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ABSTRACT

In this paper, we present a new approach for dense stereo matching which is mainly oriented towards the
recovery of depth map of an observed scene. The extraction of depth information from the disparity map is well
understood, while the correspondence problem is still subject to errors. In our approach, we propose optimizing
correlation based technique by detecting and rejecting mismatched points that occur in the commonly challenging
image regions such as textureless areas, occluded portions and discontinuities. The missing values are completed
by incorporating edges detection to avoid that a window contains more than one object. It is an efficient method
for selecting a variable window size with adaptive shape in order to get accurate results at depth discontinuities
and in homogeneous areas while keeping a low complexity of the whole system. Experimental results using the
Middlebury datasets demonstrate the validity of our presented approach. The main domain of applications for
this study is the design of new functionalities within the context of mobile devices.
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1. INTRODUCTION

Researchers have been giving special attention to stereo vision systems capable of perceiving accurate depth
information of an observed scene. Most stereo vision implementations are based on two forward-facing cameras,
where each camera delivers a 2D projection of a scene. The main difficulty encountered in this context is stereo
matching which determines the spatial displacement between each two corresponding pixels in a stereo pair.
This process is termed as correspondence problem and it aims at estimating a disparity map which is the set of
disparity values of all the pixels in a reference image.

Intensive research1,2 has been conducted in the recent decades to solve the problem of finding the correspon-
dences between the right and the left images. For more details, a good taxonomy of dense two-frame stereo
matching algorithms can be found in.3 In general, stereo matching algorithms can be categorized into two major
classes: local and global methods. Global methods formulate the problem in terms of an energy function, which
is subject to optimization. Then, all disparities are determined simultaneously by applying energy minimization
techniques. Global methods usually achieve high matching accuracy such as graph cuts,4 dynamic programming5

and belief propagation.6 However, most of these methods are computationally expensive.

Compared with them, local methods7 have higher efficiency and they are more suitable for real-time applica-
tion. To retain more smoothness in the disparity map, local methods based on correlation are utilizing the color
or intensity values within a finite window. These methods have been widely employed, where a cost function
is evaluated over a window around the pixel of interest. Correlation based methods fail in most points because
they are strictly based on the resemblance constraint by assuming that the intensities of corresponding points
are similar which is not robust to changes in illumination and contrast variation. Also, these methods are not
able to deal with the problems8 of occluded areas and discontinuities where some parts of one image are hidden
in the second image. Moreover, pixels inside textureless regions and repetitive patterns are hard to be properly
matched since the horizontal variation in such areas is very low.

Added to that, another central problem in correlation technique lies on selecting an appropriate window size:
large window increases the reliability by averaging over a big area and increasing the effects of noise. However,
using large window may affect the result by blurring the objects borders. On the other hand, if the window is
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very small, it does not cover intensity variation and it gives a poor disparity estimate. Thus, as window size is
increased from small to large, the resulting disparity map changes from accurate boundaries but noisy in low
texture areas to more reliable in low texture areas but blurred disparity boundaries. Generally, the choice of
the correlation window size is a tradeoff between increasing reliability in low textured areas and decreasing the
blurring effects in boundaries.9 In addition, local support window is used to reduce the image ambiguity, it
implicitly assumes that all pixels belonging to the support are from similar depth in a scene and therefore, they
share similar disparity. The problem is that this assumption is not always validated, since the support window
located on depth discontinuities represent pixels from different depths.

By ignoring these problems, most methods use a rectangular window of a fixed size, which may give bad
performance and erroneous results. Therefore, earlier researchers attempt to overcome these limitations by
allowing the window to vary across the image. Most of these methods9 vary the size depending on local variation
of intensity, but they still restrict the window to rectangular shape. However, there have been few works on
varying the shape of the window.10

These ambiguities left by correlation-based methods make the matching process more challenging and the
recovery of accurate disparity still difficult to be properly addressed. Therefore, in this paper we present a new
dense stereo matching algorithm based on correlation and showing progress in handling problems of mismatched
points. It is a three steps framework; first, an appropriate cost matching is used to avoid the drawbacks
of possible ambiguous matches caused by the violation of the resemblance constraint. Then, a bidirectional
matching is applied to detect and to reject mismatches. A matching is valid only if after a return (e.g. right-
left-right) the final position is the same as the initial one. Third, the created holes at this stage will be filled in
by incorporating edges detection to obtain full disparity map that can be converted to depth map using simple
triangulation.

The rest of the paper is organized as follows: Section 2 details the development of the proposed approach
for stereo matching. The extraction of depth information is described in Section 3. Section 4 shows the
experimental results to demonstrate the effectiveness and robustness of our approach. Finally, we give a brief
conclusion in Section 5.

2. PROPOSED APPROACH FOR STEREO MATCHING

The proposed method for stereo matching employs correlation-based technique to estimate the disparity map on
a stereo pair and it is performed in three consecutive steps:

2.1 First step: Finding matching candidates

Using a pair of rectified stereo images I1 and I2, for a given pixel in the reference image, the matching candidates
in the second image belong not only on the same scanline but also to a well defined disparity range [0...dmax].11

To find the best corresponding point, a matching cost should be adopted. The most common measure is SAD12

which assumes similar intensity values for two matching pixels. Other matching measures like gradient based
are more robust to changes in illumination and camera gain.

In our proposed approach, we use a matching metric that combines SAD and a gradient measures13 which
are defined as:

CSAD(x, y, d) =
∑

(i,j)∈W (x,y)

|I1(i, j) − I2(i, j − d)| (1)

CGRAD(x, y, d) =
∑

(i,j)∈W (x,y)

|∇xI1(i, j) −∇xI2(i, j − d)| +
∑

(i,j)∈W (x,y)

|∇yI1(i, j) −∇yI2(i, j − d)| (2)

where W (x, y) is a window surrounding the position (x, y), d is a disparity value, ∇x is the forward gradient
to the right and ∇y is the forward gradient to the bottom. These measures (CSAD and CGRAD) are performed
with color model by summing the differences for all channels. The resulting matching cost C is defined by:

C(x, y, d) = λCSAD(x, y, d) + (1 − λ) ∗ CGRAD(x, y, d) (3)



where λ is a weight parameter that is chosen to maximize the number of reliable correspondences. So, for every
pixel of interest in the left image, a surrounding block of pixels slide across a row from the right image and the
function C is computed at each position, the selected disparity value corresponds to the smallest matching cost
and it is given by:

disp(x, y) = arg min
d∈[0...dmax]

C(x, y, d) (4)

2.2 Second step: Rejecting mismatches

The existence of the problems described above suggests that the matching problem has not been properly
approached. Therefore, after estimating the disparity at each pixel in the image, this step attempts to keep only
disparities of reliable points by rejecting points that are mismatched. It is at the same time a way to detect
occluded and low textured areas since almost of false matched points appear in such parts.

2.2.1 Bidirectional matching

A first idea to deal with occluded and low textured areas is bidirectional matching;14 unlike most of stereo
matching algorithms that compute disparity map with left image as reference, bidirectional matching creates
two disparity maps relative to each image. It consists of applying the procedure described above twice: once
with left image as reference and once with right one. Then, we compare left-to-right and right-to-left disparity
maps to reject false matches. As it is shown in Figure 1, after producing two disparity maps disp1 and
disp2, the process is as follow: we pick up pixel at position (i, j) from the second map, the disparity value is
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Figure 1. Bidirectional matching.

disp2(i, j). We establish first match between pixel (i, j) from the second map and pixel (i, j + disp2(i, j)) from
the first map. Then, at position (i, j + disp2(i, j)), we pick up pixel from the first map, the disparity value is
disp1(i, j + disp2(i, j)). We establish second match between pixel (i, j + disp2(i, j)) from the first map and pixel
(i, j + disp2(i, j) − disp1(i, j + disp2(i, j))) from the second map. We define E as:

E(i, j + disp2(i, j)) = disp2(i, j) − disp1(i, j + disp2(i, j)) (5)

When E(i, j) is equal to zero, we start from a point on the right hand-side image to reach another point on the
left hand side image and we go back to the right handside image to reach the initial point; it means the same
match is established whatever we used left or right image as reference.

To conclude, bidirectional matching is a typical method to detect occluded and low textured areas. For the
same purpose, we have also proposed a set of constraints and rules.

2.2.2 Constraints

We propose to impose traditional assumptions for matching in order to be able to augment the confidence of a
given match and to decrease the number of mismatches.2 These constraints are:

• Uniqueness constraint : Every point can only be coupled to at most one point15 from the other image.
This constraint is violated in the case of transparent objects.16 Moreover, it has been extensively applied
to explicit detect occlusions.



• Ordering constraint : The second constraint is about ordering, it also has been able to successfully detect
occlusions. This additional assumption states that if an object O1 is on the left of an object O2 in the left
image, then the object O1 will also appear on the left of the object O2 in the right image.17

• Continuity constraint: This assumption states that disparity values are continuous almost everywhere.17

It means neighboring points must have consistent match values. In most scenes, the continuity assumption
is valid since physical surfaces are locally considered smooth. But, at edges, this assumption should be
canceled.

2.3 Third step: Filling in the disparity maps

After the validation step, we have as input resulting disparity map with known and missing values. The task is
to complete the missing data problem. To achieve this goal, the easiest solution is to use low pass filter. But,
we have chosen to address the problem differently. The idea is to keep the same values of known disparities and
to give smooth values for missing ones. Since we start by using rectangular window with fixed size, this choice
will give incorrect results in two cases:

• Depth discontinuities:10 if the correlation window overlaps a depth discontinuity, it manifests when a part
of the window contains pixels from different depth with the pixel under consideration, which affects the
results arbitrarily.

• Homogeneous areas: if the support window does not cover intensity variation, the matching process yields
wrong results.

Considering the existence of these problems, this step aims at correcting the false matches to get accurate results
at depth discontinuities as well as in homogeneous regions. To properly deal with the image ambiguity problem,
we describe an efficient method for selecting a variable window size with adaptive shape such that the support
window varies at each pixel (of incorrect disparity value). To go a little bit on details, we start by detecting the
edges in the reference image. Then, we use large window to cover sufficient intensity variation. After that, for
each missing value in the disparity map, we define the window of the pixels that encountered the pixel of interest.
By using the edge detection result, we retain only pixels that belong to the same connected component to retrieve
the proper object shape and to avoid crossing the boundaries. It is efficient way to restrict the amount of pixels
used for correlation and to avoid that a window contains more than one object. The choice of this adaptively
reshaped window reduces the influence of errors called outliers. We should notice that we did not use variable
window in the whole image, because it is time consuming process, also, it results noisy disparity map. So, the
best way is to vary the shape and the size of the window only at the points where the matching is not correct.

3. DEPTH MAP ESTIMATION

We proposed a novel approach to compute the disparity map. This information can be converted to depth map1

which indicates the distances from surfaces to the imaging system. At position (i, j), the depth Z is defined by:

Z(i, j) = f.
B

d(i, j
(6)

where f denotes the focal length, B is the baseline and d is the disparity value.
Uncertainties in finding disparity values lead to errors in depth map. By denoting Ẑ and Z the estimated and
the actual depths respectively, we get:

Z =
B ∗ f

d
(7)

Ẑ =
B ∗ f

d̂
(8)



Where d̂, d are the estimated and the actual disparity values respectively. By considering ∆d the uncertainty in
finding a disparity value and ∆z the error of computing the depth map at that range, the equation which relates
both of these variables is:

∆Z = |Ẑ − Z| =
Ẑ

d̂
∆d

− 1
(9)

As a result, depth error vs. disparity error can be plotted in a graphical form as it is shown in Figure 2:
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Figure 2. Depth error vs. disparity error.

4. EXPERIMENTAL RESULTS

The experiments have been performed on a laptop Intel Core 2 Duo P7350, 2 GHZ, 4 Go RAM, the calculation
of the disparity map for a stereo pair takes between 25 and 36 seconds. In this section, we present experiment
results on various datasets with comparisons to the state-of-the-art stereo algorithms. In Figure 3, the proposed
approach for stereo matching is evaluated using the Middlebury datasets (http://vision.middlebury.edu/stereo/),
we see the resulting disparity maps obtained on four stereo pairs. By viewing gray level results, close up
objects have bigger disparity values while further-away objects are lineup very close. For each stereo pair, in
the same figure, we show the difference between the computed disparity map and the ground truth disparity.
Quantitative results and comparisons with NCC (Normalized Cross Correlation) method, Daisy descriptor18 and
Local evidence19 methods are reported in Table 1. In this table, to better evaluate the results, we computed the
quality metric EQM (Error Quadratic Means) using the following formula:

EQM =
1

N ∗ M

√

∑

i,j

(I1(i, j) − I2(i, j))2 (10)

where N ∗ M is the size of the image, I1 is the computed disparity map and I2 is the ground truth disparity
map.
From this table, it is shown that our approach provides more accurate disparity maps (smaller EQM values)
compared to the other cited stereo matching methods.

5. CONCLUSION

A new stereo matching approach has been introduced in order to estimate dense and accurate disparity map. It is
capable of addressing the problems of different intensity values between two images of a stereo pair. In addition,
it is able of avoiding the drawbacks of ambiguous matches by validating the resulting disparity map. Using the
Middlebury datasets, our approach has been experimentally validated showing encouraging performance. Also,
by means of comparisons with other approaches in the literature, we demonstrated the overall performance of
our results.



Stereo pair Proposed method NCC method LCC method Daisy descriptor
Dolls 5.0225 39.0779 5.8945 9.7493

Moebius 4.5028 31.6552 7.59322 8.8978
Aloe 2.82462 22.359 3.2399 10.186
Cones 11.3624 37.1176 12.3804 12.2502

Reindeer 5.628 38.5676 11.1398 12.219

Table 1. Comparisons between stereo matching algorithms in terms of Error Quadratic Means on different Middlebury
stereo pairs
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Figure 3. Our results on Middlebury datasets. From top to down order: Dolls, Moebius, Aloe, Cones and Reindeer
stereo pairs. From left to right order: reference images, ground truth disparity maps, extracted disparity maps and
difference maps between ground truth and extracted disparity maps (with cool colormap which varies smoothly from cyan
to magenta)


