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ABSTRACT

This paper addresses the problem of acoustic echo cancellation in
non-linear environments. The rst contribution relates to the use
of a cascaded model which divides the loudspeaker enclosure mi-
crophone system into two main blocks; the rst models the down-
link transducers which are assumed to be the main source of non-
linearity. The second block includes the acoustical channel and up-
link transducers which are assumed to be linear and have a compara-
tively longer impulse response and higher time variability. The sec-
ond contribution is a new non-linear adaptive echo canceler which is
based on the cascaded model and has greater robustness to changes
in the acoustic channel than an existing power lter approach.

Index Terms— Acoustic echo cancellation, non-linear echo,
Volterra series

1. INTRODUCTION

The explosion of the mobile phone market and the need for low cost
devices and miniaturization of components has led to the widespread
use of lower quality, smaller loudspeakers that can introduce non-
linearities in the acoustical coupling between the loudspeaker and
microphone. This can result in non-linear echo artifacts in the up-
link signal and thus echo cancellation algorithms are generally em-
ployed to improve speech quality.

Non-linearities generally degrade the performance of most echo
cancellation algorithms that are based on the assumption of linearity
and thus the problem of non-linear echo cancellation has emerged as
an increasingly important problem [1].

There are two main approaches to tackle the problem of non-
linearities in the acoustic path. The rst approach is based on non-
linear post ltering to suppress the residual non-linear echo [2]. In
general the post- lter is preceded by a conventional linear adaptive
lter. However, non-linearities have an adverse effect on linear l-

tering which impacts upon non-linear post processing and thus de-
grades global performance. The second, more popular approach is
based on the use of a Volterra series and non-linear adaptive lter-
ing [3]. Whilst there is less dependence on the performance of linear
ltering the approach typically suffers from slow convergence.

In general the Volterra model takes a uni ed approach to es-
timate the overall Loudspeaker Enclosure Microphone (LEM) sys-
tem. This involves the simultaneous tracking of non-linearities and
changes in the acoustical channel, i.e. the path between the loud-
speaker and microphone. This is potentially inef cient since the
same acoustic path is estimated by each Volterra sub- lter. Since
the sub- lter inputs are correlated converge is typically slow. This
paper proposes a new method that can improve the convergence of
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Fig. 1. The LEM is divided in two parts, the rst one corresponds to
non-linear model (red) and the second part is the linear model.

the system using a cascaded LEM model. This approach uses a pre-
processor which, aims to model the loudspeaker non-linearities, in
series with a conventional linear adaptive lter to model the time
varying acoustical channel. The linear adaptive lter is thus applied
to a single input signal, which estimates the loudspeaker output, in-
stead of being applied in parallel to the inputs of each sub- lter as in
the Volterra model. Similar approaches to pre-processing based on
clipping or polynomial models have already been proposed in [3, 4,
5]. In this paper we propose a new approach to pre-processing which
is based upon the loudspeaker model proposed in [6]. The model
in [6] uses parallel polynomial lters follow by a linear nite im-
pulse response (FIR) lter to model the loudspeaker non-linearities
and can be considered equivalent to power lters [7]. However, the
proposed model is static, is thus dependent to the speci c device and
does not track slow variations which might occur over time. In this
paper we propose an adaptive approach which explicitly models the
loudspeaker characteristics and hence delivers superior echo cancel-
lation performance.

The remainder of this paper is organized as follow. In Section 2
we present the new cascaded model of the Loudspeaker Enclosure
Microphone (LEM). In Section 3 we present the proposed non-linear
acoustic echo canceler. Experimental work is presented in Section
4. Finally we present conclusions in Section 5.

2. LEM SYSTEM MODEL

In this section we present a general model of the LEM system. We
also review the power lter presented in [7] and the new approach
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Fig. 2. Proposed model with P lower sub- lter (hp(n)) in the pre-
processor and the power lter model with P longer sub lter (h′

p(n)).

proposed in this paper.
The general LEM system illustrated in Figure 1 can be divided

into three different parts. The rst involves the down-link com-
ponents and includes the ampli er and loudspeaker. This part of
the system is well-known to have the greatest contribution to non-
linearities [3, 6, 7]. Non-linearities stem from the the use of smaller
loudspeakers and from higher signal levels in hands-free mode. With
smaller components shorter impulse responses and lower variability
is safely assumed [6]. The second part of the system is the acousti-
cal channel which, in the absence of signi cant non-linearities, can
be well-modelled by a linear lter [8]. The acoustical channel has
a signi cantly longer impulse response and also a higher degree of
time variability and thus ltering approaches are generally adaptive
in nature [8]. The third part involves the up-link components and
includes the microphone and ampli er. This part introduces less dis-
tortion and is generally assumed to be linear [3, 5, 7].

In view of their different characteristics and in contrast to the
majority of current approaches, the idea here is to represent each
part of the system with a separate, distinct model. The rst part is
distinctly non-linear whereas the second and third parts are predom-
inantly linear. It is therefore desirable to use just two lters: one
to represent the down-link path, which is assumed to have a short
impulse response and be the principle source of non-linearities, and
a second lter to represent both the acoustical channel and the up-
link path. The linear part is dominated by the characteristics of the
acoustical channel: a longer impulse response and higher variability.
This strategy leads to a cascaded model of the acoustic echo path as
illustrated in Figure 1 which includes a separate pre-processor and
linear adaptive lter for acoustic echo cancellation (AEC).

With such an approach conventional linear adaptive lters are
well suited to the second part. Being non-linear the down-link path
is more troublesome but polynomial models [6] and power lters [7]
are appropriate. A polynomial loudspeaker model as in [6] is used
here, so that its combination with a linear lter (Figure 2 (a)) is com-
parable to the power lter model for non-linear AEC (Figure 2 (b)).
Here the sub- lters of the power lter model are a combination of the
pre-processor sub- lters ĥp(n) and the linear lter ĥ(n) and leads to
the equality ĥ′

p(n) = ĥ(n) ∗ ĥp(n). For each sub- lter ĥ′
p(n) we

need at least the same number of taps as ĥ(n) to model the LEM
system with power lters. With more taps and high variability in the
acoustical channel it becomes dif cult to track the LEM system in
this way which thus explains why the Volterra model is dif cult to
use in practice. An orthogonalization procedure was introduced in
[7] to improve the performance when the length of ĥ′

p is too large.

The orthogonalization effect is explained in the following section
which includes a detailed description of our approach.

3. CASCADED APPROACH TO NON-LINEAR AEC

In this section we present our new approach to non-linear acous-
tic echo cancellation with emphasis on the estimation of the loud-
speaker model. We derive the Wiener solution to show the effect of
input correlation, which led to the idea of orthogonalization of the
inputs for power lters in [7], before deriving the adaptive solution.

Filter estimation is performed according to the Minimum Mean
Square Error (MMSE) criterion. The Mean Square Error (MSE) is
given by:

E{e2(n)} = E{(y(n)− ŷ(n))2}

where y(n) is the echo signal and ŷ(n) is the estimated signal given
by:

ŷ(n) = ĥ
T
(n)ŷ

P
(n)

ĥ(n) is an N -column vector which represents the echo path and
ŷ
P
(n) is anN -column vector which contains the loudspeaker output

given by:

ŷ
P
(n) =

P∑

p=1

ĥ
T

p (n)xp(n)

ĥp(n) is the estimated lter vector of length Np and xp(n) =
[xp(n), ..., xp(n−Np + 1)]T . The error can thus be written as:

e(n) = y(n)− ĥ
T
(n)

P∑

p=1

ĥ
T

p (n)Xp(n) (1)

where Xp(n) = [xp(n), ..., xp(n−N +1)]. As Equation 1 contains
too many unknowns we need to assume that ŷ

P
(n) = y

P
(n), i.e.

that the estimate is equal to the true value. The MMSE solution of
ĥ(n) is then given by:

ĥ = Ry,y
P

R−1

y
P

where Ry,y
P

is the cross-correlation between the microphone signal
and the output of the loudspeaker and Ry

P
is the auto-correlation of

the loudspeaker output. This solution thus depends on knowledge of
the loudspeaker output and will be discussed later in this section.

Here we derive the pre-processor sub- lters while assuming that
only the lter ĥk is unknown whereas the others are known (ĥ = h
and ĥp �=k = hp �=k). The MMSE solution is given by:

δE{e(n)2}

δhk

=
δE{(y(n)− hT (n)

∑P

p=1
ĥ
T

p (n)Xp(n))
2}

δhk

= E{Xk(n)ĥ
T
(n)

(
y(n)− hT (n)

P∑

p=1

ĥ
T

p (n)Xp(n)
)
}

If we suppose that Xk(n)ĥ
T
(n) = ỹk(n),ỹk(n) has a length of Nk

then:

δE{e(n)2}

δhk

= E{ỹk(n)
(
y(n)− ĥ

T
(n)

P∑

p=1

hT
p (n)Xp(n)

)
}

= Ry,ỹk − RYp�=k,ỹk − hkRỹk

where Ry,ỹk is the cross-correlation between the echo signal and
the corresponding output, RYp�=k,ỹk is the cross-correlation between
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the other sub- lter outputs and the output of the sub- lter k. The
estimate of the lter hk in the MMSE sense is given by:

ĥk =
(
Ry,yk − RYp�=k,ỹk

)
R−1

yk
(2)

Equation 2 shows that the estimation of the pre-processor sub- lters
are dependent due to their inter-correlation. As the inputs of the
pre-processor sub- lters are the powers of the same signal this may
lead to a degradation of the estimation as a direct consequence of the
inter-correlation. To overcome this limitation an orthogonalization
procedure is introduced in [7] and shows that better performance is
achieved when the sub- lter inputs are orthogonal. Orthogonaliza-
tion leads to Ry,ỹk = Ryk,ỹk and RYp�=k,ỹk = 0 so that the lter
parameters become independent. In the proposed model we did not
use orthogonalization since, with fewer taps in the pre-processor l-
ters, it does not improve performance. As shown in [7] a further bias
correction would be needed to improve performance and would lead
to an overly complex solution in our case.

As we are in a short-term stationary environment adaptive lters
are a necessity. The Least Mean Square (LMS) adaptive lter can
easily be derived using an approach similar to that described in [4,
5, 9]. The LMS algorithm for the sub- lter hk(n) is given by:

ĥk(n+ 1) = ĥk(n) +
1

2
μk

δe(n)2

δhk

(3)

= ĥk(n) + μk

δe(n)

δhk

e(n)

= ĥk(n) + μkXk(n)ĥ
T
(n)e(n)

whereas the linear lter is given by:

ĥ(n+ 1) = ĥ(n) + μŶP (n)e(n) (4)

Equations 3 and 4 show that the linear lter and the pre-
processor lter estimates are dependent. The problem of the depen-
dency between lters is discussed in [5] where the authors suggest
that linear lter adaptation is done before adaptation of the pre-
processor. Here we start with the linear lter ĥ(n) and the sub- lters
ĥ1(n) and ĥ2(n), since their inputs are the least correlated.

4. EXPERIMENTAL WORK

In the following we report a performance comparison of the cas-
caded ltering approach to both linear and power ltering ap-
proaches. In all cases tests were conducted with two different
acoustic environments and the focus is on the robustness of the
approaches to changes in the acoustic channel.

4.1. Test set-up

The non-linear environment is simulated with P = 5 sub- lters,
each with 100 taps, for the rst part of the system illustrated in Fig-
ure 2(a). A single, longer lter with either 200 or 300 taps is used to
model the second part (acoustic channel and up-link). Additive noise
is introduced to obtain two separate noise conditions of 30 dB and
40 dB SNR which is the ratio of the echo and noise signal energies.
Arti cial changes in the acoustical channel are introduced every 10
seconds simply by appending a sequence of zeros to the beginning
of the impulse response, i.e. the impulse response is shifted or de-
layed by 2.5 ms in each case. This is done to assess the dynamic
re-convergence performance of each algorithm. Here a normalized
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step size is used for the cascaded method which is given by:

μk =
μkn∥∥∥Xk(n)ĥ

T
∥∥∥
2

+ δk

,

where δ is the regularization factor.

4.2. Common lter parameterizations

For the test whose results are illustrated in Figure 4 the number of
taps for the acoustical channel lter is set at 200. The SNR is 40 dB.
Illustrated are the ERLE pro les for four different algorithms. A set
of common lter parameters were applied to all four algorithms and
were chosen to maintain stability during changes in the acoustical
path. The four lters and con gurations are: the linear NLMS al-
gorithm (N = 200, μ = .5, δ = 1e − 7), a power lter without
orthogonalization (see explanation in Section 3) (Np=1,,5 = 200,
μ1 = .5, μp=2,..,5 = .01, δ1 = 1e − 7, δp=2,..,5 = 1e − 4) and
the new cascaded algorithm (N = 200, μ = .5, μp=1,..,5 = .01,
δ1 = 1e − 7, δp=1,..,5 = 1e − 4) with two different lengths for the
down-link model Np=1,,5 = 5 and Np=1,,5 = 3.

As shown in Figure 4 all algorithms start to converge at ap-
proximately the same rate but the NLMS algorithm reaches a lower
maximum ERLE than other algorithms. This is due to the poor ro-
bustness of NLMS algorithms to noise and non-linearities [1]. Both
the power lter and new cascaded methods achieve a higher level of
ERLE. Upon initialization and each change in the acoustical channel
we observe that the cascaded method converges more quickly than
the power lter. This is due to the fact that changes in the acousti-
cal channel have less impact on the pre-processor as it is designed
to converge slowly. Robustness can be improved by decreasing the
step-size or by increasing the pre-processor lter length but this has
the effect of slower convergence at initialization.

4.3. Optimized lter parameterizations

Figure 5 illustrates performance where the acoustical channel lter
has 300 taps and where the SNR is 30 dB. Changes in the acous-
tical channel are introduced every 10 seconds as before. For this
experiment lter parameters were optimized independently for all
four lters and the different acoustic conditions. The lters and con-
gurations are: the linear NLMS algorithm (N = 300, μ = .7, δ =

1e − 7), a power lter without orthogonalization (Np=1,,5 = 300,
μ1 = .7, μp=2,..,5 = .3, δ1 = 1e − 7, δp=2,..,5 = 1e − 3) and the
cascaded method (N = 300, μ = .7, μp=1,..,5 = .01, δ1 = 1e− 7,
δp=1,..,5 = 1e − 4) with two different lengths for the loudspeaker
model Np=1,,5 = 3 and Np=1,,5 = 5.

In contrast to the rst test all methods converge after initializa-
tion to a similar level of ERLE but both the power lter and the
cascaded lter ultimately give better performance than the NLMS
algorithm. With a higher step-size the power lter initially outper-
forms the cascaded lter, albeit only marginally. Upon changes in
the acoustical channel, however, the cascaded lter is more robust
than the power lter which has slower convergence but eventually
reaches similar levels of performance. Larger step-sizes for the pre-
processor in the cascaded lter do not improve initial performance
as the algorithm becomes unstable. We also note that upon each
change in the acoustical channel the power lter exhibits similarly
poor convergence and levels of ERLE as the NLMS algorithm. Even
if it ultimately achieves higher levels of ERLE it generally remains
lower than the ERLE obtained by the cascaded lter.

In contrast to the results in Figure 4 we observe here that the cas-
caded lter has slightly lower performance for Np = 5 than for
Np = 3. This is due to the fact that, with more taps, more time is
needed for convergence.

Robustness to changes in the acoustical channel is a challenging
problem. We acknowledge that the arti cial changes in the acous-
tical channel that are used here to assess each algorithm are more
abrupt than typically encountered in practice. Results nonetheless
demonstrate the importance and perhaps account for why some re-
searchers prefer acoustic echo suppression to cancellation [10].

5. CONCLUSIONS

This paper presents a cascaded approach to non-linear acoustic echo
cancellation with loudspeaker non-linearities and acoustic echo vari-
ation. The MMSE solution is rst derived to explain the effect of
sub- lter input correlation on adaptation. We then propose an adap-
tive approach which exploits the reduced effect of correlation when
the sub- lters have fewer taps and introduce a procedure to increase
system stability and robustness to changes in the acoustical channel.
This is achieved by con guring the pre-processor to converge slowly
by using a small step-size. At the expense of poorer initial conver-
gence the approach is shown to be more stable and robust than a
parallel model based on power lters.

An open issue with the current system relates to system com-
plexity, which is directly related to the number of sub- lters, which
in turn has a bearing on the estimation of loudspeaker non-linearities.
Work thus far has studied up to orders of P = 5 which might lead
to prohibitive complexity for real-time implementation in low cost
mobile devices. Further work should therefore address the in uence
of P on reliable estimation of non-linearities.
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