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Abstract— We consider the role of independent single antenna
relays in allowing for interference cancellation and for multi-
plexing of uplink and downlink communications, in the presence
of multiple interfering users. For a specific practical scenario of
interest, we construct interference neutralization schemes that are
simple, distributed and which encode over both space and time, to
achieve performance improvements over basic TDMA schemes.
These improvements are quantified in terms of the achievable
degrees of freedom (DOF), where asymptotic analysis reveals
that in specific cases, these simple techniques achieve optimal
DOF performance.

I. INTRODUCTION

In the setting of interference limited multiuser communica-
tions, different interference management methods have been
developed that range from the hard to implement but powerful
interference alignment techniques [1], to simpler precoding
and network coding methods [2]. The latter include different
interference neutralization (IN) methods [3], [4], which seek to
properly combine signals arriving from various paths in such a
way that the interfering signals are canceled while the desired
signals are preserved.

The task of these methods is made harder when the interfer-
ence is due to other users, i.e., when it is not self-interference,
when some of the precoding nodes have single antennas thus
forcing precoding to be performed in a distributed manner, and
when there is a half-duplex constraint especially in two-way
communications where a single node might both transmit and
receive information (cf. [5]–[8]). We here explore the above
and provide linear distributed solutions for a specific half-
duplex constrained, two-way, interference limited multiuser
scenario of practical importance. In this setting, we propose
partially distributed IN schemes that properly combine signals
across both time and space, and then proceed to analyze
their performance by exploring their signal attenuation and
noise accentuation effects, to show that in some settings, the
proposed schemes are DOF optimal, whereas in other settings,
the schemes provide modest improvements.

A. Notation

Throughout this paper, (•)−1, (•)T , (•)†, || • ||F and tr(•)
respectively denote the inverse, transpose, conjugate transpose,
Frobenius norm and trace of matrices. (•)∗ denotes the com-
plex conjugate, ||•|| denotes Euclidean norm, [•]j denotes j-th
row of the matrix or column vector in the argument, and [•]i,j
denotes the matrix element in the ith row and jth column.

Fig. 1. K-user Uplink-Downlink System Model

diag(•) denotes a diagonal matrix. λmax(•) and λmin(•)
respectively denote the maximum and minimum eigenvalues of
the matrix. | • | denotes either the magnitude of a scalar or the
cardinality of a set. < and <+ respectively denote the sets of
real and positive real numbers. We use .= to denote exponential

equality, i.e., we write f(ρ) .= ρd to denote lim
ρ→∞

log f(ρ)
log ρ

= d

and
.≤,

.≥ are similarly defined.

II. SIGNAL AND CHANNEL MODEL

We consider a setting where a node B with K antennas
wants to receive from a set U of K single-antenna users, and
transmit to a set D of K single antenna users, with the help of
a set R of L single-antenna relays, in the presence of the half-
duplex constraint, and in the presence of unlimited channel
state information at all transmitters and receivers (CSITR).
In the context of cellular systems, B may play the role of a
base station, and U and D the role of the sets of uplink and
downlink users respectively. Let y(t)

B ,y(t)
R ,y(t)

D , z(t)
B , z(t)

R , z(t)
D

respectively denote the received signal and noise vectors at B,
and at all in R and in D. In the following we will ignore the
time index if no ambiguity is caused. In the scale of interest
we consider a uniform power constraint where the total power
transmitted by a node does not exceed ρ which also, in the
scale of interest, takes the role of the signal-to-noise ratio
(SNR). Furthermore we let hi,j denote the channel fading
coefficient between the ith user in U and the receiver of the
jth user in D, let hU,j denote the vector of fading coefficients



between the entire set U and the receiver of the jth user in D,
and let HU,D,HU,R,HR,D,HR,B ,HB,R denote the U -to-D,
U -to-R, R-to-D, R-to-B and B-to-R collective channel fading
matrices. Fading and additive noise coefficients are considered
to be i.i.d. complex Gaussian CN (0, 1), and the fading is
assumed to remain constant during the coherence period. Here
HB,D = HU,B = 0.

We are interested in analyzing the degrees of freedom, so
a rate of R bits per channel use (bpcu), corresponds to d =
limρ→∞ R

log ρ degrees of freedom.

A. Summary

Lemmas 1 and 2 provide basic results that are used in the
DOF analysis, and Lemma 3 describes the DOF outer bound.
Section III-A describes the IN schemes for the case of |U | =
|D| = K = L, and Section III-B describes the IN schemes and
their performance for the case of L > |U | = |D| = K. The
same sections provide part of the proof of the performance
of these schemes, which is completed in Section III-C which
analyzes the effects of precoding on the signal and noise
power. The Appendix holds some of the proofs.

III. PROPOSED IN SCHEMES AND DOF ANALYSIS

Before proceeding to establish the DOF limits for the system
shown in Figure 1, we provide the following necessary lemmas
whose proofs are found in the Appendix.

Lemma 1: Let Φ =
∏k

i=1 Hτi
i , where τi ∈ {−1, 1} and

where Hi are N × N random matrices with i.i.d. CN (0, 1)
entries. Then

P (||Φ−1||2F ≥ ρε)
·≤ ρ−ε/d,

for d = |{j|τj = 1}|, for any ε > 0.
Lemma 2: Let E be a rank-M , M ×N matrix with entries

that are either zero or (positive exponent) polynomial functions
of independent CN (0, 1) random variables. For any unit-norm
vector v in the (right) null space of E, and any ε > 0, there
exists a finite constant d′ > 0 such that

P (|vi|2 ≤ ρ−ε)
·≤ ρ−ε/d′ ,

for any element vi of v.
We henceforth adopt a partial rate uniformity assumption

where all users in set U have the same rate RU , and all users
in D have rate RD, but where RU and RD are not necessarily
equal. We also focus on the case where L ≥ K, and where
all the relays transmit at the same time. When ergodicity is
required, transmission is typically considered to take place
over M blocks equaling M coherence times, each spanning n
channel uses.

Under the above assumptions, we have the following
straightforward upper bound on the performance.

Lemma 3: In the setting of interest, each user in U and in
D can achieve at most 1

2 DOF, i.e., dU ≤ 1/2, dD ≤ 1/2.
The proof is relegated to the Appendix. We note that

the above holds irrespective of the number of phases, the
duration of each phase, and irrespective of the power allocation
methods.

We proceed to describe the IN schemes for different set-
tings. What is common in all settings, is that each block is
divided into two phases of duration ∆1 and 1 − ∆1, where
in the first phase the relays listen while in the second phase
they transmit. We furthermore here consider that each phase
has duration equal to one channel use.

We begin with the case of having K relays, and propose
four schemes, with the first two schemes X1,X2 being optimal
for the case K = 1, 2 respectively, and where the other two
schemes X3,X4 are for the K ≥ 3 case, and which are not
proven to be optimal. A summary of the schemes’ performance
and basic characteristics is provided in Table I.

We will afterwards address the case where L > K, and
design schemes X ′

3,X
′
4 that utilize the increase in the number

of relays to achieve higher, and in some cases optimal DOF
performance. A summary of the schemes’ performance is
provided in Table II.

A. IN schemes for the case |U | = |D| = K = L

1) Scheme X1 for K = 1: In the first phase, U1 transmits
a1 intended for B, while B transmits b1 intended for D1. The
relay and D1 then respectively receive

y
(1)
R1 = h

(1)
B,R1b1 + h

(1)
U1,R1a1 + z

(1)
R1 , (1)

y
(1)
D1 = h

(1)
U1,D1a1 + z

(1)
D1. (2)

In the second phase R1 scales y
(1)
R1 and forwards vR1y

(1)
R1 ,

where vR1 will be designed later on. Hence D1 and B
respectively receive

y
(2)
D1=h

(2)
R1,D1vR1y

(1)
R1 + z

(2)
D1

=h
(2)
R1,D1vR1h

(1)
U1,R1a1 + h

(2)
R1,D1vR1h

(1)
B,R1b1

+h
(2)
R1,D1vR1z

(1)
R1 + z

(2)
D1, (3)

y
(2)
B =h

(2)
R1,BvR1y

(1)
R1 + z

(2)
B

=h
(2)
R1,BvR1h

(1)
U1,R1a1 + h

(2)
R1,BvR1h

(1)
B,R1b1

+h
(2)
R1,BvR1z

(1)
R1 + z

(2)
B . (4)

Towards neutralizing the received interference, D1 adds up
the signal y

(1)
D1 stored during the first phase and the received

signal y
(2)
D1, to get a new observation

ỹD1 = y
(1)
D1 + y

(2)
D1

= (h(1)
U1,D1 + h

(2)
R1,D1vR1h

(1)
U1,R1)a1 + h

(2)
R1,D1vR1h

(1)
B,R1b1

+h
(2)
R1,D1vR1z

(1)
R1 + z

(2)
D1 + z

(1)
D1. (5)

Setting

vR1 = −h
(1)
U1,D1/(h(2)

R1,D1h
(1)
U1,R1), (6)

we get an interference-free signal

ỹD1=h
(2)
R1,D1vR1h

(1)
B,R1b1+h

(2)
R1,D1vR1z

(1)
R1 +z

(2)
D1 + z

(1)
D1. (7)

Consequently D1 can decode one independent symbol
in two channel uses, albeit with an attenuated signal
h

(2)
R1,D1vR1h

(1)
B,R1b1 and accentuated noise h

(2)
R1,D1vR1z

(1)
R1 +



z
(2)
D1+z

(1)
D1. Section III-C will show that the noise accentuation

and signal attenuation from precoding do not affect the DOF
performance, and we can thus conclude that the scheme
achieves the optimal dD = 1/2. Similarly for the uplink,
where the interference is self-interference (cf. (4)), we can also
conclude that the scheme achieves the optimal dU = 1/2.

We now proceed to describe the schemes when K ≥ 2.
We will henceforth denote as bi the information symbol at
B intended for Di, and we will denote as b the vector of
all such symbols. B will then be transmitting VBb where
VB is the precoder at B which will be designed for each
of the cases later on. Symbols aj will carry the information
from Uj intended for B, and a will denote the vector of all
such symbols. Furthermore {vUj}, {vR`}, {vDi} will denote
the sets of distributed precoding/weighting coefficients, respec-
tively used at the nodes in U , the relays, and the nodes in D,
and which will be designed for the different settings later on.
The dimensionality of the corresponding vectors and matrices
in the different settings, will be clarified when necessary.

2) Scheme X2 for K = 2: In the first phase, each Uj

transmits aj , j = 1, 2 and B transmits VBb, hence the relays
and each Di respectively receive

y(1)
R = H(1)

B,RVBb + H(1)
U,Ra + z(1)

R , (8)

y
(1)
Di =

2∑

j=1

h
(1)
Uj,Diaj + z

(1)
Di , i ∈ {1, 2}. (9)

The second phase takes place during a different fading
realization. During this second phase, all in U remain in
the transmit mode, and specifically each Uj transmits vUjaj ,
whereas each relay R` transmits vR`y

(1)
R` , j, ` ∈ {1, 2}. For

VR = diag(vR1, vR2), then we design

VB = (H(2)
R,DVRH(1)

B,R)−1diag(β1, β2),

where β1, β2 are scalars that ensure the power constraint at
B. Consequently Di and B respectively receive

y
(2)
Di =

2∑

j=1

(h(2)
Uj,DivUj +

2∑

`=1

h
(2)
R`,DivR`h

(1)
Uj,R`)aj + βibi

+(
2∑

`=1

h
(2)
R`,DivR`z

(1)
R` ) + z

(2)
Di , i ∈ {1, 2}, (10)

y(2)
B =H(2)

R,BVRH(1)
U,Ra + H(2)

R,BVRH(1)
B,RVBb

+H(2)
R,BVRz(1)

R + z(2)
B . (11)

Towards neutralizing the interference from U1 and U2, each
Di adds up a specifically scaled version of y

(1)
Di , to the received

signal y
(2)
Di , to get

ỹDi = vDiy
(1)
Di + y

(2)
Di

=
2∑

j=1

(vDih
(1)
Uj,Di + h

(2)
Uj,DivUj +

2∑

`=1

h
(2)
R`,DivR`h

(1)
Uj,R`)aj

+βibi + (
2∑

`=1

h
(2)
R`,DivR`z

(1)
R` ) + z

(2)
Di + vDiz

(1)
Di . (12)

Fig. 2. DOF regions for K = 1, 2.

We now seek to design a unit-norm distributed precoding
vector v2 = [vR1 vR2 vU1 vU2 vD1 vD2]T , that will
remove the uplink interference at D. Looking at (12), v2 is
designed such that for any j, i ∈ {1, 2} then

vDih
(1)
Uj,Di + h

(2)
Uj,DivUj +

2∑

`=1

h
(2)
R`,DivR`h

(1)
Uj,R` = 0.

Specifically, considering the 4× 6 matrix G2 having the mth-
row nth-column element gm,n equal to

g2(i−1)+j,`
∆= h

(2)
R`,Dih

(1)
Uj,R`,

g2(i−1)+j,2+j
∆= h

(2)
Uj,Di,

g2(i−1)+j,4+i
∆= h

(1)
Uj,Di, ∀i, j, ` ∈ {1, 2}, (13)

else gm,n
∆= 0, we see that v2 must satisfy

G2v2 =




g1,1 g1,2 g1,3 0 g1,5 0
g2,1 g2,2 0 g2,4 g2,5 0
g3,1 g3,2 g3,3 0 0 g3,6

g4,1 g4,2 0 g4,4 0 g4,6


v2 = 0, (14)

and consequently the unit norm v2 is designed simply by
picking an arbitrary unit-norm vector from the non-empty null-
space of G2. We here note from (13) that as the nonzero
elements of G2 are independent polynomials in i.i.d. complex
Gaussian random variables, the rank of G2 is almost surely 4,
which explains the need for encoding over the second fading
realization (and the reason that uplink stays in transmit mode
during the second phase); i.e., so that G2 has a non-empty
null-space, inside of which we arbitrarily draw the unit norm
v2.

Consequently in two channel uses each user in D can
decode one independent symbol without interference. In con-
junction with the signal attenuation and noise accentuation
analysis in Section III-C which again proves that the signal and
noise effects of the proposed precoding can be ignored in terms
of DOF, we can conclude that the scheme achieves the optimal
dD = 1/2. Similarly for the uplink where all interference is
self-interference (cf. (11)), we can again conclude that the
scheme achieves the optimal dU = 1/2.

3) Scheme X3 for K ≥ 3 : The protocol builds on X2

and asks the users in D to split in pairs1 and, two at a

1Note that the same result holds when K is odd.



time, take turns in receiving information. Thus, without loss
of generality, we reformulate the problem and rewrite D =
{D1, D2}, in which case the downlink information symbols
are b = [b1 b2]T , and the precoded downlink transmitted
vector at B during the first phase is VBb, for some K × 2
precoder VB to be designed. During the same first phase, Uj

transmits aj j ∈ {1, · · · ,K}. For a = [a1 · · · aK ]T , the relays
and the different Di then respectively receive

y(1)
R = H(1)

B,RVBb + H(1)
U,Ra + z(1)

R , (15)

y
(1)
Di =

K∑

j=1

h
(1)
Uj,Diaj + z

(1)
Di , i ∈ {1, 2}. (16)

The second phase takes place during a different fading re-
alization, during which, each Uj transmits vUjaj and the
`th relay transmits vR`y

(1)
R` , j, ` ∈ {1, · · · ,K}. For VR =

diag(vR1, · · · , vRK), we design the precoder at B to be2

VB = (H(2)
R,DVRH(1)

B,R)−1diag(β1, β2),

where H(2)
R,D is a 2×K channel coefficient matrix between R

and {D1, D2}, and where scalars β1 and β2 ensure that the
power constraint at B is satisfied. Consequently each Di and
B respectively receive

y
(2)
Di =

K∑

j=1

(h(2)
Uj,DivUj +

K∑

`=1

h
(2)
R`,DivR`h

(1)
Uj,R`)aj + βibi

+(
K∑

`=1

h
(2)
R`,DivR`z

(1)
R` ) + z

(2)
Di , i ∈ {1, 2}, (17)

y(2)
B =H(2)

R,BVRH(1)
U,Ra + H(2)

R,BVRH(1)
B,RVBb

+H(2)
R,BVRz(1)

R + z(2)
B . (18)

Using distributed weighting coefficients vDi to be derived
later on, each downlink user Di then adds up the properly
weighted received signals vDiy

(1)
Di stored during the first phase

and the received signal y
(2)
Di of the second phase, to get

ỹDi = vDiy
(1)
Di + y

(2)
Di

=
K∑

j=1

(vDih
(1)
Uj,Di + h

(2)
Uj,DivUj +

K∑

`=1

h
(2)
R`,DivR`h

(1)
Uj,R`)aj

+βibi + (
K∑

`=1

h
(2)
R`,DivR`z

(1)
R` ) + z

(2)
Di + vDiz

(1)
Di . (19)

Towards deriving the above mentioned weighting coefficients,
we construct

v3 = [vR1 · · · vRK vU1 · · · vUK vD1 vD2]T ,

by picking an arbitrary unit norm vector from the non-empty
null space of the 2K × (2K + 2) matrix G3 with elements

2At this point the problem of non-causality becomes evident, which can be
handled either by channel prediction, or as we will show in the next section,
by adding extra relays.

gm,n

gK(i−1)+j,`
∆= h

(2)
R`,Dih

(1)
Uj,R`,

gK(i−1)+j,K+j
∆= h

(2)
Uj,Di,

gK(i−1)+j,2K+i
∆= h

(1)
Uj,Di, (20)

∀j, ` ∈ {1, · · · ,K},∀i ∈ {1, 2}, else gm,n
∆= 0. The same

arguments as in the case of X2 guarantee that all the uplink
interference is removed at D, and also reveal the role of
encoding over two different fading realization, i.e., so that
the null-space of G3 is not empty. Hence both D1 and D2
can decode one independent symbol without interference in
two channel uses. Signal and noise analysis in Section III-
C, and the fact that there are K downlink users, allows us
to conclude that each downlink user can achieve dD = 1/K
DOF. Furthermore, for the uplink, the analysis in Section III-
C and the fact that interference is self-interference (cf. (18))
allows us to conclude that each uplink user can achieve the
optimal dU = 1/2 DOF.

4) Scheme X4 for K ≥ 3: Here the users in U take turns,
two at a time, in transmitting information, and thus without
loss of generality we reformulate the problem and rewrite U =
{U1, U2}. In the first phase, the jth user in U transmits aj

intended for B, while B transmits VBb for b = [b1 · · · bK ]T .
For a = [a1 a2]T , the relay nodes and the Di respectively
receive

y(1)
R = H(1)

B,RVBb + H(1)
U,Ra + z(1)

R , (21)

y
(1)
Di =

K∑

j=1

h
(1)
Uj,Diaj + z

(1)
Di , i ∈ {1, · · · ,K}, (22)

where H(1)
U,R is of dimension K × 2.

The second phase takes place during a different fading
realization. During the second phase Uj transmits vUjaj ,
and the `th relay transmits vR`y

(1)
R` , j, ` ∈ {1, · · · ,K}. For

VR = diag(vR1, · · · , vRK), then

VB = (H(2)
R,DVRH(1)

B,R)−1diag(β1, · · · , βK),

and consequently each Di and B respectively receive

y
(2)
Di =

2∑

j=1

(h(2)
Uj,DivUj +

K∑

`=1

h
(2)
R`,DivR`h

(1)
Uj,R`)aj + βibi

+(
K∑

`=1

h
(2)
R`,DivR`z

(1)
R` ) + z

(2)
Di , i ∈ {1, · · · ,K},(23)

y(2)
B =H(2)

R,BVRH(1)
U,Ra + H(2)

R,BVRH(1)
B,RVBb

+H(2)
R,BVRz(1)

R + z(2)
B . (24)

Towards neutralizing the interference, each Di linearly com-
bines the stored received signals of the first and second phase,



to get

ỹDi = vDiy
(1)
Di + y

(2)
Di

=
2∑

j=1

(vDih
(1)
Uj,Di + h

(2)
Uj,DivUj +

K∑

`=1

h
(2)
R`,DivR`h

(1)
Uj,R`)aj

+βibi + (
K∑

`=1

h
(2)
R`,DivR`z

(1)
R` ) + z

(2)
Di + vDiz

(1)
Di . (25)

Similar to before, we construct the distributed precoding vector
v4 = [vR1 · · · vRK vU1 vU2 vD1 · · · vDK ]T , by picking
an arbitrary unit norm vector from the non-empty null space
of the 2K × (2K + 2) rank-2K matrix G4 with elements
gm,n: g2(i−1)+j,`

∆= h
(2)
R`,Dih

(1)
Uj,R`, g2(i−1)+j,K+j

∆= h
(2)
Uj,Di,

g2(i−1)+j,K+2+i
∆= h

(1)
Uj,Di, ∀i, ` ∈ {1, · · · , K}, ∀j ∈ {1, 2},

else gm,n
∆= 0 Similar arguments as before guarantee that

all the uplink interference is removed at D, and allow us to
conclude that the users in D each decode, in two channel
uses, one independent symbol without interference, which
in conjunction with the signal and noise power analysis in
Section III-C, tells us that X4 allows for each downlink user
to achieve the optimal dD = 1/2 DOF, while the uplink users
can achieve dU = 1/K DOF.

TABLE I
SCHEMES FOR THE CASE OF |U | = |D| = K = L. B TRANSMITS DURING

THE FIRST PHASE WHILE THE RELAYS TRANSMIT DURING THE SECOND

PHASE. THE SECOND COLUMN DESCRIBES HOW MANY FADING

REALIZATIONS ENCODING TAKES PLACE OVER, AND THE THIRD COLUMN

DESCRIBES THE PHASES OVER WHICH THE UPLINK TRANSMITS.

fading U tx K achievable DOF

X1 1 1 K = 1
(
dU=

1

2
, dD=

1

2︸ ︷︷ ︸
optimal

)

X2 2 1 & 2 K = 2
(
dU=

1

2
, dD=

1

2︸ ︷︷ ︸
optimal

)

X3 2 1 & 2 K ≥ 3
(
dU=

1

2︸ ︷︷ ︸
optimal

, dD= 1
K

)

X4 2 1 & 2 K ≥ 3
(
dU= 1

K
, dD=

1

2︸ ︷︷ ︸
optimal

)

TDMA 1 − ∀K (
dU=1

4
, dD=1

4

)

B. IN schemes for the case L > |U | = |D| = K

In what follows we consider the case L > |U | = |D| =
K. Naturally for K = 1, 2, the previously described schemes
will achieve, as before, the optimal performance (1/2, 1/2).
It is worth noting that, as it turns out, the existence of extra
relays allows for X2 to achieve the optimal performance in
just one fading realization, rather than two as it was before
the case. This takes care of all the causality issues. In what
follows we provide two new variations X ′

3,X
′
4, and analyze

their performance for K ≥ 2. It is worth noting that as the
number of relays increases, the two schemes will achieve the
DOF outer bound.

1) Scheme X ′
3 for K ≥ 2 and (J +1)K−J > L > J(K−

1), ∀J ∈ {2, · · · ,K} : The protocol asks the users in D to
take turns, J at a time, in receiving information. Thus, without
loss of generality, we reformulate the problem and rewrite
D = {D1, · · · , DJ}, in which case the downlink information
symbols are b = [b1 · · · bJ ]T , and B transmits VBb where
VB is of dimension K×J . Furthermore each Uj transmits aj

j ∈ {1, · · · ,K}, and consequently the relays and the different
Di respectively receive

y(1)
R = H(1)

B,RVBb + H(1)
U,Ra + z(1)

R , (26)

y
(1)
Di =

K∑

j=1

h
(1)
Uj,Diaj + z

(1)
Di , i ∈ {1, · · · , J}. (27)

During the second phase the `th relay transmits vR`y
(1)
R` ,

` ∈ {1, · · · , L}, while this time around all the users in
U are silent. For VR = diag(vR1, · · · , vRL), then VB =
(H(2)

R,DVRH(1)
B,R)−1diag(β1, · · · , βJ), where H(2)

R,D is a J×L
channel matrix between R and {D1, · · · , DJ}. Di and B then
respectively receive

y
(2)
Di =

K∑

j=1

(
L∑

`=1

h
(2)
R`,DivR`h

(1)
Uj,R`)aj + βibi

+(
L∑

`=1

h
(2)
R`,DivR`z

(1)
R` ) + z

(2)
Di , i ∈ {1, · · · , J},(28)

y(2)
B =H(2)

R,BVRH(1)
U,Ra + H(2)

R,BVRH(1)
B,RVBb

+H(2)
R,BVRz(1)

R + z(2)
B . (29)

Each Di properly weighs past stored and current signals to
get

ỹDi = vDiy
(1)
Di + y

(2)
Di

=
K∑

j=1

(vDih
(1)
Uj,Di +

L∑

`=1

h
(2)
R`,DivR`h

(1)
Uj,R`)aj

+βibi + (
L∑

`=1

h
(2)
R`,DivR`z

(1)
R` ) + z

(2)
Di + vDiz

(1)
Di ,(30)

and we are left having to design the distributed precoding
unit-norm vector v5 = [vR1 · · · vRL vD1 · · · vDJ ]T , sim-
ply by picking it from the non-empty null space of the
JK × (J + L) full row rank matrix G5 with elements gm,n

gK(i−1)+j,`
∆= h

(2)
R`,Dih

(1)
Uj,R`, gK(i−1)+j,L+i

∆= h
(1)
Uj,Di, ∀j ∈

{1, · · · ,K}, ∀` ∈ {1, · · · , L}, ∀i ∈ {1, · · · , J}, else gm,n
∆=

0. As before we can conclude that D1, · · · , DJ can each
decode, in two channel uses, one independent symbol without
interference, and as before to conclude that dD = J/2K DOF.
For the uplink where interference is self-interference (cf. (29)),
we get the optimal dU = 1/2 DOF. We now see that for
J = K (and naturally for J > K), the scheme achieves the
optimal performance (1/2, 1/2).



2) Scheme X ′
4 for K ≥ 2 and JK > L > K(J − 1),

∀J ∈ {2, · · · ,K} : Here it’s the uplink users that take turns,
J at a time, in transmitting information, and as before we
rewrite U = {U1, · · · , UJ}. In the first phase, the jth user in
U transmits aj , while B transmits VBb = [b1 · · · bK ]T . For
a = [a1 · · · aJ ]T , we have

y(1)
R = H(1)

B,RVBb + H(1)
U,Ra + z(1)

R , (31)

y
(1)
Di =

K∑

j=1

h
(1)
Uj,Diaj + z

(1)
Di , i ∈ {1, · · · ,K}, (32)

where now H(1)
U,R is of dimension L× J .

During the second phase, the relays precode in a distributed
manner, each transmitting vR`y

(1)
R` , ` ∈ {1, · · · , L} while all

the users in U are silent. For VR = diag(vR1, · · · , vRL) then
VB = (H(2)

R,DVRH(1)
B,R)−1diag(β1, · · · , βK), and

y
(2)
Di =

J∑

j=1

(
L∑

`=1

h
(2)
R`,DivR`h

(1)
Uj,R`)aj + βibi

+(
L∑

`=1

h
(2)
R`,DivR`z

(1)
R` ) + z

(2)
Di , i ∈ {1, · · · , K},(33)

y(2)
B =H(2)

R,BVRH(1)
U,Ra + H(2)

R,BVRH(1)
B,RVBb

+H(2)
R,BVRz(1)

R + z(2)
B . (34)

After proper linear combinations of the above received signals,
we get

ỹDi = vDiy
(1)
Di + y

(2)
Di

=
J∑

j=1

(vDih
(1)
Uj,Di +

L∑

`=1

h
(2)
R`,DivR`h

(1)
Uj,R`)aj

+βibi + (
L∑

`=1

h
(2)
R`,DivR`z

(1)
R` ) + z

(2)
Di + vDiz

(1)
Di .(35)

and the precoding vector v6 = [vR1 · · · vRL vD1 · · · vDK ]T ,
is drawn from the non-empty null-space of the JK ×
(L + K) rank-JK matrix G6 with non-zero elements gm,n

gJ(i−1)+j,`
∆= h

(2)
R`,Dih

(1)
Uj,R`, gJ(i−1)+j,L+i

∆= h
(1)
Uj,Di. Ar-

guing as before we can conclude that X ′
4 allows for each

downlink user to achieve the optimal dD = 1/2 DOF, while
the uplink users can achieve dU = J/2K DOF.

C. Signal and noise power analysis
In what follows we analyze the signal attenuation and noise

accentuation effects of precoding on the achieved DOF. The
analysis, provided here for the case of X2, readily applies with
minor modifications to the rest of the schemes.

We begin with the downlink, corresponding to (12), and
note that the unit norm precoder v2 satisfying (14), removes
the uplink interference aj at all Di, and (12) can then be
written as

ỹDi = βibi + (
2∑

`=1

h
(2)
R`,DivR`z

(1)
R` ) + z

(2)
Di + vDiz

(1)
Di

= βibi + z̃Di, i ∈ {1, 2}, (36)

TABLE II
ACHIEVABLE DOF WHEN K ≥ 2 AND L > K , ∀J ∈ {2, · · · , K}. FOR

J = K (AND J > K), THE SCHEMES ACHIEVE THE OPTIMAL

PERFORMANCE
(
dU = 1/2, dD = 1/2

)
.

L achievable DOF

X ′3 (J + 1)K − J > L > J(K − 1)
(
dU=

1

2︸ ︷︷ ︸
optimal

, dD= J
2K

)

X ′4 JK > L > K(J − 1)
(
dU= J

2K
, dD=

1

2︸ ︷︷ ︸
optimal

)

where z̃Di = (
∑2

`=1 h
(2)
R`,DivR`z

(1)
R` ) + z

(2)
Di + vDiz

(1)
Di denotes

the individual noise terms. The noise power in z̃Di naturally
depends on the channel realization and is bounded by

E[z̃Diz̃
∗
Di] = |h(2)

R1,DivR1|2 + |h(2)
R2,DivR2|2 + |vDi|2 + 1

≤ |h(2)
R1,Di|2 + |h(2)

R2,Di|2 + 2, i ∈ {1, 2}.(37)

For an arbitrarily small positive constant ε, we define a region
E1 = {h(2)

R1,Di, h
(2)
R2,Di : E[z̃Diz̃

∗
Di]

·
> ρ0} where the power

of the equivalent noise term z̃Di is high enough to potentially
affect the achievable DOF. We now note that

P (E1)
(a)

≤ P (∪2
`=1{|h(2)

R`,Di|2
·
>

1
2
(ρ0 − 2)})

(b)
.≤

2∑

`=1

P (|h(2)
R`,Di|2

·
> ρ0)

(c).= 0, (38)

where (a) results from (37), (b) results from the union bound,
and (c) from the straightforward fact that P (|f({x})| ·> ρ0) .=
0 where f({x}) is a polynomial in a finite set of i.i.d. complex
Gaussian random variables {x}.

With respect to (36), β1 and β2 maintain the
power constraint at node B, i.e., ||VB ||2F =
||(H(2)

R,DVRH(1)
B,R)−1diag(β1, β2)||2F = 13. Here we set

β1 = β2 = β = (||(H(2)
R,DVRH(1)

B,R)−1||2F )−1/2

for simplicity and define E2 = {β2 < ρ−ε} as the event where
β reduces the signal power in (36) enough to potentially affect
the achievable DOF. We evaluate P (E2) as

P (E2) = P (||(H(2)
R,DVRH

(1)
B,R)−1||2F > ρε)

≤ P (||(H(2)
R,D)−1||2F ||(H(1)

B,R)−1||2F ||(VR)−1||2F > ρε)

≤ P ({||(H(2)
R,D)−1||2F >ρε/3}∪{||(H(1)

B,R)−1||2F >ρε/3}
∪{||(VR)−1||2F > ρε/3})

(a)
.

≤ ρ−ε/3 + ρ−ε/3 + P
( 2∑

`=1

1

||vR`||2 > ρε/3)

(b)
.

≤ 2ρ−ε/3+P
(||vR1||2 <ρ−ε/3)+P

(||vR2||2 <ρ−ε/3)

(c)
.

≤ 2ρ−ε/3 + ρ−ε/d1 + ρ−ε/d2 .
= ρ−ε/d0 , (39)

3In the scale of interest, power constraints are also satisfied on the relays
with ||VB ||2F = 1 and ||v2||2 = 1.



where (a) results from the union bound and Lemma 1, (b)
results from the union bound, (c) results from Lemma 2, and
where d1 > 3, d2 > 3 and d0 = max{d1, d2} are finite
constants.

Now we show that a downlink rate of RD = ( 1
2 − 1

2ε −
δ)logρ, for any positive δ, is achievable with arbitrarily small
probability of error (in the presence of ergodicity). We first
note that the mutual information between bi and ỹDi is

ID , 1
2

log(1 +
β2ρ/K

E[z̃Diz̃∗Di]
),

and then for E ,{E1 ∪ E2}, the corresponding outage proba-
bility is bounded as

P [ID < RD]= P [ID < RD | E ]P [E ] + P [ID < RD|Ec]P [Ec]

(a)

≤
2∑

i=1

P [Ei]+P [
1

2
log(1+

β2ρ/K

E[z̃Diz̃∗Di]
)<RD|Ec]

(b)
.

≤ ρ−ε/d0 + P [
1

2
logdet(1 +

ρ−ερ

ρ0
) < RD] (40)

= ρ−ε/d0+P [
(1−ε)+

2
logρ<(

1−ε

2
−δ)logρ] = ρ−ε/d0

where (a) follows from the union bound, where (b) follows
from (38) and (39), and where Ec is the complement of E .
With positive constants ε and δ becoming arbitrarily small,
we can conclude that dD = 1/2 is achievable.

Similarly for the uplink, we note that after removing the
self-interference, (11) takes the form

ỹB =H(2)
R,BVRH(1)

U,Ra + H(2)
R,BVRz(1)

R + z(2)
B = AUa + z̃B ,

where AU = H(2)
R,BVRH(1)

U,R and z̃B = H(2)
R,BVRz(1)

R + z(2)
B .

We note that the covariance matrix Σ of the equivalent noise
vector z̃B naturally depends on the channel realization and is
given by Σ = E[z̃B z̃†B ] = H(2)

R,BVR(H(2)
R,BVR)† + I. Now

let E3 = {H(2)
R,B ,VR : λmax(Σ) > ρε} be the channel region

where the power of the equivalent noise term is high enough
to potentially affect the achievable DOF, and observe that

P (E3) = P (λmax(H(2)
R,BVR(H(2)

R,BVR)†) + 1 > ρε)

≤ P (||H(2)
R,BVR||2F > ρε − 1)

≤ P (||H(2)
R,B ||2F ||VR||2F > ρε − 1)

(a)

≤ P (||H(2)
R,B ||2F K > ρε − 1)

.= P (||H(2)
R,B ||2F > ρε)

(b).= 0, (41)

where (a) results from the fact that ||v||2 = 1 and (b) results
from Lemma 1.

Corresponding to the equivalent channel matrix AU in (41),
we define E4 = {AU : λmin(AUA†

U ) < ρ−ε} to be the
channel region where the received signal power is reduced to
levels that can potentially affect the achieved DOF, and note

that

P (E4)=P (λmin(AUA†
U ) < ρ−ε)

≤P (||A−1
U ||2F > ρε)

≤P (||(H(2)
R,B)−1||2F ||(H(1)

U,R)−1||2F ||(VR)−1||2F > ρε)
(a)

≤P (||(H(2)
R,B)−1||2F ||>ρε/3)+P (||(H(1)

U,R)−1||2F >ρε/3)

+P (||(VR)−1||2F > ρε/3)
(b)
.≤ρ−ε/3 + ρ−ε/3 +

2∑

`=1

P (|vR`|2 < ρ−ε/3)

(c)
.≤2ρ−ε/3 + ρ−ε/d3 + ρ−ε/d4

(c).= ρ−ε/d5 , (42)

where (a) results from the union bound, (b) results from
Lemma 1 and the union bound, (c) results from Lemma 2,
and where d3 > 3, d4 > 3 and d5 = max{d3, d4} are finite
constants.

What remains is to show that for any δ > 0, an uplink
sum rate R = (K

2 −Kε−δ)logρ is achievable with arbitrarily
small probability of error. Towards this we note that the mutual
information between a and ỹB , is given by

IU , 1
2
logdet

(
I + ρAUA†

UΣ−1
)

,

and that the corresponding outage probability is bounded as

P [IU < R]= P [IU < R | E5]P [E5] + P [IU < R|Ec
5 ]P [Ec

5 ]

(a)

≤
4∑

i=3

P [Ei]+P [
1

2
log det(I +

ρλmin(AUA†
U )I

λmax(Σ)
)<R|Ec

5 ]

(b)
.

≤ ρ−ε/d5 + 0 + P [
1

2
logdet(1 +

ρρ−εI

ρε
) < R]

= ρ−ε/d5+P [
K(1− 2ε)+

2
logρ<(

K(1− 2ε)

2
−δ)logρ]

= ρ−ε/d5 (43)

where E5 ,{E3∪E4}, where (a) follows from the union bound
and the fact that IU ≥ 1

2 log det(I+ ρλmin(AUA†U )I

λmax(Σ) ), where (b)
follows from (41) and (42), and where Ec

5 is the complement
of E5. Setting ε and δ to be very small, allows us to conclude
that each node in U can achieve dU = 1/2 DOF.

IV. DISCUSSION AND CONCLUSION

We notice that the proposed schemes perform optimally in
the case of having few nodes (X1,X2), or in the case of
having an abundance of relays (X ′

3,X
′
4, J ≈ K). Notable

advantages of the schemes over possibly better performing
interference alignment techniques include the computational
simplicity of the linear solutions, and the much reduced
time delay. Drawbacks of the proposed methods include their
modest gains when not optimal, issues of causality when
encoding is over two coherence times, as well as, when
compared to DF schemes, the large amount of necessary CSIT.
The issue of causality can be handled either with channel
prediction or, as we have seen, by adding relays. Future work
might consider combining the proposed schemes with Han-
Kobayashi techniques.
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VI. APPENDIX

A. Proof of Lemma 1

Defining two sets of indices S1 = {j|τj = 1} and S−1 =
{j|τj = −1}, we have

||Φ−1||2F =tr[(Φ†Φ)−1]

≤θ2(
∏

j∈S1

tr[(H†
jHj)−1]) · (

∏

j∈S−1

tr[H†
jHj ])

= θ2(
∏

j∈S1

N∑

i=1

λ−1
j,i ) · (

∏

j∈S−1

N∑

i=1

λj,i), (44)

with λj,i denoting the ith eigenvalue of H†
jHj . Thus we have

P (||Φ−1||2F ≥ρε)
.≤P ((

∏

j∈S1

N∑

i=1

λ−1
j,i )(

∏

j∈S−1

N∑

i=1

λj,i)≥ρε). (45)

Let S−1(`) denote the `th element of set S−1, and define
channel regions A` ,{HS−1(`) :

∑N
i=1 λS−1(`),i

·
> ρ0}, ∀` ∈

{1, · · · , |S−1|}, B1 ,{∪|S−1|
`=1 A`} and B0 ,{H1,· · ·,Hk :

(
∏

j∈S1

∑N
i=1 λ−1

j,i )(
∏

j∈S−1

∑N
i=1 λj,i)≥ρε}.

We know from [11] that for any eigenvalue λ of the H†
jHj ,

then P (λ
·
> ρ0) ·= 0. Thus ∀`, we have that

P (A`)
·= P (λS−1(`),max

·
> ρ0) ·= 0, (46)

where λS−1(`),max is the maximum eigenvalue of
H†

S−1(`)
HS−1(`). Thus (45) takes the form

P (||Φ−1||2F ≥ ρε)
.≤ P (B0) = P (B0|B1)P (B1) + P (B0|Bc

1)P (Bc
1)

(a).= 0 + P (B0|Bc
1)P (Bc

1)

(b)

≤P (B0|
|S−1|⋂

`=1

(
N∑

i=1

λS−1(`),i
·=ρ0)) .=P (

∏

j∈S1

N∑

i=1

λ−1
j,i ≥ρε},(47)

where (a) follows from (46) and the union bound, (b) from the

fact that P (B0|{
∑

λS−1(`),i

·≤ ρ0}) ≤ P (B0|
∑

λS−1(`),i
·=

ρ0), and where Bc
1 is the complement of B1.

We note that for the case d = |S1| = 0, (47) is simply ex-

pressed as P (||Φ−1||2F ≥ ρε)
·≤ P (1 ≥ ρε) = 0. For the case

d = |S1| ≥ 1, for B2 ,{H1, ...,Hk :
∏

j∈S1

∑N
i=1 λ−1

j,i ≥ ρε},
and B3 ,{H1, ...,Hk : ∪j∈S1{

∑N
i=1 λ−1

j,i ≥ ρε/d}}, then (47)

takes the form

P (||Φ−1||2F ≥ ρε)
·≤P (B2)
= P (B2|B3)P (B3) + P (B2|Bc

3)P (Bc
3)

= P (B2|B3)P (B3) + 0

≤P (B3)
(a)

≤
|S1|∑

j=1

P (
N∑

i=1

λ−1
j,i ≥ ρε/d),(48)

where (a) results from the union bound. From [13] we know
that for λj,min being the smallest eigenvalue of the H†

jHj ,

then P (λj,min ≤ ρ−ε)
·≤ ρ−ε. Thus we have

P (
N∑

i=1

λ−1
j,i ≥ ρε/d) ·= P (λj,min ≤ ρ−ε/d)

·≤ ρ−ε/d, (49)

and (48) takes the form

P (||Φ−1||2F ≥ ρε)
(a)
.≤ |S1|ρ−ε/d ·= ρ−ε/d, (50)

where (a) is from (49). ¤

B. Proof of Lemma 2

Let v ,[v1 · · · vN ]T , let [E1 E2]
∆= E where E1 and E2

are respectively M×M and M×(N−M) matrices, and note
that

E−1
1 Ev = [I E−1

1 E2]v = 0. (51)

Now recalling that E−1
1 = adj(E1)

det(E1)
where adj(E1) denotes the

matrix of cofactors of E1, we can rewrite (51) as

[I
adj(E1)
det(E1)

E2]v = 0. (52)

Let E0
∆= adj(E1)E2 and let v

′ ,[v
′
1 · · · v

′
N ]T be a solution of

(52) of arbitrary magnitude. Let v
′
n+M be such that |v′n+M |2 =

1/N , n ∈ {1, · · · , N −M}, and note that from (52) we have

v
′
i =

−1
det(E1)

N−M∑
n=1

[E0]i,nvn+M , i ∈ {1, · · · ,M}. (53)

Now normalize v
′

by a factor γ = (
∑M

i=1 |v
′
i|2 + N−M

N )−1/2,
to get v = γv

′
with ||v||2 = 1. Let

i1 = arg min
i∈{1,··· ,M}

|vi|, i2 = arg max
i∈{1,··· ,M}

|vi|,

and note that

P (|vi|2 ≤ ρ−ε)

≤P (|γ|2|v′i1 |2 ≤ ρ−ε) ≤ P
( |v′i1 |2
M |v′i2 |2 + N−M

N

≤ ρ−ε
)

= P (
|∑N−M

n=1 [E0]i1,nv
′
n+M |2

M |∑N−M
n=1 [E0]i2,nv

′
n+M |2+N−M

N |det(E1)|2
≤ ρ−ε).

(54)

Defining f1({x}) , |∑N−M
n=1 [E0]i1,nv

′
n+M |2,

f2({x}), |∑N−M
n=1 [E0]i2,nv

′
n+M |2, f3({x}), |det(E1)|2



Fig. 3. Cut set model for the system.

and f4({x}), Mf2({x}) + N−M
N f3({x}), we note that

all the entries of E0, and consequently f1({x}), f2({x}),
f3({x}) and f4({x}) are, with probability 1, positive
exponent polynomials (without constant terms) in the set of
all pertinent random fading coefficients {x}.

It is then straightforward that P (f2({x})
·
> ρ0) ·=

0 and P (f3({x})
·
> ρ0) ·= 0, which consequently indicates

that

P (f4({x})
·
> ρ0) ·= 0. (55)

At this point, the result in [10, Lemma 2.10] applies to tell us
that there exists a finite constant d′ such that

P (f1({x}) ≤ ρ−ε)
·≤ ρ−ε/d′ . (56)

Now define an event A = {{x} : f4({x})
·
> ρ0}, and rewrite

(54) as

P (|vi|2 ≤ ρ−ε)≤ P (
f1

f4
≤ρ−ε)

= P (
f1

f4
≤ρ−ε|A)P (A) + P (

f1

f4
≤ρ−ε|Ac)P (Ac)

(a).
= 0 + P (

f1

f4
≤ ρ−ε|Ac)P (Ac)

(b)
.

≤ P (
f1

ρ0
≤ ρ−ε)

.
= P (f1 ≤ ρ−ε)

(c)
.

≤ ρ−ε/d′ , i ∈ {1, · · · , N},(57)

where (a) results from (55), (b) results from the fact that
P ( f1

f4
≤ρ−ε|Ac) ≤ P ( f1

f4
≤ρ−ε|f1

·= ρ0), and (c) results from
(56). ¤

C. Proof of Lemma 3

We begin by noting that it is not difficult to see that the
optimal DOF (not necessarily the optimal capacity though) can
be achieved under a static phase duration setting, where there
are two phases, one of fractional duration ∆1 and the other of
1−∆1. To derive the DOF outer bound we apply the Cut-Set
Theorem (cf. [12]), in the ergodic setting (M →∞). For the
uplink, by just considering ‘cut 1’ and ‘cut 2’ as illustrated in
Fig. 3, the sum rate KRU is upper bounded as

KRU≤max
∆1

min{∆1

M

M∑

i=1

max
P (x)

I(xU ;yR|xB ,xR, {Hi})︸ ︷︷ ︸
cut1

,

1−∆1

M

M∑

i=1

max
P (x)

I(xR;yB |xB , {Hi})︸ ︷︷ ︸
cut2

}, (58)

where P (x) denotes the joint probability distribution of all the
input signals in the network, and where {Hi} denotes the set
of all channel coefficients associated with the ith block.

For sufficiently large number of blocks M , the first term
(‘cut 1’) in (58) relates to the maximum rates in the K × L
MIMO channel corresponding to K DOF. Similarly the second
term (‘cut 2’) relates to the maximum rates of the L × K
channel corresponding to K DOF. Hence, the corresponding
number of DOF KdU is upper bounded as

KdU ≤ max
∆1

min{∆1K, (1−∆1)K}
= K/2, for ∆1 = 0.5, (59)

which gives that dU ≤ 1/2.
Similarly for the downlink, the sum rate KRD is upper

bounded as

KRD ≤ max
∆1

min{1−∆1

M

M∑

i=1

max
P (x)

I(xR;yD|xU , {Hi})︸ ︷︷ ︸
cut1

,

∆1

M

M∑

i=1

max
P (x)

I(xB ;yR|xR,xU , {Hi})︸ ︷︷ ︸
cut2

}, (60)

and the corresponding number of DOF KdD as

KdD ≤ max
∆1

min{(1−∆1)K, ∆1K}
= K/2, for ∆1 = 0.5, (61)

resulting in dD ≤ 1/2. ¤
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