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ABSTRACT

Most speech enhancement algorithms consist of a time-

varying filter which is applied to the signal in the frequency

domain. One of the motivations for filtering in the fre-

quency domain compared to convolution in the time domain

is to reduce the computational complexity. Filtering in the

frequency domain ,however, can introduce distortion if the

linear convolution condition is not fulfilled. Although there

are standard approaches to linear convolution in the fre-

quency domain, they tend to be computationally prohibitive

for small terminals. In this paper, we present a new and

more efficient approach. The proposed approach is derived

from the equivalence of zero-padding and interpolation in

time and frequency domains. A distinct advantage of the ap-

proach proposed in this paper relates to its scalability which

is exploited to manage computational complexity with only

moderate degradation in speech quality.

Index Terms— Linear convolution, circular convolution,

speech enhancement, speech distortion

1. INTRODUCTION

Speech quality in telecommunication terminals is often de-

graded by artifacts such as noise, echo or non-linearities [1].

It is therefore common to use speech processing algorithms

to improve speech quality. This is generally performed with a

time-varying filter which is applied in either the time domain

or the frequency domain [2, 3]. In this paper, we focus on

frequency domain filtering.

Filtering in the frequency domain is advantageous for its

simplicity as it consists in multiplying the discrete Fourier

transform (DFT) bin values by a gain vector. However bin-by-

bin multiplication is equivalent to circular convolution rather

than linear convolution [4, 5] and signals processed this way

suffer from time domain aliasing [5], which results in speech

quality degradation.

Attempts to reduce distortions coming from circular con-

volution commonly involve the use of overlapping frames,

impulse response truncation, windowing and/or zero-padding

[6]. For example with the overlap approach, the signal is pro-

cessed in frames, where each frame is composed of a block

of new samples to which are appended its preceding samples

and/or zeros. This approach approximates the linear convolu-

tion constraint and is successful in reducing distortion.

Existing approaches that achieve linear convolution in the

frequency domain have been investigated mainly for use in

frequency domain adaptive filters [4, 7] and are not suitable

for real time systems in mobile or other small terminals since

they are generally too computationally demanding.

A computationally efficient structure for linear convolu-

tion in the frequency domain is proposed by Marin-Hurtado

et al. in [6]. In this paper, we propose a new, alternative

approach that exploits the correspondence of zero-padding in

the time domain to interpolation in the frequency domain (and

vice-versa). The algorithm obtained is equivalent to that in

[6] but has the advantage that it can be scaled in order to re-

duce computational complexity without significant degrada-

tion in speech quality.

This paper is organized as follows. The next section re-

views classic circular and linear convolution in the frequency

domain. Section 3 reviews the algorithm proposed in [6] and

introduces our new algorithm for linear convolution. In Sec-

tion 3, we also show how low computational approaches can

be derived from our algorithm. Section 4 presents our expe-

rimental work and results. Our conclusions are presented in

Section 5.

2. BLOCK PROCESSING IN THE FREQUENCY

DOMAIN

In this section, we describe the basic principles of circular and

linear convolution in the frequency domain. In both cases,

the input and output signals are converted from the time do-

main to the frequency domain (and vice-versa) through a

fast Fourier transform (FFT) algorithm with an overlap add

(OLA) method as illustrated in Figure 1.
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Fig. 1. Block processing in the frequency domain

2.1. Circular convolution

Figure 1(a) illustrates circular convolution which is the classi-

cal method used for filtering signals in the frequency domain.

The filtered signal is obtained through a bin-by-bin multipli-

cation of the N frequency domain components yi(n
′) with

the gains Gi(n
′) where n′ is the frame index and i is the fre-

quency bin number and ranges from 0 to N − 1. As shown
in Figure 1(a), filtering an N -point signal with an N -tap fil-

ter produces an N -point signal instead of an (2N − 1)-point
signal as would normally result from convolution in the time

domain. This observation implies that the filtering of signals

in the frequency domain as shown in Figure 1(a) introduces

distortion in processed signals [5]. Distortions introduced by

circular convolution result from time domain aliasing.

2.2. Linear convolution

Figure 1(b) depicts linear convolution in the frequency do-

main. Here, the frequency domain signals yi(n
′) and the

gainsGi(n
′) are processed through a frequency resolution ex-

tension (FEXT) block before the filtering operation. As illus-

trated in Figure 2(a), the FEXT block operates in two steps:

• The N frequency bins input signals Gi(n
′) are con-

verted into the time domain with an IFFT of length N
(N -IFFT) to obtain gm(n′) where m is the tap index of

the impulse response and ranges from 0 to N − 1.

• The time domain signal gm(n′) is zero-padded with N
zeros to obtain a signal of length 2N and reconverted

into the frequency domain through a 2N -FFT to obtain

G̃k(n′) with k being the “new” frequency bin and ran-

ging from 0 to 2N − 1.

Returning Figure 1(b), the frequency resolution is now 2N
instead of N and the filtered signal has 2N samples.

The merit of linear convolution over circular convolution

is that it does not introduce distortion since it is equivalent to

filtering in the time domain. Linear convolution, as described
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Fig. 2. FEXT implementations

here, requires additional FFTs therefore its major disadvan-

tage is its increased computational load.

3. FREQUENCY RESOLUTION EXTENSION (FEXT)

In practice linear convolution, as shown in Figure 1(b), is

rarely used because of the additional computational load

which prohibits its use in most mobile terminals. In this

section, we focus on efficient implementations of the FEXT

block. Section 3.1 reviews an existing approach to FEXT

implementation [6] while in Section 3.2, we introduce our

new approach. For brevity the frame index n′ is omitted

throughout the remainder of this paper (i.e. G̃k(n′) becomes

G̃k).

3.1. Existing approach

This approach was introduced by Marin-Hurtado et al. in [6]

and is illustrated in Figure 2(b). Here, the extended frequency

bins G̃k are defined as follows:

G̃k =

N−1
∑

m=0

gm · exp
(

−2πj
mk

2N

)

, (1)

where the summation terms betweenm = N andm = 2N−1
are omitted since gm = 0 for this interval of m. By splitting

Equation 1 into two for even and odd values of k, we obtain:

G̃k=2k′ =

N−1
∑

m=0

gm · exp
(

−2πj
mk′

N

)

= Gk/2 (2)

G̃k=2k′+1 =

N−1
∑

m=0

gm · exp
(

−2πj
m(k′ + 1/2)

N

)

, (3)

where k′ is an integer ranging from 0 to N − 1. Equation 2

shows that for even values of k, G̃k is equal to Gk/2. For odd

values of k (Equation 3), G̃k is a discrete Fourier transform

except for the “odd” exponential term. It is not specified in [6]



how Equation 3 can be implemented in a real time system. For

this we suggest rewriting Equation 3 as:

G̃2k′+1 =
N−1
∑

m=0

ḡm · exp
(

−2πj
mk

N

)

(4)

where ḡm = gm · exp
(

−2πj
m

2N

)

.

From Equation 4, it is apparent that G̃2k′+1 can be computed

through an FFT algorithm as shown in Figure 2(b).

3.2. Proposed approach

Our approach to FEXT computation is based on the fact that

zero-padding in the time domain is equivalent to interpolation

in the frequency domain and vice-versa. In the following we

determine the direct relation between G̃k and Gi. For this, we

use the FFT and IFFT definitions.

As the impulse response gm is the IFFT of Gi Equation 1

can be rewritten as;

G̃k =

N−1
∑

m=0

[

1

N

N−1
∑

i=0

Gi exp

(

2πj
mi

N

)

]

exp

(

−2πj
mk

2N

)

=
1

N

N−1
∑

i=0

Gi

N−1
∑

m=0

(

exp

(

2π

2N
j (2i − k)

))m

. (5)

The sum of exponentials in Equation 5 is equal to:

N−1
∑

m=0

(

exp

(

2π

2N
j (2i − k)

))m

=















N if k is even and k = 2i

0 if k is even and k 6= 2i
1−exp( 2π

2N
jN(2i−k))

1−exp( 2π

2N
j(2i−k))

= 2

1−exp( 2π

2N
j(2i−k))

if k is odd.

(6)

Inserting Equation 6 into Equation 5 leads to:

G̃k=2k′ = Gk′ (7)

G̃k=2k′+1 =

N−1
∑

i=0

1

N

2

1 − exp
(

2π
2N j (2i − k)

)Gi. (8)

We denote the weighting factor of Gi in Equation 8 by wk,i.

One can easily verify that wk,i is such that wk+2,i = wk,⌊i−1⌋

where ⌊i − 1⌋ is the remainder of the division of i − 1 by N .

This property is of interest if we write Equation 8 in matrix

form:
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Using the properties of w(k, i) mentioned above, Equation 9

then becomes:
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Equation 10 shows that the matrix W formed from the weigh-

ting factors wk,i, is circulant. A well known property of cir-

culant matrices is that they are diagonalizable by Fourier ma-

trices:

W = FDF−1, (11)

where D is a diagonal matrix such that D = diag (Fw),
w is the vector formed by the elements of the first co-

lumn of W and F is a Fourier matrix with elements fik =
e−2πjik/N/

√
N . Equation 10 can then be rewritten as:

G̃(k=2k′+1) = WG = FDF−1G. (12)

This approach can also be computed through the scheme il-

lustrated in Figure 2(b). Experiments verified that the diago-

nal matrix D is indeed composed of the same terms as the

exponent term illustrated in Figure 2(b). Our approach thus

corroborates the work in [6] but has the distinct advantage of

scalability for managing computational complexity. Both the

existing approach [6] and the new approach proposed here are

equivalent and have reduced computational complexity com-

pared to classic linear convolution. The FEXT implementa-

tion then requires 2N -points FFTs and N complex multipli-

cations.

3.3. Frequency resolution extension with reduced compu-

tational complexity

The approach presented in the previous section can be ex-

ploited to reduce the FEXT computational complexity even

further. In this section we consider the case where G̃k is com-

puted according to Equation 8 through multiplication of Gi

by the weighting function w(k, i).
The imaginary part of the weighting function w(k, i) for

k = 127 is depicted in Figure 3. The real part of w(k, i) is
not shown because it is constant for all i. The plot in Figure 3
shows that w(k, i) does not equally weight the spectral gains

Gi in the computation of G̃k. More specifically, the closer the
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the more Gi influences the value of G̃k (and vice-versa). To

reduce the computational complexity related to the computa-

tion of G̃k, one can use a truncated approximation of w(k, i)
which we denote w̃(k, i). The weighting function w̃(k, i) is
truncated to include only M points (with M < N ) centered

on the peak of w(k, i). Therefore, the computation of G̃k, as

in Equation 8 requires less operations since w̃(k, i) is equal

to zero for some value of i. For all the spectral gains G̃k, this

computation requires M ·N multiplications and (M − 1) ·N
summations.

Compared to the optimum computation of Equation 12,

the use of w̃(k, i) is advantageous when M ≤ 2 · log2(N)
if we assume that an N -point FFT has a computational com-

plexity ofNlog2(N). The scalability comes from the fact that

one can choose the value ofM according to the computational

load of the system.

4. EXPERIMENTS

The truncation of the weighting function w(k, i) to reduce the
computational complexity of the system may introduce some

distortion since the resulting approximation w̃(k, i) contains
less information than the original function. The comparison

with the approach in [6] is implicit as we showed in Sec-

tion 3.2 that this system corresponds to the use of the com-

plete weighting function w(k, i). In order to evaluate the im-

pact of such approximation, we performed assessments on fil-

ters and then on speech signals before more throughout expe-

rimentations in a noise reduction context. These assessments

are reported in Sections 4.1, 4.2 and 4.3 respectively.
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Fig. 4. Impulse response for FEXT different weighting func-

tion configurations

4.1. Impact of FEXT optimization on filters

Here, we evaluate the impact of the approximation by com-

paring the impulse response and the frequency response of

a filter obtained with the full weighting function to that ob-

tained with a truncated weighting function. In the test re-

ported here, spectral gains Gi are all set to 0dB and N is

set to 256. These spectral gains are processed by the FEXT

to obtain new spectral gains. Figure 4(a) shows the impulse

responses obtained when FEXT uses the full weighting func-

tion w(k, i) or two truncated weighting functions w̃(k, i) (of
length M = 16 and M = 4 respectively). We observe

that impulse responses obtained with the truncated weigh-

ting functions do not exactly match the reference impulse res-

ponse which, in this case, is composed of a solitary peak of

unit amplitude. In the case of the approximated impulse re-

sponses, the peak amplitude is slightly lower than 1 (0.9802

for M = 16 and 0.9244 for M = 4 respectively). Moreover,
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as we can see on Figures 4(a) and 4(b), both approximations

have a second peak which is small compared to the main peak

but whose amplitude increases with decreasing M (0.02 for

M = 16 and 0.039 for M = 4 respectively). When com-

paring the spectrum of the approximated impulse responses

with that of the spectral gains, we observe that they contain

a small ripple. Instead of all the spectral gains being equal

to 0dB (as for the input spectral gains Gi), the spectral gains

of the odd frequency bins are constant (i.e. -0.1751dB for

M = 16 and -0.7716dB for M = 4) and the spectral gains of
the even frequency bins are of course equal to 0dB as they do

not require any computation. The effects observed on the fil-

ter can be judged as annoying or negligible depending on the

application. With mobile communications for example, such

artifacts may be irrelevant whereas in high quality speech en-

hancement systems, they may be very annoying.

4.2. Impact of FEXT optimization on speech signals

Here we report the impact of the optimized FEXT on speech

signals. We undertook a similar experiment to that reported in

Section 4.1 but this time using a speech signal as input to the

FEXT module. An input speech signal is transformed into the

frequency domain through an N -point FFT with overlapping

frames of 256 samples (128 new samples and 128 samples

from the previous frame) and with Hanning windowing. The

number of frequency bins N is set to 256. The obtained spec-

trum is processed by the FEXT and transformed back into the

time domain through a 2N -point FFT. Except for the FEXT,

no additional processing is performed in the frequency do-

main. Figure 5 shows the signal-to-noise-ratio (SNR) bet-

ween the input speech and the reconstruction error observed

between the input signal and the output of the FEXT module.

The SNR was forced to zero during speech pauses so that it

reflects the impact of the FEXT on the speech signal only. We

observed that, without any approximation in the FEXT, the

SNR is approximately 50dB during speech periods. The use

of a truncated weighting function results in a modest degra-

dation in SNR (about 20dB with M = 4). Moreover infor-

mal listening tests indicate that these degradations in SNR are

not audible. This shows that truncating the weighting func-

tion w(k, i) does not adversely affect speech quality in this

instance.

4.3. Results on noise reduction

We now evaluate the impact of the use of w̃(k, i) on speech

signals within a noise reduction algorithm. The noise reduc-

tion spectral gains are updated through a Wiener rule [1].

The algorithm inputs are the noisy speech signal y(n), the
noise signal b(n) and the clean speech signal s(n) thus no

estimation is required. This is done to avoid distortions from

estimation errors so that observed distortions are directly at-

tributed to the filtering approach under investigation.

Speech signals have a sampling frequency of 8 kHz and

we performed our tests on a database of 48 signals. This

database includes signals with signal to noise ratios ranging

from 0 to 15dB. To avoid speech distortions in regions of

locally low signal to noise ratio the noise reduction spectral

gains are limited using a fixed spectral floor.

In our simulations, the input signal is processed in frames

of 256 samples with an overlap between successive frames of

50% (128 new samples and 128 samples from the previous

frame). The number of frequency bins N is set to 256. The

reduced complexity system is assessed with two configura-

tions: M is set to 16 then to 4 to assess the trade-off between

reduced computational complexity and degradation in speech

quality.

Distortions are assessed through the cepstral distance

(CD) between the clean speech s(n) and the processed speech
signal ŝ(n):

CD(n) =
√

∑

K [Cs(n) − Cŝ(n)]2 (13)

Cs(n) = IDFT {ln|DFT(s(K))|}

where K spans 256 samples. We also conducted some in-

formal listening tests to assess subjective speech quality.

Figure 6 shows an example CD profile for the different

filtering approaches tested. Here there is only one curve for

linear convolution because the systems illustrated in Figu-

res 2(a) and 2(b) give exactly the same results. Of particular

note are the profile for the low computational system with

M = 16 which is very similar to that of the linear convo-

lution. At the contrary, the low computational system with

M = 4 which has high CD values compared to that of the

linear convolution. These observations show that the low

computational system do not necessarily increase distortions.

Informal listening tests revealed some differences bet-
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ween processed speech signals. Speech signals processed by

the low computational complexity system with M = 4 have

some distortions during speech periods compared to signals

processed by linear convolution. These distortions can be

described as crackling noise but still there were not perceived

as annoying. For systems with M = 16, no distortions

were perceived in comparison to linear convolution systems.

This shows that low computational complexity systems can

efficiently be used instead of linear convolution.

5. CONCLUSION

Linear convolution in the frequency domain necessitates the

use of frequency resolution extension (FEXT) through zero-

padding. This paper introduces the first computationally

efficient and scalable approach to FEXT.

We introduce an implementation of FEXT which per-

forms linear convolution in the frequency domain. The most

appealing feature of the proposed approach is its scalability

through which one can improve computational efficiency with

only modest increases in speech distortion. The computatio-

nally efficient implementations do not correspond exactly to

the linear convolution but our tests showed that they still yield

processed speech of high quality. Tests performed with noise

reduction showed that this approach is a suitable computatio-

nally efficient alternative to full linear convolution.
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