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Ravichander Vipperla, Dong Wang, Simon Bozonnet and Nicholas Evans

Abstract

Overlapping speech is known to degrade speaker diarizationperformance
with impacts on both speech activity detection, speaker clustering and seg-
mentation (speaker error). While previous related work hasmade impor-
tant advances the problem remains largely unsolved. This paper reports
early work to investigate the application of non-negative matrix factorisation
(NMF) to the overlap problem. NMF aims to decompose a composite signal
into its underlying contributory parts and is thus naturally suited to tasks of
detecting overlap and its attribution to contributing speakers. With additional
sparse constraints the algorithm is shown to be effective inidentifying over-
lapping speech and gives a relative improvement of 11% in terms of equal
error rate over a baseline approach based on conventional Gaussian mixture
models. Experiments with source attribution show a relative improvement in
the order of 40%.
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1 Introduction

Over recent years, state-of-the-art speaker diarization systems have advanced
to the point where overlapping speech can be a dominant source of error [1,2]. The
occurance of overlap is typical in uncontrolled, spontaneous scenarios such as that
of conference meetings which have been the focus of the NIST Rich Transcription
evaluations since 20041.

The effects of overlapping speech in a speaker diarization context are well
known and generally considered to be two-fold. Without somemeans of detec-
tion, segments of overlapping speech lead to impurities in speaker specific models
and hence reduced segmentation performance. Further errors are incurred since it
is then neither possible to attribute segments of overlapping speech to their con-
tributing speakers; most systems assume that only a single speaker is active at any
one time.

Only a small number of attempts to treat overlapping speech have been success-
ful. Two problems need to be addressed. The first involves thedetection of over-
lapping intervals so that they can be removed from speaker clustering and model
training. The second problem involves the attribution of intervals of overlapping
speech to contributing speakers and naturally depends on reliable overlap detec-
tion. There is some evidence that a solution to the first problem alone is unlikely
to be sufficient [3] and that a solution to speaker attribution is potentially more
rewarding. Otterson [4] reaches similar conclusions.

The first work to detect overlap automatically appeared in 2008. Boakye et
al. [5] investigated the use of multiple features for overlap detection and a post-
processing step for attribution but results showed only modest improvements in
diarization performance. This work was extended in [6] withnew features and
a new pre-processing step to remove intervals of overlap from initial clustering.
Greater improvements in performance are reported and oracle experiments confirm
the full potential. Huijbregts et al. [7] report a similar approach whereby a model
of overlapping speech, trained on data localised around speaker turns, is used for
overlap detection. A similar approach to that in [4] is applied to attribution and
modest improvements in diarization performance are achieved. Finally we include
reference to more recent work [8] which utilises spatial or localisation features
in addition to conventional acoustic features. Our particular interest is in single-
microphone data, however, where localisation features arenot relevant.

Until recently our own efforts in automatic overlap detection have been mostly
unsuccessful. Our initial efforts involved the analysis ofspeaker-specific Gaus-
sian mixture model (GMM) likelihoods that emerge from speaker diarization but
results were discouraging. More recent attempts with non-negative matrix fac-
torisation (NMF) also gave poor results but led us to consider sparse coding con-
straints [9] which seems much more promising. NMF is a matrixdecomposition
technique that can be viewed as a parts of object based decomposition and has

1http://www.itl.nist.gov/iad/mig/tests/rt/
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found wide application in image processing [10]. Our motivation stems from the
successful application of a convolutive variant of NMF (CNMF) which captures
dynamics in the time series and has been used successfully inspeech denoising
applications [11]. A more recent development in this approach is the application of
sparseness constraints during matrix decomposition [9, 12]. Sparseness constraint
is more appealing from a speaker attribution perspective aswill be discussed in the
following sections.

Our approach relies upon the output of a standard diarization system in order
to learn bases which span a speaker-specific acoustic space.The idea is to project
segments of speech into the set of speaker spaces and hence todetermine whether
there is more than a single active in addition towhich speakers are active. Thus the
approach addresses both fundamental problems of overlap detection and source
attribution. Initial results are encouraging and, while the work is at an early stage,
we believe the approach warrants greater attention.

2 CNMF with sparseness constraints

Non-negative matrix factorisation [13] is an approach for the linear decompo-
sition of a non-negative matrixD ∈ ℜ≥0

M×N with similar non-negative constraints

on the decomposed matricesW ∈ ℜ≥0

M×R andH ∈ ℜ≥0

R×N :

D ≈ WH (1)

The columns ofW can be seen as the basis vectors and the rows ofH as the
basis activations or weights to recompose an estimate of theoriginal matrix. As
described in [14], the decomposition is performed iteratively using elegant and
computationally efficient multiplicative update rules to minimise the distance be-
tween the data matrix and its approximation:

(Ŵ , Ĥ) = arg min
W,H

‖D − WH‖2

F (2)

where,‖.‖F is the Frobenius norm. The matrix representation of a speechsignal
D is typically comprised of windowed magnitude spectra whichsatisfy the non-
negative constraint. The decomposition of this matrix results in basis vectors that
correspond to prominent spectral features. NMF, however, does not capture the cor-
relation between adjacent frames that are inherent in speech signals. A convolutive
variant, referred to as convolutive NMF (CNMF) [11] addresses this shortcoming.
The decomposition in CNMF takes the form:

D̂ ≈

P−1∑

p=0

Wp

p→

H (3)

whereP is the convolution range. The operatorsp→. andp←. are column shift op-
erators that shiftp columns of the matrix to the right and left respectively. Vacated
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columns are filled with zeros. A sequence ofP vectors corresponding to theith

columns ofWp can be treated as one basis dimension that captures one of the
prominent spectro-temporal patterns in the given signal.

The further application of sparse constraints [9, 12] leadsto a sparse activa-
tion matrix H, which is a useful feature in applications where there is a need to
force the decomposition onto as few bases as possible. This leads to the following
optimisation criterion:

(Ŵ , Ĥ) = arg min
W,H

‖D − WH‖2

F + λ
∑

ij

Hij (4)

whereHij denotes the elements ofH. In our implementation, we use the update
rule proposed in [9] for computingW andH:

Wp = Wp ⊙
D

p→

H
T

D̂
p→

H
T

(5)

H(p) = H ⊙
wT

p

p←

D

wT
p

p←

D̂ +λ.U

(6)

H =
1

P

P−1∑

p=0

H(p) (7)

where⊙ is the Hadamard product and where the division of matrices isperformed
element-wise.U is anR × N unit matrix. W andH are updated iteratively until
D̂ converges toD. After each update ofW , the columns are normalised to unit
vectors. This is an essential step in sparse coding since it ensures thatW does not
grow in an uncontrolled manner and enforces the resulting activations to be sparse.

3 CNSC for overlap detection

We here describe our approach to apply CNSC to the detection of overlapping
speech. Attribution, where we aim to determine the contributing speakers, is cov-
ered in Section 4. We first consider performance where the ground-truth reference
is used to learn speaker bases and then assess performance using an automatic seg-
mentation output from a practical speaker diarization system.

3.1 Ground-truth references

According to the outline presented above, CNSC is implemented according to
the following procedure:

1. Using pure (non-overlapping) speech for each given speaker, learn base ma-
tricesW using spectral magnitude features.
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2. Concatenate together theWs for all the speakers to create a global setW G

that spans the spectral patterns for all speakers.

3. Decompose the magnitude spectrum of a mixed, and possiblyoverlapping
speech signal (same speakers as in 1.) according toW G and update onlyH
to minimise the optimisation criterion.

The activations ofH corresponding to the basis for each speaker therefore
serve as an indication of that particular speaker’s activity. Since the basisW is
normalised, the sum of the activations in a column ofH is strongly correlated to
the signal energy from that particular speaker in the corresponding time or analysis
window. The speaker energy is determined according to:

Ej(s) =
∑

i∈Is

Hij (8)

where,Is is the set of rows inH corresponding to the basis of speakers andj is
the frame index.

We evaluated our approach to overlap detection using a set of15 conference
meeting files from the standard NIST Rich Transcription and AMI evaluation datasets.
To compute the speaker basis for each evaluation file, pure speech was first ob-
tained for each speaker according to the reference transcripts in an oracle-style
experiment. This was done to avoid the impact of errors in an automatically de-
rived speaker segmentation or diarization output and thus to focus the assessment
on CNSC alone. We used 50 basis vectors for each speaker with aconvolutional
range of 4.

In order to compare performance with a traditional, baseline GMM-based ap-
proach, we undertook a similar experiment using speaker-specific GMMs which
were trained on Mel-frequency cepstral coefficients, againusing pure speech in a
similar oracle-style setup. Each speaker model is comprised of 16 components.
The log likelihood (LLK) for each of the speaker models (LLKj(s)) is computed
for each framej and is used as a indication of each speaker’s activity in the same
way as the frame energy is used in the case of CNSC.

Results are illustrated in Figure 1 which shows the LLK and energy for the
GMM (a) and CNSC (b) approaches respectively. Ground-truthreference speaker
activities are plotted below using the same profile for corresponding speakers. The
latter are plotted on different scales solely for clarity and show that, for the most
part, there are only two active speakers. Between 6.5s and 8s, however, there are
four active speakers. For the GMM approach, there is little correlation between the
LLK and ground-truth speaker activity whereas for the CNSC approach the energy
profiles appear to correlate well. We thus surmise that CNSC offers relatively better
potential as an indicator of speaker activity.

In order to implement a classifier capable of detecting overlapping speech it is
necessary to threshold the LLK or energy profiles. In the caseof CNSC the ratio
of the second highest to the highest speaker energy is computed for each frame:
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Figure 1: An illustration of the correlation between ground-truth speaker activity
and (a) LLK scores obtained from the GMM approach and (b) energy scores with
CNSC approach.

scoreCNSCj =
Ej(ŝ2)

Ej(ŝ1)
(9)

whereŝi denotes the speaker with theith highest energy. For overlapping segments
we expect the ratio to be nearer to unity while for non-overlapping segments the
ratio should be closer to zero.

An identical strategy is adopted for the GMM approach. Here,though, given
that LLK scores are in the log-domain, a similar ratio is calculated as follows:

scoreGMMj = LLKj(ŝ2) − LLKj(ŝ1) (10)

Performance for both GMM and CNSC approaches with varying thresholds
is illustrated in the detection error trade-off (DET) curves of Figure 2. EERs of
50.1% and 44.4% for the GMM and CNSC approaches respectivelycorrespond to
a relative improvement of 11% and confirm the potential of theCNSC approach.
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3.2 Automatic segmentation

CNSC relies on the availability of pure speech to train speaker bases and, in
the experiments reported above, this was done using reference transcripts to avoid
the influence of errors in an automatically derived segmentation. We now aim
to assess performance using the output of a practical diarization system, rather
than the ground-truth reference, in an otherwise identicalsetup. This work was
undertaken using the top-down speaker diarization system reported in [15].

Perhaps the most significant difference between the reference and the diariza-
tion output lies in the number of real and automatically detected speakers which
will naturally lead to increased error. Overlap detection performance using the real
diarization output is also plotted in Figure 2 and shows that, reasuringly, there is
only a negligable difference in performance. This further supports our view that
the use of overlapping segments for clustering is not overlyproblematic and that
greater attention should be placed on attribution.

3.3 Discussion

We acknowledge that the EERs reported here are high but note that the corre-
spondence of the EER to the diarization error rate (DER) is unknown and certainly
complex; in our experience intermediate assessments with apparently poor results
do not always correlate with the resulting DER. We also highlight that the EER
is just one operating point and that, by choosing a differentthreshold, one may
trade false alarms for missed overlap. Further work is required to investigate the
resulting effects on speech/non-speech activity detection and speaker error rates.

Finally, other experiments, not reported here, show that actual precision and
recall rates (for a given, fixed threshold, i.e. a single point on the DET profile) can
be significantly improved through the smoothing or filteringof profiles shown in
Figure 1. Such practice is common with speaker diarization.Thus performance is
in practice significantly better than the impression given in Figure 2.

4 CNSC for speaker attribution

We now turn to the attribution of overlapping speech to contributing speak-
ers. Reliable attribution has the potential to improve the DER by reducing missed
speech errors where an interval of speech containing more than a single speaker is
attributed to only one.

One simple approach involves the thresholding of each speaker’s energy profile
in order to detect active speakers. LetE<k>(s) be the total energy attributed to
speakers in segmentk

E<k>(s) =
∑

j∈k

Ej(s) (11)
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Figure 2: Detection error tradeoff curves using CNSC and GMMapproaches with
ground-truth references and CNSC using an automatic diarization output.

were j is the frame index. Speakers is deemed to be active ifE<k>(s) ≥
δ ∗ E<k>(ŝ1), whereδ is an empirically optimised threshold and whereŝ1 is the
speaker with the highest energy in the same segment. The latter acts to normalise
speaker contributions and vocal effort and works well in practice.

Performance is again compared to that achieved using a similar criterion using
the LLK and GMM-based approach. In this case a speaker is deemed to be active if
LLK<k>(ŝ1)−T (k)∗G∗ log(δ) whereT (k) is the duration of the segment andG

is the number of Gaussian components in the GMM. Since we are operating in the
log domain, we need to scale the threshold as shown to obtain afair comparison
between the two approaches.

To assess the performance of each approach we use a metric which has been
adapted from the standard formula for the DER and here concentrate on speaker
error (SpkErr) only, i.e. we discount speech activity detection. Errors in speaker
attribution are calculated over all segments containing overlap according to:

Error =

∑
T (k)[max(NRef , NHyp) − NCorr]∑

T (k)NRef

(12)

where,T (k) is the duration of the overlapped segment,NRef is the number of
speakers in the reference hypothesis,NHyp is the total number of speakers in the
detection hypothesis andNCorr is the number of speakers that are correctly at-
tributed to the segment. Note that the metric is time-weighted in a similar manner
as the standard DER.

The attribution error for both GMM and CNSC approaches is shown in Figure 3
against the thresholdδ which varies between 0.1 and 0.9. Whereas the profile for
the GMM approach is relatively flat it descends rapidly for the CNSC algorithm as
the threshold increases. Optimum performance is achieved with a value ofδ = 0.7.
CNSC thus clearly outperforms the GMM approach in the case ofsource attribution
and delivers an improvement close to 40% relative.
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Figure 3: Speaker Error: CNSC and GMM

5 Conclusions

This paper reports an investigation into the use of convolutive non-negative ma-
trix factorisation with sparse constraints (CNSC) for the detection and attribution
of overlapping speech in the context of speaker diarization. The CNSC approach is
seen to outperform a more conventional approach based on thelikelihoods obtained
from Gaussian mixture speaker models. A relative reductionof 11% in equal error
rate is obtained in terms of detection but improvements in attribution are in the
order of 40% relative. A limitation of the approach relates to the cross-projection
of a speaker’s energy onto the bases of other speakers. This is to be expected since
the bases are purely spectral representations and are thus are not orthogonal. The
application of sparse contraints alleviates the problem tosome extent by encour-
aging activations to be concentrated on a small number of bases but further work
is required to optimise the number of basis dimensions, the convolution length and
sparseness constraints to reduce cross projection and hence improve performance.
Future work should include an analysis of different speakerbases to detect speakers
with multiple models and the full integration of CNSC into a regular speaker di-
arization framework. This should include a thorough study of the impact of overlap
on speaker diarization.
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