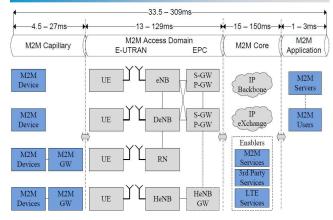


Latency Requirements in M2M Application Scenarios

Project Manager: Raymond Knopp , Eurecom Email: raymond.knopp@eurecom.fr

I. About Lola Project

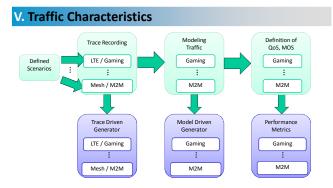

- Low latency M2M communication in LTE/LTE-Advanced Reduce energy consumption for M2M devices
 - Co-existence of M2M/Gaming traffics with conventional services
- - Low-latency is crucial and hard to achieve in multihop networks

>Three Objectives

- *Fundamental: Low latency communication and traffic characteristics
- * Experimental: Two validation platforms and one filed trial
- Standardization: Inputs to 3GPP and M2M Working Groups

* Not considered in this poster

III. M2M System Architecture Based on LTE/LTE-A

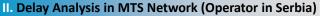


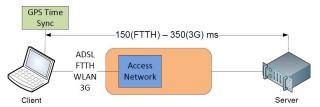
M2M Capillary incorporating smart devices and their gateways using a number of short or wide range communication technologies, reusable across a number of application domains

M2M Access giving adequate support for M2M services

M2M Core providing interconnectivity and extendable by relevant M2M services (registry, request analyzer, control), 3rd party services (e.g. location, charging, processing of data) and LTE services (e.g. AAA, IMS)

M2M Application including domain specific processing and visualization of information, and the end user applications interacting with the smart devices through a common platform

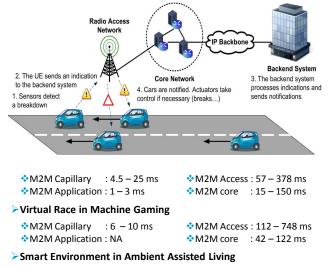

> Collision avoidance system for Intelligent Transport System


*All the sensors (car, road sensors) send the information to the M2M backend system within the predefined period

Event-driven, short bursts emergency signals from the M2M backend to the M2M devices (warning and actuation commands)

EURECOM

>Traffic pattern varies depending on application scenarios but the general traffic trends follows the ON-OFF traffic model



Latency can be improved by providing services locally

 $\ensuremath{^{\diamond}}\xspace$ The client is directly attached via the access networks to the gaming server itself

IV. Realtime M2M Application Scenarios and Analysis

>Auto-Pilot for Intelligent Transport System

- M2M Capillary : 9 − 54 ms

 M2M Access : 180 − 1290 ms

 M2M Application : 1 − 3ms

 M2M core : 15 − 150 ms
- Sensor-based Alarm and Event-Detection
- Mobile Surveillance System for Security
- Life support system for health monitoring

VI. L1/L2 Latency Improvements

- Contention-based random access on the LTE/LTE-A in uplink UL latency in FDD mode is 7-11ms (SR periodicity 5ms) => 7-11
 - times latency reduction for M2M/sensor applications with 1ms contention-based random access
 - Further 2x reduction for small packets with 500us TTI duration
- - Estimation of missing mutual information (SNR/statistical models)
- - Use more robust MCS for HARQ retransmissions
 - Send more redundancy in unloaded conditions
 - Up to 10% latency gain can be achieved with these techniques
- ➤Coordinated Multi-Point Joint Processing/Joint Transmission
 Improves throughput → improves latency for non-sparse traffic sources (e.g. video surveillance cameras)
 - ♦ Reduces nº retransmissions for cell-edge users → improves latency
- Carrier Aggregation aware scheduling
 - Unloaded carrier components can be scheduled for delayed users

THALES

www.ict-lola.eu

The research leading to these results has received funding from the European Community's Seventh Framework Programme under grant agreement n° 248993.

X

-

AT4

Institut EURECOM - 2229 route des crêtes - BP 193 -F-069D4 Sophia Antipolis cedex - www.eurecom.fr