
EFD: An efficient low-overhead scheduler

Jinbang Chen1, Martin Heusse2, and Guillaume Urvoy-Keller3

1 Eurecom, Sophia-Antipolis, France
jinbang.chen@eurecom.fr

2 Grenoble-INP / UJF-Grenoble 1 / UPMF-Grenoble 2 / CNRS, LIG UMR 5217 Grenoble,
France

martin.heusse@imag.fr
3 Laboratoire I3S CNRS, Université de Nice, Sophia Antipolis, France

urvoy@unice.fr

Abstract. Size-based scheduling methods receive a lot of attention as they can
greatly enhance the responsiveness perceived by the users. In effect, they give
higher priority to small interactive flows which are the important ones for agood
user experience. In this paper, we propose a new packet schedulingmethod,Early
Flow Discard (EFD), which belongs to the family of Multi-Level Processor Shar-
ing policies. Compared to earlier proposals, the key feature of EFD is the way
flow bookkeeping is performed as flow entries are removed from the flow table as
soon as there is no more corresponding packet in the queue. In this way, the active
flow table remains of small size at all times. EFD is not limited to a scheduling
policy but also incorporates a buffer management policy. We show through exten-
sive simulations that EFD retains the most desirable property of more resource
intensive size-based methods, namely low response time for short flows, while
limiting lock-outs of large flows and effectively protecting low/medium rate mul-
timedia transfers.

Keywords: size-based scheduling, performance, LAS, Run2C

1 Introduction

Size-based scheduling has received a lot of attention from the research community with
applications to Web servers [15], Internet traffic [3, 14, 16] or 3G networks [2, 10]. The
key idea is to favor short flows at the expense of long ones because short flows are
in general related to interactive applications like Email,Web browsing or DNS re-
quests/responses; unlike long flows which represent background traffic. Such a strategy
pays off as long as long flows are not completely starved and this generally holds with-
out further intervention for Internet traffic where short flows represent a small portion
of the load and thus cannot monopolize the bandwidth.

Despite their unique features, size-based scheduling policies have not yet been
moved out of the lab. We believe the main reasons behind this lack of adoption are
related to the following general concerns about size-basedscheduling approaches:

– Size-based scheduling policies are in essence state-full:each flow needs to be
tracked individually. Even though one can argue that those policies should be de-
ployed at bottleneck links which are presumably at the edge of network – hence at



2 J. Chen, M. Heusse, and G. Urvoy-Keller

a location where the number of concurrent flows is moderate – the common belief
is that stateful mechanisms are to be avoided in the first place.

– Size-based scheduling policies are considered to overly penalize long flows. De-
spite all its drawbacks, the legacy scheduling/buffer management policy, FIFO/drop
tail, does not discriminate against long flows while size-based scheduling solutions
tend to impact both the mean response time of flows but also their variance as long
flows might lock-out each others.

– As their name indicates, size-based scheduling policies consider a single dimension
of a flow, namely, its accumulated size. Still, persistent low rate transfers often
convey key traffic,e.g., voice over IP conversations. As a result, it seems natural to
account both for the rate and the accumulated amount of bytesof each flow.

A number of works address partially the aforementioned shortcomings of size-based
scheduling policies. Although, to the best of our knowledge, none of them fulfill simul-
taneously the above objectives. This paper presents a new scheduling policy, EFD (Early
Flow Discard) that aims at fulfilling the following objectives: (i) Low response time to
small flows; (ii) Low bookkeeping cost,i.e., the number of flows tracked at any given
time instant remains consistently low; (iii) Differentiating flows based on volumes but
also based on rate; (iv) Avoiding lock-outs.

EFD manages the physical queue of an interface (at the IP level) as a set of two
virtual queues corresponding to two levels of priority: thehigh priority queue first and
the low priority queue at the tail of the buffer. Formally, EFD belongs to the family
of Multi-Level Processor Sharing policies (see Section 2) and is effectively a PS+PS
scheduling policy. The key feature of EFD is the way flow bookkeeping is performed.
In EFD, we keep an active record only for flows that have at least one packet in the
queue. This simple approach allows to fulfill the entire listof objectives listed above.
Specifically, in EFD the active flow table size is bounded to a low value. Also, although
EFD has a limited memory footprint, it can discriminate against bursty and high rate
flows. EFD is not limited to a scheduling policy but also incorporates a buffer manage-
ment policy, where the packet with smallest priority gets discarded when the queue is
full, as opposed to drop tail which blindly discards packetsupon arrival. This mecha-
nism is similar to the one used in previous works [13, 4].

Section 2 gives an overview of the related works mentioned above. Section 3 presents
the proposed scheduling scheme. The simulation environment, including network setup,
network topology and workload appear in Section 4. Then we use simulations to eval-
uate its performance and compare with other schedulers in Section 5. Finally we con-
clude the paper in Section 6.

2 Related Work

Classically, size-based scheduling policies are divided into blind and non-blind schedul-
ing policies. A blind size-based scheduling policy is not aware of the job1 size while a
non-blind is. Non blind scheduling policies are applicableto servers [15] where the job

1 Job is a generic entity in queueing theory. In the context of this work, a job corresponds to a
flow.



EFD: An efficient low-overhead scheduler 3

size is related to the size of the content to transfer. A typical example of non blind policy
is the Shortest Remaining Processing Time (SRPT) policy, which is optimal among all
scheduling policies, in the sense that it minimizes the average response time.

For the case of network appliances (routers, access points,etc.) the job size, i.e.
the total number of bytes to transfer, is not known in advance. Several blind size-based
scheduling policies have been proposed. The Least AttainedService (LAS) policy [13]
bases its scheduling decision on the amount of service received so far by a flow. LAS is
known to be optimal if the flow size distribution has a decreasing hazard rate (DHR) as
it becomes, in this context, a special case of the optimal Gittins policy [5]. Some repre-
sentatives of the family of Multi-Level Processor Sharing (MLPS) scheduling policies
[8] have also been proposed to favor short flows. An MLPS policy consists of several
levels corresponding to different amounts of attained service of jobs, with possibly a
different scheduling policy at each level. In [3], Run2C, which is a specific case of
MLPS policy, namely PS+PS, is proposed and contrasted to LAS. With Run2C, short
jobs, which are defined as jobs shorter than a specific threshold, are serviced with the
highest priority while long jobs are serviced in a background PS queue. Run2C features
key characteristics: (i) As (medium and) long jobs share a PSqueue, they are less pe-
nalized than under LAS; (ii) It is proved analytically in [3]that a M/G/1/PS+PS queue
offers a smaller average response time than an M/G/1/PS queue, which is the classical
model of a network appliance featuring a FIFO scheduling policy and shared by homo-
geneous TCP transfers; (iii) Run2C avoids the lock-out phenomenon observed under
LAS [7], where a long flow might be blocked for a large amount oftime by another
long flow.

Run2C and LAS share a number of drawbacks. Flow bookkeeping is complex. LAS
requires to keep one state per flow. Run2C needs to check, for each incoming packet, if it
belongs to a short or to a long flow. The latter is achieved in [3] thanks to a modification
of the TCP protocol so as to encode in the TCP sequence number the actual number of
bytes sent by the flow so far. Such an approach, which requiresa global modification
of all end hosts, is questionable2. Moreover, both LAS and Run2C classify flows based
on the accumulated number of bytes they have sent, without taking the flow rate into
account.

Some approaches propose to detect long flows by inserting theflow in the table
probabilistically [4, 12, 9]. The key idea here is to performa simple random test (with
a low probability of success) upon packet arrival to decide if the corresponding flow
should be inserted in the table. As long flows generate many packets, it is unlikely to
miss them, while many short flow simply go unnoticed. These approaches differ in the
way they trade false positive rate against the speed of detection of a long flow.

So far, a single work addresses the problem of accounting forrates in size-based
scheduling [7]. It consists in a variant of LAS, Least Attained Recent Service (LARS),
where the amount of bytes sent by each flow decays with time according to a fading
factorβ. LARS is able to handle differently two flows that have sent a similar amount

2 Other works aim at favoring short flows, by marking the packets at the edge of the network so
as to relieve the scheduler from flow bookkeeping [11]. However, the deployment of DiffServ
is not envisaged in the near future at the Internet scale.



4 J. Chen, M. Heusse, and G. Urvoy-Keller

of bytes but at different rates and it also limits the lock outduration of one long flow by
another long flow to a maximum tunable value.

3 Early Flow Discard

In this section, we describe how EFD manages space and time priority. EFD belongs
to the family of Multi-Level Processor Sharing scheduling policy. EFD features two
queues. The low priority queue is served only if the high priority queue is empty. Both
queues are drained in a FIFO manner at the packet level (whichis in general modeled
as a PS queue at flow level). In terms of implementation, a single physical queue for
packet storage is divided into two virtual queues. The first part of the physical queue
is dedicated to the virtual high priority queue while the second part is the low priority
queue. A pointer is used to indicate the position of the last packet of the virtual high
priority queue. This idea is similar to the one proposed in the Cross-Protect mechanism
[9]. We now turn our attention to the flow management in EFD andthe enqueuing and
dequeuing operations. We eventually discuss the spatial policy used when the physical
queue gets full.

3.1 Flow management

EFD maintains a table of active flows, defined here as the set ofpackets that share
a common identity, consisting of a 5-tuple: source and destination addresses, source
and destination ports and protocol number. Flows remain in the table as long as there
is one corresponding packet in the buffer and discarded whenthe last packet leaves.
Consequently, a TCP connection (or UDP transfers) may be split over time into several
fragments handled independently of each other by the scheduler. Note that unlike most
scheduling mechanisms that keep per flow states, EFD does notneed to use any garbage
collection mechanism to clean its flow table. This happens automatically upon departure
of the last packet of the flow. A flow entry keeps track of several attributes, including
flow identity, flow size counter, number of packets in the queue.

Packet enqueuing For each incoming packet, a lookup is performed in the flow table
of EFD. A flow entry is created if the lookup fails and the packet is put at the end
of the high priority queue. Otherwise, the flow size counter of the corresponding flow
entry is compared to a preset thresholdth. If the flow size counter exceedsth, then the
packet is put at the end of the low priority queue; otherwise the packet is inserted at
the end of the high priority queue. The purpose ofth is to favor the start of each flow.
In our simulations, we use ath of 20 packets (up to 30 Kbytes for packets with size
of 1500 bytes each). Obviously, if a connection is broken into several fragments, from
the scheduler’s perspective, then each time it will handle each fragment as a unique one
and assign the start (within thresholdth) of each fragment a high priority, by means of
directing all packets making up the start of each fragment into the high priority queue.
We believe that this makes sense as this happens only if the connection has not been
active for a significant time –it has not been backlogged for awhile– and thus can be
considered as fresh.



EFD: An efficient low-overhead scheduler 5

In practice, several phenomena can lead to break a connection into many fragments.
For instance, during connection establishment, the TCP slow start algorithm limits the
number of packets in flight so that it does not continuously occupy the buffer. This is
however not a problem, as those flows are smaller thanth and thus the start of the TCP
transfer will receive a high priority. If the flow lasts longer and it is effectively able
to use its share of the capacity, then the connection will eventually occupy the buffer
without interruption and therefore stay in the flow table. Figure 1(b) illustrates such a
scenario (Section 4 details the experimental setup). It is apparent that, as the connection
size increases, the number of fragments tends to reach a limit so that, for the longest
connections, a small number of fragments correspond to manypackets.

(a) Network topology

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

Connection size in MSS

av
g.

 n
um

 o
f f

ra
gm

en
ts

Statistic of connection fragmentation

(b) Number of fragments per connection -
workload of 8Mbit/s

Fig. 1.

Packet dequeuing When a packet leaves the queue or gets dropped, it decreases the
number of queued packets of the corresponding flow entry. Theflow entry stays in the
table as long as one corresponding packet is in the queue. Sothe flow table size is
bounded by the physical queue sizein packets3. Indeed, in the worst case, there are
as many entries as distinct flows in the physical queue, each with one packet.

This policy ensures that the flow table remains of small size.Also if a flow sends
at high rate for a short period of time, its packets will be directed to the low priority
queue only for the limited period of time during which the flowis backlogged: EFD is
sensitive to flow burstiness.

3.2 Buffer management

When a packet arrives to a queue that is full, EFD first inserts the arriving packet to
its appropriate position in the queue, and then drops the packet that is at the end of

3 In most if not all active equipments – routers, access points – queues are counted in packets
and not in bytes.



6 J. Chen, M. Heusse, and G. Urvoy-Keller

the (physical) queue. This buffer policy implicitly gives space priority to short4 flows,
which differs from the traditional droptail buffer management policy. This approach is
similar to the Knock-Out mechanism of [4] and the buffer management proposed to
LAS in [13]. As large flows in the Internet are mostly TCP flows,we can expect that
they will recover from a loss event with a fast retransmit; unlike short flows that might
time out.

4 Performance Evaluation Set Up

In this section, we present the network set up – network topology and workload – used
to evaluate the performance of EFD and to compare it to other scheduling policies. All
simulations are done using QualNet [1].

4.1 Network Topology

We evaluate the performance of EFD and compare it to other scheduling policies for
the case of a single bottleneck network, using a classical dumbbell topology depicted
in Fig. 1(a).

A group of senders (nodes 1 to 5) are connected to a router (node 6) by 100Mbps
bandwidth links and a group of receivers (nodes 8 to 12) are connected to another router
(node 7) with a 100Mbps bandwidth link. The two aggregation routers are connected to
each other with a link at 10Mbps. All links have 1 ms propagation delay.

All nodes use FIFO queues, except the bottleneck node which uses one of the four
scheduling policies that we compare in this work: FIFO, LAS,RuN2C or EFD. The
bottleneck buffer has a finite size of 300 packets.

4.2 Workload generation

Data transfer requests arrive according to a Poisson process, the server and the client are
picked at random and the content requested is distributed according to a bounded Zipf
distributed flow sizes. A bounded Zipf distribution is a discrete analog of a continuous
bounded Pareto distribution.

Transfers are performed under TCP or UDP depending on the simulation. In all
cases, the global load is controlled by tuning the arrival rate of requests. For each sim-
ulation set-up, we consider an underload and an overload regime, which correspond re-
spectively to workloads of 8 and 15 Mb/s (80% and 150% of the bottleneck capacity).
For TCP simulations, we use the GENERIC-FTP model of Qualnet, which corresponds
to an unidirectional transfer of data. For UDP transfers, weuse a CBR application model
where one controls the inter-packet arrival time. The latter enables to control the exact
rate at which packets are sent to the bottleneck. In both TCP and UDP cases, IP packets
have a size of 1500 bytes.

4 Due to the discussion in the above paragraph, a short flow is a part of a connection whose rate
is moderate.



EFD: An efficient low-overhead scheduler 7

5 Performance Evaluation

In this section, we compare the performance of EFD to other scheduling policies. Our
objective is to illustrate the ability of EFD to fulfill the 4 objectives listed in the intro-
duction, namely (i) low bookkeeping cost, (ii) low responsetime to small flows, (iii)
avoiding lock-outs, (iv) protecting long lasting delay sensitive flows.

To illustrate the first 3 items, we consider a TCP workload with homogeneous trans-
fers, i.e., transfers that take place on paths having similar characteristics. For the last
item - protecting long lived delay sensitive flows - we add a UDP workload to the TCP
workload in the form of a CBR traffic, in order to highlight thebehavior of each sched-
uler in presence of long lasting delay sensitive flows.

5.1 Overhead of flow state keeping

The approaches to maintain the flow table in the size-based scheduling policies pro-
posed so far can be categorized as follows:

– Full flow table approach as in LAS [13]. An argument in favor ofkeeping one
state per active flow is that the number of flows to handle remains moderate as it is
expected that such a scheduling policy be implemented at theedge of the Internet.

– No flow table approach: an external mechanism marks the packets or the informa-
tion is implicit (coded in the SEQ number in Run2C) [3, 11]

– Probabilistic approaches: a test is performed at each packet arrival for flows that
have not already be incorporated in the flow table [4, 9, 12]. The test is calibrated in
such a way that only long flows should end up in the flow table. Still, false positives
are possible. Several options have been envisaged to combatthis phenomenon es-
pecially, a re-testing approach [12] or an approach where the flows in the flow table
are actually considered as long flows once they have generated more than a certain
amount of packets/bytes after their initial insertion [4].

– EFD deterministic approach: the EFD approach is fully deterministic as flow entries
are removed from the flow table once they have no more packet inthe queue.

In this section, we compare all the approaches presented except the ”No flow table
approach” for our TCP workload scenario (see Section 4.2). We consider one repre-
sentative of each family: LAS, X-Protect and EFD. We term X-Protect a Multi-Level
Processor Scheduling policy that maintains two queues, similarly to Run2C, but uses
the probabilistic mechanism proposed in [9] to track long flows5. As for the actual
scheduling of packets, X-Protect mimics Run2C based on the information it possesses.
If the packet does not belong to a flow in the flow table nor passes the test, it is put in
the high priority queue. If it belongs to a flow in the flow table, it is put either in the
high priority queue or in the low priority queue, depending on the amount of bytes sent
by the flow. We use a threshold of 30KB, similar to the one used for EFD.

The evolution of flow table size over time for load of 8Mbit/s (underload) and
15Mbit/s (overload) are shown in Fig. 2. For LAS and X-Protect, the flow table is visited
every 5 seconds and the flows that have been inactive for 30 seconds are removed.

5 Note that this mechanism is proposed in [9] to do admission control functionand not a schedul-
ing.



8 J. Chen, M. Heusse, and G. Urvoy-Keller

0 200 400 600 800 1000
0

500

time (s)

ta
bl

e 
si

ze

LAS

0 200 400 600 800 1000
0

200

400

time (s)

ta
bl

e 
si

ze

X−Protect

0 200 400 600 800 1000
0

10

20

time (s)

ta
bl

e 
si

ze

EFD

(a) workload of 8Mbit/s (underload)

0 200 400 600 800 1000
0

500

1000

time (s)

ta
bl

e 
si

ze

LAS

0 200 400 600 800 1000
0

500

time (s)

ta
bl

e 
si

ze

X−Protect

0 200 400 600 800 1000
0

50

100

time (s)

ta
bl

e 
si

ze

EFD

(b) workload of 15Mbit/s (overload)

Fig. 2.Evolution of flow table size over time

We observe how X-Protect roughly halves the number of tracked flows, compared
to LAS. By contrast, EFD reduces it by one order of magnitude.The reason why X-
Protect offers deceptive performance is the race conditionthat exists between the flow
size distribution and the probabilistic detection mechanism. Indeed, even though a low
probability, say 1%, is used to test if a flow is a long, there exists so many short flows
that the number of false positives becomes quite large, which prevents the flow table
from being significantly smaller than in LAS. The histogramsin Fig. 3 confirm the
good performance of EFD in underload and also overload, as EFD keeps the flow table
size to a few 10s of entries at most. Note that this is clearly smaller than the actual
queue size (300 packets) that constitutes an upper bound on the flow table size in EFD
as explained before.

0 100 200 300 400 500
0

0.01

0.02

flow table size

D
en

si
ty

LAS

0 50 100 150 200 250
0

0.02

0.04

flow table size

D
en

si
ty

X−Protect

1 2 3 4 5 6 7 8 9 10 11
0

0.5

flow table size

D
en

si
ty

EFD

(a) workload of 8Mbit/s (underload)

0 200 400 600 800 1000
0

0.01

0.02

flow table size

D
en

si
ty

LAS

0 100 200 300 400 500
0

0.01

0.02

flow table size

D
en

si
ty

X−Protect

0 10 20 30 40 50 60 70
0

0.02

0.04

flow table size

D
en

si
ty

EFD

(b) workload of 15Mbit/s (overload)

Fig. 3.Histogram of the flow table size



EFD: An efficient low-overhead scheduler 9

5.2 Mean response time

Response time is a key metric for a lot of applications, especially interactive ones. An
objective of EFD and size-based scheduling policies in general is to favor interactive
applications, hence the emphasis put on response time. We consider four scheduling
policies: FIFO, LAS, Run2C and EFD. FIFO is the current de facto standard and it is
thus important to compare the performance of EFD to this policy. LAS can be consid-
ered as a reference in terms of (blind) size-based scheduling policies as a lot of other
disciplines have positioned themselves with respect to LAS. Run2C, for instance, aims
at avoiding the lock out of long flows observed more often withLAS than for e.g.
FIFO. We do not consider the X-protect policy discussed in Section 5.1, as Run2C can
be considered as a perfect version of X-protect since Run2C distinguishes packets of
flows below and above the thresholdth (we use the same thresholdth for both EFD and
Run2C).

Response times are computed only for flows that complete their transfer before the
end of the simulation. When comparing response times, one must thus also consider
the amount of traffic due to flows that terminated their transfer and to flows that did not
complete. The lack of completion of a flow can be due to a premature end of simulation.
However, in overload and for long enough simulations as in our case, the main reason
is that they were set aside by the scheduler.

We first turn our attention to the aggregate volumes of trafficper policy for the un-
derload and overload cases. We observe no significant difference between the different
scheduling policies in terms both of number of complete and incomplete connections.
The various scheduling policies lead to a similar level of medium6 utilization.

In contrast, when looking at the distribution of incompletetransfers, it appears that
the flows killed by the different scheduling policies are notthe same. We present in Fig.
4 the distribution of incomplete transfers where the size ofa transfer is the total amount
of MSS packets transferred at the end of the simulation. A transfer is deemed incom-
plete if we do not observe a proper TCP tear down with two FIN flags. As expected, we
observe that FIFO tends to kill a lot of small flows while the other policies discriminate
long flows.

Distributions of the response times for the (complete) short and long transfers in
underload and overload conditions are presented in Fig. 5. Under all load conditions,
LAS, EFD and Run2C manage to significantly improve the response time of the short
flows as compared to FIFO. EFD and Run2C offer similar performance. They both have
a transition of behavior at aboutth value (th = 20 MSS). Still, the transition of EFD
is smoother than the one of Run2C. This was expected as Run2C applies a strict rule:
below or aboveth for a given transfer, whereas EFD can further cut a long transfer into
fragments which individually go first to the high priority queue. Overall, EFD provides
similar or slightly better performance than Run2C with a minimal price in terms of
flow bookkeeping. LAS offers the best response time of size-based scheduling policies
in our experiment for small and intermediate size flows. For large flows its performance
are equivalent to the other policies in underload and significantly better for the overload
case. However, one has to keep in mind that in overload conditions, LAS deliberately

6 The medium is the IP path as those policies operate at the IP level.



10 J. Chen, M. Heusse, and G. Urvoy-Keller

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

Transfer size in MSS

C
D

F

 

 

FIFO
LAS
RuN2C
EFD
LARS

(a) workload of 8Mbit/s (underload)

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

Transfer size in MSS

C
D

F

 

 

FIFO
LAS
RuN2C
EFD
LARS

(b) workload of 15Mbit/s (overload)

Fig. 4.Distributions of incomplete transfers size

killed a large set of long flows (see Fig. 4), hence its apparent better performance. LARS
behaves similarly to LAS in underload and degrades to fair queueing –which brings it
close to FIFO in this case– when the networks is overloaded.

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

File size in MSS

M
ea

n 
R

es
po

ns
e 

tim
e 

(s
)

 

 

FIFO
LAS
RuN2C
EFD
LARS

(a) workload of 8Mbit/s (underload)

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

File size in MSS

M
ea

n 
R

es
po

ns
e 

tim
e 

(s
)

 

 

FIFO
LAS
RuN2C
EFD
LARS

(b) workload of 15Mbit/s (overload)

Fig. 5.Conditional mean response time

5.3 Lock-outs

The low priority queue of EFD is managed as a FIFO queue. As such, we expect EFD,
similarly to Run2C, to avoid lock-outs observed under LAS whereby an ongoing long
transfer is blocked for a significant amount of time by a newertransfer of significant
size. This behavior of LAS is clearly observable in Figure 6(a) where the progress (ac-
cumulated amount of bytes sent) over time of the 3 largest transfers of one of the above
simulations7. We indeed observe large periods of times where the transfers experience

7 Those 3 connections did not start at the same time, the time axis is relative to their starting
dates.



EFD: An efficient low-overhead scheduler 11

no progress, which leads to several plateaus. This is clearly in contrast to the cases of
LARS, EFD and to a lesser extent of Run2C, for the same connections, shown in Fig-
ures 6(b), 6(c) and 6(d) respectively. The progress of the connections in the latter cases
is indeed clearly smoother with no noticeable plateau.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

D
at

a 
tr

an
sf

er
re

d 
(M

B
)

LAS

 

 

cx1
cx2
cx3

(a) LAS, underload

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)
D

at
a 

tr
an

sf
er

re
d 

(M
B

)

LARS

 

 

cx1
cx2
cx3

(b) LARS, underload

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

D
at

a 
tr

an
sf

er
re

d 
(M

B
)

EFD

 

 

cx1
cx2
cx3

(c) EFD, underload

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

D
at

a 
tr

an
sf

er
re

d 
(M

B
)

Run2C

 

 

cx1
cx2
cx3

(d) Run2C, underload

Fig. 6.Time diagrams of the 3 largest TCP transfers under LAS, LARS, EFD and Run2C (under-
load), relative to the start of each transfer

5.4 The Case of Multimedia Traffic

In the TCP scenario considered above, FTP servers were homogeneous in the sense that
they had the same access link capacity and the same latency toeach client. The transfer
rate was controlled by TCP. In such conditions, it is difficult to illustrate how EFD takes
into accounts the actual transmission rate of data sources.In this section, we have added
a single CBR flow to the TCP workload used previously.

We consider two rates 64Kb/s and 500Kb/s for the CBR flow, representing typical
audio (e.g., VoIP) and video stream (e.g., YouTube video - even though the YouTube
uses HTTP streaming) respectively. The background load also varies - 4, 8 and 12Mbps-



12 J. Chen, M. Heusse, and G. Urvoy-Keller

which correspond to underload/moderate/overload regimesas the bottleneck capacity
is 10 Mbps. To avoid the warm-up period of the background workload, the CBR flow
is started at time t=10s and keeps on sending packets continuously until the end of
the simulation. The simulation lasts for 1000 seconds. Since small buffers are prone to
packet loss, we assign to the bottleneck a buffer of 50 packets, instead of 300 packets
previously. The loss rates experienced by the CBR flow are given in Fig. 7, in which
a well-known fair scheduling scheme called SCFQ [6] is addedfor the comparison,
aparting from other disciplines mentioned hereinbefore.

fifo scfq las efd run2c lars
0

10

20

30

40

50

Lo
ss

 r
at

e 
in

 %

 

 

4Mb/s
8Mb/s
12Mb/s

(a) a CBR flow with rate of 64Kb/s

fifo scfq las efd run2c lars
0

10

20

30

40

50

60

70

Lo
ss

 r
at

e 
in

 %

 

 

4Mb/s
8Mb/s
12Mb/s

(b) a CBR flow with rate of 500Kb/s

Fig. 7.Loss rate experienced by a CBR flow in different background loads

As we can see from the figure, for the case of a CBR flow with rate of 64Kbps,
LAS discards a large fraction of packets even at low load. This was expected as LAS
only considers the accumulated volume of traffic of the flow and even at 64 kbps, the
CBR flow has sent more than 8 MB of data in 1000 s (without takingthe Ethernet/IP
layers overhead into account). In contrast, FIFO, SCFQ and Run2C offer low loss rates
in the order of a few percents at most. As for EFD and LARS, theyeffectively protect
the CBR flow under all load conditions.

As the rate of the CBR flow increases from 64Kbps to 500Kbps, nopacket loss is
observed for EFD in underload/moderate load conditions, similarly to SCFQ, whereas
the other scheduling disciplines (FIFO, LAS, Run2C and LARS) are hit at various de-
grees. In overload, EFD and LARS blow up similarly to LAS (which still represents
an upper bound on the loss rate as the CBR flow is continuously granted the lowest
priority). EFD behaves slightly better than LARS as the loadin the high priority queue
is by definition lower under EFD than under Run2C.

When looking at the above results from a high level perspective, one can think at first
sight that FIFO and SCFQ do a decent job as they provide low loss rates to the CBR flow
in most scenarios (under or overload). However, those apparently appealing results are
a side effect of a well-known and non desirable behavior of FIFO. Indeed, under FIFO,
the non responsive CBR flow adversely impacts the TCP workload, leading to high
loss rates. This is especially true for the CBR flow working at500 kbps. SCFQ tends



EFD: An efficient low-overhead scheduler 13

to behave similarly if not paired with an appropriate buffermanagement policy [6]. In
contrast, LARS and EFD offer a nice trade-off as they manage to simultaneously grant
low loss rates to the CBR flow with a low penalty to the TCP background workload.
Run2C avoids the infinite memory of LAS but still features quite high loss rates since
the CBR flow remains continuously stuck in the low priority queue.

Overall, EFD manages to keep the desirable properties of size-based scheduling
policies and in addition manages, with a low bookkeeping cost, to protect multimedia
flows as it implicitly accounts for the rate of this flow and notonly its accumulated
volume.

6 Conclusion

In this paper, we have proposed a simple but efficient packet scheduling scheme called
Early Flow Discard (EFD) that uses a fixed threshold for flow discrimination while
taking flow rates into account at the same time. EFD possessesthe key feature of keep-
ing an active record only for flows that have one packet at least in the queue. With this
strategy, EFD caps the amount of active flow that it tracks to the queue size in packets.

Extensive network simulations revealed that EFD, as a blindscheduler, retains the
good properties of LAS like small response times to short flows. In addition, a signifi-
cant decrease of bookkeeping overhead, of at least one orderof magnitude is obtained as
compared to LAS, which is convincing from a practical point of view. Lock-outs which
form the Achilles’ heel of LAS are avoided in EFD, similarly to Run2C. In contrast to
LAS and Run2C, EFD inherently takes both volume and rate intoaccount in its schedul-
ing decision due to the way flow bookkeeping is performed. We further demonstrated
that EFD can efficiently protect low/medium multimedia flowsin most situations.

Future directions of research on EFD will be to test its applicability to WLAN in-
frastructure networks, where the half-duplex nature of theMAC protocol needs to be
taken into account [16].

References

1. QualNet 4.5. Scalable Networks
2. Aalto, S., Lassila, P.: Impact of size-based scheduling on flow level performance in wireless

downlink data channels. Managing Traffic Performance in ConvergedNetworks pp. 1096–
1107 (2007)

3. Avrachenkov, K., Ayesta, U., Brown, P., Nyberg, E.: Differentiation between short and long
tcp flows: Predictability of the response time. In: Proc. IEEE INFOCOM (2004)

4. Divakaran, D.M., Carofiglio, G., Altman, E., Primet, P.V.B.: A flow scheduler architecture.
In: Networking. pp. 122–134 (2010)

5. Gittins, J.: Multi-armed bandit allocation indices. Wiley-Interscience (1989)
6. Golestani, S.: A self-clocked fair queueing scheme for broadbandapplications. In: INFO-

COM ’94. Networking for Global Communications., 13th Proceedings IEEE. pp. 636 –646
vol.2 (Jun 1994)

7. Heusse, M., Urvoy-Keller, G., Duda, A., Brown, T.X.: Least attained recent service for packet
scheduling over wireless lans. In: WoWMoM 2010 (2010)



14 J. Chen, M. Heusse, and G. Urvoy-Keller

8. Kleinrock, L.: Computer Applications, Volume 2, Queueing Systems. Wiley-Interscience, 1
edn. (April 1976)

9. Kortebi, A., Oueslati, S., Roberts, J.: Cross-protect: Implicit service differentiation and ad-
mission control. In: IEEE HPSR (2004)

10. Lassila, P., Aalto, S.: Combining opportunistic and size-based scheduling in wireless sys-
tems. In: MSWiM ’08: Proceedings of the 11th international symposium onModeling, anal-
ysis and simulation of wireless and mobile systems. pp. 323–332. ACM, New York, NY,
USA (2008)

11. Noureddine, W., Tobagi, F.: Improving the performance of interactive tcp applications using
service differentiation. In: Computer Networks Journal. pp. 2002–354. IEEE (2002)

12. Psounis, K., Ghosh, A., Prabhakar, B., Wang, G.: Sift: A simplealgorithm for tracking ele-
phant flows, and taking advantage of power laws. In: 43rd Annual Allerton Conference on
Control, Communication and Computing (2005)

13. Rai, I.A., Biersack, E.W., Urvoy-keller, G.: Size-based scheduling to improve the perfor-
mance of short tcp flows. IEEE Network pp. 12–17, vol.19 (2004)

14. Rai, I.A., Urvoy-Keller, G., Vernon, M.K., Biersack, E.W.: Performance analysis of las-
based scheduling disciplines in a packet switched network. In: SIGMETRICS 2004/PER-
FORMANCE 2004: Proceedings of the joint international conference onMeasurement and
modeling of computer systems. vol. 32, pp. 106–117. ACM Press, NewYork, NY, USA (June
2004)

15. Schroeder, B., Harchol-Balter, M.: Web servers under overload: How scheduling can help.
ACM Trans. Internet Technol. (1), 20–52, vol.6 (2006)

16. Urvoy-Keller, G., Beylot, A.L.: Improving flow level fairness and interactivity in wlans using
size-based scheduling policies. In: MSWiM ’08: Proceedings of the 11thinternational sym-
posium on Modeling, analysis and simulation of wireless and mobile systems.pp. 333–340.
ACM (2008)


