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ABSTRACT
Realistic mobility models are crucial for the simulation of Delay
Tolerant and Opportunistic Networks. The long standing bench-
mark of reproducing realistic pairwise statistics (e.g., contact and
inter-contact time distributions) is today mastered by state-of-the-
art models. However, mobility models should also reflect the macro-
scopic community structure of who meets whom. While some ex-
isting models reproduce realistic community structure - reflecting
groups of nodes who work or live together - they fail in correctly
capturing what happens between such communities: they are often
connected by few bridging links between nodes who socialize out-
side of the context and location of their home communities. In a
first step, we analyze the bridging behavior in mobility traces and
show how it differs to that of mobility models. By analyzing the
context and location of contacts, we then show that it is the social
nature of bridges which makes them differ from intra-community
links. Based on these insights, we propose a Hypergraph to model
time-synchronized meetings of nodes from different communities
as a social overlay. Applying this as an extension to two existing
mobility models we show that it reproduces correct bridging be-
havior while keeping other features of the original models intact.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Descign]: Wireless Communi-
cations; C.4 [Performance of Systems]: Modeling Techniques

General Terms
Performance, Theory

1. INTRODUCTION
Realistic mobility models are crucial for the simulation and per-

formance analysis of wireless networking protocols. Simple ran-
dom models, such as the once popular random walk and random
waypoint [1], were proven unable to model important character-
istics (e.g., periodicity and location preference) of real mobility.
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Consequently, they can lead to inconclusive or even wrong conclu-
sions about the performance of networking protocols [2]. Hence,
the properties of human mobility have recently attracted a grow-
ing amount of research interest [3, 4]. To this end, numerous so-
phisticated mobility models have emerged that try to better capture
observed mobility characteristics [5, 6, 7, 8]. Each of these models
tries to strike a different balance between accuracy, complexity, and
analytical tractability.

In the context of Delay Tolerant [9] and Opportunistic Networks,
where wireless contacts are exploited as opportunities to forward
content, the long-standing benchmark for models is to reproduce
realistic pairwise statistics (e.g. contact duration and inter-contact
time distribution). These microscopic mobility properties and their
characteristics have been extensively studied [2, 10, 11, 12] and are
today correctly reflected by mobility models.

However, besides the microscopic properties, human mobility
also has characteristic macroscopic structure [13, 14]: People meet
strangers by chance, colleagues, friends and family by intention or
familiar strangers because of similarity in their mobility patterns.
This creates complex patterns of who meets whom, how often and
for how long, which cannot easily be observed and understood by
looking at individual node pairs (e.g., pair-wise inter-contact times)
or time instances (e.g., distribution of number of neighbors).

To this end, the concept of contact graphs has been recently pro-
posed [13, 14, 15]: the sequence of actual contacts over time is
mapped into a conceptual contact graph, where a link weight be-
tween two nodes captures the strength of the “relationship” (e.g.
frequency of contacts or aggregated contact time between the two).
Looking at mobility scenarios from the contact graph angle reveals
the prevalence of communities, bridges, hubs, and other structures
common in social networks. What is more, this social structure
of mobility has been found crucial for the design of efficient DTN
protocols [16, 17]. Fig. 1a shows an example of such a conceptual
contact graph from a campus mobility trace.

In light of this, the bar is raised for mobility models. Good mod-
els, especially ones used for the analysis and simulation of Op-
portunistic Networking protocols, should also be able to accurately
capture social properties. Preliminary analysis reveals that some
of these models can reproduce realistic community structure, re-
flecting groups of nodes who work or live together. They can also
reproduce different community sizes and modularity levels.

The first contribution of this paper is to show, however, that
the vast majority of models fail to correctly capture what happens
between communities. Detailed contact trace analysis of various
traces (from different origins) reveals that communities are often
connected by few bridging nodes and/or strong bridging links. Fig. 1b
provides examples of these two types of interfaces. Comparing the
findings from contact traces to contact graphs obtained from syn-
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Figure 1: Contact Graph of Dartmouth trace.

thetic mobility models, we find that the latter do not manifest bridg-
ing links.

Our second contribution is to analyze in detail the context and
location of inter-community meetings in large datasets, where such
context information is available or can be inferred. While this anal-
ysis is of more general interest, it also provides us insights in the
origin of the discrepancy between bridges in traces and models:
intra-community meetings (i.e., meetings between nodes belong-
ing to the same community) predominantly occur inside a small,
often exclusive set of locations (which we refer to as the “home lo-
cation” for each community); however, inter-community meetings
mostly occur outside the home location of either community.

Our third contribution, based on the above insights, is to pro-
pose a social overlay represented as a Hypergraph to model time-
synchronized meetings between nodes of different communities.
Applying this as an extension to two state-of-the-art mobility mod-
els we show that it is able to reproduce correct bridging behavior
while keeping other features of the original model intact.

As a final note, we stress here the importance of accurately cap-
turing the interface between communities. The cuts between tightly
connected communities are bottlenecks for example for dissemina-
tion or diffusion processes, and reflecting them correctly is impor-
tant for obtaining realistic results from simulation. While a detailed
study of the impact of inter-community interfaces on performance
protocols is beyond the scope of this paper, we believe that they
provide a number of insights that should not be overlooked for the
design of DTN protocols and their simulation.

The paper is structured as follows. We start by detailing our
mobility datasets and the methodology used to map contacts to a
conceptual social graph in Sec. 2. We then study the structure of
this graph (e.g., communities and interface types) in Sec. 3. We

look again at contacts and their context and location in Sec. 4 and
their time synchronization in Sec. 5. Sec. 6 demonstrates how our
main findings can enhance mobility models towards more realism.

2. METHODOLOGY AND DATASETS
We first describe the mobility datasets that we use for our analy-

sis. These consist of traces from (i) real mobility measurements and
(ii) mobility models. We then describe how we construct a contact
graph out of each of these traces.

2.1 Empirical Datasets
To ensure generality of our results, we analyze four different

mobility traces collected in several environments and with vari-
ous methods: campus traces from Access Point associations and
Bluetooth scans, and self-reported location data from a geo-social
network application. Key features of the traces are listed in Table 1.

Dartmouth (DART) We use 17 weeks of the WLAN Access
Point (AP) association trace [18], between Nov. 2, 2003 and Feb.
28, 2004. We chose the 1044 nodes which have associations at
least 5 days a week on average i.e., at least 5× 17 = 85 days. The
trace is preprocessed to remove short disconnections (< 60s) and
the ping-pong effect. Each AP is associated with a location context
(e.g., library, residential, academic) that we will detail later on. We
assume that two nodes are in contact when they are associated to
the same AP at the same time.

ETH Campus (ETH) The trace collection at the ETH cam-
pus [19] is similar to the Dartmouth campus. We use 15 weeks
of AP association trace between Oct. 25, 2005 and Feb. 3, 2006
and chose 285 nodes which associate to the network at least 5 days
a week (i.e., 75 days). Short disconnections and ping-pong effect
are filtered as well. Additionally, the location of each AP in the
buildings is known.

Gowalla (GOW) Gowalla1 is a geo-social network service where
users check-in to close-by spots (e.g., restaurants, office buildings),
logging their position and context. We use the location data of 473
heavy-users who, during the 6 months from Apr. to Sept. 2010,
checked-in at least 5 days a week in the State of Texas. Since users
only check-in and do not check-out, we cannot infer the stay dura-
tion at a spot. Therefore, we assume users are in contact when they
have check-in less than 1 hour apart at the same spot. Note that
by its nature, the GOW trace is more sparse than the other traces.
However, it still contains a large number of check-ins (∼ 400′000)
leading to a total of 19′000 contacts2.

MIT Reality Mining (MIT) The MIT trace [20] logs contacts
between 92 campus students and staff, detected by Bluetooth scans
with a scanning interval of 5 minutes. It is the only trace we use
where contacts are measured directly (and not inferred from loca-
tion), but has the drawback that we do not know in what context
and location a contact happens.

The Gowalla dataset is fundamentally different from the other
ones. While the AP association datasets capture mainly campus
work and study environment (plus residential for the DART trace),
the Gowalla dataset, by the nature of the application, captures users
while going out to eat or entertain. We hence assume that the AP
datasets are biased a bit towards overestimating the number of con-
tacts in home and work context, while the Gowalla dataset is biased
towards overestimating the number of contacts in a social context.
MIT captures work, home and leisure equally.

1http://gowalla.com
2Additional statistics about the GOW datasets (and the other ones),
including distributions of pairwise tie strengths (see Sec. 2.3) can
be found in [14].



DART ETH GOW MIT
# People and context 1044 campus 285 campus 473 Texas 92 campus
Duration 17 weeks 15 weeks 6 months 3 months
Type AP associations AP associations Self-reported location Bluetooth scanning
# Contacts total 4′200′000 99′000 19′000 81′961
# Contacts per dev. 4′000 350 40 890

Table 1: Mobility traces characteristics.
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Figure 2: TCVM and HCMM models.

2.2 Synthetic Mobility Models
We consider three synthetic mobility models [7, 5, 6] known

to reproduce various empirical mobility properties. These mod-
els cover a range of different design philosophies (location-driven
vs. social network driven) and complexity (tractable and simple vs.
more realistic, but not tractable). Our goal is to better understand to
what extent these models can capture the complex (social) structure
observed in the traces.

TVCM: In the Time-variant Community Model [5], each node
is randomly assigned to one or more home location areas on the
plane. Transitions in, out, and between home locations are gov-
erned by a simple 2-state Markov Chain as illustrated in Fig. 2a.
Nodes perform random waypoint trips inside and outside home lo-
cations, with a probability 1 − p of roaming (in the next trip) and
a probability p of staying or getting back in the home location. By
choosing different transition probabilities p for each node, a large
range of heterogeneous node behaviors can be reproduced. We use
a simple TVCM scenario throughout our analysis, with only one
home location per node (see Fig. 2a)3. To reproduce community
structure observed in traces, we group the nodes in 10 communities
and assign each of them to one of the 6× 6 location areas (each of
100 × 100 meters). The number of nodes for each of the 10 com-
munities is sampled from the community sizes found in the DART
trace (see Sec. 3), which gives a total of 505 nodes.

HCMM: The Community-based Mobility Model (CMM) [21]
was the first mobility model directly driven by a social network.
The Caveman model [22] is used to define a network with (social)
communities (in our scenario 10 caves with 10 nodes, reproducing
roughly the average community size of the ETH trace) and each
community is assigned to a home location as shown in Fig. 2b. In
contrast to TVCM, transition probabilities are directly linked to the
weights on the Caveman graph. Specifically, the probability that
a node performs a mobility trip towards a community C depends
on her social ties towards nodes currently in community C. The
Home-cell Community-based Mobility Model (HCMM) [6] is an

3TVCM supports much additional complexity (see [5]). We choose
here to use the minimum amount of complexity needed to create
some non-trivial community structure.

TVCM HCMM SLAW
Nodes 505 100 100
Speed 1-3 m/s 1-3 m/s 1 m/s
Structure 10 comm. 10 nodes per Hurst param.

community h = 0.85
Transm. Range 30m 30m 30m
# Contacts 9′000′000 2′300′000 520′000
Duration 3 days 3 days 3 Days

Table 2: Mobility model parameters.

extension to CMM, adding location-driven mobility. The transition
probability to a location L no longer depends on nodes currently at
that location but on the total weight of nodes assigned to L as their
home location (i.e., irrespective of their current position). With this
extension, HCMM fixes a problem of CMM, i.e., that all nodes of
a community tend to follow the first node roaming to a different
community. As the authors of [6] show, this can cause all nodes to
meet in one location and suppresses community structure. Since we
are interested in realistic community structure, we thus use HCMM
instead of the original CMM in our simulations.

SLAW: SLAW [23] captures the (measured) Levy flight property
of human displacements, where the travelled distance distribution
between two points of interest (or waypoints) follows a Pareto law.
In [7] the authors explain that this behavior can be seen as a con-
sequence of people minimizing their daily displacements between
clustered but remote points of interests.

We chose the parameters of the three models to be similar, such
that they are comparable and produce community structures com-
parable to those found in the traces, especially with respect to mod-
ularity (see Sec. 3). The most imporant model parameters and
statistics are reported in Tab. 2. For each synthetic models, we
run a simulation to create a contact trace.

2.3 Contact Graph
Contacts happen due to the mobility of the users carrying the

devices and reflect the complex structure in people’s movements:
meeting strangers by chance, colleagues, friends and family by in-
tention or familiar strangers because of similarity in their mobility
patterns. Our goal is to represent the complex resulting pattern in
a compact and tractable way. This allows us to quantify structural
properties beyond pair-wise statistics.

To represent the structure of a mobility scenario, we aggregate
the entire sequence of contacts of a trace to a static, weighted con-
tact graph G(N,W) with weight matrix W = {wij}. Each de-
vice (or rather person carrying a device) is a node of this graph
and a link weight wij represents the strength of the relationship be-
tween nodes i and j. A key question is how to derive the tie strength
between two nodes, i.e., what metric to use for wij , based on the
observed contacts. This weight should represent the amount of mo-
bility correlation (in space and time) between two nodes. Various
metrics, such as the age of last contact [24], contact frequency [13]
or aggregate contact duration [13] have been used as tie strength
indicators in DTN routing.
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Figure 3: Dispersion of contact frequency and duration.

In our study, we consider both, contact frequency and aggregate
contact duration. They capture different aspects, both of which are
important for Opportunistic Networking (e.g., for data dissemina-
tion). Frequent contacts imply many meetings and hence many for-
warding opportunities (short delays) and long contacts imply meet-
ings where a large amount of data can be transferred (high through-
put)4. The two features are correlated to different degrees as shown
in Tab. 3.

DART ETH MIT TVCM HCMM SLAW
0.52 0.63 0.81 0.96 0.98 0.92

Table 3: Correlation coefficients of duration and frequecy.

Since most network analysis metric require one-dimensional tie
strengths, we map these two features to a scalar weight. We first
assign each pair of nodes {i, j} a two-dimensional feature vector,

zij =
(
fij−f̄
σf

,
tij−t̄
σt

)
, where fij is the number of contacts in the

trace between nodes i and j, and tij is the sum of the durations
of all contacts between the two nodes. f̄ and t̄ are the respective
empirical means, and σf and σt, the empirical standard deviations.
We normalize the values by their standard deviations to make the
scales of the two metrics comparable.

We then transform the two-dimensional feature vector to a scalar
feature value, using the principal component, i.e., the direction in
which the feature vectors of all node pairs Z = {zij}, i, j ∈ N
have the largest variance. This is the direction of the eigenvector
v1 (with the largest corresponding eigenvalue) of the 2× 2 covari-
ance matrix of frequency and duration. Fig. 3 shows two examples
for frequency and duration values, along with the direction of the
principal component. We then define the tie strength between i and
j as the projection of zij on the principal component

wij = v1
T zij + w0,

where we add w0 = v1
T
(
− f̄
σf
,− t̄

σt

)
(the projection of the fea-

ture value for a pair without contacts) in order to have positive tie
strengths. The obtained weight is a generic metric that combines
the frequency and duration in a scalar value and captures the het-
erogeneity of node pairs with respect to frequency and duration of
contacts5. An analysis of weight distributions, degree distributions
and other complex network metrics of the contact traces can be
found in [14].

4Note that the age of last contact is not suitable for our purpose,
since we need aggregate properties over the trace duration.
5This framework implicitly assumes stationarity of the underlying
process, something not always true in some traces. In practice (e.g.,
for protocol design), one would implement some sliding window
mechanism (see e.g.[17]). A thorough time-dependent analysis of
these traces can be found in [25].

Trace/Model # Communities Q
DART 24 0.84
ETH 30 0.81
GOW 29 0.7
MIT 6 0.52
TVCM 10 0.73
HCMM 10 0.77
SLAW 2 0.063

Table 4: Number of communities and modularity.

3. SOCIAL STRUCTURE OF CONTACTS
We will now use the respective contact graphs to study the so-

cial (“macroscopic”) properties of the mobility scenarios consid-
ered. As an example, Fig. 1a shows the contact graph of the DART
trace. Clearly, we see that the edges are not randomly distributed
over the nodes, but there is strong community structure (the nodes
colored according to the community they belong to). Communities
are (informally) defined as subsets of nodes with stronger connec-
tions between them than towards other nodes. They generally im-
ply social groups (e.g., friends, co-workers) [26], and are thus of
particular interests from both a sociological as well as a protocol
design perspective (e.g.. for the design of DTN routing [15, 13]
and multicast [16], collaboration for content distribution [27], se-
curity and trust systems, etc.). Looking at the community structure
of the measured traces and from traces obtained from the synthetic
models we will find that synthetic mobility models, while able to
generate high level community structure, they all fail to accurately
capture inter-community linkage.

3.1 Generic Community Structure
We use the Louvain algorithm [28] to identify communities. Find-

ing the optimal allocation of nodes to communities is a computa-
tionally hard problem, and therefore, state-of-the-art algorithms use
heuristics. The Louvain [28] algorithm starts with assigning each
node its own community. It then iteratively – until no further im-
provement is possible – goes through all nodes and moves them to
one of the existing communities, such that the gain in modularity
([29], see below) is maximal. In a second step, the communities are
merged, if merging increases modularity. These two phases (mov-
ing nodes and merging communities) are iteratively repeated until
no further improvement is possible. We choose this algorithm be-
cause it was reported to be fast and to find communities that are
as good or better than other algorithms for a number of different
graphs [28]6.

The number of identified communities is shown in Table 4 (left
column). In addition to the number of communities, we are inter-
ested in the modularity of the resulting partition of nodes to com-
munities. High modularity implies strong community structure,
and has implications for node cooperation [32], community-based
trust mechanisms [33], and routing. We compute the widely used
Newman modularity [29]:

Q =
1

2m

∑
kl

(
wk,l −

dkdl
2m

)
δ(ck, cl),

where dk =
∑
l wk,l is the degree of node k and m = 1

2

∑
l dl is

the total weight in the network. ck denotes the community of node
k thus, the Kronecker delta function δ(ck, cl) is 1 if nodes k and
l share the same community and 0 otherwise. Q is always smaller
6We have used a second algorithm, based on spectral cluster-
ing [30], to detect communities. The community assignments are
in agreement in most of the cases, with only small differences [31].



C1(24) C2(23) C3(16) C4(16) C5(7) C6(6)
C1(24) 25% 2.3% 0.8% 1.1% 0.03% 0.1%
C2(23) 2.3% 27% 3.6% 7.6% 0.45% 1.4%
C3(16) 0.8% 3.6% 9.2% 3.9% 0.19% 0.96%
C4(16) 1.1% 7.6% 3.9% 9.7% 0.29% 0.94%
C5(7) 0.03% 0.45% 0.19% 0.29% 3.1% 0.17%
C6(6) 0.1% 1.4% 0.96% 0.94% 0.17% 2.2%

Table 5: Percentages of total weight within and between communi-
ties (MIT trace). The number of nodes in the respective community
shown in brackets.
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Figure 4: Inter-community connections. The numbers below the
community label indicate how many nodes are in the respective
community.

than 1, can be negative, and Q = 0 is the expected quality of a
randomly connected network with the same degree sequence (i.e.,
a network where the nodes have the same number of neighbors
but are randomly connected). [29] reports modularities of above
Q = 0.3 for different networks (social, biological, etc.).

The modularity for all contact traces and mobility models are
listed in Table 4. From the list, we observe the following: (i) Mod-
ularity values vary in traces but are overall quite high7. (ii) SLAW
has low modularity and no community structure (in the scenario
we used, even with varying Hurst parameter values), hence we ex-
clude it from the rest of our analysis. (iii) TVCM and HCMM have
similar modularities as the traces. Hence, we conclude that exist-
ing models can emulate highly modular community structure even
with simple scenarios.

3.2 Analysis of Community Cuts
While modularity captures general connectivity characteristics

of a scenario, it does not say anything about how individual com-
munities are connected. The interface (or “cut”) between two com-
munities on a static graph is known to be strongly linked to the
speed of random walk based search (e.g. time to cross between
two communities), sustainable throughput between the communi-
ties (through the max-flow min-cut theorem), etc. There is evidence
that similar conclusions could be drawn for the contact graph.

3.2.1 Cut Capacity
Table 5 shows how the total weight in the network is distributed

within and between the communities, for the example of the MIT
dataset. The weight within a community is the sum of all weights
(i.e., the volume) of edges with endpoints in the respective commu-
nity. The weight between two communities Ci and Cj is the sum

7Similar values were reported by [13] for other traces and other
community detection algorithms.

of weights of all edges across the cut between them:

∂(Ci, Cj) : cut between Ci and Cj
vol(∂(Ci, Cj)) =

∑
k∈Ci,l∈Cj

wk,l.

A first observation is that inter-connections of communities are
weak in many cases. For instance, in the MIT trace, communities
1 and 2 together contain more than 50% of the weights and 50%
of the nodes. However, between them there is only 2.3% of the
weight. For DART and TVCM, the same results are depicted in
Figure 4 as a community graph. Each vertex represents a commu-
nity, with vertex size showing the percentage of total weight ac-
cumulated within the community, and the edge width showing the
weight in the cut between the communities. The community graphs
of the other traces and models look similar.

Another observation is that heterogeneity in terms of both intra-
community weight as well as inter-community (cut) weight can in-
deed be reproduced by the synthetic models. However, we want to
stress that careful tuning of synthetic models is needed, when used
to evaluate protocols based on social network structure [13, 15, 16,
34], to ensure that realistic community and inter-community struc-
ture is reproduced. While such tuning is possible, it may come at
the expense of complexity and possibly loss of tractability.

3.2.2 Capacity Concentration
We finally zoom into the individual cuts and look at how the

capacity is distributed over the node pairs. From Fig. 1b, we can
already assume that for many community pairs, the capacity is not
spread uniformly among the nodes. Instead, there are strong nodes
and/or links, responsible for a large share of the weight between
two communities. Analysis of the distributions of inter-community
link weights shows that they are indeed strongly skewed [14]. This
has important implications e.g. for energy consumption, connectiv-
ity, and routing in Opportunistic Networks. Clearly, the “narrower”
the interface, the more challenging the problems: For the example
of routing, if two communities are connected by a single strong
link, this link may be hard to be identified and utilized by a routing
protocol. Also, the narrower, the more stressed the bridges will be
because they have to relay a large portion of the traffic.

This raises the following important question: Are nodes with
(strong) cross-community links in general well connected to many
nodes of the peer community, or is their weight towards the other
community concentrated on a few links?

To answer this, we distinguish two different types of bridging
behavior between communities: bridging nodes and bridging links.
Informally, a bridging node is a node of community Ci which is
also strongly connected to many nodes of community Cj (Fig. 1b,
left)8. This is in contrast with the typical node of Ci which has
strong links mainly within its community and much weaker links
outside. A bridging link {k, l} between nodes k ∈ Ci and l ∈ Cj
is a stronger than average link and neither k nor l is a bridging
node. In other words, k and l are only connected to few nodes of
the respective peer community. In this case, the weight between
the two communities is concentrated among much fewer pairs. As
an example, imagine k has a total weight of 10 towards community
Cj , and the average node of Ci has only a total weight of 1. If this
total weight is distributed equally among 10 links (i.e., 10 links of
weight 1), we call i a bridging node. However, if the total weight
is concentrated on a single link to node l (of weight 10), {k, l} is a
bridging link (in this case k is not a bridging node).

8Note that a bridging node has still more weight towards its own
community; otherwise, it would have been assigned to Cj .



To differentiate between the two more formally, we introduce
two metrics which we call, node spread and edge spread. We define
the node spread of k ∈ Ci to a community Cj as

S(k → Cj) =
|Ckj |
|Cj |

,

where Ckj is the smallest subset of Cj such that
∑
l∈Ck

j
wk,l >

0.9×
∑
l∈Cj

wk,l, i.e., the smallest subset that ”contains” 90% of
the weight of k towards Cj . We empirically choose a factor of 0.9
of the total weight to avoid counting the potentially many weights
which happen just due to random contacts and remark that experi-
ments with different factors do not change our results qualitatively.

Based on this, we define the edge spread of link {k, l} as

S(k, l) = max{S(k → Ci), S(l→ Cj)},

i.e., the higher one of the two associated node spreads. Using the
higher node spread allows us to implement the criterion that for a
bridging link neither of the nodes may be a bridging node. With
these metrics, we can now write down the criteria for bridging
nodes and bridging links.

Bridging Node A bridging node k must fulfill the following two
conditions:

1. It must be exceptionally strongly connected toCj . We define
wk,Cj =

∑
l∈Cj

wk,l and write the condition as

wk,Cj � median
l∈Ci

{wl,Cj}

2. It has a high node spread S(k → Cj).

Bridging Link Similarly, a bridging link {k, l} fulfills the fol-
lowing two conditions:

1. It has exceptionally strong weight compared to other links
between Ci and Cj

wk,l � median
m∈Ci,n∈Cj

{wm,n}

2. It has a low edge spread S(k, l).

To see if we observe bridging nodes or rather bridging links in
the traces, Fig. 5 shows histograms of the edge spread of strong
inter-community links9 for the traces and models. We observe a
fundamental difference between the traces and the mobility mod-
els: Traces contain both bridging nodes and links, with a tendency
towards bridging links, i.e., more concentration of the weight to
few links. On the other hand, the models show exclusively bridging
nodes, no bridging links. Unlike the case of heterogeneous inter-
community volume (studied in Section 3.2.1), which can be emu-
lated with careful fine-tuning of the models, this consistent lack of
bridging links seems to be due to deeper, design-related reasons.

We believe that the main reason behind this is the following:
while models successfully incorporate geographic concepts and so-
cial relations to drive mobility decisions, they fail to consider one
important element of human mobility, namely, context. Nodes of
different communities, meeting outside the location of their home
communities in a social context, are typically not modeled. In the
following section, we will show that it is indeed such meetings
which create bridging links with a small spread.

9For this measurement, we classify a link as strong if it is at least
3 standard deviations stronger than the median. Experiments with
other thresholds show qualitatively similar results.

Context APs Contacts Community Bridge
Academic 28% 7.7% 4.9% 32%
Admistration 12% 1.4% 1.4% 1.2%
Library 8.8% 1.2% 0.12% 11%
Residential 39% 86% 90% 45%
Social 8.4% 0.8% 0.5% 3.5%
Athletic 3.4% 3.1% 2.7% 6.5%
Total 533 4’184’804 3’756’503 428’301

Table 6: Percentage of contacts per context (Dartmouth): total (col.
3), intra-comm (col. 4), inter-comm (col. 5).

Context Spots Contacts Community Bridge
Office 4% 12% 18% 4.9%
Events 11% 18% 13% 24%
Food 54% 43% 46% 40%
Shopping 20% 17% 13% 20%
Home 2.5% 2.5% 2% 3.1%
Other 8.2% 8.2% 7.8% 8.6%
Total 3813 14875 7716 7159

Table 7: . Percentage of contacts per context (Gowalla): total (col.
3), intra-comm (col. 4), and inter-comm (col. 5)

4. CONTEXT OF CONTACTS
To show that social meetings happening outside the location and

context of a community cause bridging links with small spread, we
analyze the traces for the context. In most traces, context is not
available and we only know who meets whom and when, but not
where (location) or why (context). Exceptions, which we analyze
here, are the Dartmouth and Gowalla trace. As these have a large
number of nodes and are of different origins, we believe that they
suffice to provide some important first evidence.

4.1 The Context of Contacts
In the Dartmouth trace, we derive the context of a contact from

the building in which the respective AP is located. The trace dis-
tinguishes 6 different contexts (i.e., types of buildings): Academic,
Administration, Library, Residential, Social and Athletic10. The
percentage of APs and contacts per context is listed in Table 6.
Note that the percentage of contacts does not perfectly correlate
with the percentage of APs of a given context. For instance 86%
of all contacts happen at residential APs, which account only for a
39% of all APs.

The last two columns show the percentage of intra-community
(“Community”) and inter-community (“Bridge”) contacts happen-
ing in various contexts. Observe that for all contexts, the percent-
ages of both community (column 3) and bridge contacts (column 4)
differ largely from the aggregate statistics for all contacts (column
2). This suggests that meetings between nodes belonging to the
same community happen at different contexts that meeting between
nodes in different communities (which are responsible for the com-
munity bridging behavior). Put differently, knowing whether a con-
tact is of type Community or Bridge substantially changes the prob-
ability of the context in which it occurs: For example, without fur-
ther knowledge any given contact happens with a probability of
1.2% in a library. However, given that it is a Bridge contact, will
increase this probability by a factor of 10.

We can also infer the context of contacts in the Gowalla trace.
Each Spot at which users can check-in is assigned to one of more
than 300 categories by the creator of the spot. We group the cate-

10There is a seventh context “Other”, which we dismiss here.
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Figure 5: Histogram of the spread of bridging links. Not shown: ETH (m=0.32), MIT (m=0.46).
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Figure 6: Probability of narrow bridges in home locations.

gories to 6 contexts11: Office, Events, Food, Shopping, Home and
Other. Results are summarized in Table 7. Similarly, the probabil-
ity of bridging contacts occurring, for example, in the office context
is 4 times smaller than the probability of intra-community meet-
ings occurring in the same context. Note that, due to its nature,
the Gowalla dataset is biased towards social meetings, at events,
restaurants, etc. (to which users check in more often than, say,
at home). This causes identified communities to have a differ-
ent meaning than in the DART trace, where communities happen
mainly at home: In Gowalla, a community is rather a group of
nodes often meeting in social contexts (e.g., eating, going out).

This analysis clearly shows that community and bridge contacts
differ in terms of context in which they happen. In the next Section,
we will refine the analysis and show that they also differ in terms
of geographical location where they happen.

4.2 The Location of Contacts
As mentioned earlier, human mobility is strongly driven by loca-

tion. Hence, a lot of synthetic mobility models introduce the con-
cept of “home locations”: nodes tend to move inside their home
location(s) most of the time (e.g., home or office environment), and
occasionally visit other locations. In addition to the general con-
text of contacts studied before, we are therefore interested in the
actual locations where contacts occur, both intra-community con-
tacts (to confirm the basic intuition of synthetic models) and inter-
community contacts.

To this end, we create for each community a location profile of
where its intra-community contacts happen. For each community,
we extract the list of intra-community contacts. For each location
(AP) we count the intra-community contacts and define the home
location set of the community as the smallest set of locations such
that at least 90% of the intra-community contacts is covered. We
empirically chose a threshold of 90% to account for the big ma-
jority of the contacts without taking into account random contacts
happening at other locations (other thresholds give similar results).
We denote the home location set of community Ci as L(Ci).

11We only assign popular contexts to categories, that is, categories
which account for at least 0.5% of all contacts

Our first finding is that, indeed, the number of locations in which
most contacts between nodes in the same community happen is
rather limited. On average, the home location profiles for the Dart-
mouth communities contain 4.5 locations. A second observation
is that home locations sets of different communities do not over-
lap, that is, L(Ci) ∩ L(Cj) = ∅ for all i and j. In other words,
each community observed in the contact graph seems to have its
own, mostly exclusive home location (implying perhaps that this
contact-based community is an actual social community).

We next verify that bridging links not only happen at a differ-
ent context, but very often outside the home location sets of both
nodes’ communities. We go through all inter-community contacts
and check where they happen. In aggregate, we see a mixed pic-
ture: In the Dartmouth trace, 44% of all bridging contacts happen
outside the respective home location sets, 56% within the home
locations. While these numbers seem roughly split, they should
be considered in light of the fact that 81% of all contacts happen
inside home communities. This implies that inter-community con-
tacts happen with 4.9 times higher probability outside home loca-
tions than the average contact.

Our last finding is that the probability of a contact happening out-
side the home location sets of its respective communities, depends
strongly on the spread of the link. To show this, we split the links
into two classes narrow, if the spread is smaller than a threshold
Sth, and broad if it is larger. Fig. 6 shows how the probability of
a contact of a narrow link happening in a home location depends
on the threshold Sth. We see that for both DART and ETH traces,
for very narrow links the probability is very small, thus, almost all
links happen outside home locations. As we include more and more
links with higher spread (moving to the right in Fig. 6), the prob-
ability increases. Thus, links with higher spread tend to happen at
home locations.

This observation has important implications for mobility model
design. While most mobility models cannot directly manipulate
how the aggregated contact graph will look like, they can more
easily manipulate the locations where contacts occur. The strong
correlation of context and bridging behavior found in this section,
directly implies that one could manipulate the location of contacts,
in order to improve the social behavior of the model12. We will
show how this could be achieved in the next two sections.

5. SYNCHRONIZATION OF CONTACTS
We saw that links with low spread happen with high probability

outside the respective communities’ home locations, and how this
affects the observed inter-community interface. In order to trans-
form this into a model for inter-community meetings, the following

12It is important to note that, while mobility models using a social
graph to drive mobility decisions (such as CMM and HCMM) can
create bridging links on this graph, this does not mean that these
links will appear in the contact graph as well.
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Figure 7: Synchronization of nodes locations (DART trace).

questions arise naturally: Do the nodes of bridging links visit the
same location independently and meet there randomly or do they
visit such social locations synchronously? Is it just pairs of nodes
visiting a certain location, or do we see groups (cliques) of nodes?

In order to see whether two nodes visit a location synchronously,
we measure the overlap of the time they spend there. We define the
overlap Oi(u, v) of nodes u and v at location i using the Jaccard
similarity index as follows

Oi(u, v) =
|Tui ∩ T vi |
|Tui ∪ T vi |

where |Tui ∩T vi | is the total time both u and v are at location i, and
|Tui ∪ T vi | is the time either u or v (or both) spend at i.

To assess whether a certain overlap implies synchronous behav-
ior, we relate the measured overlap to the expected random overlap.
We estimate the expected random overlap Ôi(u, v) (i.e., the ex-
pected overlap if u and v visit i independently) using Monte Carlo
simulation as follows. We extract the set of durations of visits to lo-
cation i. Picking a random starting time for each visit of both nodes
(such that visits of the same node do not overlap in time), we shuf-
fle the order and time of the visits, while maintaining their number
and durations. Given such a random arrangement, we measure the
overlap as defined above. Repeating this 1000 times for each node
pair, we estimate the expected value of the random overlap.

To distinguish synchronous from asynchronous behavior, we com-
pare Oi(u, v) and Ôi(u, v) using a simple test: If the measured
overlap exceeds the expected random overlap by a factor of 10, we
call the pair synchronized at this specific location13.

People typically socialize not only in pairs but also in larger
cliques. Knowing the size of such cliques is important for mod-
eling inter-community meetings. Hence, we measure the clique
size distribution. Using the DART trace, we create a Synchronicity
Graph for each location i (which is not a home location to a com-
munity). The vertices of the graph are the set of users which visit
AP i. We put an edge between two nodes if we find synchronous
behavior for them, according to the test above. In this Synchronic-
ity Graph, we detect all k-Cliques (fully connected sub-sets of k
nodes, that are not contained in an even bigger clique) to detect
groups of synchronized nodes14.

In the DART trace, we find more than 1′000 Cliques of size 2
or larger, with a maximum size of k = 9. Figure 7a shows the
empirical CCDF of the clique size, over all APs. From the almost
straight line in the log-linear axis, we conclude visually that clique
size follows a geometric distribution. Using a maximum likelihood

13We have tried other threshold values, as well as statistical tests
with the 95% and 99% quantile of the simulated random overlap
and have found very similar results.

14Note that deducing group synchronization based on pairwise syn-
chronization is only an approximation. For example it may happen
that in a triangle of nodes which are all pairwise synchronized, all
three of them never actually visit a location together.

estimator, we fit a geometric distribution and find a parameter of
p1 = 0.64. Note that the geometric distribution is shifted, since the
smallest clique size is 2 (i.e., if X denotes the random variable of
clique size, X − 2 is geometrically distributed). A Kolmogorov-
Smirnov test does not reject the null hypothesis of a geometric dis-
tribution at a significance level of α = 0.05.

Finally, we would like to know how many locations a node typ-
ically visits together with other nodes. Hence, we analyze, how
many cliques (of size 2 or bigger) a node is part of. The CCDF is
shown in Figure 7b. Again, the almost straight line in the log-linear
scale suggests a geometric distribution, and a maximum likelihood
estimator gives a parameter of p2 = 0.2815.

Using these insights, we are now ready to create a model for
social meetings across communities.

6. MODELING THE SOCIAL CONTEXT
Section 3 sheds light on an important problem with current syn-

thetic mobility models. Sections 4 and 5 already suggest how this
problem could be fixed. Based on these insights, we now proceed
to propose a model for the social meetings outside community lo-
cations. Note that our goal is not to propose an entirely new mo-
bility model, as there are already many good existing ones. In-
stead, we present an addition, which we call social overlay (SO),
that is applicable to various existing models. The social overlay
is based on a Hypergraph [35] model, calibrated with the insights
from trace analysis. It helps existing models to correctly reflect
bridging links between communities by synchronizing meetings at
social locations. We first explain the details of this Social Overlay
(Section 6.1) and then apply it to TVCM (creating TVCM:SO in
Sec. 6.2) and HCMM (creating HCMM:SO in Sec. 6.3)16. Evaluat-
ing contact traces from these two extended models, we will see that
the social overlay indeed creates links with a small spread, while
qualitatively maintaining other properties (e.g., inter-contact time
distributions) of the original models.

6.1 Social Overlay
We start by discussing the Hypergraph model and how to cali-

brate it from contact traces. This step is not specific to the model
to which the SO is applied. Then, we explain a generic set of steps
to be implemented in order to apply the SO to a model.

A Hypergraph [35] (also called Levi graph) is a generalization of
a Graph G(N,E), with a set of nodes N and a set of edges E. In a
Hypergraph H(N,E), a Hyperedge (or just edge) ei ∈ E does not
correspond to only a pair of nodes, as in a graph. Instead, an edge
is a list of an arbitrary number of nodes, i.e., an arbitrary subset of
N (not the empty set ∅). The edge cardinality |ei| is the number of
nodes ei connects (thus, a “simple” graph, is a Hypergraph where
all edge cardinalities are 2). As in a simple graph, in a Hypergraph
the degree of a node n is the number of edges that it is a member
of. With the concept of a Hypergraph we can connect more than
two nodes, which allows us to represent synchronized behavior of
more than two nodes in a simple yet meaningful way.

In our social overlay Hypergraph, an edge represents a group of
nodes, synchronously meeting outside their community locations.
In order to be realistic, we need a Hypergraph model which repro-

15Note that up to a value of about 15 cliques per node, the geometric
model is very good. Beyond 15, the tail seems a bit “heavier”.
However, we still believe that a geometric distribution is a good
approximation for our purposes.

16Since the social overlay models bridges between communities, it
only makes sense to apply it if the original model already creates
modular contacts. Hence, we do not apply it to SLAW, as it does
not manifest community structure (see Sec. 3).



duces the edge cardinality and node degree distribution we measure
in a contact trace. As we have seen in Sec. 5, for the DART trace,
both, edge cardinality and node degree are well approximated by
geometric distributions. However, the following general procedure
can also be applied using other distributions.

Given a edge cardinality and a degree distribution, our model
works similar to the configuration model [36] for graphs. We con-
nect the nodes (the number of nodes is given by the scenario we
want to simulate) with Hyperedges in the following steps: (1) For
each node, draw a degree from the degree distribution (geometric
with p1 = 0.68 in our example), and attach the according num-
ber of “stubs” to it. (2) Create a new Hyperedge of cardinality
drawn from the respective distribution (geometric with parameter
p2 = 0.28 in our example). (3) Choose from the stubs at random
to select which nodes are members of the edge (a node can not be
assigned to the same Hyperedge twice). Once a stub is selected, it
is connected and not eligible any longer. Steps 2 and 3 are repeated
until no more stubs are left. This creates a random Hypergraph with
the specified degree distribution and edge cardinality distribution17.

The creation of the Hypergraph is the same for any mobility
model to which the social overlay is applied. Given the overlay,
a mobility model then must implement the following three general
steps in order to create synchronized meetings of the nodes of an
edge. Note that we here only explain the general idea, the con-
crete mechanisms can be chosen specifically for a model (Sec. 6.2
and 6.3 discuss two examples).

Step 1) Location Assign each Hyperedge to a random location
on the simulated area (as the location where the members of the
edge meet). Depending on the model, this may be e.g. an area or
cell.

Step 2) Time For each Hyperedge, define an social activity pe-
riod during which the edge counts as active. This is the time inter-
val during which the members of the edge meet at the respective lo-
cation. The social activity periods of adjacent edges (edges sharing
one or more nodes) should not overlap. Assigning a given number
of non-overlapping activity periods to edges, is an edge coloring
problem. Note that the the smallest number of colors needed for
a valid coloring (i.e., the edge chromatic number) must be smaller
than the number of activity periods available.

Step 3) Synchronization When no edge of a node is active, it
moves according to the normal rules of the mobility model. As
one of its edges is active (during the social activity period), the
behavior of the node changes such that it visits the location of the
respective edge, thereby synchronously meeting the other members
of the edge. The rules according to which a node moves during
the social activity period of one of its edges can again be chosen
specifically for a certain model (two clarifying examples will be
given in Sec. 6.2 and 6.3).

We deliberately keep these points very generic in order to make
them applicable to many different mobility models. However, there
are certain prerequisites for a model in order to make the SO appli-
cable. First, the model must have distinguishable nodes, so that we
can assign them to nodes of the Hypergraph. While this is the case
for the majority of mobility models, there may be models for which
nodes are not distinguishable (e.g., [8] which models the size dis-
tribution of clusters without accounting for which nodes are part of
a cluster). Second, the mobility model must have a notion of time
and location in order to assign the activity period and location to
the Hyperedges. This is also fulfilled by the majority of models,

17At the end, it may happen that there are not enough stubs of dif-
ferent nodes left. In that case, we simply decrease the cardinality
of the edge to fit the number of remaining stubs. This should only
have insignificant influence on the sample of edge cardinalities.
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Figure 8: Edge spread of bridging links.
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Figure 9: Synchronization of node locations (TVCM:SO).

exceptions being for instance pure contact models which do not
care where and/or when nodes meet, but merely that they meet.

6.2 TVCM:SO
In the following, we describe the application of the social overlay

to TVCM. As a basis, we use the scenario described in Section 2.
For the social overlay, we create a Hypergraph of 505 nodes ac-
cording to the parameters and configuration model described above
(geometric distributions of edge cardinality and node degree with
parameters p1 and p2). Having the Hypergraph, what remains is
to implement the three steps described in Sec. 6.1. We use TVCM
specific mechanisms to do so (i.e., the grid of the simulation sce-
nario and Markovian node behavior) in order to modify the simu-
lator and the original characteristics of TVCM as little as possible.

Step 1) Location Since in the scenario described in Sec. 2 the
simulation area is already split into a grid of 6× 6 areas, we reuse
these areas and assign one of them to each edge of the Hypergraph.
In order to ensure to create meetings outside home locations, com-
munities’ home locations are not eligible for assigning edges18.

Step 2) Time To assign the edges to social activity periods, we
split every 24 Hours of simulation time in non-overlapping periods
of 3′600 sec. (we empirically choose 1h as a typical duration of
social activities). To avoid two edges of a node being active at the
same time, we color edges such that no two edges of a node have
the same color. Each color is then assigned such a 1h period every
24h, during which all edges of the respective color are active.

Step 3) Synchronization To make the nodes of an edge meet
we replace the 2-state Markov Chain (described in Sec. 2) of the
nodes during edge social activity periods of their edges: Instead
of planning the next trip at its home location with probability p
(and roaming with probability 1 − p), the node plans a trip to the
location of the active edge. Once arrived there, it moves within the
edge location area according to normal TVCM rules (i.e., random

18Note that several edges can be assigned to the same location.
Since edges of different colors have different activity periods (see
point ii), chances that different edges overlap in time at the same
location are small.
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Figure 10: Pairwise statistics for TVCM:SO.

waypoint). After the social activity period, the next trip is again
planned according to the “regular” 2-state Markov Chain.

To validate the social overlay for TVCM, we run the TVCM:SO
model and analyze the resulting contact trace. We want to en-
sure that the described mechanisms create realistic social meetings
outside the communities’ home locations. Additionally, we verify
that the original typical characteristics of TVCM (e.g., inter-contact
time and contact duration distribution) do not change qualitatively.

As a first step, we measure the spread of the links between com-
munities, to see whether TVCM:SO creates the desired bridging
links. Fig. 8a (compare to TVCM in Fig. 5c) shows that indeed we
now observe links with small spread. The mean value of the spread
is with m = 0.31 comparable to the values we find in traces (see
Fig. 5c). This is a first evidence that we now obtain more realistic
bridges between communities.

In order to check whether the synchronization mechanism de-
scribed above indeed synchronizes the social meetings as desired,
we repeat the measurement of Sec. 5, using the trace obtained from
TVCM:SO. We compute the overlap of time spent in areas (on the
6× 6 grid of our scenario) which are not home locations to a com-
munity. For each of these locations, we determine the synchronicity
graph and determine the cliques. This gives us the clique sizes and
the number of cliques of which a node is part. Fig. 9 shows the re-
spective distributions. From the straight lines we conclude that they
follow geometric distributions and the Kolgomorov-Smirnov tests
does not reject this at a significance level of 0.05. The parameters
we get from a maximum likelihood estimator are p1 = 0.62 and
p2 = 0.28, thus, they match the configured values for the social
overlay very well. Hence, we conclude that the TVCM:SO indeed
creates realistic meeting patterns outside community locations.

The question remains how much we have changed the general
characteristics of the model by our modification. To check this,
we compare the pairwise inter-contact time and contact duration
distributions of the original TVCM to TVCM:SO. Fig. 10 shows
that the CCDFs of both features follow each very closely. Note
that comparing the pairwise statistics to the traces is out of scope
of this paper. We assume that the models to which we apply the
social overlay are designed to realistically reproduce such features
(for TVCM a detailed evaluation can be found in [5]).

Further, we verify that the social overlay does not distort the
community structure of the original TVCM. Detecting the com-
munities in the TVCM:SO trace, we find that nodes are assigned
to the same communities as before. However, we notice that the
modularity was reduced a bit, from Q = 0.73 to Q = 0.70. This
reduction is explicable, since the social overlay takes the nodes out
of their “daily routing” (which creates communities) and creates
bridges. However, a modularity of 0.7 is still high and comparable
to the modularity of the measured traces.

Thus, we conclude that TVCM:SO creates more realistic com-
munity interfaces than TVCM, while maintaining the original TVCM
characteristics.
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Figure 11: Pairwise statistics for HCMM:SO.

6.3 HCMM:SO
As a second proof of concept, we apply the social overlay to

HCMM, using HCMM specific mechanisms to create the synchro-
nized social meetings. Again, we base the our scenario on the one
described in Sec. 2, and create a Hypergraph of 100 nodes with the
parameters determined in Sec. 5. We use the following mechanisms
to integrate the social overlay into HCMM.

Step 1) Location In HCMM, the simulated area is divided into
home-cells, in our case a grid of 6×6 cells. We reuse this structure
by assigning Hyperedges to home-cells.

Step 2) Time As in TVCM, we divide every 24h of simulation
time into 1h periods and assign edges to them.

Step 3) Synchronization In HCMM, the nodes plan trips to cells
other than their home-cells based on node specific attraction values.
During normal operation, these attraction values are based on the
number of “friends” (in the social caveman graph) a node has in a
given cell. During the social activity period of an edge, we increase
the attraction of the respective cell for the edges’ nodes to 1 and set
the attraction for all other cells to 0. Consequently, the nodes will
plan their next trip to the respective cell and meet there. Once the
social activity period is over, the attractions are again set according
to normal HCMM rules.

Fig. 8b (compare to Fig. 5d) shows the edge spread of the strong
inter-community links of HCMM:SO. We observe that the social
overlay creates links with small spread as desired. The mean of the
spread is 0.35, similar to the one for TVCM:SO, and comparable
to the traces (e.g., ETH with 0.31). Again, we also compare the
inter-contact time and contact duration distributions of HCMM and
HCMM:SO, to verify that the social overlay does not interfere to
much with the original HCMM characteristics. Fig. 11 shows that
the contact duration distribution is maintained (the two curves are
not distinguishable because they overlap) and also the the inter-
contact time distributions are very close to each other. Similarly to
TVCM:SO, we also observe a reduction of modularity from 0.76 to
0.67 which is, however, not severe as the value is still in the range
of what we observe in the traces.

In conclusion, we have seen for two models, how the social over-
lay can be implemented as an extension, creating realistic inter-
community interfaces while largely maintaining the properties of
the original model. We believe that the social overlay can and
should be integrated also in other mobility models.

Finally, we want to mention that the shortcoming of the mod-
els under scrutiny may not be very surprising – after all they were
most likely not designed with inter-community interfaces in mind.
However, we argue that it is time to pay more attention to this is-
sue when running simulations or creating mobility models. In the
past, mobility models had to master the benchmark of creating re-
alistic inter-contact time and contact duration distributions, we be-
lieve that in the future, other statistics such as edge spread between
communities and cluster sizes for social meetings should not be ne-
glected. The proposed social overlay is a first step in this direction.



7. CONCLUSIONS
Comparing the contact graphs of various measured contact traces

and several mobility models, we have identified that mobility mod-
els do not correctly reflect the way communities are connected to
each other: While traces tend to manifest bridging links between
communities (i.e., narrow interfaces of only few strong edges con-
necting two communities), models tend to connect communities by
bridging nodes (i.e., broader interfaces where community members
are linked to many other nodes in the peer community).

To explain this difference, we have performed a detailed analy-
sis of contact data, focusing on context (e.g., home, work), location
and timing of contacts, discriminating between intra-community
and inter-community contacts. This analysis provides notable in-
sights into the nature of mobility and contacts: (i) Inter-community
contacts and intra-community contacts happen in different contexts.
(ii) Bridging links tend to happen outside the home location of
the respective communities, whereas bridging nodes tend to visit
the location of the peer community. (iii) Inter-community contacts
happening outside community locations are often not random meet-
ings but synchronized visits of two or more nodes. From experience
with mobility models, we know that such synchronized meetings of
pairs or small groups across community boundaries (but happening
outside the realm of the respective communities) are usually not
modeled, hence the different community interfaces.

To model such meetings of pairs or groups, we have proposed
a Hypergraph model, where edge degree and node degree distribu-
tions can be calibrated from a contact trace. Assuming that a given
mobility model correctly reflects communities (but fails to correctly
model the community interfaces) this Hypergraph can be used as
an extension which we call social overlay. With the examples of
TVCM:SO and HCMM:SO we have demonstrated the application
of the social overlay to two models and shown that it introduces
bridging links in the contact graphs of both models, while largely
maintaining other features of the original model.

In the future, we intend to automate the process of creating the
Social Overlay for a specific scenario (e.g., trace) that needs to be
emulated by a synthetic model. Further, we plan to investigate the
impact of different inter-community interfaces (bridging nodes or
bridging links) on the performance of dissemination processes.
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