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ABSTRACT

While bottom-up approaches have emerged as the standard, default
approach to clustering for speaker diarization we have always found
the top-down approach gives equivalent or superior performance.
Our recent work shows that significant gains in performance can be
obtained when cluster purification is applied to the output of top-
down systems but that it can degrade performance when applied
to the output of bottom-up systems. This paper demonstrates that
these observations can be accounted for by factors unrelated to the
speaker and that they can impact more strongly on the performance
of bottom-up clustering strategies than top-down strategies. Ex-
perimental results confirm that clusters produced through top-down
clustering are better normalized against phone variation than those
produced through bottom-up clustering and that this accounts for
the observed inconsistencies in purification performance. The work
highlights the need for marginalization strategies which should en-
courage convergence toward different speakers rather than toward
nuisance factors such as that those related to the linguistic content.

Index Terms— Speaker diarization, hierarchical clustering, pu-
rification, phone normalization

1. INTRODUCTION

Over the last few years speaker diarization has emerged as a dedi-
cated and increasingly active field of research and has utility in any
situation where multiple (and possibly competing, or overlapping)
speakers may be expected. Speaker diarization involves identifying
the number of speakers within an acoustic stream and the labeling
of intervals in which each speaker is active. The problem is usu-
ally unsupervised, i.e. no a priori knowledge is available. This leads
to a trial-and-error search for an optimal speaker inventory and the
two dominant approaches to speaker diarization: bottom-up and top-
down.

The bottom-up approach is by far the most popular and systems
based on this approach have consistently achieved the best levels of
performance in the NIST RT evaluations [1], e.g. [2, 3], although
top-down systems also achieve competitive results [4]. While some
have reported that bottom-up approaches are more robust than their
top-down counterparts [5] our own work [6] shows that the two ap-
proaches give comparable results, with neither being consistently su-
perior to the other.

One noticeable difference that we have observed in the perfor-
mance of the two approaches relates to purification. Purification
techniques aim to ‘purify’ clusters of speech from all but the domi-
nant speaker and are reported by many to give significant improve-
ments with bottom-up approaches [7, 8, 9]. Our experience, how-

ever, shows that performance can sometimes deteriorate when pu-
rification is applied to bottom-up strategies but that it leads to con-
sistent improvements in top-down systems [6]. These observations
led us to investigate the two diarization approaches more thoroughly
and to study their relative merits.

The contribution in this paper relates to a comparison of bottom-
up and top-down approaches to speaker diarization. The study shows
that the two clustering approaches are similarly effective in search-
ing for the optimal number of speakers but behave differently in
discriminating between individual speakers and in normalizing nui-
sance variation. This paper concentrates on linguistic effects which
are not explicitly related to differences between speakers. Such fac-
tors can make top-down systems more stable but less discriminative,
and vice versa for bottom-up systems. We also explain why purifi-
cation works well with top-down approaches but why it can degrade
results when applied to bottom-up systems.

The remainder of this paper is organized as follows. Section 2
aims to formalize the problem of speaker diarization and includes an
analysis of the challenges that must be addressed in practical sys-
tems. This analysis leads naturally to the bottom-up and top-down
approaches which are qualitatively compared in Section 3. Empirical
results reported in Section 4 aim to confirm the theory. Conclusions
and directions for future work are presented in Section 5.

2. PROBLEM FORMULATION

Let O denote the parameterized audio stream. The task of speaker
diarization can be formally defined as follows:

(S̃, G̃) = argmax
S,G

P (S, G|O)

= argmax
S,G

P (S, G)P (O|S, G) (1)

where S and G are the speaker sequence and segmentation respec-
tively and where S̃ and G̃ are their optimized counterparts repre-
senting who (S) spoke when (G). Two models are thus required
to solve the optimization task: acoustic speaker models P (O|S, G)
and speaker turn models P (S, G). The former are usually conven-
tional Gaussian mixture models (GMMs) whereas the latter are usu-
ally omitted altogether.

There are two principle difficulties in implementing a practical
speaker diarization system. First, the number of speakers is unknown
and it is thus necessary to determine a speaker inventory. Second,
whilst the acoustic models depend fundamentally on the speaker,
they also depend on a number of other nuisance factors such as the
linguistic content. In this paper we assume for simplicity that the
major nuisance variation relates only to the phone class of uttered
speech, which we denote as Q.



To formulate a solution which addresses these two challenges,
we introduce the speaker inventory ∆, and let Γ(∆) represent all
possible speaker sequences. By omitting the speaker turn model we
derive the solution from Equation 1 as follows:

(S̃, G̃, ∆̃) = argmax
S,G,∆:S∈Γ(∆)

∑
Q

P (O|S, G, Q)P (Q|S)

= argmax
S,G,∆:S∈Γ(∆)

∑
Q

P (O|S, G, Q)P (Q) (2)

where Q is naturally independent of G and is further assumed to be
independent of S. Equation 2 reveals two important issues that any
practical speaker diarization system must address. First, the speaker
inventory ∆ must be optimized together with the speaker sequence
S and the segmentation G. There is no analytical solution for ∆
and so a trial-and-error search is typically conducted. This leads to
the two principle approaches to speaker diarization: the bottom-up
approach, which searches for an optimal ∆ by starting with a larger
inventory before moving to a smaller inventory, and the top-down
approach whose search is performed in the opposite direction. They
are commonly referred to as agglomerative and divisive hierarchi-
cal clustering respectively. Second, upon the comparison of Equa-
tions 1 and 2, we note that the acoustic speaker model P (O|S, G)
is phone normalized. This implies that P (O|S, G) must be trained
with speech material containing all possible phones, otherwise Q
will not be marginalized.

3. BOTTOM-UP VERSUS TOP-DOWN

The bottom-up and top-down approaches to speaker diarization are
opposing strategies to determine a speaker inventory ∆. Both ap-
proaches have the potential to obtain the same inventory and thus the
direction in which it is sought (top-down or bottom-up) is inconse-
quential; of paramount importance is how well the acoustic speaker
models P (O|S, G) are normalized against nuisance factors (such as
Q) and how well they discriminate between speakers. In this section
we compare the two processes in this respect.

3.1. Normalization and discrimination

Both bottom-up and top-down approaches rely heavily on the ex-
pectation maximisation (EM) algorithm and will converge to a lo-
cal maximum of Equation 2 for a fixed size ∆. In the case where
inter-speaker variation dominates over intra-speaker variation then
we can assume that the local maximum corresponds to an optimal
diarization on speakers, as opposed to any other acoustic class. In
this situation, both bottom-up and top-down systems should provide
similar diarization outputs. However, where the linguistic content
bears a significant influence the local maximum may correspond to
other acoustic units, such as phones Q instead of speakers S, partic-
ularly if the different speaker models are not well normalized, i.e. Q
is not fully marginalized.

The top-down approach draws new speakers from a potentially
well-normalized background model and usually exploits a large
amount data for model adaptation. In this case linguistic nuances
tends to be marginalized and the resulting models tend to be well
normalized. However the speaker variation may also be normalized
together with linguistic nuances. This is essential to avoid since
it leads to less discriminative speaker models. The bottom-up ap-
proach, on the contrary, is more likely to converge quickly to a local
maximum of Equation 2 due to the large number of small clusters

that are created for initialisation, which leads to highly discrimi-
native models at the beginning of the iterative process. However,
while these models may discriminate between speakers, they may
also discriminate between linguistic nuances, such as particular
phone classes. In other words, speaker clusters obtained with the
bottom-up approach tend to be poorly normalized. This is particu-
larly true when short-term cepstral-based features are used, though
recent work with prosodic features have potential to discourage such
behavior [10].

This argument highlights the respective advantage and disadvan-
tage of the two diarization approaches: top-down systems tend to be
well normalized but less discriminative, whereas bottom-up systems
are more discriminative but less normalized.

3.2. Speaker purification

No matter which approach is applied, the central idea is to maximise
discrimination between speakers while normalizing non-speaker
variations. For bottom-up systems, the paramount objective is to
normalize non-speaker variations, in particular linguistic nuances,
while for top-down approaches, the emphasis is to increase discrim-
inability. Purification [4] is such a technique for improving cluster
discrimination. By purifying the resulting models of data from other
speakers, more discriminative models can be obtained and better
diarization results are expected. Significant improvements have
been reported with purification for both bottom-up systems [7, 8, 9]
and top-down system [4], however the above analysis shows that it
is likely to be more efficient with top-down approaches for which
speaker purification is essential.

4. EXPERIMENTAL WORK

In this section we present our experimental work which aims to con-
firm the behaviour of the two approaches outlined above. We briefly
describe the two experimental systems in Section 4.1 and datasets
in Section 4.2. Diarization results are reported in Section 4.3 before
experiments to assess differences in phone normalization and cluster
purity are reported in Sections 4.4 and 4.5 respectively.

4.1. Experimental systems

Both our bottom-up and top-down systems were implemented with
the same ALIZE software toolkit [11] and development approaches
(e.g. pre-processing algorithms, parameter optimization, etc.). Each
system starts with a common speech activity (SAD) component
which is based upon a two-state hidden Markov model (HMM).
The two states represent speech and non-speech events respectively
and are 32-component GMM models trained on appropriate external
data using an EM/ML algorithm [4]. Iterative Viterbi decoding and
model re-estimation are applied to adapt the models to the prevailing
ambient conditions.

Segmentation and clustering is then performed according to the
bottom-up or top-down scenario. Both rely on a common HMM
strategy where each state aims to characterize a single speaker and
the state transitions represent speaker turns. Our bottom-up system
is an agglomerative hierarchical clustering (AHC) strategy with a se-
quential EM algorithm based on the approach in [3]. Clustering is
controlled according to the Information Change Rate (ICR) [12] and
a Ts stopping criterion [13] is used to stop cluster merging. Our top-
down system is a divisive hierarchical clustering (DHC) approach
based on an evolutive HMM strategy and is exactly as described
in [4]. Purification [4] is optionally applied before a common MAP



based re-segmentation with feature normalization is applied to the
outputs of each system.

4.2. Datasets

Our experimental systems were optimized on a development dataset
of 23 conference meetings from the NIST RT‘04, ‘05 and ‘06 eval-
uations. Performance was then assessed on independent RT‘07
and RT‘09 evaluation datasets and on a separate corpus contain-
ing 19 hours of televised, French-language Grand Echiquier (GE)
chat/debate television shows [14]. There is no overlap between
development and evaluation datasets and in all cases no prior knowl-
edge is available, except an approximate idea of the number of
speakers which is used solely in the case of the bottom-up system.
This is only so that the system is initialized with a number of clus-
ters that exceeds the likely number of true speakers. Only results
obtained on the evaluation datasets are reported here.

4.3. Diarization performance

Diarization Error Rates (DERs) for the four different systems are il-
lustrated in Table 1. Results are presented with (OV) and without
(NOV) the scoring of overlapping speech. Since it is the default
scoring metric in the NIST RT evaluations we concentrate only on
the former. Performance for the bottom-up system is illustrated on
row 3 of Table 1. DER scores of 23.8%, 19.1% and 33.7% are ob-
tained on the RT‘07, RT‘09 and GE datasets respectively. We note a
large difference in performance between meeting and TV-show do-
mains. This is mainly due to the higher number of (often relatively
inactive) speakers in the case of TV-shows (average of 13 speakers
cf. 5 for meeting data).

Performance for the top-down system is given on row 5 of Ta-
ble 1. DERs of 18.3%, 26.0% and 40.4% are obtained on the three
datasets respectively and thus indicate an inconsistency in the com-
parative performance of top-down and bottom-up approaches: top-
down performance is superior for the RT‘07 dataset whereas bottom-
up performance is superior for the RT‘09 and GE datasets. Our
hypothesis is that this discrepancy is accounted for by factors that
are unrelated to differences between speakers. This argument is ex-
plained further in Sections 4.4 and 4.5. First though, we investigate
the impact of purification on both system outputs.

The performance of bottom-up and top-down systems with pu-
rification is illustrated on rows 4 and 6 of Table 1 respectively. For
the bottom-up approach we note that for the RT‘07 dataset, even
if there is a slight improvement in performance with purification
(22.7% DER cf. 23.8%) there is a significant degradation in per-
formance for the RT‘09 dataset and a smaller degradation for the
GE dataset. For the top-down system, however, performance con-
sistently improves upon the application of purification (bottom two
rows) for all three datasets. These observations support our conjec-
ture proposed in Section 3 that (i) the clusters identified by top-down
systems are less discriminative and thus require purification, and (ii)
those produced with the bottom-up systems are less well normal-
ized against phone variation and that this cannot always be improved
upon through purification.

4.4. Phone normalization

As argued above, we hypothesize that bottom-up systems are rela-
tively more likely than top-down systems to converge to sub-optimal
local maximums of Equation 2. These are likely to correspond to
nuisance variation such as that related to the linguistic content. In

order to confirm this hypothesis we computed and compared the dis-
tribution of phones within each cluster of the diarization output. This
is obtained through an automatic phone alignment using the ground-
truth word-level transcriptions. The phone distribution is computed
for each cluster according to the fraction of speech time attributed to
each phone. Then the average inter-cluster distance D is computed
for each file as follows:

D =

(
N

2

)−1 N∑
n=1

N∑
m=n+1

DKL2(Cn||Cm),

where N is the size of the speaker inventory ∆, i.e. the number of
clusters, and where the binomial coefficient

(
N
2

)
is the number of

unique cluster pairs. DKL2(Cn||Cm) is the symmetrical Kullback-
Leibler (KL) distance between the phone distributions for clusters
Cn and Cm, defined as:

DKL2(Cn||Cm) =
1

2

(
DKL(Cn||Cm) + DKL(Cm||Cn)

)
where DKL(Cn||Cm) is the KL divergence of Cn from Cm. We
note that the symmetrical KL metric has been used for the segmen-
tation and clustering of broadcast news [15].

In the case of good phone normalization we expect the average
inter-cluster distance to be small since the clusters should have the
same phone distribution, while higher average inter-cluster distances
may indicate a higher degree of convergence toward phones, or other
acoustic classes, rather than toward speakers.

The mean and variance of the average inter-cluster distance for
the RT‘07 and RT‘09 datasets are illustrated in Table 2. Results for
the GE dataset are not included since there are no ground-truth word-
level transcriptions for this dataset. For the baseline bottom-up sys-
tem the average inter-cluster distances are 0.17 and 0.14 for the two
datasets respectively. When purification is applied these figures fall
to 0.13 and 0.12 thereby indicating a slight improvement in phone
normalization in both cases. The average inter-cluster distances are
consistently lower for the top-down system where they fall from 0.11
and 0.10 to 0.07 and 0.08 with purification. Considering the vari-
ances in columns 4 and 5 of Table 2, we note a consistent decrease
in all cases: reductions in the mean are accompanied by reductions
in the variation. These results suggest that, as predicted, the clusters
identified with the top-down system are better normalized against
phone variation than those identified with the bottom-up system.

4.5. Cluster purity

The results presented in Section 4.4 do not account for why results
deteriorate significantly when purification is applied to the RT‘09
dataset. To explain this behavior we analyzed the average speaker
purity in each system output. The speaker purity is defined as the
percentage of data in each cluster which are attributed to the most
dominant speaker. Columns 2 and 3 of Table 3 present the average
cluster purities for the RT‘07 and RT‘09 datasets. For the RT‘07
dataset purification leads to marginal improvements: 1.6% absolute
improvement for the bottom-up system and 2.3% for the top-down
system. However, for the RT‘09 dataset performance is different
for bottom-up and top-down systems. While cluster purity improves
by 2.3% for the top-down system, purity deteriorates by 4% for the
bottom-up system.

Since a larger number of clusters will naturally lead to higher pu-
rities it is necessary to consider the number of clusters in each case to
properly appreciate the resulting effects of purification on diarization



RT‘07 RT‘09 GE
System OV NOV OV NOV OV NOV

Bottom-up 23.8 20.8 19.1 13.5 33.7 29.0
Bottom-up+Pur. 22.7 19.6 27.0 21.8 33.9 29.1
Top-down 18.3 15.0 26.0 21.5 40.4 36.0
Top-down+Pur. 17.8 14.4 21.1 16.0 38.5 33.9

Table 1. DERs with (OV) and without (NOV) the scoring of over-
lapping speech, with and without purification (Pur.).

Mean Variance
System RT‘07 RT‘09 RT‘07 RT‘09

Bottom-up 0.17 0.14 0.167 0.013
Bottom-up + Pur. 0.13 0.12 0.017 0.005
Top-down 0.11 0.10 0.006 0.004
Top-down + Pur. 0.07 0.08 0.001 0.002

Table 2. Inter-cluster phone distribution distances.

performance. The number of clusters in each system output is illus-
trated in columns 4 and 5 of Table 3 in which the last row indicates
the true number of speakers. All systems over-estimate the num-
ber of speakers and purification always reduces their number. When
coupled with increases in average purity, then improved diarization
performance should be expected. For the bottom-up system and the
RT‘09 dataset the decrease in the number of clusters when purifica-
tion is applied is negligible, whereas the purity also decreases. This
can only result in poorer diarization performance.

5. CONCLUSIONS

Even though the performance of bottom-up and top-down ap-
proaches to speaker diarization is generally comparable they po-
tentially exhibit different behavior in the face of nuisance factors
that are unrelated to different speakers, such as that related to the
linguistic content. While bottom-up approaches are more discrimi-
native they tend to produce clusters which are less well normalized
against such variation and are thus more likely than their top-down
counterparts to converge to other acoustic units that are unrelated
to differences between speakers. The latter tend to produce clusters
which are better normalized but less discriminative. This explains
why performance can sometimes degrade when purification is ap-
plied to clusters obtained in bottom-up systems. Future work should
focus on enhanced purification algorithms for bottom-up systems
and approaches that are generally more robust to nuisance factors
such as the linguistic content.
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