-check the benign domain with the list provided by
the Open Directory Project (ODP – a large, human-edited directory of the
web constructed and maintained by volunteer editors). Our initial benign
domain list consists of 3000 domains.

5.3.2 The Initial Period of Training

By experimenting with different values, we determined that the optimal
period of initial training for our system was seven days. This period is mainly
required for us to be able to use the time-based features that we described
in Section 6.2. During this time, we can observe the time-based behavior
of the domains that we monitor and can accurately take decisions on their
maliciousness.

After the initial one week of training, we are able to retrain the system
every day, hence, increasing detection accuracy.

5.3.3 The Classifier

Our classifier is built as a J48 decision tree algorithm (J48). J48 [106] is
an implementation of the C4.5 algorithm [82] that is designed for generat-
ing either pruned or unpruned C4.5 decision trees. It constructs a decision
tree from a set of labeled training set by using the concept of information
entropy (i.e., the attribute values of the training set).

The J48 algorithm leverages the fact that the tree can be split into
smaller subtrees with the information obtained from the attribute values.
Whenever the algorithm encounters a set of items that can clearly be sepa-
rated from the other class by a specific attribute, it branches out a new leaf
according to the value of the attribute. Each time a decision needs to be

68 Chapitre 5 Botnet Detection Through Passive DNS Analysis

taken, the attribute with the highest normalized gain is chosen. Among all
possible values of the attributes, if there is any value for which there is no
ambiguity, the branch is terminated and the appropriate label is assigned to
it. The splitting procedure stops when all instances in all subsets belong to
the same class.

We use a decision tree classifier because these algorithms have shown
to be efficient while producing accurate results [82]. As the decision tree
classifier builds a tree during the training phase, the features that are best
in separating the malicious and the benign domains can be clearly seen.

 0

 5

 10

 15

 20

F1 F2 F3 F4 F12 F13 F14 F123 F134 F124 Fall

E
rr

or
 r

at
e(

%
)

Feature Sets

Error rate / Feature Sets

Full-Set
Cross-Validation
Percentage-Split

Figure 5.2: Percentage of miss-classified instances

Recall that we divided the 15 features that we use into four differ-
ent classes according to the type of information used : Features that are
extracted from the time series analysis (F1, Time-Based Features), the
DNS answer analysis (F2, DNS Answer-Based Features), the TTL value
analysis (F3, TTL Value-Based Features), and the analysis of the domain
name (F4, Domain Name-Based Features).

To find the combination of features that produce the minimum error
rate, we trained classifiers using different combinations of feature sets and
compared the results. Figure 5.2 shows the percentage of the number of
miss-classified items with three different training schemes : 10-fold cross
validation, 66% percentage split, and training on the whole training set.
Note that the smallest error rates were produced by F1. Therefore, while

5.4 Evaluation 69

experimenting with different combinations of feature sets, we excluded the
combinations that do not include F1 (i.e., F23, F24, F34 and F234). The
highest error rates are produced by F3 and F4. However, when all features
are combined (i.e., F-all), the minimum error rate is produced. Hence, we
use the combination of all the features in our system.

5.4 Evaluation

5.4.1 DNS Data Collection for Offline Experiments

Our sensors for the SIE DNS feeds receive a large volume of traffic (1
million queries per minute on average). Therefore, during our offline exper-
imental period of two and a half months, we monitored approximately 100
billion DNS queries. Unfortunately, tracking, recording and post-processing
this volume of traffic without applying any filtering was not feasible in prac-
tice.

Hence, we reduced the volume of traffic that we wished to analyze to
a more manageable size by using two filtering policies. The goal of these
policies was to eliminate as many queries as possible that were not relevant
for us. However, we also had to make sure that we did not miss relevant,
malicious domains.

The first policy we used whitelisted popular, well-known domains that
were very unlikely to be malicious. To create this whitelist, we used the
Alexa Top 1000 Global Sites [4] list. Our premise was that the most popular
1000 websites on the Internet would not likely be associated with domains
that were involved in malicious activity. These sites typically attract many
users, and are well-maintained and monitored. Hence, a malicious popular
domain cannot hide its malicious activities for long. Therefore, we did not
record the queries targeting the domains in this whitelist. The domains in
the whitelist received 20 billion queries during two and a half months. By
applying this first filtering policy, we were able to reduce 20% of the traffic
we were observing.

The second filtering policy targeted domains that were older than one
year. The reasoning behind this policy was that many malicious domains
are disclosed after a short period of activity, and are blacklisted. As a
result, some miscreants have resorted to using domain generation algo-
rithms (DGA) to make it more difficult for the authorities to blacklist their
domains. For example, well-known botnets such as Mebroot [93] and Con-
ficker [80] deploy such algorithms for connecting to their command and
control servers. Typically, the domains that are generated by DGAs and

70 Chapitre 5 Botnet Detection Through Passive DNS Analysis

registered by the attackers are new domains that are at most several months
old. In our data set, we found 45.000 domains that were older than one year.
These domains received 40 billion queries. Hence, the second filtering policy
reduced 50% of the remaining traffic, and made it manageable in practice.

Clearly, filtering out domains that do not satisfy our age requirements
could mean that we may miss malicious domains for the training that are
older than one year. However, our premise is that if a domain is older than
one year and has not been detected by any malware analysis tool, it is
not likely that the domain serves malicious activity. To verify the correct-
ness of our assumption, we checked if we had filtered out any domains that
were suspected to be malicious by malware analysis tools such as Anubis
and Wepawet. Furthermore, we also queried reports produced by Alexa [4],
McAfee Site Advisor [8], Google Safe Browsing [6] and Norton Safe Web [9].
40 out of the 45, 000 filtered out domains (i.e., only 0.09%) were reported by
these external sources to be “risky” or “shady”. We therefore believe that
our filtering policy did not miss a significant number of malicious domains
because of the pre-filtering we performed during the offline experiments.

5.4.2 Evaluation of the Classifier

To evaluate the accuracy of the J48 DecisionTree Classifier, we classified
our training set with 10-fold cross-validation and percentage split, where
66% of the training set is used for training, and the rest is used to check
the correctness. Table 5.3 reports the results of the experiment. The Area
Under the ROC curve [28] for the classifier is high for both methods.

AUC Detection Rate False Positives

Full data 0.999 99.5% 0.3%

10-folds Cross-Validation 0.987 98.5% 0.9%

66% Percentage Split 0.987 98.4% 1.1%

Figure 5.3: Classification accuracy. (AUC=Area Under the ROC Curve)

Note that the false positive rate is low (i.e., around 1% for both methods).
After investigating the reasons for the miss-classifications, we saw that the
classifier had identified 8 benign domains as being malicious. The reason
for the misclassification was that these domains were only requested a small
number of times during the two and half months of experiments (i.e., making
the classifier conclude that they were short-lived) and because they exhibited

5.4 Evaluation 71

TTL behavior that looked anomalous (e.g., possibly because there was a
configuration error, or because the site maintainers were experimenting to
determine the optimal TTL value).

5.4.3 Experiments with the Recorded Data Set

During the two and a half month offline experimental period, we recorded
and then analyzed 4.8 million distinct domain names that were queried by
real Internet users. Note that a domain that only receives a few requests can-
not produce a time series that can then be used for the time-based features
we are analyzing. This is because a time series analysis produces accurate
results only when the sampling count is high enough. In order to find the
threshold for the minimum number of queries required for each domain, we
trained our known malicious and benign domain list with differing threshold
values. Figure 5.4 shows the detection and false positive rates for the thresh-
old values we tested. Based on these empirical results, we set the threshold
to 20 queries, and excluded the 4.5 million domains from our experiments
that received less than 20 requests in the two and a half months duration of
our monitoring.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

T
P

/F
P

 r
at

e

Threshold

Minimum Requests Targetting a Domain

FalsePositives
TruePositives

Figure 5.4: The effect of the minimum request count on detection rate

For further experiments, we then focused on the remaining 300,000 do-
mains that were queried more than 20 times. EXPOSURE decided that
17,686 out of the 300,000 domains were malicious (5.9%).

72 Chapitre 5 Botnet Detection Through Passive DNS Analysis

Evaluation of the Detection Rate

The percentage split and cross-validation evaluations on the training set
show that the detection rate of our classifier is around 98%. Since our goal is
to be able to detect unknown malicious domains that have not been reported
by any malicious domain analyzer, our evaluation of the classifier needs to
show that we are able to detect malicious domains that do not exist in our
training set. To this end, we used malwareurls.com, a malware domains list
that we had not used as a source for the initial malicious domains training
set.

During the period we performed our experiments, malwareurls.com re-
ported 569 domains as being malicious. Out of these 569 domains, 216 do-
mains were queried by the infected machines in the networks that we were
monitoring. The remaining 363 malware domains were not requested. There-
fore, in our detection rate evaluation, we take into account only the 216
requested domains.

5 of the 216 domains were queried less than 20 times during entire mon-
itoring period. Since we filter out domains that are requested less than 20
times, we only fed the remaining 211 domains to our system. In the ex-
periments, all of these domains (that were previously unknown to us) were
automatically detected as being malicious by EXPOSURE. Hence, the detec-
tion rate we observed was similar to the detection rate (i.e. 98%) estimated
by the percentage split and cross-validation evaluations on the training set.

Obviously, our approach is not comprehensive and cannot detect all ma-
licious domains on the Internet. However, its ability to detect a high number
of unknown malicious domains from DNS traffic is a significant improvement
over previous work.

Evaluation of the False Positives

As the domains in our data set are not labeled, determining the real false
positive rate is a challenge. Unfortunately, manually checking all 17,686 do-
mains that were identified as being malicious is not feasible. This is because
it is difficult, in practice, to determine with certainty (in a limited amount
of time) that a domain that is engaged in suspicious behavior is indeed
malicious. Nevertheless, we conducted three experiments to make estimates
about the false positives of our detection.

In order to obtain more information about the domains in our list, we
first tried to automatically categorize them into different groups. For each
domain, we started Google searches, checked well-known spamlists, and fed

5.4 Evaluation 73

the domains into Norton Safe Web (i.e., Symantec provided us internal access
to the information they were collecting about web pages). We divided the do-
mains into ten groups : spam domains (Spam), black-listed domains (Black-
List), malicious Fast-Flux domains (FastFlux), domains that are queried by
malware that are analyzed by malware analysis tools (Malware), Conficker
domains (Conficker), domains that have adult content, domains that are sus-
pected to be risky by Norton Safe Web and McAfee Site Advisor (Risky),
phishing domains (Phishing), domains about which we were not able to get
any information either from Google or from other sources (No Info), and fi-
nally, benign domains that are detected to be malicious (False Positives) (See
Table 5.2).

In the first experiment, we manually investigated 50 random malicious
domains from our list of 17,686. We queried Google, checked websites that
discuss malicious networks, and tried to identify web links that reported a
malicious behavior by the domain. Among the 50 randomly chosen domains,
the classifier detected three benign domains as being malicious. All these
domains had an abnormal TTL change behavior.

In the second experiment, we automatically cross-checked the malicious
and suspicious domains that we had identified with our classifier using online
site rating tools such as McAfee Site Advisor, [8], Google Safe Browsing [6]
and Norton Safe Web [9]. The results show that the false positive estimate
is around 7.9% for the malicious domains that we identified.

Note that EXPOSURE did not generate any false positives during the
two week real-time, real-world deployment in an ISP as discussed in the next
section.

5.4.4 Real-World, Real-Time Detection with EXPOSURE

To test the feasibility and scalability of EXPOSURE as a malicious
domain detector in real-life, we deployed it in the network of an ISP that
provided us complete access to its DNS servers for two weeks. These servers
receive DNS queries from a network that supports approximately 30,000
clients.

During the two-week experimental period, EXPOSURE analyzed and
classified 100 million DNS queries. No pre-filtering was applied. At the end
of two weeks, EXPOSURE detected 3117 new malicious domains that were
previously not known to the system and had not been used in the training.
2821 of these domains fall into the category of domains that are generated by
a DGA and all belong to the same malicious entity. 5 out of the remaining 396
domains were reported as being malicious domains by security companies

74 Chapitre 5 Botnet Detection Through Passive DNS Analysis

MW-Group Rand 50 Malicious

Spam 18 3691
Black-List 8 1734
FastFlux - 114
Malware 6 979
Conficker 4 3693
Adult 3 1716
Risky - 788
Phishing 3 0
No Info 5 2854

False Positives 3 (6%) 1408 (7.9%)

Table 5.2: Tests for False Positives

such as Anvira, one month after we had detected them.

We cross-checked the rest of the remaining domains we had detected. All
detected domains were classified as being risky by McAfee Site Advisor [8].

Figures 5.5(a) and 5.7 show the number of new, previously unknown
malicious domains detected every day. As can be seen, after the initial seven
days of local training in the network being monitored, EXPOSURE started
to produce daily detections and detected 200 new malicious domains per
day on average.

After the experiments, we provided the ISP with the list of clients that
were potentially infected, or had been victims of scams.

The distinct number of IP addresses that queried the malicious domains
that EXPOSURE detected were 3451. Since the ISP applies a dynamic IP
assignment to its clients, this number does not represent the exact number
of infected machines in the network. To estimate the number of infected
machines in the network, we grouped the malicious domains according to the
IP addresses they are mapped to. There were 5 different groups of malicious
domains. We then calculated the average number of distinct IP addresses
that issued DNS queries to the domains in these 5 groups every hour. We
chose one hour as an interval by assuming that the users in the network stay
online at least an hour before they disconnect. Table 5.3 lists the number
of clients that attempt to access the domains that fall into the different
malware groups. We estimate that there were about 800 machines on the
network that issued the requests to the malicious domains.

5.4 Evaluation 75

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 2 4 6 8 10 12 14

D
om

ai
n

co
un

t

Days

The Time Domains Appear in the Time Series

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2 4 6 8 10 12 14

D
om

ai
n

co
un

t

Days

Domain Detection Time

(b)

Figure 5.5: The first time a domain is queried and the first time it is
detected

5.4.5 Comparison with Previous Work

The Fast-Flux Detectors

The results in Table 5.2 show that 114 of the malicious domains that our
classifier has identified during the initial training phase fall in to category

76 Chapitre 5 Botnet Detection Through Passive DNS Analysis

Groups Avg Life Time Most frequent life time # of infected clients

DGA domains 1.2 days 0.99 days 49
Iksmas Worm 11.9 days 11.9 days 70
Worm :Win32/Slenping 12.0 days 12.0 days 253
Trojan-Generic.dx 11.9 days 11.9 days 70
Other 10.8 days 11.9 days 391

Total 833

Table 5.3: Information on the detected malicious domains

of Fast-Flux Service Networks (FFSNs). Since we claim that our approach
is able to detect a wide range of malicious domains including FFSNs, we
compare our detection rate for this threat with the most recent published
work in this area (i.e., [78]).

Perdisci et. al. [78] filters out all of the domains that are not likely to be
classified as being FFSN. When we applied the same policy to our two and
half month data set, 300,000 domains were filtered out and 5,771 were left
as candidates for FFSNs. When we classified these domains with the feature
set Perdisci et. al. use in their paper, we detected 114 FFSNs using their
approach. Hence, our approach is as good in detecting FFNSs as Perdisci
et. al. although it is a much more generic system.

Notos : Reputation-based Malicious Domain Detection

Very recently, Antonakakis et al. [14] concurrently and independently
proposed a detection scheme that is similar to our work. The proposed sys-
tem, Notos, dynamically assigns reputation scores to domain names whose
maliciousness has not been discovered yet. A detection scheme is built that
is based on the premise that agile malicious uses of DNS have unique charac-
teristics. Hence, the claim is that malicious use of DNS can be distinguished
from benign use.

To be able to define these unique characteristics, the authors analyze a
number of features that are grouped into three categories : Network-based
features, zone-based features (i.e. features that are extracted from the do-
main name itself, either by string analysis or with the information obtained
from whois service) and evidence-based features.

While the network-based features are employed for combing out the do-
mains that do not exhibit fluxy behavior (i.e. stable DNS usage), the zone-

5.4 Evaluation 77

based features are used for distinguishing between legitimate CDNs and the
domains that are likely to be malicious. After this two-layer classification,
reputation scores are given to the domains. In other words, all of the do-
mains and the IP addresses they are mapped to are compared with already
known lists of domains or IP addresses that host malicious entities. This
third step of classification is done using evidence-base features.

In their paper, as a limitation of Notos, the authors state that Notos
is not able to detect malicious domains that are mapped to a new address
space each time and never used for other malicious purposes again. This
limitation stems from the fact that Notos strongly relies on network-based
features. EXPOSURE does not have this limitation as it uses time-based
features. Since such domains would have a short life, they would appear in
the time series and disappear immediately after they are deactivated by the
attacker. Hence, unlike Notos, we are able to detect such domains.

As discussed before, the 2821 automatically generated malicious domains
that we detected in the real-life traffic of the ISP had an average lifespan of
1.2 days (see Table 5.3). That is, all these domains were short-lived domains.
During their life time, on average, they mapped to 3.14 distinct IP addresses.
In the first phase of Notos’ detection scheme, the domains are divided into
two categories : domains that have a stable network-model and domains
that have a non-stable network-model. Since the automatically generated
malicious domains that we are able to detect do not use a wide range of
IP addresses, Notos might classify these domains as domains with a stable
network profile. In other words, we believe that Notos might miss-classify
them.

Also, as the authors discuss in their paper, because Notos is a reputation-
based system, there may be cases where legitimate domains that are hosted
in “bad neighborhoods” may be identified as being malicious. In comparison,
the features that EXPOSURE relies on do not cause such false positives as
no historical information on IPs or domains are utilized.

One main advantage of EXPOSURE over Notos is that Notos requires
a large passive DNS collection and sufficient time to create an accurate,
passive DNS database. First, it is unclear how much time is required for this
database to be comprehensive. Second, this database needs to be constantly
updated with large data-feeds in order to remain accurate and to have a
wide overview of malicious activities on the Internet. In comparison, as we
show in our evaluation, EXPOSURE only required a week of local training,
and much less DNS data in the network of a medium ISP to be able to detect
unknown domains.

78 Chapitre 5 Botnet Detection Through Passive DNS Analysis

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

3
0
0
0
0

of IPs

#
 o

f
d
o
m

a
in

s

1 5 9 14 20 26 32 39 47 54 60 69 77 87 94 107 141

Figure 5.6: Number of IP addresses mapped to the malicious domains de-
tected by EXPOSURE

5.5 Real-World Deployment of EXPOSURE

After we published EXPOSURE at NDSS [24], we deployed it as a public
service that analyzes the passive DNS data obtained from SIE to report ma-
licious domains used in the wild on a daily basis. EXPOSURE has been run-
ning since 28 December 2010 and reporting thousands of domains that have
been involved in various malicious activities on http ://exposure.iseclab.org.
In this section, we will present some statistics about the malicious domains
detected by exposure during a period of ten months.

During the period of then months, EXPOSURE detected 58412 malicious
domains which are mapped to distinct 8562 IP addresses. While at average
number of IP addresses associated with a malicious domain is 7, there are
several malicious domains that employ hundreds of thousands of IP address.
The Figure 5.6 shows the number of IP addresses that are returned in DNS
records for the malicious domains identified by EXPOSURE. Note that we
have excluded the domains that are resolved to hundreds of thousands of
IPs from the graph to be able to clearly show the number of IP addresses
mapped to the majority of the malicious domains.

5.5 Real-World Deployment of EXPOSURE 79

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

time

#
 o

f
m

a
lic

io
u
s
 d

o
m

a
in

s

Jan Mar May Jul Sep Nov

Figure 5.7: Number of domains detected on a daily basis by EXPOSURE

Number of domains detected every day since December, 2010 by EX-
POSURE at average is 245. The Figure 5.7 shows the amount of domains
detected as malicious over time. As it can be seen, we provided detections
on daily basis expect for the period of time between 22 July 2011 and 25
September 2011. The reason of having a two months of gap without detec-
tion was the technical problems we faced with to access the DNS data we
acquire from SIE.

The top-level domain of the majority of malicious domains detected by
EXPOSURE are .info, .biz and .org as Figure 5.8 shows. Among 58412
malicious domains, 15642 are in .info, 14718 are in and 11672 of them
are in .biz top-level domains. As we stated before, Botnets that emerged in
the recent years deploy of DGAs to their bot agents such that the domain
of the C&C server to be accessed could be generated automatically at the
right time. Typically such domains have shorter lifetime compared to benign
domains. 92% of the malicious domains were active less than 30 days. The
Figure ?? shows the distribution of the malicious domains with lifetime less
than 30 days. The remaining domains are actively used at average more than
three months.

80 Chapitre 5 Botnet Detection Through Passive DNS Analysis

biz (19.892629%)

cc (5.271410%)

org (25.083937%)

ru (1.721346%)

info (26.658713%)

net (0.657861%)

com (7.890925%)

tk (12.032382%)

others (0.790797%)

Figure 5.8: The percentage of malicious domains with specific top-level
domains

5.6 Limitations 81

0
5
0
0

1
0
0
0

1
5
0
0

lifetime (days)

#
 o

f
d
o
m

a
in

s

0.0181481481481481 3.8 5.8775 8.885 11.085 14.0740625 17.4225 20.6159375 24.92 27.48

Figure 5.9: The distribution of malicious domains according to their life-
time

5.6 Limitations

A determined attacker who knows how EXPOSURE works and who is
informed about the features we are looking for in DNS traffic might try to
evade detection. To evade EXPOSURE, the attackers could try to avoid
the specific features and behavior that we are looking for in DNS traffic. For
example, an attacker could decide to assign uniform TTL values across all
compromised machines. However, this would mean that the attackers would
not be able to distinguish between more reliable, and less reliable hosts
anymore and would take a reliability hit on their malicious infrastructures.
As another example, the attackers could try to reduce the number of DNS
lookups for a malicious domain so that only a single lookup is performed
every hour (i.e., so that the malicious domain is blacklisted). However, this
is not trivial to implement, reduces the attack’s impact, and requires a high
degree of coordination on the attacker’s side. Even though it is possible for
an attacker to stay below our detection radar by avoiding the use of these
features, we believe that this comes with a cost for the attacker. Hence, our
systems helps increase the difficulty bar for the attackers, forces them to

82 Chapitre 5 Botnet Detection Through Passive DNS Analysis

abandon the use of features that are useful for them in practice, and makes
it more complex for them to manage their infrastructures.

Clearly, our detection rate also depends on the training set. We do not
train for the family of malicious domains that constitute attacks that are
conceptually unknown and have not been encountered before in the wild by
malware analyzers, tools, or experts. However, the more malicious domains
are fed to the system, the more comprehensive our approach becomes over
time.

Note that if the networks that we are monitoring and training our system
on are not infected, obviously, we will not see any malicious domains. We be-
lieve that we can improve our ability to see more malicious attacks by having
access to larger networks and having more installations of EXPOSURE.

Chapitre 6

Botnet Command and
Control Server Detection
Through Netflow Analysis

Botnets continue to be a significant problem on the Internet. Accord-
ingly, a great deal of research has focused on methods for detecting and
mitigating the effects of botnets. Two of the primary factors preventing
the development of effective large-scale, wide-area botnet detection systems
are seemingly contradictory. On the one hand, technical and administra-
tive restrictions result in a general unavailability of raw network data that
would facilitate botnet detection on a large scale. On the other hand, were
this data available, real-time processing at that scale would be a formidable
challenge. In contrast to raw network data, NetFlow data is widely available.
However, NetFlow data imposes several challenges for performing accurate
botnet detection.

In this chapter, we present Disclosure, a large-scale, wide-area bot-
net detection system that incorporates a combination of novel techniques to
overcome the challenges imposed by the use of NetFlow data. In particular,
we identify several groups of features that allow Disclosure to reliably dis-
tinguish C&C channels from benign traffic using NetFlow records (i.e., flow
sizes, client access patterns, and temporal behavior). To reduce Disclo-
sure’s false positive rate, we incorporate a number of external reputation

83

84Chapitre 6 Botnet Command and Control Server Detection Through Netflow Analysis

scores into our system’s detection procedure. Finally, we provide an extensive
evaluation of Disclosure over two large, real-world networks. Our evalua-
tion demonstrates that Disclosure is able to perform real-time detection
of botnet C&C channels over datasets on the order of billions of flows per
day.

6.1 System Overview

Figure 6.1: The system architecture of Disclosure. In the training phase
(upper half), labeled training samples are used to build detection models. In
the detection phase (lower half), the detection models are used to classify IP
addresses as benign or associated with C&C communications.

Disclosure is a botnet detection system designed to identify C&C
servers by employing NetFlow analysis. The NetFlow protocol allows for
the collection of network flows, or unidirectional sequences of packets ex-
changed between two peers as part of the same connection. Our work is
based on the observation that even though the information that can be ex-
tracted from a single NetFlow record is insignificant, it is possible to build
statistical models that differentiate the behavior of C&C and benign servers
by aggregating large volumes of data collected over an extended period of
time.

Figure 6.1 shows an overview of the system architecture of Disclosure.
The upper half of the figure describes the detection model generation pro-
cess, where a supervised machine learning algorithm is used to train models
on a subset of NetFlows targeting known benign and C&C servers. Because

6.2 Feature Selection and Classification 85

the training set must be labeled, Disclosure requires as input a list of IP
addresses that are known to be either botnet C&C servers or benign servers.

The flows in this labeled data set are first processed by the feature extrac-
tion module. This module reduces the flows to a number of distinct features,
each of which can be classified as belonging to one of three groups : flow size-
based features, client access pattern-based features, and temporal features.
The specific set of features Disclosure extracts is described in detail in
Section 6.2. The features extracted from the training set are then forwarded
to Disclosure’s learning module, which is responsible for building detec-
tion models. The learning module can be tuned with several thresholds to
obtain an optimal balance between detection and false positive rates.

The bottom half of the graph represents the detection phase, where
the models that have been previously generated are applied to unlabeled
NetFlows in order to distinguish benign traffic from malicious botnet com-
munication. Since the aim of Disclosure is not to identify bot-infected
machines but to detect C&C servers, the first task of the detection phase is
to filter those NetFlows that cannot be attributed to a server ; this process
is explained in Section 6.4.4. Then, the flows are forwarded to the feature
extraction module. Finally, the resulting feature vectors are processed by the
detection module to produce the final list of suspected C&C servers.

Note that the results of Disclosure can be further processed by a false
positive reduction filter. The goal of this additional module is to correlate the
results of Disclosure with the information obtained from other security
feeds in order to reduce the probability of misclassification. For example, in
Section 6.3, we present a novel technique that associates a reputation score
to the autonomous systems to which the C&C servers belong.

6.2 Feature Selection and Classification

In this section, we present the features extracted by Disclosure from
NetFlow data in order to detect botnet C&C channels at scale, and discuss
why these features are suitable for discriminating between C&C channels and
benign traffic. We then describe the particular machine learning techniques
we use to build detection models over these features.

6.2.1 NetFlow Attributes

NetFlow is a network protocol proposed and implemented by Cisco Sys-
tems [35] for summarizing network traffic as a collection of network flows.

86Chapitre 6 Botnet Command and Control Server Detection Through Netflow Analysis

Network elements such as routers and switches capture these NetFlows and
forward them to NetFlow collectors.

A network flow is defined to be a unidirectional sequence of packets that
share specific network properties (e.g., IP source and destination addresses,
and TCP or UDP source and destination ports). Each flow has a number of
associated attributes, or summary statistics that characterize various general
aspects of its behavior. In this chapter, the NetFlow attributes we analyzed
for extracting features to identify command and control servers are : the
source IP address, the destination IP address, the TCP source port, the
TCP destination port, the start and finish timestamps, and the number of
bytes and packets transferred.

Since Disclosure is primarily focused on identifying botnet C&C chan-
nels, it is imperative that the system can reliably distinguish servers from
clients. Therefore, as an intermediate pre-processing stage, NetFlow data is
analyzed by the server classifier that labels each observed IP address accord-
ing to whether it provides one or more network services. In particular, since
multiple services can be made available for each IP address, we represent
each server as a set of 2-tuple of IP address and port, si = 〈a, p〉, where
a ∈ A is an IP address, A is the set of all IP addresses, p ∈ P is a TCP port,
and P is the set of all ports.

A common, and legitimate, criticism of early attempts to perform ma-
chine learning-based detection over NetFlow data is that the features that
were selected were often not robust (i.e., in the sense that these features were
not necessarily correlated with intrinsic characteristics of how malware man-
ifests in NetFlow data). Hence, the resulting detection systems would often
overfit models to the specific behavior of malware represented in the training
set — for instance, the particular server port used by a given malware sam-
ple. Such features, however, do not generalize to classes of malware such as
botnets. For example, using our example of learning a model on server ports,
it is clear that the use of a particular server port is not an intrinsic property
of botnet behavior. Therefore, the design of Disclosure’s feature extrac-
tor module emphasizes the selection of those NetFlow attributes that best
capture invariants in botnet behavior without resorting to specialization to
a particular C&C protocol.

In the following, we describe the specific features Disclosure extracts
from NetFlow data.

6.2 Feature Selection and Classification 87

6.2.2 Disclosure Feature Extraction

Disclosure extracts a number of features from NetFlow data in order
to build its detection models. These features can be classified into three
broad groups : flow size-based features, client access pattern-based features,
and temporal features.

Flow Size-Based Features

The first class of features extracted from NetFlow data are based on
flow sizes, which simply indicate the total number of bytes transferred in
one direction between two endpoints for a particular flow. Our premise for
analyzing flow sizes in NetFlow data is that the flow size distributions for
C&C servers are significantly and necessarily different from flow size distri-
butions for benign servers.

We attribute this difference to several factors. First, the main role of the
botnet C&C channel is to establish a connection between the bots and the
C&C server in order to transfer commands to the bots, and receive data from
the bots. This channel should be both reliable as well as relatively innocuous
in appearance. Thus, flows carrying botnet commands or information har-
vested from infected clients are preferred to be as short as possible in order to
minimize their observable impact on the network. Considering that network
monitoring tools are widely used and that a botnet’s local network impact
usually scales linearly with the number of bot infections, tuning for stealth
is an important goal. Moreover, due to the limited number of commands in
typical C&C protocols, flow sizes tend not to fluctuate significantly. On the
other hand, flow sizes generated during accesses to a benign server usually
assume a wide range of values.

The preliminary analysis we performed on known sets of benign servers
and C&C servers supports our premise. Hence, we designed a set of methods
to extract features to detect the behavioral difference between C&C servers
and benign servers with respect to flow size.

Disclosure extracts flow size-based features by first grouping all flows
according to the server si that they originate from or are destined to. Let
si ∈ S be a server, and cj ∈ C be a client. Then, flow sizes are grouped
by time intervals j = 0, 1, 2, . . ., where Fi,j denotes a series of flow sizes for
flows from endpoint i to j, where endpoints can be drawn from C or S. The
time interval is empirically chosen to be 300 seconds. Once this set has been
derived, the following feature sets are extracted.

Statistical features. This group of features characterizes the regularity of

88Chapitre 6 Botnet Command and Control Server Detection Through Netflow Analysis

flow size behavior over time for both benign and C&C servers. In particular,
we extract the mean µFi,j and standard deviation σFi,j separately for both
incoming and outgoing flows of each server.
Autocorrelation features. Autocorrelation is widely used for cross-correlating
a signal with itself in the signal processing domain [27], and is useful for iden-
tifying repeating patterns in time series data. A series of flow sizes Fi,j can
be converted to a time series by ordering sizes by time. Since the autocor-
relation function also requires a time series that is sampled periodically as
input, we segment the time series by fixed intervals and take the mean over
each interval ; empirical testing suggested that a period of 300 seconds is
appropriate. Once a periodically sampled time series F̂i,j has been derived
from Fi,j , the series is processed by the autocorrelation function, and fea-
tures are extracted from the output. Here, we use a discrete autocorrelation
coefficient RF̂i,j F̂i,j

with lag j normalized by the variance σ2, where

RF̂i,j F̂i,j
=

∑n
i=j xixi−j

σ2
.

The autocorrelation function outputs the correlation results for each pe-
riod in the time series. This output is further processed by taking the mean
and standard deviation over these values to derive the final autocorrelation
features.
Unique flow sizes. In addition to the statistical features described above,
Disclosure also includes features that count the number of unique flow
sizes observed, and performs statistical measurements of occurrence density
for each of them during the analysis time. Specifically, an array is constructed
in which the elements are the number of occurrences of a specific flow size.
Afterward, statistical features are computed over this flow size incidence
array to measure its regularity.

Client Access Patterns-Based Features

One typical property of botnets is that the bots frequently establish
a connection with the C&C server. These control channels are established
for many reasons, including checking whether there is a malicious task to
be performed, and sending status messages. These connections tend to be
ephemeral, as longer-lived connections might draw undue attention to a bot’s
presence.

Our basis for selecting features to extract in order to distinguish mali-
cious client access patterns from benign ones is that all of the clients of a
C&C server (i.e., bots) should exhibit similar access patterns, whereas the

6.2 Feature Selection and Classification 89

clients of a benign server should not. Since all bots share the same, or nearly
identical, malicious program, they tend to access C&C servers similarly un-
less specifically programmed otherwise. For example, if bots are programmed
to query the server every 300 seconds, all of the bots will contact the server
with the same frequency. On the other hand, clients of benign services tend
to exhibit much more varied patterns due to the vagaries of human action.

Furthermore, even if the client access patterns for a particular server
cannot be analyzed because there is little or no data for that server in the
data set, differences can be observed between the client access behavior of
a single bot and a benign user. However, the strength of this signal in the
input data can be attenuated by the NetFlow sampling rate.

Disclosure extracts two sets of features to characterize client access
patterns typical of C&C servers and those typical of benign servers.
Regular access patterns. For each server si and client cj , Disclosure
prepares a time series Ti,j of flows observed during the analysis period. Then,
a sequence of flow inter-arrival times Ii,j is derived from the time series by
taking the difference between consecutive connections ; that is,

Ii,j =
n⋃
k=1

ti,j,k − ti,j,k−1,

where ti,j,k is the kth element of Ti,j . Then, statistical features are computed
over each inter-arrival sequence, including the minimum, maximum, median,
and standard deviation. Finally, we derive the final features for each server
si by generating statistical features across the set of clients that accessed si.
This allows Disclosure to not only find regular patterns in clients, but to
determine whether the set of clients accessing a server behave similarly.
Unmatched flow density. When a bot is unable to communicate with a
legitimate C&C server, it detaches from the rest of the botnet and becomes
a zombie. This might happen because the C&C server was shutdown by a
botnet detection mechanism, or the IP address of the C&C server has been
blacklisted by the administrators of the network in which the bot resides.
Since the zombie cannot distinguish between these situations and transient
network errors, it continues querying the server. This can result in a signif-
icant number of flows to a server that do not have a matching flow in the
opposite direction.

It is also possible that a benign server is unreachable for a period of time.
However, the behavior of a benign server’s clients is significantly different
than the behavior of bots that lose access to their C&C servers. This is
because when a benign user is aware that a server is offline, it typically

90Chapitre 6 Botnet Command and Control Server Detection Through Netflow Analysis

Figure 6.2: Detection rates (DT) and false positive (FP) rates for different
feature combinations. We note that the DT :FP ratio is most favorable when
all features are used in the detection procedure.

does not insist on continuing to query the server indefinitely. On the other
hand, bots tend to exhibit this behavior. Therefore, Disclosure extracts
statistics regarding the number of unmatched incoming and outgoing flows
to detect this behavior. Specifically, let Ui,j be the number of unmatched
flows for server si in time interval tj , where

Ui,j =
∑
j∈C

abs (|Fi,j | − |Fj,i|) .

Then, Disclosure derives the mean and standard deviation over a time
series of Ui,j as a statistical feature.

Temporal Features

Connections to a benign server are subject to diurnal fluctuations repre-
sentative of the server’s user population. On the other hand, connections to
C&C servers are dictated by the botmaster, and require no user interven-
tion. As previously mentioned, the majority of botnets configure their bots
to contact the C&C server periodically and with relatively short intervals.
Therefore, bot-infected machines connect to C&C servers during periods of

6.2 Feature Selection and Classification 91

the day that benign clients do not. For example, many benign servers re-
ceive a high volume of traffic during the day, and very little — or nothing
— during the night.

To capitalize on this observation, Disclosure extracts a set of temporal
features that characterize the variability of client flow volume as a function
of time, such that the system can discriminate between uniform client flow
distributions indicative of C&C servers and benign traffic that follows well-
known diurnal patterns. Specifically, Disclosure segments a time series of
client and flow volume by hour-long intervals per server si, and calculates
statistical features over these.

6.2.3 Building the Detection Models

To build detection models for identifying C&C servers, we experimented
with a number of machine learning algorithms, including the J48 decision
tree classifier [81], support vector machines [38], and random forest algo-
rithms [64]. Random forest classifiers, known to be one of the most accurate
learning algorithms, combine multiple classification methods to achieve more
predictive results. In particular, the random forest classifier builds a number
of decision trees, where each node in a tree encodes a decision using one or
more features that partition the input data. The leaves of each decision tree
correspond to the set of possible labels (i.e., {benign, malicious}), and the
output of all of the trees are then ensembled such that the average behavior
among all trees is produced as the final decision. In our testing, the best ratio
between detection rates (DT) and false positive rates (FP) were produced
by the random forest classifier. Furthermore, the classifier is efficient enough
to perform online detection in our application. Consequently, Disclosure
uses the random forest classifier to build its detection models.

We evaluated our detection models against NetFlow data collected from
two networks : a university network (N1) that does not apply sampling, and
a large Tier 1 network (N2) that samples one out of 10,000 flows. Figure 6.2
shows the detection rates (DT1 for N1 and DT2 for N2) and false positive
rates (FP1 for N1 and FP2 for N2) for individual features sets, and all possi-
ble combinations among different feature sets. The feature sets we evaluated
are the set of statistical features extracted from (i) the flow size (F1) ; (ii) the
flow size-based features extracted from the output of the autocorrelation
function (F2) ; (iii) unique flow sizes for each server (F3) ; (iv) the combi-
nation of all flow size-based features (Fall) ; (v) the features for characteriz-
ing client access patterns (C1) ; (vi) unmatched flow density (C2) ; (vii) the
combination of all client access pattern-based features (Call) ; (viii) tempo-

92Chapitre 6 Botnet Command and Control Server Detection Through Netflow Analysis

ral features (Tall) ; (ix) the combination of client access pattern and flow
size-based features (F + C) ; (x) the combination of flow size and temporal
features (F + T) ; (xi) the combination of client access pattern and tem-
poral features (C + T) ; and, finally, (xii) the combination of all feature
sets (F + C + T).

Figure 6.2 indicates that individual feature sets are not as effective as
combinations of multiple feature sets. Furthermore, increased levels of fea-
ture aggregation results in better detection rates with less false positives.
Finally, we note that the most promising results were achieved on both
data sets by using all possible feature sets as input to the classification pro-
cess. Hence, Disclosure uses detection models that include all features
sets (F + C + T) to detect botnet C&C channels.

6.3 False Positive Reduction

NetFlow data, by its nature, provides limited information about the real
activities that are carried out in a network. As a consequence, a botnet
detection system based only on the analysis of NetFlow data could produce
results that are likely to contain some false positives.

As we explain in the evaluation presented in Section 6.4, Disclosure
can be tuned to decrease the overall false positive rate of the decisions to
0.5% or below. However, given the volume of NetFlow data that must be
processed every day in large networks, even a misclassification rate less than
a fraction of a percent can result in an unacceptably large number of false
alarms. Note that some existing malicious activity detection systems have
shown to be useful for specific classes of malware or attacks (e.g., fast-flux,
domain generation). Clearly, it would be beneficial to correlate the detection
results of our system with the results of some previously built systems.
Therefore, in our architecture, we include a component that has the aim
of correlating the results that Disclosure produces with the public feeds
of other malware analysis or detection platforms. The main insight here is
that by integrating different data sources, it is possible to further reduce
Disclosure’s false positive rate to a manageable level.

We have built a reputation-based component for false positive reduc-
tion that uses three public services that provide reports about a wide range
of malicious activities on the Internet. The first service we make use of is
FIRE [10,94]. FIRE is a system that identifies organizations and ISPs that
have been observed to engage in malicious activities. FIRE’s website reports
detailed information about many autonomous systems (AS), including a ma-

6.3 False Positive Reduction 93

liciousness score, relative rankings among other ASes, as well as the number
of C&C servers, exploit servers, and spam and phishing servers the AS has
been hosting over time. In our implementation, we separate each type of
information into two time series : one representing the current year, and
one containing previous historical data. Afterward, we compute statistical
features for each time series. For instance, for the time series built from the
number of C&C servers observed before 2011, we compute the minimum,
mean, and maximum values. After we repeat this step for each time series,
we compute a final score by aggregating all the values together by assigning
a weight of 0.8 to the value for the current year, and 0.2 to the previous
years.

The second public service we use in our false positive reduction com-
ponent is EXPOSURE [23, 25]. EXPOSURE is a system that uses passive
DNS analysis methods to detect malicious domains. EXPOSURE currently
analyzes data obtained from a large number of recursive DNS servers, and
reports its findings on daily basis. For each domain, it provides the associ-
ated IP address list and the autonomous systems in which they are located.
Leveraging this information, we count the number of malicious domains de-
tected in each AS and build a reputation score according to the density of
maliciousness for each AS reported by EXPOSURE.

The last source of information we use for false positive reduction is
Google Safe Browsing [11], a service that reports maliciousness informa-
tion about a large number of web sites. This tool can also be used to query
specific AS numbers to obtain the percentage of web sites in that AS that
host malicious services.

For each IP address that Disclosure labels as a potential botnet C&C
server, the false positive reduction component fetches the associated AS
number and corresponding reputation scores from FIRE, EXPOSURE, and
Google Safe Browsing. Each of these individual reputation scores are then
aggregated using a weighted linear combination. That is, given the reputa-
tion scores r1, r2, r3 and corresponding weights w1, w2, w3 for FIRE, EXPO-
SURE, and Google Safe Browsing such that

∑
iwi = 1, the final reputation

score R is calculated as

R =
3∑
i=1

wiri,

where 0 ≤ R ≤ 1. If R is below a tunable threshold RepThresh, this indi-
cates that a particular server is located in a network that is historically not
associated with malicious activities, and the corresponding alert is discarded
as a false positive.

94Chapitre 6 Botnet Command and Control Server Detection Through Netflow Analysis

We are aware of the fact that the false positive reduction component can
introduce an opportunity for the attacker to evade our system. For example,
she could place her C&C server in a network with an high reputation score.
However, note that this increases the burden on the attacker, and forces
her to move away from more vulnerable targets located in ASes with lower
reputation scores towards potentially better-protected networks. Therefore,
we believe that, on a large scale, this is a favorable result.

6.4 Evaluation

Network Sampling Flows per day Unique IP Addresses

Inter-University Network (N1) 1 :1 1.2 billion 28 million
Tier 1 ISP (N2) 1 :10.000 400 million 50 million

Table 6.1: Summary statistics for each of the two NetFlow data sets for N1

and N2.

In this section, we present the design and results of several experiments
we conducted to evaluate Disclosure’s detection accuracy, false positive
rate, and performance. We also present deployment considerations, and con-
clude with a discussion of resilience to evasion.

The accuracy of Disclosure’s classification procedure greatly depends
upon the environment in which the input NetFlows have been collected.
For example, NetFlow collectors placed in a small company network versus
those placed in a large ISP will likely observe significantly different volumes
of traffic. To bound the storage requirements at each collector, sampling
rates might be configured to match the particular traffic volume specific to
each site.

To measure how Disclosure responds to varying levels of sampling, we
evaluated our system in two distinct environments : a medium-size network
connecting multiple universities with no sampling, and a Tier 1 ISP network
configured with a sampling rate of 1 :10,000.

In the remainder of this section, we first present the two NetFlow data
sets from each of these networks. We then describe the approach we adopted
to build our ground truth. Finally, we present and discuss the results of our
experiments.

6.4 Evaluation 95

Network C&C Servers Benign Servers

University Network (N1) 892 1489
Tier 1 ISP (N2) 2000 1742

Table 6.2: IP addresses in our labeled data set derived from data observed
in N1 and N2.

6.4.1 The NetFlow Data Sets

Our NetFlow data sets were drawn from two separate environments : a
university network located in Europe, and an ISP network located in the
USA and Japan. Hereinafter, we refer to the university network as N1 and
to the Tier 1 ISP network as N2.

Table 6.1 shows summary statistics for the two data sets. The N1 data
set was collected for a period of 18 days between the 7th and the 25th of
September 2011. The NetFlow data of N1 is not sampled and, therefore, all
network flows present in the monitored network are represented in the data.
The sensor in N1 produced an average of 1.2 billion network flows per day.
During this period, we collected 22 billion flows between 28 million unique
IP addresses.

In contrast, we collected NetFlow data observed at N2 for a period of
40 days between the 1st of June 2011 and the 10th of July 2011. The sen-
sors in N2 were configured to sample flows at a rate of 1 :10,000. The data
was harvested by 68 sensors, each of which was responsible for monitor-
ing and forwarding NetFlow traffic collected from specific autonomous sys-
tems (ASs). The sensors collected approximately 400 million network flows
per day between 50 million unique IP addresses.

6.4.2 The Ground-Truth Data Sets

The accuracy of the classification models generated by a machine learn-
ing algorithm greatly depends on the quality of the training set [99]. In our
case, to train the features used by Disclosure, we required a ground-truth
list containing both known C&C servers and known benign servers.

The malicious server data set consisted of 4295 IP addresses associated
with real C&C servers observed in the wild during approximately three
weeks preceding our experiments. The list of botnet C&C servers was pro-
vided to us by a company that specializes in threats intelligence. This list
was manually verified by the company, and potential false positives were
eliminated.

96Chapitre 6 Botnet Command and Control Server Detection Through Netflow Analysis

We constructed our benign server training set from ranking information
provided by Alexa [4]. In this case, we assume that the top 1,000 popular
web sites reported by Alexa are not involved in malicious activities and, in
particular, are not responsible for hosting botnet C&C servers. Alexa reports
the top popular web sites grouped by geographical regions as well. In order
to obtain a comprehensive list of benign servers, we combined the “Alexa
Top 1000 Global Sites” with the most visited websites in the regions where
N1 and N2 are located.

Once the benign domains lists were compiled, we resolved each DNS
name on both lists to obtain the corresponding list of IP addresses. Note
that we executed the DNS queries for each list from the same network ge-
ographical locations of the corresponding network (Europe for N1, and US
for N2). Hence, the number of IP addresses collected for each network is dif-
ferent. This process resulted in 2,958 unique IP addresses for N1, and 3,047
IP addresses for N2.

Table 6.2 shows the number of benign and malicious servers in our labeled
data set that were observed in the traffic of N1 and N2 respectively.

6.4.3 Labeled Data Set Detection and False Positive Rates

In the initial experiment, we evaluated Disclosure’s ability to recog-
nize known botnet C&C servers from the ground truth constructed in the
previous section. Disclosure’s detection rate and false positive rates were
measured by generating ROC curves for each data set under two configura-
tions each that controlled the level of input data filtering performed prior
to detection.

Disclosure requires a minimum number of observed flows to a particu-
lar server in order to provide accurate results. This minimum is a threshold
we denote by MinFlows, and can be set by a security administrator accord-
ing to the volume of traffic at a particular site and any sampling that may
be applied. We evaluated two values for MinFlows for each data set : 20
and 50. For each experiment, we excluded any servers that did not have at
least one port that received more than MinFlows flows. We then evaluated
the accuracy of Disclosure’s detection models by performing a 10-fold
cross-validation.

We also considered varying the size of the training set as an additional
tunable parameter. Figure 6.3 shows a summary of Disclosure’s accuracy,
measured by computing the area under the ROC curve for different training
windows. The curve for N2 is almost constant. In comparison, the curve for
N1 steadily increases over the first 15 days before plateauing. This is due to

6.4 Evaluation 97

Figure 6.3: Area under ROC curves with different training set lengths for
N1 and N2.

the fact that the number of known C&C servers observed in the university
network is low (see Table 6.2). Therefore, more time is required to collect
enough data to properly train the models. For this reason, we decided to
train Disclosure with all the available data.

Figure 6.4 shows the individual ROC curves obtained by varying the clas-
sification threshold ClassThresh, i.e., the boundary separating benign scores
from malicious scores, of Disclosure’s detection module. Consequently,
each point in the ROC curves represents a possible setup configuration of
the system. Security administrators can thus precisely tune Disclosure
to achieve a reasonable trade-off between false positives and false negatives
based on the traffic characteristics of the network. Each graph also contains
a short synopsis of possible working points. For example, configuring the
system for a very high detection rate is usually too costly in terms of false
positives. On the other end of the scale, it is often possible to achieve a 0%
FP rate if we accept the fact that only one out of three C&C servers will be
detected.

Despite the differences between the two data sets, the results are similar.
For instance, with MinFlows set to 20 flows and ClassThresh tuned to produce
a 1% false positive rate, the system detects 64.3% of the C&C servers in the
university network and 66.9% in the ISP network. This similarity emerges
from the composition of all features, where the individual contribution of
each feature is quite different in the two environments. For instance, most
of the features are better suited to the unsampled data set, where traffic
patterns are clearly preserved. However, some of the features — for instance,

98Chapitre 6 Botnet Command and Control Server Detection Through Netflow Analysis

(a) N1 with MinFlows = 20. (b) N2 with MinFlows = 20.

(c) N1 with MinFlows = 50. (d) N2 with MinFlows = 50.

Figure 6.4: Classification accuracy for each data set (N1 and N2) with
MinFlows ∈ {20, 50}.

the unmatched flow density — provide the best results when applied to large
networks, even in presence of a high sampling rate. The mixture of these
two classes of features makes Disclosure less sensitive to variability in the
NetFlow collection environment and, therefore, more robust.

Another important difference between the two experiments is the fact
that in the small network (N1), Disclosure provides better results for a
higher value of the minimum flow threshold, while in the large network (N2)
it performs better with a lower threshold. This phenomenon is due to the
fact that in the second case, the sensors are only collecting 1 flow out of
every 10,000. Therefore, a high value for MinFlows would filter out all small-
to-medium size botnets, leaving only a few large ones for the analysis. As
a result, the features are now trained on a very few C&C samples and,
therefore, tend to produce inaccurate models. This is an important issue to
keep in mind when configuring the system. In general, if MinFlows is set
too low, the features are exposed to samples that do not show sufficient
regularity because an insufficient number of flows are observed in the traffic.
If, on the other hand, MinFlows is set too high, the majority of the botnets

6.4 Evaluation 99

Point on Servers Flagged Servers Flagged
the ROC curve as C&C (N1) as C&C (N2)

1.0% FP 12,383 4,937
0.5% FP 7,856 3,166
0.3% FP 6,295 1,958
0.0% FP 132 960

Table 6.3: Servers flagged as malicious by Disclosure for each of the
networks N1 and N2 (without incorporating reputation scores).

are discarded, and the features are trained on too few samples. In both
extremes, the result is a set of poorly trained models.

Finally, we manually verified the features of the benign servers that Dis-
closure wrongly classified as being botnet C&C servers. In several cases,
the network or the server were probably malfunctioning, and the clients (in
most of the cases less than 10) were repeatedly trying to send the same data
over and over again at regular intervals, and receiving no answer back from
the server. This behavior, even though not malicious per se, is indeed quite
similar to that exhibited by bot-infected machines.

6.4.4 Real-Time Detection

In the previous section, we presented the results obtained with labeled
data sets containing known benign and botnet C&C servers. In order to
apply Disclosure to the remaining unlabeled data, we needed to perform
three separate operations.

First, since Disclosure is meant to discover C&C servers and not in-
fected machines, we need to restrict the analysis to the servers only. In order
to separate them from the clients, we apply the following heuristic : an IP
address belongs to a server if the number of flows directed towards its top
two ports (i.e., the two that receives the most connections) account for at
least 90% of the flows towards that address. From the count, we removed the
ports used less than 3 times to filter out the noise generated by the fact that
servers may also have outgoing connections. By adopting this technique, we
identified 82,580 servers in N1 and 530,011 servers in N2.

The second step consisted of setting the value of the MinFlows threshold.
According to the results obtained in the labeled data set, we decided to
perform the rest of the experiments with the threshold set to 50 flows for
N1 and to 20 for N2. After applying the threshold, we were left with 53,426
servers in N1 and 48,713 in N2.

100Chapitre 6 Botnet Command and Control Server Detection Through Netflow Analysis

Point on C&C Servers after the C&C Servers after the
the ROC curve Reputation filter (N1) Reputation filter (N2)

1.0% FP 1779 1516
0.5% FP 1448 688
0.3% FP 1236 271
0.0% FP 20 91

Table 6.4: Servers flagged as malicious by Disclosure for each of the
networks N1 and N2 (incorporating reputation scores).

Finally, we needed to select the operational point on the ROC curve
ClassThresh (i.e., the trade-off between detection and false positive rates).
Table 6.3 shows the number of servers detected in the two networks obtained
with four different configurations of the system.

Despite the fact that the various configurations were chosen to minimize
the number of false positives generated by the system, the number IP ad-
dresses suspected of being C&C servers is still relatively high. Therefore, to
further reduce the probability of misclassification, we combined the results
of Disclosure with a reputation score based on the information provided
by EXPOSURE [23, 25], FIRE [10, 94], and Google Safe Browsing [11]. As
explained in Section 6.3, this approach has the effect of narrowing down the
results to the servers that have a higher probability of being malicious.

The way in which the reputation score is computed can be tuned accord-
ing to the desired results and the number of daily alerts that the security
administrator can tolerate. The more aggressive the filtering, the smaller the
set of IP addresses flagged as C&C servers. In our experiments, we increased
the strength of the false-positive reduction until we reduced the amount of
alerts to a level that can be manually verified. The results are reported in
Table 6.4.

Figure 6.5 shows the ports distributions of the C&C servers detected by
Disclosure in the 0.5% false positive setting for N1 and N2. The graphs
report the two most frequently used protocols : HTTP-related (ports 80, 443,
8080, 8000) and SMTP/IMAP (ports 25, 143, and 993). The remaining ports
are grouped in two categories : the reserved ports (0-1023), and the registered
and ephemeral ports (1024-65535). This classification is based only on the
port number and not on identification of the true protocol. For instance, a
botmaster can run a C&C server on port 25 to avoid firewalls, but that does
not mean that he will adopt the SMTP protocol as well. It is interesting
to note that the majority of the services identified by Disclosure run on

6.4 Evaluation 101

(a) N1 port distribution. (b) N2 port distribution.

Figure 6.5: Port distributions of the C&C servers detected by Disclosure
for both N1 and N2, with and without AS reputation scores.

ports higher than 1024. However, the distribution changes significantly after
the false positive reduction is applied. In fact, the reputation system filters
out around half of the HTTP services, but cuts between 70 and 90% of the
services running on high port numbers.

Finally, we manually investigated the C&C servers detected by Disclo-
sure to gain some insight into the accuracy of the detection models and
the reasons for misclassification. To this end, we chose the most conserva-
tive configuration : Disclosure configured for 0% FP + Reputation filter.
With this setup, during one week of operation, Disclosure reported 91 pre-
viously unknown C&C servers on the ISP network, and 20 on the university
network.

We first manually queried popular search engines for each of the 111
entries. In 36 cases (32.4%), we found evidence of malware that was related
to those IP addresses. 1 The fact that one third of our reports were con-
firmed by other sources is a strong support of the ability of Disclosure to
successfully detect C&C servers. Out of the remaining servers, 30 were as-
sociated with HTTP-related ports. After a manual investigation, 7 of them
seemed to be legitimate web sites — even though it is unusual that a small
real estate company or a personal page in the Philippines would receive the
large number of connections we observed in our traffic. 4 pages were default
placeholders obtained with a fresh installation of a web server ; the number
of NetFlow entries and varying flow sizes is suspicious, although this could
be attributed to the web server not having a default virtual host config-

1. This evidence included reports from ThreatExpert, various sandbox malware anal-
ysis tools, MaliciousUrl.com, or the offensive IP database.

102Chapitre 6 Botnet Command and Control Server Detection Through Netflow Analysis

ured. 4 servers returned errors related to either unauthorized access or bad
requests. 3 of the HTTPS servers did not use the SSL/TLS protocol but
some other form of binary protocol. The remaining servers were unacces-
sible at the time we checked them, which was approximately three weeks
after the data was collected. Of the non-HTTP services, only 4 were still
running at the time the checks were performed. 3 of these appeared legiti-
mate, but the remaining service was a web server located in Russia listening
to a non-standard port. Finally, interestingly, 8 servers were located in the
Amazon cloud network, which is rapidly increasing in popularity for hosting
ephemeral malicious services.

6.4.5 Performance Evaluation

As described in Section 6.1, the detection phase consists of two modules :
feature extraction and detection. The detection module is highly efficient, re-
quiring only several minutes to process an entire day’s worth of data. Hence,
detection performance is constrained by the analysis of input NetFlow data
to extract the requisite features for analysis.

However, since the extraction of each feature is an independent process,
the feature extraction procedure is an example of an embarrassingly parallel
problem that can be easily distributed on multiple machines should the
need arise. Nevertheless, even with the large amount of input data for our
evaluation networks, we have not found it necessary to parallelize feature
extraction. The current prototype implementation of Disclosure consists
of a number of Perl and Python scripts, all running on the same server : a
16 core Intel(R) Xeon(R) CPU E5630 @ 2.53 GHz with 24 GB of ram.

In the course of our experiments, we run all individual feature extraction
modules in series in 10hours 53minutes for 24 hours of data. Therefore,
Disclosure is able to perform at approximately 2x real-time.

6.4.6 Deployment Considerations

To deploy Disclosure to a real network, the administrator should con-
figure three main settings : the minimum flows threshold MinFlows, the clas-
sification threshold ClassThresh, and the false positive reduction threshold
RepThresh. This setup can be accomplished by performing the following
steps :

1. Choose the MinFlows threshold.
This value should be selected according to the NetFlow sampling rate
for the monitored network and the amount of available training data.

6.4 Evaluation 103

If the threshold is set too high, the system will not have enough C&C
samples to properly train. But, if it is set too low, the system will train
on poor data, and produce inaccurate models.

2. Choose an operational point on the ROC curve for ClassThresh.
This value should be selected according to the traffic volume of the
network and the misclassification rate that can be tolerated. On one
extreme, the system will be able to detect most of the C&C servers,
but it will also generate too many false positives. On the other end of
the scale, the system will miss many C&C servers, but the results will
be much more precise.

3. (optional) Apply and tune the false positive reduction module using
RepThresh.
To reduce the number of alerts in large networks, Disclosure can be
coupled with other detection or verification techniques. In this chap-
ter, we propose the use of an AS reputation-based score to filter the
servers hosted in benign networks. The weights for the constituent
reputation systems can be modified to have a more aggressive or a
more lightweight filtering component, and the overall reputation score
filtering strength can be adjusted by setting RepThresh.

6.4.7 Resilience to Evasion

The detection approach presented in this chapter is predicated on the as-
sumption that existing botnets often exhibit a regular, detectable pattern in
their communication with the C&C server. However, we have not discussed
how strong this requirement is and how difficult it might be for an attacker
to perturb this regularity to avoid detection.

To answer this question, we designed two botnet families (hereinafter
B1 and B2) that attempt to evade our system by inserting a random delay
between consecutive connections and a random length padding in each flow.
In our implementation, we employed two different randomization functions.
The first randomization function produces uniformly distributed values on
a fixed range. This is intended to model a botnet in which the programmer
uses a random number generator to select a value from a fixed range. The
second family adopts a more sophisticated approach and generates random
numbers from a Poisson distribution. In this case, we model a more complex
scenario in which the botmaster tries to mimic the flow inter-arrival times
of benign services, which are known to be well-approximated as a Poisson
process [60].

104Chapitre 6 Botnet Command and Control Server Detection Through Netflow Analysis

In our experiment, we generated 300 C&C servers for both B1 and B2.
First, we randomly specified the size of each botnet and the duration of its
activity. Afterward, we created synthetic NetFlow data for each server, using
one of the aforementioned randomization functions to generate random flow
sizes and intervals between consecutive flows.

Each botnet was created according to the following parameters :

Botnet lifetime 1 - 33 days
Number of bots 1,000 - 100,000

Flow sizes 4 - 3076 bytes
Delay between flows 1 min - 1 hr

The only significant difference between the two botnet families is that
for B1, the delay between consecutive flows between each bot and the the
C&C server was a uniformly-distributed random value between 1 minute and
1 hour. For B2, the delay was, instead, drawn from a Poisson distribution
whose mean was randomly chosen in the 1 minute to 1 hour range. We
decided to set 1 hour as an upper bound since, in order to maintain a
reasonable flexibility and control over the botnet, a botmaster must be able
to to send commands to the infected machines with a delay that is no longer
than an hour or two.

Finally, we added the synthetically-generated NetFlows to our labeled
data set and re-ran the classification evaluation using a 10-fold cross-validation.
In both cases, Disclosure was able to detect all the experimental C&C
servers belonging to B1 and B2. In addition, the addition of these synthetic
botnets to the training set had the side effect of actually increasing the over-
all detection rate. In other words, some of the real botnets that were not
detected by Disclosure in our normal experiments were detected after we
added the synthetic data. This implies that our detection models were not
properly trained to detect this kind of variability in the C&C channel behav-
ior. However, by adding many new samples with a randomized behavior to
supplement the training set, Disclosure was able to subsequently detect
real botnets that present similar access patterns.

Chapitre 7

Concluding Remarks

Malware continues to run rampant across the Internet, and among the
myriad forms that modern malware can assume, botnets represent one of
the gravest threats to Internet security. Through the large-scale compromise
of vulnerable end hosts, botmasters can both violate the confidentiality of
sensitive user information — for instance, banking or social network authen-
tication credentials — as well as leverage groups of bots as an underground
computational platform for performing other illicit activities.

In this thesis, we propose three network-based botnet detection tech-
niques. Each technique models the detections by analyzing different types
of network data : the first detection technique performs packet level inspec-
tion. The second one analyzes the DNS traffic to find the domains that are
abused for different kinds of malicious purposes including being assigned for
the command and control servers. And finally, the last one detects command
and control servers by analyzing NetFlow data.

With the first technique, we proposed a system that aims to detect bots,
independent of any prior information about the command and control chan-
nels or propagation vectors, and without requiring multiple infections for
correlation. Our system relies on detection models that target the charac-
teristic behavior of every bot – the fact that it receives commands from
the botmaster to which it responds in a specific way. A key feature is that
these detection models are generated automatically. To this end, our sys-
tem observes the network traffic that is generated by actual bot instances in

105

106 Chapitre 7 Concluding Remarks

a controlled environment. In these traffic traces, we first identify points in
time that likely correspond to response activity. Then, we extract the corre-
sponding commands that trigger these activities. We have implemented the
proposed approach and demonstrate that it can extract effective detection
models for a variety of different bot families. These models are precise in
describing the activity of bots and raise very few false positives.

The second approach (EXPOSURE) that we presented in this thesis
employs large-scale, passive DNS analysis techniques to detect domains that
are involved in malicious activity. We use 15 features that we extract from
the DNS traffic that allow us to characterize different properties of DNS
names and the ways that they are queried. Our experiments with a large,
real-world data set consisting of 100 billion DNS requests, and a real-life
deployment for two weeks in an ISP show that our approach is scalable and
that we are able to automatically identify unknown malicious domains that
are misused in a variety of malicious activity (such as for botnet command
and control, spamming, and phishing).

The last botnet detection method we developed specifically focuses on
the detection of the botnet command and control servers. We presented Dis-
closure, a large-scale, wide-area botnet detection system that incorporates
a combination of novel techniques to overcome the challenges imposed by
the use of NetFlow data. In particular, we identify several groups of features
that allow Disclosure to reliably distinguish C&C channels from benign
traffic using NetFlow records (i.e., flow sizes, client access patterns, and tem-
poral behavior). To reduce Disclosure’s false positive rate, we incorporate
a number of external reputation scores into our system’s detection proce-
dure. Finally, we provide an extensive evaluation of Disclosure over two
large, real-world networks. Our evaluation demonstrates that Disclosure
is able to perform real-time detection of botnet C&C channels over datasets
on the order of billions of flows per day.

Appendices

107

Annexe A

Résumé étendu

L’époque où l’Internet utilisé á un réseau universitaire sans activité
malveillante est révolue depuis longtemps. Aujourd’hui, Internet est devenu
un infrastructures critiques, et il joue maintenant un rôle crucial dans la
communication, la récupération des finances, du commerce et de l’informa-
tion.Il a été rapporté qu’il ya plus de 2,7 milliards de pages Web sur le
Internet maintenant.

Malheureusement, tant que la technologie devient populaire, il attire
aussi personnes ayant des intentions malveillantes. En fait, la criminalité
numérique est une culture défi pour les organismes d’application de la loi.
Comme attaques Internet sont facile á lancer et difficiles á retracer, de
tels crimes ne sont pas faciles pour poursuivre et traduire en justice. En
conséquence, il ya une grande incitation pour les cyber-criminels á s’engager
dans malveillants á but lucratif activité illégale sur l’Internet. Malheureuse-
ment, le nombre et la sophistication des attaques Internet n’ont cessé d’aug-
menter dans les dix dernières années.

Un outil de prédilection des criminels numériques d’aujourd’hui sont
bots. Un bot est un type de malware qui est créé avec l’intention de com-
promettre et prendre le contrôle des hôtes sur Internet. Il est généralement
installé sur l’ordinateur de la victime par soit exploitant une vulnérabilité du
logiciel dans le navigateur web ou le système d’exploitation ou en utilisant
des techniques d’ingénierie sociale pour astuce de la victime dans l’installa-
tion du robot elle-même. Comparé á d’autres types de logiciels malveillants,

109

110 Annexe A Résumé étendu

la caractéristique distinctive d’un bot est son capacité á établir un canal de
commande et de contrôle qui permet un attaquant de contrôler á distance
ou de mettre á jour un compromis machine. Un certain nombre de machines
zombies qui sont regroupées sous le contrôle d’une entité unique et malveil-
lants (Appelé le botmaster) sont considérés comme un botnet. Ces botnets
sont souvent maltraitées que les plateformes de lancer un déni de service
attaques, pour envoyer des spams ou pour héberger arnaque pages. L’utili-
sation d’un botnet, les attaquants aussi généralement voler des informations
sensibles sur la machine d’une victime (par exemple, numéros de carte de
crédit, chat, les identifiants du compte sociale du réseau, etc.)

Les botnets ont également été signalés comme ayant été utilisées dans
des attaques contre nations - á la fois volontairement, et par cöıncidence.
Par exemple, dans 2007, il y avait un bot basé délibérée et organisée dis-
tribués attaque par déni de service contre des infrastructures critiques de
l’Estonie. En 2009, les ordinateurs infectés Conficker des trois armées eu-
ropéennes. Ainsi, avions de chasse franais ont été empêchés de décoller,
les réseaux de l’armée britannique et allemand bases ont été partiellement
l’arrêt, et un certain nombre de forces de police britannique a d débrancher
leurs réseaux de l’Internet. Récemment, le botnet Stuxnet a attaqué une
infrastructure critique d’un particulier nation. En fait, Stuxnet semble avoir
été écrit spécifiquement pour attaquer une marque particulière de surveil-
lance Contrôle et acquisition de données (SCADA). Les systèmes SCADA
sont généralement responsables de l’exploitation des composantes clés de la
puissance les plantes, les pipelines, les réseaux de distribution d’électricité,
et d’autres similaires les systèmes industriels.

Les moyens traditionnels de défense contre les robots collecteurs de s’ap-
puyer sur l’anti-virus (AV) du logiciel installé sur les machines des utilisa-
teurs finaux ainsi que d’autres types de logiciels malveillants. Malheureuse-
ment, comme l’existence de botnets nombreuses démontre, ces systèmes
sont insuffisants. La raison est qu’elles s’appuient sur les signatures des
échantillons connus, bien documentée limitation qui rend difficile suivre
l’évolution rapide des logiciels malveillants. Afin d’atténuer ce limitation, un
certain nombre de systèmes de défense basés sur l’hôte ont été introduits. Ces
systèmes utilisent statique ou dynamique des techniques d’analyse de code
pour capturer le comportement des programmes inconnus. En comparant les
observer comportement à un modèle qui spécifie les caractéristiques de cer-
tains types de logiciels malveillants, les instances jusque-là inconnues du code
malveillant peut être identifiés. Cependant, bien qu’utiles, ces systèmes sont
problématiques dans pratique, car ils encourent une surcharge d’exécution
considérables et nécessitent chaque utilisateur à installer la plate-forme d’-

A.1 Détection Botnet Par Packet Inspection Réseau 111

analyse.

Afin de compléter les techniques d’analyse basées sur l’hôte, il est souhaitable
d’avoir un système de détection basé sur le réseau disponible qui peut
surveiller le réseau du trafic pour les indications de machines zombies. En
pratique, les systèmes de détection basée sur le réseau sont plus préférable
que celles basées sur l’hôte. Une raison est que les systèmes de détection
basée sur le réseau avoir une visibilité complète sur le réseau tout en tech-
niques basées sur l’hôte cible uniquement les personnes seules. Malheureuse-
ment, dans la sécurité écosystèmes, les utilisateurs sont généralement le mail-
lon faible. Par conséquent, les administrateurs réseau emploient souvent des
systèmes de détection basée sur le réseau qui peut être déployée à un point de
vue dans le réseau. De cette façon, ils sont capables de surveiller les activités
du réseau de tous les individus sans donner privelages aux ordinateurs qui
ont déjà été protégée par un basé sur l’hôte système de détection de logiciels
malveillants.

Une autre raison est que la nature des botnets est sujette à des réseaux
à base systèmes de détection. Le trait caractéristique de botnets est la com-
mande et le protocole de contrôle qu’ils adoptent. Comme le infrustructure
commandement et de contrôle repose sur un réseau de communication, donc
observable dans le trafic réseau, il est considéré comme l’endroit sensible de
botnets.Même si botmasters appliquer certaines techniques de masquage à
cacher la sémantique de la commande et le protocole de contrôle, car il est
transmis sur le réseau, les paquets de rester dans le réseau.

Pour ces raisons, dans cette thèse, nous proposons trois basées sur le
réseau techniques de détection botnet. Chaque technique de modèles les
détections par l’analyse différents types de données du réseau : la technique
de détection effectue d’abord Packet Inspection niveau. Le second analyse le
trafic DNS pour trouver les domaines qui sont maltraités pour les différentes
sortes de fins malveillantes, y compris d’être affecté pour les serveurs de com-
mande et de contrôle. Et enfin, le dernier détecte les serveurs de commande
et de contrôle en analysant les données NetFlow.

A.1 Détection Botnet Par Packet Inspection Réseau

Des travaux antérieurs á la détecter les robots collecteurs de procéder
á l’inspection de paquets au niveau du réseau a progressé le long de deux
axes principaux : Le premier axe de recherche utilise la corrélation verti-
cale techniques.Ces techniques se concentrer sur la détection de l’individu
bots, habituellement en vérifiant les schémas de trafic ou de contenu qui

112 Annexe A Résumé étendu

révèlent commandement et de contrôle du trafic ou malveillant, bots liés
activités.Ces systèmes nécessitent une connaissance préalable sur la canaux
de commande et de contrôle et les vecteurs de propagation des bots qu’ils
peuvent détecter.Par exemple, Rishi analyse le trafic IRC pour les pseudos
qui sont fréquemment utilisés par les robots, tandis que le système pro-
posé par Binkley et contrôles Singh pour suspectes les statistiques du trafic
IRC.BotHunter est plus avancés dans l’outil combine des alertes á la fois
basée sur les anomalies et la signature des systèmes de détection d’intrusion
afin d’identifier bot trafic lié.Néanmoins, comme souligné par les auteurs
dans un suivi de papier, BotHunter repose sur le fait que le comportement
bot “suit un cycle de pré-défini d’infection de vie modèle de dialogue”, ce
qui est orientée vers les robots collecteurs qui utilisent balayage aléatoire et
les commandes bot connu.

Le deuxième axe de recherche pour détecter les robots collecteurs utilise
horizontale la corrélation des approches pour analyser le trafic réseau pour
les modèles qui indiquent que deux ou plusieurs hôtes se comportent de façon
similaire.Ces similaires modèles sont souvent le résultat d’une commande qui
est envoyée á plusieurs les membres de la même botnet, causant des bots
á réagir dans le même la mode (par exemple, en commençant á numériser
ou d’envoyer des mails).Le saillants propriété de techniques qui utilisent
la corrélation horizontales, telles que BotSniffer, BotMiner, et TAMD, est
qu’ils ne nécessitent pas une priori des informations sur la manière dont
le commandement et le contrôle canal est mis en uvre.L’inconvénient de
ces approches est qu’elles ne peut pas détecter les robots collecteurs indi-
viduels.C’est, il est nécessaire qu’au moins deux hôtes dans les réseaux de
surveillance sont membres de la même botnet.Compte tenu de la tendance
générale á la plus petite des botnets et la possibilité pour un botmaster
d’attribuer deux robots de la gamme d’un même réseau botnets différents,
c’est un inconvénient important.

La techniquebotnetpremière détectionprésenté dans cette thèsepropose
une approchesimplede détection pour identifier, machineszombiessans au-
cune connaissance préalablesur le commandement et mécanismes de contrôle
oude la manière dontse propageun bot.notredétection modèles’appuie surle
comportement caractéristiqued’un bot, quiest qu’il (a)reçoit les commandes
dubotmaster,et (b)s’acquitte de certaines actions en réponse áces comman-
des.Semblable ádes travaux antérieurs, nous supposons quela commandeet
les résultatsdes activitésde réponsedans une sorte de réseau de communica-
tionqui peuvent être observées.

L’idée de base de notre système est que nous pouvons générer des modèles
de détection en observant le comportement des robots qui sont capturés á

A.2 Détection Botnet par DNS Analyse Passive 113

l’état sauvage. Plus précisément, en lançant un bot dans un environnement
contrôlé et l’enregistrement de son activité sur le réseau (traces), nous pou-
vons observerles commandements que ce bot reçoit ainsi que les réponses cor-
respondantes. á cette Finalement, nous présentons les techniques qui nous
permettent d’identifier les pointsdans un réseau de traces qui ont proba-
blement en corrélation avec l’activité de réponse. Ensuite, nous analysons la
trafic qui précède cette réponse pour trouver le correspondant de commande.
Basé sur les observations de commandes et les réponses, nous générer des
modèles de détection qui peuvent être déployés pour analyser le trafic réseau
pour une activité similaire, en indiquant le fait qu’une machine est infectée
par un bot. Notre approche produit des modèles de détection spécifiques qui
sont adaptés aux familles bot ou des groupes de robots liés par une commune
C&C infrastructures. Parce que le système est automatisé, cependant, il est
facile pour générer rapidement de nouveaux modèles pour les robots qui met-
tent en oeuvredes commandes nouvelles et réponses. Ceci est indépendant
de toute connaissance préalable de la protocole ou les commandes que le bot
utilise.

A.2 Détection Botnet par DNS Analyse Passive

Depuis le malware est apparu á l’état sauvage, il ya une continue-course
entre les bras auteurs de programmes malveillants et les mécanismes de
défense des logiciels malveillants.Chaque fois un système de détection de
malware a été développé, malware lui-même modifié pour échapper á ces
systèmes.En conséquence, ce bras-course causé le malware évolution.

Les botnets sont un autre type de malware. Ils ont également développé
des techniques pour déjouer les mécanismes existants de détection des réseaux
de zombies. Dans un premier temps, ils ont appliqué le cryptage ou l’obscur-
cissement de se cacher le fonctionnement interne de leur C&C infrastruc-
tures. Malheureusement, la plupart des systèmes de détection botnet qui
effectuent l’inspection des paquets au niveau du réseau, y compris notre
système que nous avons décrite ci-dessus, sont limitées dans le fait que
ils ne peuvent pas faire face aux botnets masquer/crypter leur trafic. Par
conséquent, la nécessité d’un nouveau système de détection complémentaires
botnet est évidente.

Un des problèmes techniques que les attaquants face á la conception de
leur infrastructures malveillants est la question de savoir comment mettre
en uvre un infrastructure de serveur fiable et flexible, et le commandement
et le contrôle mécanisme.Ironiquement, les attaquants sont confrontés á la

114 Annexe A Résumé étendu

même l’ingénierie globale défis auxquels font face les entreprises qui doivent
maintenir une grande infrastructure de service distribué et fiable pour leurs
clients.Par exemple, dans le cas des botnets, le attaquants ont besoin pour
gérer efficacement les hôtes distants qui peuvent facilement composent de
milliers de compromis de l’utilisateur final des machines.évidemment, si
l’adresse IP du serveur de commande et de contrôle est codé en dur dans
le binaire bot, il existe un point unique de défaillance du réseau de zom-
bies. C’est, du point de vue de l’attaquant, chaque fois que cette adresse est
identifié et est descendu, le botnet serait perdu.

Le Domain Name System (DNS) est un système de nommage hiérarchique
pour ordinateurs, des services, ou toute autre ressource connectée á Inter-
net. De toute évidence, car elle aide les internautes á trouver des ressources
telles que le Web serveurs, hôtes de diffusion, et d’autres services en ligne,
le DNS est l’un des composants de base et le plus important de l’Internet.
Malheureusement, en plus d’être utilisé pour d’évidentes fins bénignes, les
noms de domaine sont également populaires pour une utilisation malveil-
lante. Par exemple, des noms de domaine sont de plus en plus jouer un rôle
pour la gestion du botnet commande et de contrôle serveurs, des sites de
téléchargement du code malveillant est hébergé, et le phishing pages qui
visent á voler des informations sensibles á partir méfiance victimes.

Afin de mieux faire face á la complexité d’un grand, distribuée infrastruc-
tures, les réseaux de zombies ont été de plus en plus faire usage de domaine
noms. En utilisant le DNS, botmasters d’acquérir la souplesse nécessaire
pour changer l’adresse IP adresse des serveurs malveillants qu’ils gèrent. En
outre, ils peuvent cacher leurs serveurs critiques derrière les services de proxy
(par exemple, en utilisant Fast-Flux) pour que leur serveur malveillant est
plus difficiles á identifier et prendre vers le bas.

L’utilisation de nomsde domainedonnecontrôleursbotnetla flexibilité dela
migration de leurs serveursavec facilité.Autrement dit, lesinfrastructures deréseaux
de zombiesdeviennent plus “tolérants aux pannes”á l’égard desadresses IPoù
ilssont hébergés.

Notre idée fondamentale est que les services malveillants(par exempleles
botnets) sont souvent commedépendantes des servicescomme les services-
DNSbénigne, être capable de identifier les domaines malveillants dès qu’ils
apparaissent de façon significative aider á atténuerles menaces Internet-
nombreusesqui découlent debotnets. Aussi, notrehypothèse est quequand
on regardede gros volumes dedonnées,requêtes DNSpour lesbénigne et les
domainesmalveillantsdoit présentersuffisamment de différencesdans le com-
portement qu’ilspeuvent automatiquementêtre distingués.

Avec notre techniquede détectionbotnetseconde, nous présentonsune ap-

A.2 Détection Botnet par DNS Analyse Passive 115

proched’analysepassiveDNS complet et un système de détection, EXPO-
SURE,avec efficacité et efficience détecter desnoms de domaine quisont
impliqués dansdes activités malveillantes.Nous utilisons 15fonctions(dont
9sont nouveaux etn’ont pas étéproposéavant) qui nous permettentde car-
actériserles propriétésdifférentesdesnoms DNS et les façons dontils sont utilisés
(i.e.,interrogée).

Notez que les chercheurs ont utilisé DNS avant comme un moyen d’anal-
yser, mesurer et estimer la taille des botnets existants dans le passé. certains
solutions ont ensuite tenté d’utiliser le trafic DNS pour détecter malveillants
domaines d’un certain type. Cependant, toutes ces approches sont unique-
ment concentrées sur des classes spécifiques de programmes malveillants
(par exemple, seulement malveillants Fast-Flux services). Notre approche,
en comparaison, est beaucoup plus générique et n’est pas limitée á certaines
catégories d’attaques (e.g., les botnets seulement).

Dans notre approche, basée sur les caractéristiques que nous avons iden-
tifiés et une ensemble d’apprentissage qui contient connue domaines bénignes
et malicieux, nous former un classificateur de noms DNS. être capable de
surveiller passivement en temps réel le trafic DNS nous permet d’identifier les
domaines malveillants qui ont pas encore été révélé par pré-compilé des listes
noires. En outre, dans Contrairement aux techniques actives de surveillance
DNS que la sonde pour les domaines qui sont soupçonnés d’être malveillants,
notre analyse est furtive, et nous n’avons pas besoin de déclencher malveil-
lants spécifiques activité en vue d’acquérir des informations sur le domaine.
l’ l’analyse furtive que nous sommes en mesure d’effectuer a l’avantage que
nos adversaires, les cyber-criminels, n’ont aucun moyen de bloquer ou d’en-
traver l’analyse que nous effectuons (par opposition á des approches comme
dans).

Á ce jour, un seul système a été proposé, qui vise á détecter domaines
malveillants générique utilisant l’analyse passive DNS. Dans un travaux si-
multanés et indépendants qui a été très récemment présenté par Anton-
akakis et al., Les auteurs présentent Notos. Notos assigne dynamiquement
les scores de réputation des noms de domaine dont la malveillance n’a pas
encore été découverts. En comparaison, notre approche n’est pas dépendante
de grandes quantités de malveillance historique données (par exemple, les
adresses IP des serveurs infectés antérieurement), nécessite moins de temps
de formation, et contrairement á Notos, est également capable de détecter
malveillants domaines qui sont mappés á un nouvel espace d’adressage á
chaque fois et jamais utilisé pour d’autres fins malveillantes á nouveau.

116 Annexe A Résumé étendu

A.3 Détection des Serveurs de Commande et de
Contrôle en Analysant les Données du Flux
Réseau

Bien que EXPOSURE se comporte bien dans la détection deréseaux
de zombiesqui utilisentdes noms DNS pour contacter le serveur de com-
mande et de contrôle, un problème actuel du système est qu’il est evadable
si l’utilisation du réseau de zombies DNS est conçu pour êtresemblable á
serveurs bénigne (par exemple, des valeurs normales de TTL, une cartogra-
phie á un petit nombre d’adresses IP, etc.). Un deuxième problème avec
DNS basé sur la détection est que la demande du client á un domaine DNS
malicieux ne signifie pas nécessairement indiquer que le client a été infecté.
En fait, une telle demande pourraient avoir été simplement causée par une
tentative d’infection ont échoué. Par ailleurs, il ya aussi une chance que le
domaine demandé n’est pas vraiment malveillants (par exemple, si les at-
taquants sont l’aide d’une bénigne, domaine compromis pour héberger un
serveur de commande etde contrôle). Une troisième problème est que une
requête DNS pour un domaine malveillant pourrait être mis en cache et de
par conséquent, pourraient ne pas apparâıtre dans le trafic surveillé DNS.
En conséquence, connexions par les hôtes compromis sur le serveur de com-
mande et de contrôlepeuvent être manquées.

Un autre problème tout basé sur le réseau de détection précédente botnet
est que les techniques de parts ils ne s’adaptent pas au-delá d’un seul do-
maine administratif, tout en conservant la précision de détection utile, même
si, ils sont efficaces dans certaines circonstances. Cette limitation restreint
l’application de systèmes automatisés de détection d’botnet les entités qui
sont informés ou assez motivés pour les déployer. Ainsi, nous ont l’état actuel
du botnet d’atténuation, où de petites poches de l’Internet sont assez bien
protégés contre l’infection alors que la majorité des critères d’évaluation
restent vulnérables.

Cette situation n’est pas idéale. Les botnets sont un problème sur In-
ternet á l’échelle qui s’étend domaines administratifs individuels et, par
conséquent, un problème qui nécessite une L’échelle d’Internet solution. En
particulier, les botnets peuvent continuer á faire des ravages sur l’Internet,
malgré le déploiement de systèmes de détection localisée par en se concen-
trant sur la propagation á travers moins bien protégé les populations.

Deux des principaux facteurs empêchant le développement de efficaces
á grande échelle, étendu de systèmes de détection botnet sont apparem-
ment contradictoires. D’un côté, la main, le résultat technique et adminis-

A.3 Détection des Serveurs de Commande et de Contrôle en Analysant les Données du Flux Réseau117

tratif des restrictions dans un général indisponibilité du réseau de données
brutes qui faciliterait la détection sur un botnet á grande échelle. D’autre
part, étaient présent les données disponibles, traitement en temps réel á
cette échelle serait un formidable défi. Alors que la source de données idéale
pour Détection botnet de grande envergure n’existe pas actuellement, il ya,
cependant, une source alternative de données qui est largement disponible
aujourd’hui : NetFlow données.

Données NetFlow est souvent capturé par les FAI en utilisant un grand
ensemble distribué de collectionneurs d’audit et de suivi de la performance á
travers les réseaux backbone. Alors qu’il est contraire extrêmement attractif,
les données NetFlow impose plusieurs défis pour effectuer la détection précise
botnet. Tout d’abord, et peut-être la plus critique, enregistrements NetFlow
ne comprennent pas les charges utiles des paquets, mais plutôt des flux enreg-
istrements sont limités á des métadonnées globales concernant un flux réseau
tel que le durée de débit et le nombre d’octets transférés. Deuxièmement,
les enregistrements NetFlow sont half-duplex, c’est-ils seulement enregistrer
une direction d’une connexion réseau. Troisièmement, les données NetFlow
sont souvent collectées par échantillonnage duréseau surveillé, souvent á des
taux de plusieurs ordres de grandeur ou plus, retiré de la circulationréelle.

Chacune de ces caractéristiques des données NetFlow complique l’élaboration
de un détecteur de botnet effectif sur ce domaine. Le détecteur doit être capa-
ble de distinction entre le trafic réseau et malveillants sans accès aux charges
du réseau, qui est le composant de données réseau qui transportedirectement
preuve de comportements malveillants. Le détecteur doit également être ca-
pable de reconnatre signaux faibles indiquant la présence d’un botnet á cause
des effets combinés de half-duplex capture et d’échantillonnage agressif.

Comme un roman de suivi du travail á nos précédentes techniques de
détection botnet, dans la troisième partie de la thèse, nous présentons une
grande échelle, une vaste zone botnet système de détection qui incorpore une
combinaison de techniques novatrices pour surmonter les défis imposés par
l’utilisation des données NetFlow. En particulier, nous d’identifier plusieurs
groupes de caractéristiques qui permettent de façon fiable DISCLOSURE
distinguer les canaux de commande et de contrôle du trafic á l’aide bénigne
enregistrements NetFlow : (i) débit tailles, (ii) schémas d’accès client, et
(iii) le comportement temporelle. Nous démontrer que ces fonctionnalités
ne sont pas seulement efficaces dans la détection de courant canaux de
commande et de contrôle, mais que ces caractéristiques sont relativement
robustes contre les attendus botnets contre l’avenir pourrait déployer con-
tre notre système. Par ailleurs, ces caractéristiques ne sont pas conscients
de la structure spécifique de commandement et de contrôle botnet connu

118 Annexe A Résumé étendu

protocoles.

Bien que les caractéristiques ci-dessus sont suffisants pour capturer coeur
caractéristiques de commandement génériques et de contrôle du trafic, ils
génèrent aussi des faux positifs dans isolement. Afin de réduire DISCLO-
SURE du taux de faux positifs, nous intégrons une nombre de scores de
réputation externes dans la procédure de détection de notre système. Ces
signaux supplémentaires fonctionnent comme un filtre qui réduit de fausses
DISCLOSURE de taux positif á un niveau où le système ne peut réalistement
être déployé sur réseaux á grande échelle.

A.4 Contributions

En résumé, cette thèse fait les contributions suivantes :

– Nous présentons trois basées sur le réseau botnet de techniques de
détection qui effectuent leur analyse sur les différents types de données :
le trafic du réseau complet, le trafic DNS et le trafic NetFlow.

– Nous présentons un système de détection botnet qui effectue une in-
spection de paquets au niveau du réseau. Ce système est un mécanisme
entièrement automatisé qui génère de détection bot modèles en obser-
vant le comportement réel des instances de bot dans un environnement
contrôlé, sans faire d’hypothèses sur le commandement et le contrôle
mécanismes. Ce travail a été publié dans ESORICS 2009.

– Avec l’expérience nous avons effectué avec la première méthode de
détection, nous démontrer la faisabilité de notre approche en générant
modèles de détection pour les familles bot diverses (y compris ceux
contrôlés via IRC et HTTP, ainsi que P2P). Ces modèles sont efficaces
dans la détection des bots avec peu de faux positifs.

– Nous présentons une autre technique d’analyse novatrices pour la
détection des domaines malveillants qui est basé sur l’analyse la de-
mande passive DNS. Notre technique ne repose pas sur une connais-
sance préalable sur le type de services du domaine malveillants of-
fre (par exemple, le phishing, Fast-Flux les services, le spamming, les
botnets qui utilisent un algorithme de génération de domaine, etc.)
Ce chiffre est nettement différent des techniques existantes qui seule
cible de Fast-Flux domaines utilisés dans les opérations de botnet. En
outre, notre approche nécessite moins de temps de formation, et moins
données d’entranement á Notos, et n’a pas certaines de ses limites. Ce
travail a été publié dans le NDSS2011.

– Nous décrivons la mise en oeuvre de notre détection en temps réel

A.4 Contributions 119

système que nous appelons EXPOSURE. Nos résultats expérimentaux
montrent que la technique que nous proposons est évolutive, et est ca-
pable de distinguer avec précision entre les malveillants et les domaines
bénigne avec un faible taux de faux positifs.

– Nous vous présentons DISCLOSURE, une grande échelle, une vaste
zone botnet système de détection qui détecte de manière fiable bot-
net C&C dans les canaux facilement accessibles les données NetFlow
utilisant un nouvel ensemble de données statistiques robustes fonction-
nalités. En particulier, DISCLOSURE n’assume pas a priori notam-
ment la connaissance de C&C protocoles.

– Nous intégrer plusieurs systèmes de réputation externes dans DISCLO-
SURE de procédure de détection pour affiner la précision du système.

– Nous évaluons DISCLOSURE plus de deux réseaux du monde réel, et
démontrer sa capacité á détecter á la fois connus et inconnus botnet
C&C serveurs sur des échelles non précédemment atteint.

120 Annexe A Résumé étendu

Bibliographie

[1] RFC 1794 - DNS Support for Load Balancing. http://tools.ietf.

org/html/rfc1794, 1995.

[2] RFC1834 - Whois and Network Information Lookup Service,
Whois++. http://www.faqs.org/rfcs/rfc1834.html, 1995.

[3] RFC 1912 - Common DNS Operational and Configuration Errors.
http://www.faqs.org/rfcs/rfc1912.html, 1996.

[4] Alexa Web Information Company. http://www.alexa.com/

topsites/, 2009.

[5] DNSBL - Spam Database Lookup. http://www.dnsbl.info/, 2010.

[6] Google Safe Browsing. http://www.google.com/tools/firefox/

safebrowsing/, 2010.

[7] Internet Systems Consortium. https://sie.isc.org/, 2010.

[8] McAfee SiteAdvisor. http://www.siteadvisor.com/, 2010.

[9] Norton Safe Web. http://safeweb.norton.com/, 2010.

[10] FIRE : FInding RoguE Networks. http://www.maliciousnetworks.
org/, 2011.

[11] Google safe browsing diagnostic page for authonomous sys-
tems. http://www.google.com/safebrowsing/diagnostic?site=

AS:as_number, 2011.

[12] B. Amini. Kraken Botnet Infiltration. http:

//dvlabs.tippingpoint.com/blog/2008/04/28/

kraken-botnet-infiltration, 2008.

[13] D. Anderson, C. Fleizach, S. Savage, and G. Voelker. Spamscatter :
Characterizing Internet Scam Hosting Infrastructure. In Usenix Secu-
rity Symposium, 2007.

[14] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster.
Building a Dynamic Reputation System for DNS. In 19th Usenix
Security Symposium, 2010.

121

122 Bibliographie

[15] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou, and D. Dagon.
Detecting malware domains at the upper dns hierarchy. In 20th Usenix
Security Symposium, 2011.

[16] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. C. Freiling. The
Nepenthes Platform : An Efficient Approach to Collect Malware. In
9th Symposium on Recent Advances in Intrusion Detection (RAID),
pages 165–184, 2006.

[17] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario. Automated Classification and Analysis of Internet Mal-
ware. In Recent Advances in Intrusion Detection, 2007.

[18] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes -
Theory and Application. Prentice-Hall, 1993.

[19] U. Bayer. Anubis : Analyzing Unknown Binaries. http://analysis.
seclab.tuwien.ac.at/.

[20] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda.
Scalable, Behavior-Based Malware Clustering. In 16th Symposium on
Network and Distributed System Security (NDSS), 2009.

[21] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze : A Tool for Analyzing
Malware. In 15th EICAR Conference, Hamburg, Germany, 2006.

[22] P. Berkhin. Survey of clustering data mining techniques. Technical
report, 2002.

[23] L. Bilge. EXPOSURE : Exposing Malicious Domains. http://

exposure.iseclab.org/, 2011.

[24] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. EXPOSURE : De-
tecting Malicious Domains Using Passive DNS Analysis, 2011.

[25] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Exposure : Finding
malicious domains using passive dns analysis. In 18th Annual Network
and Distributed System Security Symposium (NDSS’11), 2011.

[26] J. Binkley and S. Singh. An Algorithm for Anomaly-based Botnet
Detection. In Usenix Steps to Reduce Unwanted Traffic on the Internet
(SRUTI), 2006.

[27] G. E. P. Box, G. M. Jenkins, and G. Reinsel. Time Series Analysis :
Forecasting and Control. In 3rd eddition Upper Saddle River, NJ :
PrenticeHall, 1994.

[28] A. P. Bradley. The use of the area under the ROC curve in the eval-
uation of machine learning algorithms. In Pattern Recognition, vol-
ume 30, pages 1145–1159, 1997.

Bibliographie 123

[29] D. Brauckhoff, X. Dimitropoulos, A. Wagner, and K.Salamatian.
Anomaly extraction in backbone networks using association rules. In
ACM Internet Measurement Conference (IMC’09), 2009.

[30] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina.
Impact of packet sampling on anomaly detection metrics. In Proceed-
ings of the 6th ACM SIGCOMM conference on Internet measurement,
IMC ’06, 2006.

[31] H. Choi, H. Lee, and H. Kim. Botnet detection by monitoring group
activities in DNS Traffic. In 7th IEEE International Conference on
Computer and Information Technologies, 2007.

[32] M. Christodorescu and S. Jha. Testing Malware Detectors. In ACM
International Symposium on Software Testing and Analysis (ISSTA),
2004.

[33] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant.
Semantics-Aware Malware Detection. In IEEE Symposium on Security
and Privacy (Oakland), 2005.

[34] S. Chu, E. Keogh, D. Hart, M. Pazzani, and Michael. Iterative deep-
ening dynamic time warping for time series. In In Proc 2 nd SIAM
International Conference on Data Mining, 2002.

[35] B. Claise. Cisco systems netflow services export version 9, 2004.

[36] E. Cooke, F. Jahanian, and D. McPherson. The Zombie Roundup :
Understanding, Detecting, and Disrupting Botnets. In 1st Workshop
on Steps to Reducing Unwanted Traffic on the Internet, pages 39–44,
2005.

[37] M. Cova. Wepawet. http://wepawet.iseclab.org/.

[38] N. Cristianini and J. Shawe-Taylor. An introduction to support vec-
tor machines and other kernel-based learning methods. In Cambridge
University Press, 2000.

[39] Cyber-TA. SRI Honeynet and BotHunter Malware Analysis Au-
tomatic Summary Analysis Table. http://www.cyber-ta.org/

releases/malware-analysis/public/, 2007.

[40] D. Dagon, G. Gu, C. Lee, and W. Lee. A Taxonomy of Botnet Struc-
tures. In Annual Computer Security Applications Conference (AC-
SAC), 2007.

[41] J. Davis. Hackers Take Down the Most Wired Country in
Europe. http://www.wired.com/politics/security/magazine/

15-09/ff_estonia, 2007.

124 Bibliographie

[42] M. de Hoon, S. Imoto, J. Nolan, and S. Miyano. Open Source Clus-
tering Software. Bioinformatics, 20(9), 2004.

[43] G. Dewaele, K. Fukuda, P. Borgnat, P. Abry, and K. Cho. Extracting
hidden anomalies using sketch and non gaussian multiresolution sta-
tistical detection procedures. In Proceedings of the 2007 workshop on
Large scale attack defense (LSAD 07), 2007.

[44] D. Dietrich. Distributed Denial of Service(DDoS) Attacks/tools.
http://staff.washington.edu/dittrich/misc/ddos/, 2005.

[45] M. Domains. Malware Domain Block List. http://www.

malwaredomains.com/, 2009.

[46] M. Felegyhazi, C. Kreibich, and V. Paxson. On the potential of proac-
tive domain blacklisting. In Proceedings of the Third USENIX Work-
shop on Large-scale Exploits and Emergent Threats (LEET), San Jose,
CA, USA, April 2010.

[47] J. Francois, S. Wang, R. State, and T. Engel. Bottrack : Tracking
botnets using netflow and pagerank. In IFIP Networking 2011, 2011.

[48] F. Freiling, T. Holz, and G. Wicherski. Botnet Tracking : Exploring
a Root-Cause Methodology to Prevent Distributed Denial-of-Service
Attacks. In 10th European Symposium On Research In Computer Se-
curity, 2005.

[49] J. Goebel and T. Holz. Rishi : Identify bot contaminated hosts by IRC
nickname evaluation. In Workshop on Hot Topics in Understanding
Botnets, 2007.

[50] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. H. Kang, and D. Dagon.
Peer-to-Peer Botnets : Overview and Case Study. In 1st Workshop on
Hot Topics in Understanding Botnets, April 2007.

[51] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner : Clustering
Analysis of Network Traffic for Protocol- and Structure-Independent
Botnet Detection. In Usenix Security Symposium, 2008.

[52] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. BotHunter :
Detecting Malware Infection Through IDS-Driven Dialog Correlation.
In 16th Usenix Security Symposium, 2007.

[53] G. Gu, J. Zhang, and W. Lee. BotSniffer : Detecting Botnet Command
and Control Channels in Network Traffic. In 15th Annual Network and
Distributed System Security Symposium (NDSS), 2008.

[54] J. John, A. Moshchuk, S. Gribble, and A. Krishnamurthy. Study-
ing Spamming Botnets Using Botlab. In 6th Usenix Symposium on
Networked Systems Design and Implementation (NSDI), 2009.

Bibliographie 125

[55] C. Kalt. Internet relay chat : Architecture. RFC2810.

[56] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale Botnet De-
tection and Characterization. In Usenix Workshop on Hot Topics in
Understanding Botnets, 2007.

[57] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Locally adap-
tive dimensionality reduction for indexing large time series databases.
In ACM SIGMOD Conference on Management of Data, pages 151–
162, 2001.

[58] H. Kim and B. Karp. Autograph : Toward Automated, Distributed
Worm Signature Detection. In 13th USENIX Security Symposium,
pages 271–286, August 2004.

[59] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer.
Behavior-based Spyware Detection. In 15th Usenix Security Sympo-
sium, 2006.

[60] D. E. Knuth. Seminumerical algorithms. In The Art of Computer
Programming, Volume 2, Addison Wesley, 1969.

[61] M. Konte, N. Feamster, and J. Jung. Dynamics of online scam hosting
infrastructure. In In Passive and Active Measurement Conference,
2009.

[62] C. Kruegel, W. Robertson, and G. Vigna. Detecting Kernel-Level
Rootkits Through Binary Analysis. In Annual Computer Security Ap-
plications Conference (ACSAC), 2004.

[63] Z. Li, M. Sanghi, Y. Chen, M. Kao, and B. Chavez. Hamsa : Fast
Signature Generation for Zero-day Polymorphic Worms with Provable
Attack Resilience. In IEEE Symposium on Security and Privacy, 2006.

[64] A. Liaw and M. Wiener. Classification and regression by randomforest.
In R News, volume 2/3, page 18, 2002.

[65] M. D. List. Malware Domains List. http://www.

malwaredomainlist.com/mdl.php, 2009.

[66] Z. B. List. Zeus domain blocklist. https://zeustracker.abuse.ch/
blocklist.php?download=domainblocklist, 2009.

[67] C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer. Using machine
learning techniques to identify botnet traffic. In the 2nd IEEE LCN
Workshop on Network Security (WoNS’2006), 2006.

[68] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Beyond blacklists :
Learning to detect malicious web sites from suspicious urls. In Pro-
ceedingsof theSIGKDD Conference. Paris,France, 2009.

126 Bibliographie

[69] M. Mahoney and P. Chan. Learning Nonstationary Models of Nor-
mal Network Traffic for Detecting Novel Attacks. In Conference on
Knowledge Discovery and Data Mining (KDD), 2002.

[70] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang. Is sampled
data sufficient for anomaly detection ? In Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, IMC ’06, 2006.

[71] D. Moore, G. Voelker, and S. Savage. Inferring Internet Denial of
Service Activity. In Usenix Security Symposium, 2001.

[72] A. Moser, C. Kruegel, and E. Kirda. Limits of Static Analysis for
Malware Detection . In 23rd Annual Computer Security Applications
Conference (ACSAC), 2007.

[73] J. Nazario and T. Holz. As the net churns : Fast-flux botnet ob-
servations. In International Conference on Malicious and Unwanted
Software, 2008.

[74] C. News. Stuxnet : Fact vs. theory. http://news.cnet.com/

8301-27080_3-20018530-245.html?tag=topStories1, 2010.

[75] J. Newsome, B. Karp, and D. Song. Polygraph : Automatically Gen-
erating Signatures for Polymorphic Worms. In IEEE Symposium on
Security and Privacy, pages 226–241, 2005.

[76] E. Passerini, R. Paleari, L. Martignoni, and D. Bruschi. Fluxor :
Detecting and monitoring fast-flux service networks. In Detection of
Intrusions and Malware, and Vunerability Assessment, 2008.

[77] V. Paxson. Bro : A System for Detecting Network Intruders in Real-
Time. Computer Networks, 31, 1999.

[78] R. Perdisci, I. Corona, D. Dagon, and W. Lee. Detecting Malicious
Flux Service Networks through Passive Analysis of Recursive DNS
Traces. In 25th Annual Computer Security Applications Conference
(ACSAC), 2009.

[79] Phishtank. Phishtank. http://www.phishtank.com/, 2009.

[80] P. Porras, H. Saidi, and V. Yegneswaran. A Foray into Conficker’s
Logic and Rendezvous Points. In In USENIX Workshop on Large-
Scale Exploits and Emergent Threats, 2009.

[81] J. Quinlan. C4.5 : Programs for machine learning. In Morgan Kauf-
mann Publishers, 1993.

[82] J. Quinlan. Learning with continuous classes. Proceedings of the
5th Australian joint Conference on Artificial Intelligence, Singapore :
World Scientific :343 – 348, 1995.

Bibliographie 127

[83] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A Multifaceted
Approach to Understanding the Botnet Phenomenon. In Internet Mea-
surement Conference (IMC), 2006.

[84] A. Ramachandran and N. Feamster. Understanding the Network-Level
Behavior of Spammers. In ACM SIGCOMM, 2006.

[85] M. Rehak, M. Pechoucek, K. Bartos, M. Grill, P. Celeda, and V. Kr-
micek. Improving anomaly detection error rate by collective trust
modeling. In Recent Advances in Intrusion Detection 2008 11th Inter-
national Symposium, 2008.

[86] M. Reiter and T. Yen. Traffic aggregation for malware detection. In
DIMVA, 2008.

[87] K. Rieck, T. Holz, C. Willems, P. Duessel, and P. Laskov. Learning
and Classification of Malware Behavior. In DIMVA, 2008.

[88] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In
13th Systems Administration Conference (LISA), 1999.

[89] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm
fingerprinting. In OSDI, 2004.

[90] A. Sperotto, R. Sadre, and A. Pras. Anomaly characterization in flow-
based traffic time series. In Proceedings of the 8th IEEE international
workshop on IP Operations and Management, IPOM ’08, pages 15–27,
2008.

[91] E. Stinson and J. Mitchell. Towards Systematic Evaluation of the
Evadability of Bot/Botnet Detection Methods. In Usenix Workshop
on Offensive Technologies (WOOT), 2008.

[92] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, C. Kruegel, G. Vi-
gna, and R. Kemmerer. My Botnet is Your Botnet : Analysis of a
Botnet Takeover. In 16th ACM Conference on Computer and Com-
munications Security, Chicago, IL, 2009 November.

[93] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna. Your botnet is my botnet :
Analysis of a botnet takeover. In ACM Conference on Computer and
Communication Security (CCS), 2009.

[94] B. Stone-Gross, C. Kruegel, K. Almeroth, A. Moser, and E. Kirda.
Fire : Finding rogue networks. In 2009 Annual Computer Security
Applications Conference (ACSAC’09), 2009.

[95] W. Strayer, R. Walsh, C. Livadas, and D. Lapsley. Detecting Botnets
with Tight Command and Control. In 31st IEEE Conference on Local
Computer Networks (LCN), 2006.

128 Bibliographie

[96] Symantec. Exploring Stuxnet’s PLC Infection Pro-
cess. http://www.symantec.com/connect/blogs/

exploring-stuxnet-s-plc-infection-process, 2010.

[97] Symantec. Symantec Threat Report. http://www.symantec.com/

business/theme.jsp?themeid=threatreport, 2010.

[98] T. Telegraph. French fighter planes grounded by computer virus.
http://www.telegraph.co.uk/news/worldnews/europe/france/

4547649/French-fighter-planes-grounded-by-computer-virus.

html, 2010.

[99] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic
Press, 2009.

[100] T.Holz, C. Gorecki, K. Rieck, and F. Freiling. Measuring and Detect-
ing Fast-Flux Service Networks. In Annual Network and Distributed
System Security Symposium (NDSS), 2008.

[101] D. Turaga, M. Vlachos, and O. Verscheure. On K-Means Cluster
Preservation using Quantization Schemes. In IEEE International Con-
ference on Data Mining, ICDM09, 2009.

[102] R. Villamarn-Salomn and J. C. Brustoloni. Bayesian bot detection
based on DNS traffic similarity. In SAC’09 : ACM symposium on
Applied Computing, 2009.

[103] A. Wagner and B. Plattner. Entropy based worm and anomaly detec-
tion in fast ip networks. In SIG SIDAR Graduierten-Workshop uber
Reaktive Sicherheit (SPRING’06), 2006.

[104] H. Wang, D. Zhang, and K. G. Shin. Change-Point Monitoring for
Detection of DoS Attacks. IEEE Transactions on Dependable and
Secure Computing, 1(4), December 2004.

[105] F. Weimer. Passive DNS Replication. In FIRST Conference on Com-
puter Security Incident, 2005.

[106] I. Witten and E. Frank. Data Mining : Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, 2005.

[107] J. Wolf. Technical details of Srizbis domain generation algorithm.
http://tinyurl.com/6mdasc, 2008.

[108] WorldWideWebSize. Size of the WWW. http://www.

worldwidewebsize.com/, 2010.

[109] P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda.
Automatically Generating Models for Botnet Detection. In 14th Euro-
pean Symposium on Research in Computer Security(ESORICS 2009),
2009.

Bibliographie 129

[110] G. Yan, Z. Xiao, and S. Eidenbenz. Catching instant messaging worms
with change-point detection techniques. In 1st Usenix Workshop on
Large-Scale Exploits and Emergent Threats (LEET), 2008.

[111] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama :
Capturing system-wide information flow for malware detection and
analysis. In ACM Conference on Computer and Communication Se-
curity (CCS), 2007.

[112] B. Zdrnja, N. Brownlee, and D. Wessels. Passive Monitoring of DNS
anomalies. In DIMVA, 2007.

[113] H. Zitouni, S. Sevil, D. Ozkan, and P. Duygulu. Re-ranking of Im-
age Search Results using a Graph Algorithm. In 9th International
Conference on Pattern Recognition, 2008.

