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Abstract

This report presents a novel, cascaded approach to non-linear acous-
tic echo cancellation (AEC). The loudspeaker enclosure microphone (LEM)
system is divided into two blocks: non-linear clipping and power filtering,
and a conventional, linear AEC. They represent the non-linear amplifier and
loudspeaker and linear acoustic channel and up-link path ina typical mobile
communication scenario. We propose an efficient approach for clipping com-
pensation to improve the performance of the non-linear AEC in the presence
of amplifier distortion. It is shown to give a reliable estimate of quasi static
clipping in both artificial and practical environments withreal speech signals.
The cascaded approach to clipping compensation and power filtering is also
more efficient than the alternative approach where clippingcompensation is
integrated into a higher-order power filter.

Index Terms

Echo cancellation, non-linear distortion, power filter, clipping, NLMS,
Volterra.





1 INTRODUCTION

The problem of acoustic echo arises during mobile communication when a far-

end signal is picked up by a near-end microphone. With the delay in the network

the far-end user will thus hear their own delayed voice which can often perturb

communication. To solve this problem acoustic echo cancellation (AEC) is com-

monly proposed as a solution [1]. Early AEC solutions are based on the assumed

linearity of the loudspeaker enclosure microphone (LEM) system. Linear AECs

improve the quality of communication and have proved very popular. With the

growth of the mobile communication market and the miniaturization of devices,

however, the linearity assumption does not always hold since small devicessuch

as the loudspeaker are not well modelled by a linear system.

More recently AEC algorithms have been developed to tackle the problem of

non-linearity. Non-linear solutions are generally based on Volterra series [2]. Un-

fortunately though, Volterra-based AEC algorithms are complex and converge too

slowly for real time applications such as mobile communications. To tackle these

problems many alternative solutions have been proposed over recent years [2].

Among them is the cascaded approach [3–5] which divides the LEM systeminto

two sub-systems; a non-linear system representing the loudspeaker andamplifiers

and a linear system representing the acoustic channel and the up-link path. This ap-

proach has been shown to deliver improved convergence particularly indynamic,

changing acoustic environments [6] but it still combines the effects of the loud-

speaker and the amplifiers within a single model. The amplifiers and loudspeaker,

however, exhibit quite different characteristics and thus a joint model is some-

what sub-optimal. Amplifier effects are well modelled by a clipping function [3]

whereas power filter are better suited to loudspeaker effects. Independent models

are thus more appropriate. This is the motivation for the work presented in thisre-

port, which aims to improve AEC performance though the independent modelling
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ŷP (n)

ŷ(n)

h(n)
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Figure 1: Cascaded non-linear acoustic echo cancellation

of amplifier and loudspeaker effects.

This report extends previous work by enhancing the cascaded model in[6]

though the addition of a clipping compensation in order to model amplifier effects

independently from those of the loudspeaker. The proposed approach avoid the

modelling of two cascaded non-linear systems with one non-linear system which

would require an increase in the order of the non-linearity, e.g. the cascade of

two second-order Volterra filters requires a fourth-order Volterra filter. A second

reason to use an independent clipping compensator is that the power filter,which

would otherwise be used to model the clipping effect, is not very accurate even

with Gram-Schmidt orthogonalization [7].

The remainder of this report is organized as follows: in Section 2 we present

the new model. In Section 3 procedure to estimate the different parameters are

derived. Then in Section 4 we present experimental work and analysis and finally

in Section 5 we present our conclusions and perspectives.

2 NON-LINEAR AEC

In this section we present the two different processes of the proposedapproach

to non-linear AEC. They correspond to the model of the LEM system illustrated in
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Figure 2: Pre-processor of the non-linear AEC: a concatenation of a clipping com-
pensator model of amplifier and a power filter model of the loudspeaker.

Figure 1 which combines pre-processing and linear AEC modules.

2.1 Pre-processor

The pre-processor is used to model the characteristics of the down-link path,

i.e. the amplifier and the loudspeaker. As illustrated in Figure 1 (top) the far-end

signalx(n) is first processed to obtain an output signalŷ
P
(n) which is an estimate

of the loudspeaker output. It is assumed here to be non-linear.

In general, due to limited power, the amplifier may introduce clipping distortion

for high level signals. Clipping distortion is modelled here as in [3,4] using a hard

clipping model which is a function with a parameterc. As illustrated in Figure 2

the clipping function is given as:

z(n) = fc(x(n)) =
{ sign(x(n))c if |x(n)| ≥ c

x(n) if |x(n)| < c

(1)

wherec ≥ 0 is the absolute value of the clipping level.

The loudspeaker is also assumed to be non-linear and is modelled with a power

filter as illustrated in Figure 2. The outputz(n) of the clipping function is pro-

cessed by the power filter to obtain an estimateŷ
P

(n) of the loudspeaker output.

The output̂y
P
(n) of the power filter is a summation of the different sub-filter out-
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putshp=1,2,3(n) which are filtered versions of the input signal at different powers.

The pre-processor outputŷ
P
(n) is thus given by:

ŷ
P
(n) =

P∑

p=1

hp(n)zT
p (n)

︸ ︷︷ ︸

=ŷp(n)

wherezp(n) = [zp(n), zp(n− 1), · · · , zp(n−Np)]
T is the input signal to the sub-

filter hp(n) with Np taps and output̂yp(n). The down-link path is assumed to have

a low memory (short impulse response) and is static or changes slowly (compared

to the acoustic channel) [4–6].

2.2 Linear AEC

The linear AEC aims to model the acoustic channel and the up-link path. As

is generally assumed the acoustic path is modelled as a linear filter [1]. We fur-

thermore suppose that it has a longer impulse response and is also more dynamic

(compared to the down-link path) as described in [6].

The up-link path is also modelled as a linear filter even though its ouput can

be non-linear. It generally involves only low-level signals from the loudspeaker,

however, so that non-linearities can be safely neglected. The concatenation of the

acoustic channel and up-link path can hence be modelled as a linear filter witha

long impulse response of high variability.

The concatenation of the two linear systems is referred to collectively through-

out the rest of this report as the acoustic path and is denoted byh(n). The filter

h(n) provides a filtered version of the pre-processor estimateŷ
P
(n) which is an

estimate of the echo signal given by:

ŷ(n) = h
T (n)

P∑

p=1

hp(n)ZT
p (n)

︸ ︷︷ ︸

=ŷ
P

(n)
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whereZp(n) = [zp(n), zp(n−1), · · · , zp(n−N −1)]T is anN ×Np input matrix

of the filterhp(n), whereN is the length of the filterh(n). The matrix form of

z(n) is preferred here due to the concatenation of the two filtersh(n) andhp(n).

3 PARAMETER ESTIMATION

In this section we first present the cascade of the power filter and linear AEC

algorithm according to [6]. Then we show how the clipping compensation canbe

efficiently incorporated into the model.

3.1 Pre-processor and linear AEC filter estimation

As the cascaded power filter and linear AEC system is presented in detail in [6]

we give here the estimation procedure with minimal detail. To do so we ignore the

clipping compensation in Figure 2 by assuming thatx(n) = z(n). The resulting

system corresponds to the description given in Section 2.1 if the parameterc has a

value higher than that of the maximum input signal and if no adaptation is applied.

With this assumption the error of the global system is given by:

e(n) = y(n) − h
T (n)

P∑

p=1

hp(n)ZT
p (n) (2)

In a similar way as described in [6] the least mean square (LMS) approachis

applied to minimise the error in an iterative fashion. The gradient is obtained by

deriving the square of the error with respect to the filter parameters. Theestimate

of linear filterh(n) is then given by:

ĥ(n + 1) = ĥ(n) + µŷ
P
(n)e(n), (3)
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and the pre-processor sub-filterhp(n) by:

ĥp(n + 1) = ĥp(n) + µpZp(n)ĥT (n)e(n) (4)

We note that even though they are sufficient to minimise (2) and thus to reliably

estimatey(n), equations (3) and (4) are dependent. They are thus not sufficient

on their own for the identification ofh(n) andhp(n). since the system is under

defined. This is not a problem, however, since we are concerned hereonly with the

accuracy ofy(n) for which (3) and (4) are sufficient.

3.2 Clipping compensation

The proposed approach combines the clipping system proposed in [3, 4]with

the cascaded model presented in [6]. We show here that the clipping compensation

can be implemented with a complexity comparable to the system presented in [4]

where no pre-processor is used. We again use the LMS approach to derive an

adaptive clipping level estimator. The model presented here is based on a hard

clipping model [3] (which could easily be extended to soft clipping) as given in 1.

To derive a gradient for the estimator according to the LMS approach we need

to incorporate the clipping function within an expression for the errore(n) thus

leading to:

e(n) = y(n) − h
T (n)

P∑

p=1

h
T
p (n) [fc(X(n))]p

︸ ︷︷ ︸

=Zp(n)

where[fc(X(n))]p indicates that the functionfc(x(n)) is applied to each element

of the matrixX(n) = [x(n),x(n−1), · · · ,x(n−N)] wherex(n) = [x(n), x(n−

1), · · · , x(n − Np)].
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Applying the LMS approach we can derive the clipping level estimator using

the derivative of the error with respect toc which leads to:

ĉ(n + 1) = ĉ(n) + µch
T (n)

P∑

p=1

h
T
p (n) [ḟc(X(n))]p

︸ ︷︷ ︸

=Żp(n)

e(n) (5)

whereḟc(x(n)) is the derivative offc(x(n)) according toc. From (1) we see that

ḟc(x(n)) is equal to:

ḟc(x(n)) =
{ sign(x(n)) if |x(n)| ≤ c

0 elsewhere

The gradient in (5) is highly complex due to the cascade of the pre-processor

sub-filters and the linear filter. To simplify the computation of the gradient we

assume that the clipping function affects only the fundamental component. We

thus considerz(n) to be composed of a linear componentzl(n) and a non-linear

distortion componentzd(n) so thatz(n) = zl(n) + zd(n). We then suppose that

the distortions within the power filter generated byzd(n) for p ≥ 2 are negligible,

i.e.

(|x(n)| − c)p

︸ ︷︷ ︸

x(n)≥c,p≥2

≈ 0, (6)

so that they can be safely ignored in the compensation.

In fact as we suppose that only the linear part (p = 1) is affected by the clip-

ping, the error minimization that leadsĉ(n) to converge toc will also minimize the

error in the non-linear part (p ≥ 2) asĉ is also applied to the non-linear part. This

means that the approximation in (6) will be more effective whenĉ(n) converges so

that it can reach its optimal value in the minimum mean square error sense. This ap-

proximation implicitly assumes thatfc(x(n))p≥2 is independent fromc and leads
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to (ḟc(x(n)))p≥2 being equal to zero. Equation (5) is thus simplified to:

ĉ(n + 1) = ĉ(n) + µch
T (n)hT

1 (n)[ḟc(X(n))]1e(n) (7)

A second source of complexity relates to the cascade of the two filtersh(n) ∗

h1(n) in (7). In fact it is possible to use the estimates (ĥ(n) ∗ ĥ1(n)) but, in

practice, they must be highly accurate otherwise (7) will be ineffective and gives

poor performance. Another problem encountered usingĥ(n) ∗ ĥ1(n) is that it

leads to a more complex system since, for each iteration,N × N1 multiplications

are required to compute the convolution. To overcome this problem we need to

constrain one of the filters to be equal toδ(n) (Dirac function). In practice it is

easier to set̂h1(n) = δ(n) as used in [4, 5] so thath(n) ∗ h1(n) ≈ ĥ(n). We can

then rewrite (7) as:

ĉ(n + 1) = ĉ(n) + µcĥ
T (n)ḟc(x1(n))e(n) (8)

which is less complex and amenable to real-time implementation. If instead we

were to constrain̂h1(n) to be equal toδ(n) then it will the estimate of the sub-

filters p ≥ 2 and the linear AEC. In this case the linear filter will converge to

h1(n) ∗ h(n) and the sub-filter̂hp(n) will converge toh−1
1 (n) ∗ hp(n).

Finally note that, in terms of implementation the pre-processor is not signifi-

cantly different to the system presented in Section 3.1. The only change is that the

first order sub-filter̂h1(n) is set to1 and is not adaptive.

4 Experimental Work

To assess the proposed algorithm we use real speech signals, first in an artificial

simulation and second with real data recorded on a mobile phone. In both cases
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Figure 3: ERLE against time in a simulated, artificial environment. Profiles illus-
trated for NLMS, a power filter and the cascaded model with and without clipping
compensation, and estimated clipping value (linear scale).

we compare the performance of four different AEC algorithms: a standard NLMS

algorithm, the power filter alone and the cascaded filter with and without clipping

compensation. The echo return loss enhancement (ERLE) metric is used to assess

performance in all cases:

ERLE(m) =

∑m+M
n=m y2(n)

∑m+M
n=m e2(n)

wherey(n) is the echo signal,e(n) is the error signal andM is the frame length

which is equal to512 samples or64ms for all experiments reported here.
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4.1 Simulations

To simulate the LEM system we assume that amplifier clipping varies around

the value0.5+δ whereδ = 0.5−rand(1)∗0.09. Therand(1) function generates

uniformally distributed noise in the range of[0− 1] andδ changes every7s. When

used only for loudspeaker modelling power filter hasP = 3 sub-filters and where

each sub-filter hasNp = 50 taps. The acoustic path (acoustic channel + up-link

path) is simulated with echo paths measured in real environments using an impulse

response withN = 300 taps and where the echo path changes every10 seconds.

Noise is added to the echo signal with a signal-to-noise ratio of40dB.

The AEC algorithm is based on an NLMS approach using a filter withN = 300

taps. When used alone (i.e to model the full LEM system) the power filter has

Np=1,2,3 = 300 taps. The cascaded model without clipping compensation has

N = 300 taps andNp=1,2,3 = 3 taps whereas the cascaded model with clipping

compensation hasN = 300 taps,h1(n) = 1 tap andNp=2,3 = 5 taps.

Results for the simulated environments are shown in Figure 3. We observe that

the proposed cascaded model with clipping compensation delivers better perfor-

mance than all other algorithms. This is expected since, even with Gram-Schimdt

orthogonalization, the power filter cannot obtain an accurate estimate of the clip-

ping model [7]. We also observe that the clipping level estimate (10 ∗ cest(n) in

Figure 3) fluctuates around0.5 meaning that it is a good estimate of the real clip-

ping level thus explains the observed performance with the proposed model. Upon

comparison of results for the cascaded model without clipping compensationand

the power filter, we observe that the cascaded model has better performance. This

is explained by the fact that it has better tracking behaviour than the powerfilter.

We observe that, upon every path change (each10s), the cascaded model shows

faster convergence. At time40s the NLMS algorithm, however, shows better per-

formance than the power filter. This is due to a change in the path delay so thatthe
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Figure 4: ERLE against time in a real environment. Profiles illustrated for NLMS,
the power filter and the cascaded model with and without clipping compensation,
and estimated clipping value (linear scale).

sub-filters (hp=2,3(n) with Np=2,3 = 300) of the power filter need more time to

reconverge as they necessarily use lower step-sizes to ensure stability.

4.2 Real data

Extensive tests (not reported here) show that for the real environment the best

choice of acoustic path length is around80 taps. Experiments reported here corre-

spond to an AEC algorithm withN = 80 taps, a power filter withNp=1,2,3 = 80

taps, a cascaded model (without clipping compensation) withN = 80 taps and

Np=1,2,3 = 3 taps and a cascaded model with clipping compensation withN = 80

taps,N1 = 1 tap andNp=2,3 = 5 taps.
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Results are shown in Figure 4. We observe that all the non-linear AEC al-

gorithms have comparable results whereas the linear NLMS AEC is noticeably

worse. The fact that the non-linear approaches now show similar behaviour can

be explained by the shorter echo path since the cascaded model deliversbetter

performance for longer impulse responses. During initialization we see thatnon-

linear algorithms have comparable performance but the cascaded model without

clipping compensation shows better performance thereafter and, in particular, dur-

ing the clipping level changes between8 and13s. Generally, though, the proposed

model shows better performance compare to the other algorithm even if sometimes

the differences are small. This is normal due to the small length of the acous-

tic path which results in the power filter having similar convergence behaviourto

the cascaded model and the fact that the cascaded model assumes a time invariant

pre-processor.

A factor that affects the performance of the proposed model in tracking the

clipping level variations is its stability for which a lower step size is required. Of

interest, however, is that even when the clipping level estimator diverges itdoes not

affect the performance of the rest of the system asĉ will be higher thanc(n), under

which conditionsz(n) = x(n). Note also that, in higher noise environments, the

proposed system will also provide a similar performance to the same model without

clipping compensation, as the noise level will mask the clipping effect or the input

signal level may be low so that clipping effects arise only during very short periods.

5 Conclusions

In this report we propose a new approach to combine clipping and power series

non-linearity compensation for non-linear AEC. This approach is simplified so that

the complexity of the clipping compensator is not adversely affected by it’s use in
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cascaded with a power filter model of the loudspeaker which would otherwise lead

to unrealistic demands of computational power. We show that the approximations

used to reduce the complexity of the proposed compensator do not affectaccuarcy

and deliver a reliable estimate of the real clipping level. We show that the proposed

approach improves non-linear AEC performance when the clipping level isquasi

static.

Also shown is the difficulty in tracking changes in the clipping level. Future

work should invole a comparative study of the effects from changing clipping lev-

els and other sources of distortion (i.e. noise and echo path changes). If the clipping

level is known to be changing then increased adaptation rates in such periods (with

paused adaptation of the power and linear AEC filters) may give improved perfor-

mance.
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