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ABSTRACT
We study the time-complexity of robust atomic read/write
storage from fault-prone storage components in asynchronous
message-passing systems. Robustness here means wait-free
tolerating the largest possible number t of Byzantine stor-
age component failures (optimal resilience) without rely-
ing on data authentication. We show that no single-writer
multiple-reader (SWMR) robust atomic storage implemen-
tation exists if (a) read operations complete in less than
four communication round-trips (rounds), and (b) the time-
complexity of write operations is constant. More precisely,
we present two lower bounds. The first is a read lower bound
stating that three rounds of communication are necessary to
read from a SWMR robust atomic storage. The second is a
write lower bound, showing that Ω(log(t)) write rounds are
necessary to read in three rounds from such a storage. Ap-
plied to known results, our lower bounds close a fundamental
gap: we show that time-optimal robust atomic storage can
be obtained using well-known transformations from regular
to atomic storage and existing time-optimal regular storage
implementations.
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Systems; D.4.1 [Operating Systems]: Process Manage-
ment—concurrency, multiprocessing / multiprogramming /
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Reliability—Fault-tolerance
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Keywords
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1. INTRODUCTION

1.1 Background
Variable sharing is critical to modern distributed and con-
current computing. The atomic read/write register abstrac-
tion [18] is essential to sharing information in distributed
systems; it abstracts away the complexity incurred by con-
current access to shared data by providing processes an illu-
sion of sequential access to data. This abstraction is also re-
ferred to as atomic storage, for its importance as a building-
block in practical distributed storage and file systems (see
e.g., [24, 25]). Besides, its read/write API, despite being
very simple, is today the heart of modern “cloud” key-value
storage APIs (e.g., [5]).

In this paper, we study atomic storage implementations in
asynchronous message-passing systems in which a set of reader
and writer processes (clients) share data leveraging a set
of storage object processes. We consider fault-tolerant, ro-
bust [3] storage implementations characterized by: a) wait-
freedom [17], i.e., the fact that read/write operations in-
voked by correct clients always eventually return, and b)
ensuring correctness despite the largest possible number t of
object failures (optimal resilience). We allow for the most
general type of failures, arbitrary, also called Byzantine [19]
failures1, without assuming authenticated (also called self-
verifying [23]) data to limit the adversary (by relying on e.g.,
digital signatures).

In this model, we ask a fundamental question: what is the
optimal worst-case complexity of robust atomic storage im-
plementations? Our complexity metric is an important one:
time-complexity, or latency, measured in number of com-
munication round-trips (or simply rounds) between a client
and objects. The relevance of the question we ask extends
beyond theoretical. Namely, with the growth in storage out-
sourcing driven by the advent of cloud computing, the arbi-
trary failure model becomes increasingly relevant in absence
of the full trust in the cloud [6]. In addition, the number of
interactions with the remote cloud storage needed to access
the data, maps to our latency metric and is often directly
associated with the monetary cost; this obviously increases
further the practical relevance of the question we ask.

1In the Byzantine failure model, optimal resilience corre-
sponds to using 3t+ 1 objects to tolerate t failures [23].



Perhaps surprisingly and despite the wealth of literature ex-
ploring latency-optimal storage implementations, this ques-
tion has not been answered. It is known that the worst-case
latency of writing into robust storage is at least 2 rounds [1].
In this paper, we show that the optimal worst-case latency
of reading from scalable robust atomic storage is 4 (four)
rounds. Here, the notion of scalability captures two basic
criteria: a) support for any number of readers, and b) con-
stant write-latency. Our results close a fundamental gap,
showing that latency-optimal scalable and robust atomic
storage, combining 2-round writes and 4-round reads, can be
achieved (in the case of single-writer multi-reader (SWMR)
storage) using standard transformations from weaker, regu-
lar [18] registers to the atomic ones [4,20].

Our contribution goes through proving two lower bounds.
To help fully appreciate our contributions, we first discuss
how the scope of this paper fits into related work.

1.2 Related work
Several papers have explored the time-complexity metric in
the context of a read/write register abstraction. A seminal
crash-tolerant robust atomic SWMR register implementa-
tion assuming a majority of correct processes was presented
in [3]. In [3], all write operations complete in a single round;
on the other hand, read operations always take two rounds
between a client and objects.

The problem of modifying [3] to enable single round reads
was explored in [9], which showed that such fast atomic im-
plementations are possible albeit they come with the price of
limited number of readers and suboptimal resilience. More-
over, the reader in [9] needs to write (i.e., modify the ob-
jects’ state) as dictated by the lower bound of [12] which
showed that every atomic read must write into at least t ob-
jects. [10] extends the result of [9] to the Byzantine failure
model assuming authenticated (i.e., digitally signed) data
and established the impossibility of fast crash-tolerant multi-
writer multi-reader (MWMR) atomic register implementa-
tions. This result is in line with classical MWMR implemen-
tations such as [22] that have read/write latency of at least 2
rounds. The limitation on the number of readers of [9], was
relaxed in [13], where a crash-tolerant robust SWMR atomic
register implementation was presented, in which most of the
reads complete in a single round, yet a fraction of reads is
permitted to be slow and complete in 2 rounds.

In the Byzantine context, optimizing latency is particularly
interesting when data is assumed to be unauthenticated,
which we also assume here. [1] showed that any Byzantine-
tolerant storage employing at most 4t storage objects has at
least some write operation complete in 2 rounds. Moreover,
[1] showed a tight lower bound of t+1 rounds from reading
from robust SWMR safe [18] storage, with the constraint
that readers are precluded from writing. However, allow-
ing readers to write helps improve latency as shown in [15],
through a 2-round tight lower bound on reading from robust
SWMR regular [18] storage. This bound was circumvented
in [8], assuming secret values used to detect concurrent op-
erations, where reads are expedited to complete in a single
round. However, none of these papers dealt with optimal

worst-case latency of reading from robust atomic storage,
which is precisely the scope of our paper.

On the other hand, few papers have explored the best-case
complexity of Byzantine-tolerant optimally resilient atomic
storage. Here, “best-case” encompasses synchrony, no or few
object failures and the absence of read/write concurrency. In
this context, [14] presented the first robust atomic storage
implementation in which both reads and writes are fast in
the best-case (i.e., complete in a single round-trip). Further-
more, [16] considered robust atomic storage implementations
with the possibility of having fast reads and writes gracefully
degrade to 2 or 3 rounds, depending on the size of the avail-
able quorum of correct objects. Unlike these papers, we are
interested here with the unconditional, worst-case latency
of atomic storage.

Finally, the worst-case read latency in existing Byzantine-
tolerant robust atomic storage implementations for unau-
thenticated data (e.g., [2, 14,16,23]) is either unbounded or
Ω(t) rounds at best [2].

1.3 Contributions
We present two lower bounds (impossibility results) on time-
complexity of reading from robust atomic storage for unau-
thenticated data, implemented from storage objects prone
to Byzantine faults. Together, our lower bounds imply that
there is no scalable robust atomic storage implementation
in the Byzantine unauthenticated model in which all reads
complete in less than 4 rounds.

• The first lower bound, referred to as the read lower
bound, demonstrates the impossibility of reading from
robust SWMR atomic storage in two rounds. More
precisely, we show that if the number of storage objects
S is at most 4t and if the number of readers R is greater
than 3, then no SWMR atomic implementation may
have all reads complete in two rounds.

Our proof scheme resembles that of [9] and relies on se-
quentially appending reads on a write operation, while
progressively deleting the steps of a write and preced-
ing read operations, exploiting asynchrony and possi-
ble failures. This deletion ultimately allows reusing
readers and reaching an impossibility with as few as
R = 4 readers. As none of these appended opera-
tions are concurrent under step contention, the impos-
sibility also holds in the stronger data model of [8],
in which the adversary is unable to simulate step con-
tention among operations, making use of secret values.

• Our second lower bound, referred to as the write lower
bound, shows that if read operations are required to
complete in three communication rounds, then the num-
ber of write rounds k is Ω(log(t)). More precisely, we
show that if the number of storage objects is at most
3t + bt/tkc and R ≥ k, then no implementation of a
SWMR atomic storage may have all reads complete
in three rounds and all writes in k ≤ blog(d 3tk+1

2
e)c

rounds. In a sense, our lower bound generalizes the
write lower bound of [1], which proves our result for
the special case of k = 1.



While using a similar approach, the write lower bound
proof is much more involved and differs from our read
lower bound proof in several key aspects. Due to the
additional third read round, read steps cannot be en-
tirely deleted, which prohibits the reuse of readers.
Consequently, the number of supported readers R and
the number of write rounds k are related (R ≥ k). Fur-
thermore, the proof relies on a set of malicious objects
that forges critical steps of the write and of prior reads
with respect to subsequent reads. This set grows with
the number of appended reads, relating the number of
faulty objects t and the number of readers (which is at
least k). At the heart of the proof we use a recurrent
formula that relates t and k, similar to a Fibonacci
sequence, which describes the exact relation between
the two parameters. In its closed form, the formula
transforms to the log function (k = Ω(log(t))).

The rest of the paper is organized as follows. In Section 2
we give our model and definitions. Sections 3 and gives the
proof of our read lower bound. 2 Section 4 gives the proof
of our write lower bound. Section 5 concludes the paper by
discussing modular implementations that match our lower
bounds.

2. MODEL

2.1 Basics
The distributed system we consider consists of three disjoint
sets of processes: a set objects of size S containing processes
{s1, ..., sS} and representing the base register elements; a
singleton writer containing a single process {w}; and a set
readers of size R containing processes r1, ..., rR. The set
clients is the union of the sets writer and readers. We as-
sume that every client may communicate with any process
by message passing using point-to-point reliable communica-
tion channels. However, objects cannot communicate among
each other, nor send messages to clients other than in reply
to clients’ messages.

Here we define only the notions we use in our proofs; model
details can be found in [20]. A distributed algorithm A is a
collection of automata [21], where automaton Ap is assigned
to process p. Computation proceeds in steps of A; each step
is denoted by a pair of process id and a set of messages
received in that step 〈p,M〉 (M might be ∅). A run is an
infinite sequence of steps of A. A partial run is a finite prefix
of some run. A (partial) run r extends some partial run pr
if pr is a prefix of r. At the end of a partial run, all messages
that are sent but not yet received are said to be in transit. In
any run, any client can fail by crashing and up to t objects
may be malicious faulty, exhibiting arbitrary behavior. The
non-faulty objects are also called correct. An algorithm that
assumes S = 3t+ 1 is said to be optimally resilient.

2.2 Atomic Storage
A register abstraction is a read/write data structure. It
provides two operations: write(v), which stores v in the reg-
ister, and read(), which returns the value from the register.

2An extension to the model of [26] using distinct thresholds
for malicious and crash objects’ faults can be found in our
full paper [7].

We assume that each client invokes at most one operation
at a time (i.e., does not invoke the next operation until it
receives the response for the current operation). Only read-
ers invoke read operations and only the writer invokes write
operations. We further assume that the initial value of a
register is a special value ⊥, which is not a valid input value
for a write operation. We say that an operation op is com-
plete in a (partial) run if the run contains a response step
for op. In any run, we say that a complete operation op1
precedes operation op2 (or op2 succeeds op1) if the response
step of op1 precedes the invocation step of op2 in that run. If
neither op1 nor op2 precedes the other, then the operations
are said to be concurrent.

An algorithm implements a register if every run of the algo-
rithm satisfies wait-freedom and atomicity properties. Wait-
freedom states that if a process invokes an operation, then
eventually, unless that process crashes, the operation com-
pletes (even if all other client processes have crashed). Here
we give a definition of atomicity for the single-writer regis-
ters. In the single-writer setting, the writes in a run have a
natural ordering which corresponds to their physical order.
Denote by wrk the kth write in a run (k ≥ 1), and by valk
the value written by the kth write. Let val0 = ⊥. We say
that a partial run satisfies atomicity if the following proper-
ties hold: (1) if a read returns x then there is k such that
valk = x, (2) if a read rd is complete and it succeeds some
write wrk (k ≥ 1), then rd returns vall such that l ≥ k, (3)
if a read rd returns valk (k ≥ 1), then wrk either precedes
rd or is concurrent with rd, and (4) if some read rd1 returns
valk (k ≥ 0) and a read rd2 that succeeds rd1 returns vall,
then l ≥ k.

Time-complexity. We measure the time-complexity of an
atomic register implementation in terms of communication
round-trips (or simply rounds). A round is defined similar
to [9,11,13,22]:

Definition 1. Client c performs a communication round
during operation op if the following conditions hold:

1. The client c sends messages to all objects. (This is
without loss of generality because we can model the fact
that messages are not sent to certain objects by having
these objects not change their state or reply.)

2. Objects, on receiving such a message, reply to the client
before receiving any other messages (as dictated by our
model).

3. When the invoking client receives a sufficient number
of such replies, the round (rnd) terminates, and the op-
eration op either completes or moves to the next round.

Note that, since any number of clients can crash, we can
construct partial runs in which no client receives any mes-
sage from any other client. In our proofs in Section 3 and 4
we focus, without loss of generality, on such partial runs.

Since up to t objects might be faulty, ideally, in every round
rnd the invoking client can only wait for reply messages from



correct objects (at least S − t). In fact, we require that if in
a partial run pr, a round rnd terminates without the reply
from some object si, then either (a) si is faulty or (b) there
is partial run pr′ indistinguishable from pr, and in which si
is faulty.

Each round attempts to invoke operations on all objects.
If on some correct object si there is a pending invocation
(of an earlier round), then the new invocation awaits the
completion of the pending one. Note that this is equivalent
to the round model of [1].

3. THE READ LOWER BOUND
In this section we prove the following proposition.

Proposition 1. : If S ≤ 4t and R > 3, then no read
implementation I of a multi-reader (SWMR) atomic register
exists that completes in two rounds.

3.1 Overview
The idea behind the proof is to start with a complete write
that writes 1 into the storage, after which a complete read
is appended. By atomicity, the read returns 1. Then, fur-
ther reads by distinct readers are appended one after the
other such that the last appended read returns 1. At the
same time, steps of the write and the previous reads are
progressively deleted. After appending the fourth read, the
final round of the write is deleted from the storage. More-
over, similar to a circular buffer, all steps of the first read
are erased, and the read ca be “recycled”. By atomicity, the
last appended read returns 1. The next iteration starts by
reusing the first read, which in turn frees the second read.
The proof proceeds through a sequence of such iterations.
In each iteration, the last appended read frees the first ap-
pended read, and deletes another round of the write. After
the last iteration, all steps of the write are deleted, meaning
that no write is invoked. However, the last appended read
returns 1, violating atomicity.

Preliminaries. In the proof w denotes the writer, ri for
1 ≤ i ≤ 4 denote the readers, and si for 1 ≤ i ≤ S denote
objects. Suppose by contradiction that R = 4 and there
is an atomic register implementation I that uses at most
4t objects, such that in every partial run of I every read
operation completes in two rounds.

We partition the set objects into four disjoint subsets (which
we call blocks), denoted B1,B2,B3 and B4. Blocks B1, B2

and B3 are of size exactly t ≥ 1 and the size of B4 is at least
1 and at most t. We refer to the initial state of every correct
block Bj as σj

0. For simplicity we simply write σ0, where
the block name is implicit.

We say that a round rnd of an operation op skips a set of
blocks BS in a partial run, (where BS ⊆ {B1, . . . , B4}), if
(1) no object in any block BL ∈ BS receives any message
in round rnd from op in that partial run; (2) all other ob-
jects receive all messages in round rnd from op and reply to
the messages, and (3) in case round rnd is terminated, the
invoking client has received all these reply messages or, in
case rnd is not terminated, all these reply messages are in

transit. We say that an operation op skips a set of blocks
BS in a partial run if every round of op skips BS.

To show a contradiction, we construct a partial run of the
implementation I that violates atomicity: a partial run of I
in which no value is ever written and some read returns 1.

Partial writes. Throughout the proof there is only one write
operation write(1) by w that writes value 1. Consider a par-
tial run wr in which w completes write(1) on the register
and let k be the number of rounds invoked by w in wr.
We denote the state of every correct block Bj after it has
replied to the messages of the write during round 1 to i
where 1 ≤ i ≤ k as σi, where j is again implicit. The write
operation skips blocks B4. We define a series of partial runs
containing an incomplete write(1) invocation, each being a
prefix of wr. For 1 ≤ i ≤ k and 1 ≤ j ≤ 4, we define wrij
as the partial run in which (1) rounds 1 to i− 1 are termi-
nated and skip B4; (2) round i is not terminated and skips
all blocks {Bl | 1 ≤ l ≤ j − 1} ∪ {B4}, and (3) all objects
are correct. We make two observations: (1) partial run wrk1
differs from wr only at w and (2) partial run wr14 differs
from a run in which write(1) is never invoked only at w.

Block diagrams. We illustrate the proof in Figure 1 (a)-
(n). We depict a round rnd of an operation op through a
set of rectangles arranged in a single column. In the column
corresponding to some round rnd of op we draw a rectangle
in a given row, if all objects in the corresponding block BL
have received the message from the client in round rnd of op
and have sent reply messages, i.e., if round rnd of op does
not skip BL. We write “@” in the row corresponding to BL
iff BL is malicious.

Appending reads. Partial run pr1 extends wr by append-
ing a complete read rd1 by r1 that skips B2 in round one
and B1 in round two (see Figure 1 (a)). Note that when
the second round is started, there is a pending first round
invocation on B2. Therefore in the second round, rd1 waits
for both first and second round replies from B2. For ease of
presentation, the late first round replies are not illustrated.

In pr1, all objects in block B1 are malicious, and forge their
state to σk−1 before replying to rd1. By atomicity rd1 re-
turns 1. Observe that r1 cannot distinguish pr1 from some
partial run ∆pr1 that extends wrk2 by appending rd1, and
where all objects are correct (see Figure 1 (b)). Note that
∆pr1 is obtained from pr1 by deleting the crossed steps.

Partial run pr2 extends ∆pr1 by appending a complete read
rd2 by r2 that skips B3 and B2 in round one and two re-
spectively (see Figure 1 (c)). In pr2, all objects in block B2

are malicious, and forge their state to σk−1 before replying
to rd2. By atomicity rd2 returns 1. Observe that r2 cannot
distinguish pr2 from some partial run ∆pr2, that extends
wrk3 by appending an incomplete rd1 and a complete rd2,
and where all objects are correct (Figure 1 (d)). ∆pr2 is
obtained from pr2 by deleting the crossed steps.
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Figure 1: Illustration of the runs used in the proof of Proposition 1 (1 ≤ i ≤ k − 1)



Partial run pr3 extends ∆pr2 by appending a complete read
rd3 by r3 that skips B4 in round one and B3 in round two
(Figure 1 (e)). In pr3, all objects in block B3 are malicious,
and forge their state to σk−1 before replying to rd3. By
atomicity rd3 returns 1. Let σr

1 denote the state of the ob-
jects in block B4 in run pr3 before replying to rd2. Observe
that r3 cannot distinguish pr3 from some partial run ∆pr3,
that extends wrk4 by appending incomplete reads rd1 and
rd2 and a complete read rd3 and in which (1) all objects in
B4 are malicious and (2) they forge their state to σr

1 before
replying to rd2 (Figure 1 (f)).

Note that in pr3, rd3 completes the second round based on
replies from all correct objects, and similarly in ∆pr3, the
first round misses replies only from faulty objects. Since r3
cannot distinguish pr3 and ∆pr3, it cannot wait for addi-
tional replies (in any of the two runs).

Partial run pr4 (illustrated in Figure 1 (g)) extends ∆pr3 by
appending a complete read rd4 by r4 that skips B1 in round
one and B4 in round two. In pr4, all objects in block B4 are
malicious and forge their state (1) to σr

1 before replying to
rd2 and (2) to σ0 before replying to rd4. By atomicity rd4
returns 1. Let σr

2 denote the state of the objects in block
B1 before replying to rd3. Observe that r4 cannot distin-
guish pr4 from some partial run ∆pr4, that extends wrk−1

1

by appending incomplete reads rd2, rd3 and a complete read
rd4, and in which (1) all objects in B1 are malicious and (2)
they forge their state to σr

2 before replying to rd3 (Figure 1
(h)). Note that in partial run pr4, rd4 receives second round
replies from all correct objects. Similarly in ∆pr4, rd4 re-
ceives first round replies from all objects except the faulty
ones. Since r4 cannot distinguish pr4 and ∆pr4, rd4 cannot
wait for additional replies without violating termination.

After appending rd4 and constructing ∆pr4 by deleting all
steps from pr4 which are not visible to rd4, we notice that
we have erased all steps in column k of write(1) as well
as, deleted all steps of rd1. Thus, we can recycle r1 by
appending rd1 again and start deleting the steps in column
k − 1.

Starting from ∆pr4 we iteratively define the following par-
tial runs for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ 4 (see Figure 1
(g)-(n)). Partial run pr4i+j extends ∆pr4i+j−1 by append-
ing rdj . In pr4i+j , all objects in block Bj are malicious
and they forge their state (1) to σr

4i+(j−3) before replying

to rdj−2
3 and (2) to σ((j mod 4)/j)(k−i−1) before replying to

rdj . Let σr
4i+(j−2) denote the state of the objects in block

B(j mod 4)+1 before replying to rdj−1. Observe that rj can-
not distinguish pr4i+j from some partial run ∆pr4i+j , that
extends wrk−i

(j mod 4)+1 by appending incomplete reads rdj−2

and rdj−1 and a complete read rdj , and in which (1) all
objects in B(j mod 4)+1 are malicious, and (2) they forge
their state to σr

4i+(j−2) before replying to rdj−1 (Figure 1
(h),(j),(l),(n)). In run ∆pr4i+j and pr4i+j , rdj receives first
and second round replies from all correct objects respec-
tively. Since rj cannot distinguish ∆pr4i+j and pr4i+j , rdj
cannot wait for additional replies without blocking.

3Please note that when we write rdj−c, we always mean
rd4−((c−j) mod 4).

Read rd4 in ∆pr4 returns 1. Since pr5 extends ∆pr4 by ap-
pending rd1, by atomicity, rd1 in pr5 returns 1. However,
as r1 cannot distinguish pr5 from ∆pr5, rd1 in ∆pr5 returns
1. In general, since pr4i+j extends ∆pr4i+j−1 by appending
rdj (for 1 ≤ i ≤ k− 1 and 1 ≤ j ≤ 4 ), and rj cannot distin-
guish pr4i+j from ∆pr4i+j , it follows by induction that rdj
in ∆pr4i+j returns 1. In particular, rd3 reads 1 in ∆pr4k−1.
By our construction, ∆pr4k−1 extends wr14 and wr14 is indis-
tinguishable from a run in which write(1) is never invoked.
Hence, rd3 returns 1 even if no write is invoked, violating
atomicity.

4. THE WRITE LOWER BOUND
In this section we prove the following proposition.

Proposition 2. : If S ≤ 3t + bt/tkc and every read
completes in three rounds then no write implementation I
of a multi-reader atomic register exists that completes in
min{R, blog(d(3tk + 1)/2e)c} rounds.

We first prove the following key lemma. In the effort of
making its involved proof easier to follow we first proceed
through a careful proof setup that we found worthwhile. To
further help follow the proof, we also visualize runs we use
in the proof in Figure 2.

Lemma 1. Let k ≥ 1, t−1 = t0 = 0 and tk = tk−1 +
2tk−2 + 1. There is no implementation I of a k-reader
atomic storage with 3tk + 1 objects and tk faults such that
the write completes in k rounds and the read completes in
three rounds.

Preliminaries. Recall that w denotes the writer, ri for 1 ≤
i ≤ k denote the readers, and si for 1 ≤ i ≤ S denote
the objects. The initial value of the register is ⊥. In the
proof, there is only one write operation write(1) by w that
writes value 1. We know from [1] that the lemma is true for
k = 1; hence, we assume k ≥ 2. Suppose by contradiction
that there is an implementation I that uses at most 3tk + 1
objects, such that in every partial run of I every write (resp.,
read) completes in k (resp. 3) rounds.

We partition the set objects into 2k + 2 distinct blocks,
B0, . . . , Bk+1 and C1, . . . , Ck such that |

⋃k+1
j=0 Bj | = 2tk +1

and |
⋃k

j=1 Cj | = tk. Block B0 contains a single object. For
1 ≤ l ≤ k, the size of Bl is tl − tl−2 and the size of Bk+1 is
2tk + 1− |

⋃k
j=0 Bj | = tk − tk−1. For 1 ≤ l ≤ k − 1, the size

of Cl is tl−1 − tl−2 and the size of Ck is tk − |
⋃k−1

j=1 Cj | =
tk− tk−2. It is important to note that C1 is empty. Towards
a uniform presentation of the result, we will refer to C1

wherever appropriate. Also, we use the abbreviation BLi,j

to denote the set {BLi, BLj}, for some BL ∈ {B,C}.

We also define three sets of blocks called superblocks: the
“malicious” superblock Ml, the “parity” superblock Pl and
the “correct” superblock Cl. Superblock Ml contains all
blocks with index at most l. Formally, for −1 ≤ l ≤ k − 1
we define Ml := {Bj | 0 ≤ j ≤ l} ∪ {Cj | 1 ≤ j ≤ l}. For



instance, M−1 = ∅ and M2 = {B0, B1, C1, C2}. Superblock
Pl contains all blocks Bj with index j ≥ l ≥ 1 such that j
and l have the same parity. More formally, for 1 ≤ l ≤ k,
we define Pl := {Bj | l ≤ j ≤ k+ 1 ∧ j ≡ (l mod 2)}. For
instance, if k is even then P1 = {B1, B3, . . . , Bk−1, Bk+1}
and P2 = {B2, B4, . . . , Bk−2, Bk}. Finally, superblock Cl :=
{Cj | l ≤ j ≤ k}.

Given the size of the individual blocks, we can determine
the cardinality of the union of all elements of a superblock.
Namely, if S ∈ {Ml,Pl, Cl}, then we define the union of its
elements as

⋃
S = {s ∈ BL | BL ∈ S}. Having in mind

that tk = tk−1+2tk−2+1 (Def.) and t−1 = t0 = 0, we have:

|
⋃

Ml| = tl+2tl−1+1
(Def.)
= tl+1 for 0 ≤ l ≤ k−1 (1)

|
⋃

Pl| = tk − tl−2 for 1 ≤ l ≤ k + 1 (2)

|
⋃

Cl| = tk − tl−2 for 1 ≤ l ≤ k (3)

Block diagrams. Figure 2 illustrates the proof for R =
k = 4. Reader ri invokes read rdl, 1 ≤ l ≤ k. In the
column corresponding to some round rnd of op we draw a
rectangle in a given row, iff round rnd of op does not skip4

the corresponding block BL. We write “@” in the row of BL
iff BL is malicious.

Read patterns. We first characterize a complete read rdl
for 1 ≤ l ≤ k − 1. A complete rdl skips (1) Ml−2 ∪ Pl+1

in round one and two, and (2) Ml−2 ∪ Cl+1 in round three.
Read rdk skipsMk−2∪Pk+1. Observe that by equations (1),
(2) and (3), a read skips exactly tk objects in each round.

Consider the example in Figure 2. Complete reads rd1,
rd2 and rd3 skip (respectively): (1) {B2,4}, {B0} ∪ {B3,5}
and {B0,1} ∪ {B4} in rounds one and two, and (2) {C2,3,4},
{B0} ∪ {C3,4} and {B0,1} ∪ {C4} in round three. Read rd4
skips {B0,1,2, C2} ∪ {B5}.

We further define three types of incomplete reads inc1, inc2
and inc3, depending on the read’s progress. For 1 ≤ l ≤ k,
read rdl is of type inc1 if the first round is not terminated
and skips all blocks except Pl. For 1 ≤ l ≤ k − 1, read rdl
is of type (1) inc2 if the first round is terminated, and the
second round is not terminated and skips all blocks except
Cl, and (2) inc3 if the second round is terminated and the
third round is not terminated and skips Ml−2∪Cl+1∪Pl+1.

Consider our example in Figure 2 (c) that illustrates partial
run ∆pr2 (after deleting the crossed out steps). Observe
that (1) rd2 is incomplete of type inc3 (its third round skips
{B0} ∪ {C3,4} ∪ {B3,5}), (2) rd1 is incomplete of type inc2
(its second round skips all blocks except {C2,3,4}) and (3)
rd3 (resp., rd4) is incomplete of type inc1 ; its first round
skips all blocks except {B3,5} (resp., {B4}).

Towards a contradiction, we construct a partial run of the
atomic register implementation I that violates atomicity.

4The definition of skipping extends here from Sec. 3.

More specifically, we exhibit a partial run in which some
read returns a value that was never written.

Initialization. Consider a partial run prinit in which (1)
all blocks are correct and (2) prinit extends the empty run
by appending incomplete reads rdl by rl of type inc1, for
1 ≤ l ≤ k, one after the other. In prinit, there is no write
operation. We refer to the state of each correct block BL ∈
Pl after replying to rdl as σl

0. Thus, the state of Bl at the
end of prinit corresponds to σl

0 for 1 ≤ l ≤ k. Further, Bk+1

is in state σk−1
0 . To see why, note that Bk−1 and Bk+1 have

the same parity and there are only k reads.

Consider our example Figure 2 (a). At the end of prinit,
block B1 (resp., B2; B3,5; B4) replied to rd1 (resp., rd2; rd1
and rd3; rd2 and rd4); thus, at the end of the run its state
is σ1

0 (resp., σ2
0 ; σ

3
0 ; σ

4
0).

Partial writes. We extend prinit to a partial run wrk by
appending a complete write(1) that completes in k rounds
and skips superblock C1. Moreover, we define a series of
partial runs each being a prefix of wrk. For 1 ≤ i ≤ k, let
wrk−i be the partial run which extends prinit by appending
an incomplete write(1) such that (i) round 1 to k − i are
terminated and (ii) round k − i + 1 is not terminated and
skips C1 and all Bj ’s such that j > 0 and i and j have the
same parity, i.e., C1 ∪ P2−(i mod 2) (Fig. 2 (a) and (c)). We
refer to the state of the blocks Bl ∈ P2−(i mod 2) at the end

of wrk−i as σl
k−i for 1 ≤ l ≤ k. If Bk+1 ∈ P2−(i mod 2),

then we refer to its state at the end of wrk−i as σk−1
k−i . Note

here that σl
k−i results from σl

0 by appending k− i rounds of
the write. When the context is clear, for simplicity we refer
to these states using the implicit notation σ∗

k−1. Finally, we

refer to the state of B0 at the end of runs wrk and wrk−1

as σk.

We refer to our example in Figure 2 (a),(c),(e) and (g) for
illustrations of the runs wr3 to wr0 and the corresponding
states. For instance Figure 2 (a), illustrates wr3 as an ex-
tension of prinit. The states of the blocks B0, B1 and B3,5

at the end of wr3 are σ4 (4 rounds of write), σ1
3 and σ3

3 (3
rounds of write).

Appending Reads. Partial run pr1 extends wrk−1 by ap-
pending the missing steps of a complete read rd1. In pr1 all
objects are correct and thus rd1 receives replies from S− tk
correct objects. After receiving the third round replies, rd1
completes and returns value x. We now show that x = 1.
We define a partial run @pr0, (Fig. 2(b)) which is identical
to wrk except that in @pr0 (1) no read by r1 occurs and
(2) superblock P1 is malicious and mimics the occurrence of
rd1 by forging its initial state to σ1

0 . By equation (1), the
malicious objects in @pr0 amount to tk. Partial run prC1
(Fig. 2(b)) is defined as an extension of @pr0 by append-
ing a complete read rd1. Read rd1 cannot distinguish prC1
from pr1 because P1, which is malicious in prC1 , mimics pr1.
Specifically, P1 forges its state to σ0 before replying to rd1’s
first round, and then to σ∗

k−1 before replying to rd1’s second
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(e) pr3 extends ∆pr2 (∆pr3 from pr3 by deleting crossed steps)
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(g) pr4 extends ∆pr3 (∆pr4 from pr4) by deleting crossed steps
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(h) prC4 (extends @pr3 ∼ pr3)

Figure 2: Instance of the proof with k = 4.

round. In prC1 , by atomicity rd1 returns 1. Since prC1 and
pr1 are indistinguishable to reader r1, x = 1.

Next, we define partial run ∆pr1 obtained from pr1 by delet-
ing the steps of the read and the write as illustrated in Fig-
ure 2 (a). More specifically, ∆pr1 extends wrk−2 by append-

ing the missing steps of an incomplete read rd1 of type inc3,
after which rd1 crashes. In ∆pr1, M0 = {B0} is malicious
and forges its state to σk before replying to rd1. Observe
that at the end of pr1 and ∆pr1, every correct block is in
the same state, except P2 . We refer to the state of B1 at
the end of ∆pr1 as σr

1 .



Starting from ∆pr1 we iteratively define the following par-
tial runs for 2 ≤ l ≤ k (see Fig. 2). Partial run prl ex-
tends ∆prl−1 by appending the missing steps of a complete
read rdl. In prl, superblock Ml−2 is malicious and all other
blocks are correct. Since rdl does not receive any messages
from Ml−2, it completes only on the basis of replies from
correct objects (at least S − tk by equation (1)). At the
end of prl, rdl completes and returns value x. To show
that x = 1, we define a partial run @prl−1 which is iden-
tical to prl−1 except that in @prl−1 (1) there is no read
by rl and (2) and (in addition to Ml−3), superblock Pl is
malicious and forges its state to σl

0, simulating the occur-
rence of rdl as in prl−1. The count of malicious objects
in @prl−1 is exactly tk. To see why, notice that by equa-
tion (1) and (2) the malicious objects in @prl−1 amount to
|
⋃

Pl|+ |
⋃

Ml−3| = tk − tl−2 + tl−2 = tk.

Then, partial run prCl extends @prl−1 by appending rdl.
Note that rdl cannot distinguish prCl from prl because su-
perblock Pl, which is malicious in prCl , mimics prl. In par-
ticular, Pl forges its state to σ0 before replying to rdl’s
first round and then to σ∗

k−l before replying to rdl’s sec-

ond round. By atomicity, rdl returns 1 in prCl . Since prCl
and prl are indistinguishable to reader rl, x = 1.

Next, we define partial run ∆prl. For 2 ≤ l < k, ∆prl is
obtained from prl by deleting steps of rdl, rdl−1 and the
write (see Fig. 2 (c) and (e)). In ∆prl, superblock Ml−1

is malicious, all other block are correct, and blocks {Bl−1,
Cl−1} ∈ Ml−1 forge their state to σr

j before replying to

rdl.
5 In more detail, ∆prl extends wrk−l−1 by appending

the missing steps (1) of incomplete reads rd1, . . . , rdl−1 of
type inc2, and (2) of an incomplete rdl of type inc3. B0

forges its state to σk before replying to rd1 and for 1 ≤
j ≤ l − 1, {Bj , Cj} forge their state to σr

j before replying
to rdj+1. Observe that at the end of prl and ∆prl, every
correct block is in the same state, except Pl+1. We refer to
the state of {Bl, Cl} at the end of ∆pr1 as σr

l .

Finally, partial run ∆prk is obtained analogously from prk,
except that in ∆prk, (a) no write is invoked and (b) read
rdk is complete and skips Mk−2 ∪ Pk+1 (see Fig. 2 (g) for
k = 4). In particular, in ∆prk, Mk−1 is malicious and
blocks {Bk−1, Ck−1} ∈ Mk−1 forge their state to σr

k−1 be-
fore replying to rdk. By equation (1) the malicious objects
amount to |

⋃
Mk−1| = tk. Partial runs prk and ∆prk differ

only at Pk+1, and rdk completes without receiving any mes-
sage from Pk+1. Thus, rdk cannot distinguish ∆prk from
prk and returns 1 in ∆prk, a contradiction, as no write was
invoked.

Lemma 2. : If S ≤ 3t + 1 and every read completes in
three rounds then no write implementation I of a multi-
reader (SWMR) atomic register exists that completes in
min{R, blog(d(3t+ 1)/2e)c} rounds.

Proof. Let k = min{R, blog(d(3t + 1)/2e)c}, i.e., R ≥ k
and k ≤ blog(d(3t + 1)/2e)c. By Lemma 1, there exists
no optimally resilient k-reader atomic register implemen-
tation with tk = tk−1 + 2tk−2 + 1 faulty objects, where
5The states are different and are indexed by the object’s id,
which for simplicity of presentation is made implicit.

the read completes in three rounds and the write completes
in k rounds. Observe that this is valid even with R ≥ k
readers and t ≥ tk faults. Writing tk in closed form re-
sults in tk = 1

6
(2k+2 − (−1)k − 3). Thus, we have that

t ≥ 1
6
(2k+2 − (−1)k − 3). Solving for k results in k ≤

blog(d(3t+ 1)/2e)c.

Finally, we generalize our result to a resilience of 3t+ bt/tkc
for t ≥ tk, proving Proposition 2.

Proof. Without loss of generality we can assume that
t ≥ tk because every implementation is subject to the re-
silience lower bound of S ≥ 3t + 1. The observation is that
if we multiply each of the blocks in the proof of Lemma 1
with a constant c, then the result holds for S′ = cS = 3ctk+c
objects and ctk faults. By carefully choosing c = t/tk, we ob-
tain a lower bound proof for S′ = 3t+bt/tkc and t faults.

5. CONCLUSION
In this paper, we show that no single-writer multiple-reader
(SWMR) robust atomic storage implementation exists if (a)
read operations complete in less than four communication
round-trips (rounds), and (b) the time-complexity of write
operations is constant.

However, we observe that a matching implementation can
simply be obtained by a) reusing the SWMR regular storage
implementation of [15] which features the worst-case time
complexity of 2 rounds for both reads and writes, and b)
transforming it to the SWMR atomic implementations using
a standard SWMR regular – SWMR atomic transformation
technique [4, 20].6 This yields a sought SWMR atomic im-
plementation in which write operations complete in 2 rounds
whereas reads complete in 4 rounds.

Furthermore, in the stronger authentication model that al-
lows for secret values [8], regular storage of [15] can be re-
placed in the above transformation with the corresponding
time-optimal regular implementation [8], yielding a 2-round
write 3-round read atomic storage, which is optimal in this
model. In both models, multi-writer atomic storage can be
implemented by applying the standard transformations fur-
ther [4,20].

In summary, we present two lower bounds. The first is a read
lower bound stating that three rounds of communication are
necessary to read from a SWMR robust atomic storage. The
second is a write lower bound, showing that Ω(log(t)) write
rounds are necessary to read in three rounds from such a
storage. Our results close a fundamental gap: we show that
time-optimal, 2-round write 4-round read (resp. 3-round
read in the secret value model) robust atomic storage can
be obtained using well-known transformations from regular
to atomic storage and existing time-optimal regular storage
implementations.

6In short, this transformation employs R + 1 regular reg-
isters, one dedicated to the writer and R additional ones,
one per reader, in which a given reader writes back the read
value.
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Lucky read/write access to robust atomic storage. In
Proceedings of the International Conference on
Dependable Systems and Networks, pages 125–136,
2006.

[15] Rachid Guerraoui and Marko Vukolić. How fast can a
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