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ABSTRACT
A key-value store (KVS) offers functions for storing and re-
trieving values associated with unique keys. KVSs have be-
come widely used as shared storage solutions for Internet-
scale distributed applications.

We present a fault-tolerant wait-free efficient algorithm
that emulates a multi-reader multi-writer register from a
set of KVS replicas in an asynchronous environment. Our
implementation serves an unbounded number of clients that
use the storage. It tolerates crashes of a minority of the
KVSs and crashes of any number of clients. We provide
two variants of our algorithm: one implementing an atomic
register and one implementing a regular register; the latter
does not require read operations to store data at the under-
lying KVSs. We note that applying state-of-the-art reliable
storage solutions to this scenario is either impossible or pro-
hibitively inefficient.
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1. INTRODUCTION
Recent years have seen an explosion of Internet-scale ap-

plications, ranging from web search to social networks. These
applications are typically implemented with many machines
running in multiple data centers. In order to coordinate
their operation, these machines access some shared storage.

In this context, a prominent storage model is the key-value
store (KVS). A KVS offers a range of simple functions for
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manipulation of unstructured data objects (called values),
each one identified by a unique key. KVSs are used as stor-
age services directly [2, 5] or indirectly, as non-relational
(NoSQL) databases [15, 4]. While different services and
systems offer various extensions to the KVS interface, the
common denominator of existing KVS services implements
an associative array: A client may store a value by associat-
ing the value with a key, retrieve a value associated with a
key, list the keys that are currently associated, and remove
a value associated with a key.

Storage services provide reliability using replication and
tolerate the failure of individual data replicas. However,
when all data replicas are managed by the same entity,
there are naturally common system components, and there-
fore failure modes common to all replicas. A failure of these
components may lead to data becoming not available or even
being lost, as recently witnessed during an Amazon S3 out-
age [1] and Google’s temporary loss of email data [3]. There-
fore, a client can increase data reliability by replicating it
among several storage services using the guarantees offered
by robust distributed storage algorithms [13, 7]. Such an al-
gorithm uses multiple storage providers, called base objects
here, and emulates a single, more reliable shared storage
abstraction, which we model as a read/write register. The
register tolerates asynchrony, concurrency, and faults among
the clients and the base objects.

Many well-known robust distributed storage algorithms
exist [7, 10, 9]. Perhaps surprisingly, none of them dire-
cly exploits key-value stores as base objects. The problem
arises because existing solutions are either (1) unsuitable for
KVSs since they rely on storage nodes that perform custom
computation, which a KVS cannot do, or (2) prohibitively
expensive, in the sense that they require as many base ob-
jects as there are clients [12, 6].

In the following, we describe the challenges behind run-
ning robust storage algorithms over a set of KVS base ob-
jects.

2. CHALLENGES
Many existing robust register emulations are based on ver-

sioning, in the sense that they associate each stored value



with a version (also called a timestamp) that increases over
time. Consider the classical multi-writer emulation of a
fault-tolerant register [13, 7]. A writer determines first the
largest version from some majority of the base objects, de-
rives a larger version, and then stores the new value together
with the larger version at a majority of base objects. The
base object then performs computation and actually stores
the new value only if it comes with a larger version than the
one it stores locally. However, a KVS does not offer such an
operation.

Similar to existing emulations, we want the robust storage
solution to be wait-free [14], such that every correct client
may proceed independently of the speed or failure of other
clients (or more precisely, every operation invoked by a cor-
rect client eventually completes).

If a classical algorithm is cast blindly into the KVS context
without adjustment, all values are stored with the same key.
This may cause a larger version and an associated, recently
written value to be overwritten by a smaller version and an
outdated value. We call this the old-new overwrite problem.

Another equally näıve solution is to store each version
under a separate key; such a KVS accumulates all versions
that have ever been stored and takes up unbounded space.
As remedy for this, one could remove small versions from
a KVS after a value with a larger version has been stored.
But this might, in turn, jeopardize wait-freedom. Consider a
read operation that lists the existing keys and then retrieves
the value with the largest version. If this version is removed
between the time when the KVS executes the list operation
and the time when the client retrieves it from the KVS, the
read operation will fail. We refer to this as the garbage-
collection race problem.

3. CONTRIBUTION
We provide two robust, asynchronous, and efficient em-

ulations of a register over a set of fault-prone KVS repli-
cas. Both emulations are designed for an unbounded num-
ber of clients, which may all read from and write to the
register (i.e., the emulations implement a multi-writer multi-
reader register). This makes the algorithms appropriate for
Internet-scale systems. Both emulations are wait-free and
optimally resilient. The latter property means that the al-
gorithm tolerates crash-stop failures of any minority of the
KVS replicas and of any number of clients.

The two emulations differ in their consistency semantics.
The first one emulates a multi-writer regular register [17]1

and it does not require read operations to write to KVSs
(that is, to change the state of a KVS by storing a value).
Precluding readers from storing values is practically appeal-
ing, since the clients may belong to different domains and
not all of them should be permitted to write to the shared
memory. But this poses a problem because of the garbage-
collection race problem described previously. Our solution
instructs a write operation to store the same value twice,
under different keys: Once under an eternal key, which is
never removed by garbage collection but vulnerable to an
old-new overwrite, and a second time under a temporary
key, named according to the version. Outdated temporary
keys are garbage-collected periodically, for instance by write

1Roughly, a regular read may return a value written by the
latest write that precedes it or one of the concurrently writ-
ten values [16, 17].

operations, which exposes them to garbage-collection races.
Taken together, however, the eternal and temporary copies
complement each other and guarantee a wait-free emulation
with regular semantics.

The second algorithm emulates an atomic or linearizable
register [16], where all read and write operations appear to
execute at a single point in time between their invocation
and response. This emulation requires read operations to
store values at the underlying KVS replicas, but this cannot
be avoided [16, 11]. We derive our atomic emulation from
the regular emulation, by instructing the readers to write
back the value they are about to return [7]. Details appear
in the full version [8].
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