
ROTIV: RFID Ownership Transfer with Issuer Verification

Kaoutar Elkhiyaoui Erik-Oliver Blass Refik Molva

EURECOM
2229 Route des Crêtes, BP 193
06560 Sophia Antipolis, France

{elkhiyao|blass|molva}@eurecom.fr

ABSTRACT
RFID tags travel between partner sites in a supply chain. For pri-
vacy reasons, each partner “owns” the tags present at his site, i.e.,
the owner is the only entity able to authenticate his tags. How-
ever, when passing tags on to the next partner in the supply chain,
ownership of the old partner is “transferred” to the new partner.
In this paper, we propose ROTIV, a protocol that allows for se-
cure ownership transfer against some malicious owners. Further-
more, ROTIV offers issuer verification to prevent malicious part-
ners from injecting fake tags not originally issued by some trusted
party. As part of ownership, ROTIV provides a constant-time,
privacy-preserving authentication. ROTIV’s main idea is to com-
bine an HMAC-based authentication with tag key and state updates
during ownership transfer. To assure privacy, ROTIV implements
tag state re-encryption techniques and key update techniques, per-
formed on the reader. ROTIV is designed for lightweight tags –
tags are only required to evaluate a hash function.

1. INTRODUCTION
Supply chain management is one of the main applications of

RFID tags today. Each RFID tag is physically attached to a prod-
uct to allow product tracking and inventorying. As products travel
in a supply chain, their ownership is transferred from one supply
chain partner to another, and so is the ownership of their corre-
sponding RFID tags. Tag ownership in this setting is the capability
that allows an owner of tag T to authenticate, access and transfer
the ownership of T . Generally, the supply chain partners are reluc-
tant into sharing their private information, therefore, each partner
requires to be the only authorized entity that can interact with tags
in its site. To that effect, tags and partners in the supply chain must
implement secure ownership transfer protocol.

A secure ownership transfer protocol assures mutual authentica-
tion between the owner of a tag T (partner in the supply chain) and
T , and prevents non-authorized parties from transferring the own-
ership of T without the permission of T ’s owner. Furthermore, to
protect against counterfeiting, owners must be able to tell apart, i.e.,
authenticate “legitimate" tags from counterfeits. Thus, tags have to
implement authentication not only to allow for ownership transfer
but also to ensure their genuineness.

To ensure the privacy of tag owners, i.e., the privacy of the part-
ners in the supply chain, a secure ownership transfer must prevent
a new owner of tag T from tracing T ’s past interaction. Otherwise,
T ’s new owner can infer information about T ’s previous owner.
Also, it must prevent T ’s previous owner from tracing T ’s interac-
tions with its current owner. Consequently, we identify two major
requirements: 1) tag backward unlinkability: ownership transfer
has to prevent the previous owner of a tag from tracing a tag once
he releases its ownership, see Lim and Kwon [12]. 2) tag forward

unlinkability: ownership transfer must prevent the new owner of a
tag from tracing the tag’s past interactions.

In addition to the basic features of ownership transfer as ad-
dressed in Fouladgar and Afifi [6], Lim and Kwon [12], Molnar
et al. [13], Song [17], this paper proposes an efficient ownership
transfer protocol that also allows a party possessing the right cre-
dentials to verify the issuer of a tag. A possible scenario for issuer
verification is a supply chain where partners want to check that a
product originates from a trusted partner. Let S be a supply chain
consisting of four partners A, B, C, and D, whereby A and B is-
sue products and transfer them to C, and C is required to transfer
some of his products to D. However, D only accepts products orig-
inating from A. In this scenario, issuer verification is required in
order to allow D to verify the origin of product received from C.
The work at hand proposes a secure ownership transfer protocol
that also achieves secure issuer verification, called ROTIV.

An efficient ownership transfer protocol calls for an efficient au-
thentication protocol. Current RFID authentication schemes based
on symmetric cryptographic primitives require at least a logarith-
mic cost in the number of tags, see Burmester et al. [4]. However,
given that the tag databases are usually huge and that the read-
ers performing the authentication are embedded, the tag/reader au-
thentication should ideally take place in constant time. Previously
proposed tag/reader authentication protocols that achieve constant
time authentication rely on public key cryptography [11], yet RFID
tags are constrained devices that most of the time cannot implement
asymmetric cryptography. The authentication that is part of ROTIV
achieves mutual authentication in constant time while the tag per-
forms only symmetric cryptographic operations: a tag in ROTIV is
only required to compute hash functions. To achieve constant time
authentication, a tag T stores in addition to its symmetric key, a
public key encryption of its identification information computed by
T ’s owner. The public key encryption helps the owner to identify
the tag T first, then the symmetric key is used to authenticate both
T and its owner. In order to ensure tag unlinkability, we update the
tag internal state after each successful authentication as follows: 1)
the symmetric key stored on tag T is updated using a fresh ran-
domness transmitted by T ’ owner during each authentication as in
[12]. 2) the public key ciphertext is updated using re-encryption
mechanisms.

Moreover, to allow the ownership transfer of tag T to a new
owner O(T,k+1), the current owner O(T,k) is required to provide
O(T,k+1) with some references that allow O(T,k+1) to authenticate
himself to T and to update T ’s symmetric key.

Finally, to allow tag issuer verification by third parties, a tag T
stores an encryption of the issuer signature. Provided with the cor-
rect references from T ’s owner, a third party verifier can verify
whether the signature stored on T corresponds to a legitimate is-

1

suer or not.
In a nutshell, the major contributions of ROTIV are:

• a provably secure ownership transfer that ensures both tag
forward unlinkability against the tag new owner and tag back-
ward unlinkability against the tag previous owner.

• a provably secure, privacy-preserving, and constant time au-
thentication while tags are only required to compute a hash
function.

• a provably secure issuer verification protocol that allows prospec-
tive owners of a tag T to check the identity of the party issu-
ing T .

2. PROBLEM STATEMENT AND ADVER-
SARY MODEL

Before presenting the privacy and security requirements of se-
cure ownership transfer with issuer verification, we introduce in-
volved entities.

2.1 Entities

• Tags Ti: Each tag is attached to a single item. A tag Ti has
a re-writable memory representing Ti’s current state s(i,j) at
time j. Tags can compute hash function G. T denotes the
set of legitimate tags Ti.

• Issuer I: The issuer I initializes tags and attaches each tag
Ti to a product. For each tag Ti, I creates a ownership ref-
erence refO

Ti
that he gives to Ti’s owner. I writes an initial

state s(0,i) into Ti.

• Owner O(Ti,k): Is the owner of a tag Ti at time k. O(Ti,k)

stores a set of ownership references refO
Ti

that allows him to
authenticate tags Ti and to transfer Ti’s ownership to a new
owner. O denotes the set of all owners O(Ti,k). Without loss
of generality, an owner O(Ti,k) comprises a databaseDk and
an RFID reader Rk.

• Verifier V: Before accepting the ownership of some tag Ti,
any prospective owner O(Ti,k+1) wants to verify the identity
of tag Ti’s issuer, therewith becoming a verifier V . Owner
O(Ti,k) of Ti provides V with a verification reference refV

Ti

allowing V to verify the identity of the issuer of Ti.

2.2 RFID Ownership Transfer with
Issuer Verification

We divide the application requirements of secure ownership trans-
fer with issuer verification into four major components. While
the following paragraphs only give an informal overview about re-
quirements and only an informal overview about the assumed ad-
versary model, sections 2.3 and 2.3.3 formalize requirements.

1.) During daily operations, current owner O(Ti,k) of tag Ti in
the supply chain has to be able to perform a number of mutual
authentications with Ti.

2.) Eventually, O(Ti,k) has to pass Ti to the next owner O(Ti,k+1)

in the supply chain. Therefore, O(Ti,k) and O(Ti,k+1) must ex-
change the ownership references.

3.) Once previous owner O(Ti,k) releases ownership of a tag Ti,
new owner O(Ti,k+1) must securely update any secrets stored on
Ti, such that only O(Ti,k+1) is able to authenticate Ti and eventu-
ally pass Ti to the next owner O(Ti,k+2).

4.) Before accepting tag ownership, verifier V , has to perform
issuer verification. That is, upon receipt of Ti verification refer-
ences refV

Ti
from Ti’s current owner, V is able to verify whether Ti

has been originally issued by I.

Adversary Model.
The adversary model presented in this section is in accordance

with previous work on secure ownership transfer, cf., Lim and Kwon
[12], and with previous work on privacy model for RFID, cf., Vau-
denay [18]. An adversary A in ROTIV is an active adversary, who
in addition to being able to eavesdrop on tags’ communication can
tamper with tags’ internal state.
A, however does neither have access to the communication be-

tween owners during an ownership transfer, nor to the communica-
tion between a tag owner and the verifier during an issuer verifica-
tion protocol, since the channel between the owners is secure and
also the channel between the owner and the verifier. Therefore, A
has only access to the interactions between tags and owners and the
interactions between tags and verifiers.

We assume that the channel between V and T ’s current owner is
secure. The verifier in ROTIV is assumed to be honest.

2.3 Privacy
Our application models partners in a supply chain that release or

acquire tag ownership. When a partner A releases Ti’s ownership
to another partner B, it is very important to ensure that A is not
able to trace the tag’s future protocol runs: if A can trace Ti after
the ownership transfer, he will be able to learn how B processes the
products received from A. Also, it is important to make sure that B
cannot trace the tag past interactions, otherwise, B can learn how
products are processed when they are in A’s site.

Along these lines, we identify two precise privacy requirements
which are tag forward unlinkability [12] and tag backward unlink-
ability [12]. Generally speaking, forward unlinkability states that
if an adversary A compromises the internal state of a tag T at time
τ , he still cannot tell whether T has participated in protocol runs at
time t < τ .

On the other hand, backward unlinkability copes with an adver-
sary A who, even knowing the internal state of a tag T at time τ ,
cannot tell whether T was involved in protocol runs that occurred
at t > τ .

We formalize tag forward unlinkability and tag backward un-
linkability using games.

We assume that the adversaryA has access to the following ora-
cles.

- OT is an oracle that, when queried, randomly returns a tag T
from the set of tags T .

-Oflip is an oracle that, when provided with two tags T0 and T1,
randomly chooses b ∈ {0, 1} and returns Tb.

2.3.1 Forward unlinkability
The forward unlinkability experiment captures the capabilities of

adversary A who is allowed to access a tag T ’s internal state at the
end of its attack and who has to decide if T was already involved
in previous interactions.

Our forward unlinkability experiment is indistinguishability based
as proposed by Juels and Weis [9]. AdversaryA(r, s, ε) has access
to tags in two phases. In the learning phase, as depicted in Al-
gorithm 1, oracle OT provides A with two tag T0 and T1 that he
can observe T0 and T1’s interactions for a maximum of s times
by calling the function OBSERVEINTERACTION(Ti). This func-
tion eavesdrop on tag Ti during mutual authentications, ownership
transfer or issuer verification.

2

In addition to T0 and T1, OT gives A a set of r tags T ′
i . A

can read T ′
i ’s internal state (cf., READSTATE) and modify it (cf.,

MODIFYSTATE) up to s times. He can as well eavesdrop on T ′
i

(cf., OBSERVEINTERACTION(T ′
i)) for a maximum of s times.

T0 ← OT ;
T1 ← OT ;
for j := 1 to s do

OBSERVEINTERACTION(T0);
OBSERVEINTERACTION(T1);

end
for i := 1 to r do

T ′
i ← OT ;

for j := 1 to s do
s(T ′

i ,j) := READSTATE(T ′
i);

MODIFYSTATE(T ′
i , s

′
T ′

i
);

OBSERVEINTERACTION(T ′
i);

end
end

Algorithm 1: A’s forward unlinkability learning phase

In the challenge phase as depicted in Algorithm 2, T0 and T1

run once a mutual authentication with their respective owners (cf.,
RUNAUTH) outside the range of the adversary A. A then queries
oracle Oflip with the tags T0 and T1. Oflip selects randomly b ∈
{0, 1} and returns the tag Tb. A can read the internal state of Tb.
He can also eavesdrop Tb for a maximum of s times. A calls as
well oracleOT that providesA with r tags T ′′

i that he can read out
and tamper their internal state up to s times. He can eavesdrop on
T ′′

i for a maximum of s times. Finally, A outputs his guess of the
value of b.

RUNAUTH(T0, O(T0,k)); // Unobserved by A.
RUNAUTH(T1, O(T1,k)); // Unobserved by A.
Tb ← Oflip{T0, T1};
for j := 1 to s do

s(Tb,j) := READSTATE(Tb);
OBSERVEINTERACTION(Tb);

end
for i := 1 to r do

T ′′
i ← OT ;

for j := 1 to s do
s(T ′′

i ,j) := READSTATE(T ′′
i);

MODIFYSTATE(T ′′
i , s′T ′′

i
);

OBSERVEINTERACTION(T ′′
i);

end
end
OUTPUT b;

Algorithm 2: A’s forward unlinkability challenge phase

A is successful, if his guess of b is correct.

DEFINITION 1 (FORWARD UNLINKABILITY). ROTIV provides
forward unlinkability ⇔ For any adversary A, inequality Pr(A
is successful) ≤ 1

2
+ ε holds, where ε is negligible.

The above definition reflects a malicious new owner O(T,k+1)

of T in the real world, who after a successful ownership transfer
with previous owner O(T,k) at time τ gets access to T ’s secrets.
Generally, knowing T ’s secrets at time τ must not allow O(T,k+1)

to track T ’s interactions at time t < τ .

2.3.2 Backward unlinkability
The backward unlinkability experiment captures the capabilities

of adversary A who is allowed to access a tag T ’s internal state at
the beginning of his attack and has to tell if T is involved in future
protocol transactions.

In the learning phase, cf., Algorithm 3, oracleOT providesA(r, s, ε)
with two tag T0 and T1 that he can read their internal state, he can
also eavesdrop T0 and T1 for a maximum of s times. Besides T0

and T1, OT gives A a set of r tags T ′
i that he can read and modify

their internal state for a maximum of s times. He can also eaves-
drop on T ′

i for a maximum of s times. Note that unlike forward
unlinkability, A can read the internal state of T0 and T1 in the
learning phase of the backward unlinkability experiment, but not
in the challenge phase.

T0 ← OT ;
T1 ← OT ;
for j := 1 to s do

s(T0,j) := READSTATE(T0);
OBSERVEINTERACTION(T0);
s(T1,j) := READSTATE(T1);
OBSERVEINTERACTION(T1);

end
for i := 1 to r do

T ′
i ← OT ;

for j := 1 to s do
s(T ′

i ,j) := READSTATE(T ′
i);

MODIFYSTATE(T ′
i , s

′
T ′

i
);

OBSERVEINTERACTION(T ′
i);

end
end

Algorithm 3: A’s backward unlinkability learning phase

In the challenge phase as depicted in Algorithm 4, T0 and T1

run a mutual authentication with their respective owners outside
the range of the adversaryA. A provides oracleOflip with the tags
T0 and T1. Oflip chooses randomly b ∈ {0, 1} and returns the tag
Tb. Unlike the challenge phase of the forward unlinkability A is
not allowed to read the internal state of Tb, he is only allowed to
eavesdrop on Tb for a maximum of s times.
A queries also oracleOT that providesA with s tags T ′′

i that he
can read, modify their internal state and eavesdrop on for a maxi-
mum of s times. Finally, A outputs his guess of the value of b.

RUNAUTH(T0, O(T0,k)); // Unobserved by A.
RUNAUTH(T1, O(T1,k)); // Unobserved by A.
Tb ← Oflip{T0, T1};
for j := 1 to s do

OBSERVEINTERACTION(Tb);
end
for i := 1 to r do

T ′′
i ← OT ;

for j := 1 to s do
s(T ′′

i ,j) := READSTATE(T ′′
i);

MODIFYSTATE(T ′′
i , s′T ′′

i
);

OBSERVEINTERACTION(T ′′
i);

end
end
OUTPUT b;
Algorithm 4: A’s backward unlinkability challenge phase

A is successful, if his guess of b is correct.

3

DEFINITION 2 (BACKWARD UNLINKABILITY). ROTIV pro-
vides backward unlinkability⇔ For any adversary A, inequality
Pr(A is successful) ≤ 1

2
+ ε holds, where ε is negligible.

In the real world, this adversaryA reflects previous owner O(T,k)

who releases T ’s ownership at time τ to a new owner O(T,k+1).
The knowledge of T ’s secrets at the time of ownership transfer τ
must not allow O(T,k) to trace T ’s interaction that occur at time
t > τ .

Discussion: In scenarios where mutual authentication is required,
the notion of backward unlinkability has been proven to be un-
achievable without tag performing public key cryptography oper-
ations [14]. In order to achieve at least a slightly weaker notion
of backward unlinkability, as targeted in this paper, we add the as-
sumption that an adversary A cannot continuously monitor the tag
after accessing tags’ secrets. This has been previously suggested
by, e.g., Lim and Kwon [12]. That is, there is at least one com-
munication between the tag and its owner that is unobserved byA.
Moreover, to achieve a constant time authentication while the tag
is only required to compute a hash function, we assume that there
is at least one unobserved communication between the tag and the
owner before A accesses tags’ secrets, as proposed by Ateniese
et al. [1], Golle et al. [8].

2.3.3 Security
In the following, we discuss the security requirements for RO-

TIV. As ROTIV consists of two main protocols, ownership transfer
protocol and the issuer verification protocol, we provide the secu-
rity requirements for each protocol separately.

The adversary A in this section is a non-narrow destructive ad-
versary, see Vaudenay [18].

2.3.4 Ownership transfer
A secure ownership transfer must provide the following proper-

ties:
1) Mutual authentication: A secure ownership transfer proto-

col must ensure that, when a tag T runs a successful mutual authen-
tication with ownerO, this implies thatO is T ’s current owner with
high probability. Also, when an owner O runs a successful mutual
authentication with a tag T , it yields that T is actually owned byO
with high probability.

We define an authentication game in accordance with Lim and
Kwon [12], Vaudenay [18] and Paise and Vaudenay [14]. This
game proceeds in two phases. During the learning phase as de-
picted in Algorithm 5, an adversaryA(r, ε) is provided with a chal-
lenge tag Tc from oracle OT . A is not allowed to read the internal
state of Tc. A is allowed to eavesdrop on r mutual authentications
between Tc and its owner O(Tc,k), cf., RUNAUTH(Tc, O(Tc,k)).
He can also alter r authentications by modifying the messages ex-
changed between Tc and its owner O(Tc,k), cf., ALTERAUTH(Tc,
O(Tc,k)). A is allowed as well to start r authentications with Tc

while impersonating O(Tc,k), (cf., RUNAUTH(Tc, A)). Also he
can start r authentications with O(Tc,k) while impersonating Tc,
cf., RUNAUTH(A, O(Tc,k))
A’s goal in the challenge phase is either to run a successful

mutual authentication with Tc, i.e., A succeeds in impersonating
O(Tc,k), or to run a successful mutual authentication with O(Tc,k),
i.e., A succeeds in impersonating Tc.

In the challenge phase as depicted in Algorithm 6, A(r, ε) inter-
acts with Tc and initiates an authentication protocol run to imper-
sonate O(Tc,k), cf., RUNAUTH(Tc,A). At the end of the authenti-
cation, Tc outputs a bit bTc , bTc = 1 if the authentication with A
was successful, and bTc = 0 otherwise.

Tc ← OT ;
for i = 1 to r do

RUNAUTH(Tc, O(Tc,k));
end
for i = 1 to r do

ALTERAUTH(Tc, O(Tc,k));
end
for i = 1 to r do

RUNAUTH(Tc, A);
end
for i = 1 to r do

RUNAUTH(A, O(Tc,k));
end

Algorithm 5: A’s authentication learning phase

A can interact as well with O(Tc,k) and initiates an authentica-
tion protocol run to impersonate Tc, cf., RUNAUTH(A, O(Tc,k)).
At the end of this authentication, O(Tc,k) outputs a bit bO(Tc,k) =
1, if the authentication was successful, bO(Tc,k) = 0 otherwise.

RUNAUTH(Tc,A);
Tc outputs bTc ;
RUNAUTH(A, O(Tc,k));
O(Tc,k) outputs bO(Tc,k) ;

Algorithm 6: A’s authentication challenge phase

A is successful if, bTc = 1 or bO(Tc,k) = 1.

DEFINITION 3 (AUTHENTICATION). ROTIV is secure with re-
gard to authentication⇔ For any adversary A, inequality Pr(A
is successful) ≤ ε holds, where ε is negligible.

This definition captures the capabilities of an advesraryAwho does
not have access to tag T ’s internal state and who wants to either
impersonate T or T ’s owner.

2) Exclusive ownership: An adversary A’s goal is to transfer
the ownership of a tag T without having T ’s ownership references
noted refO

T . The exclusive ownership will ensure that only the
owner of tag T can transfer T ’s ownership and no one else. The
exclusive ownership ensures that even if an adversary A who does
not have T ’s ownership references cannot cannot transfer the own-
ership of T , unless he rewrites the content of T .

To formalize the exclusive ownership, we define these additional
oracles:

-Oown when queried with a tag T , returns T ’s ownership refer-
ences refO

T from some owner O.
-OO when queried, returns a randomly selected owner O from

the set of legitimate owners O.
In the learning phase as shown in Algorithm 7, the oracle OT

provides A(r, s, ε) with r tags Ti. A then queries the oracle Oown

and gets the ownership references refO
Ti

of tags Ti. A can read
and modify Ti’s internal state. Given the ownership references of
tag Ti, A can run s successful mutual authentications with Ti,
cf., RUNAUTH(Ti, A), s issuer verification for Ti with V , cf.,
VERIFY(Ti,A,V), and s ownership transfer for tag Ti with owner
Oi selected randomly from the set of owners, cf., TRANSFEROWN-
ERSHIP (Ti,A, Oi).

In the challenge phase, cf., Algorithm 8, the oracleOT provides
A(r, s, ε) with a challenge tag Tc for which A did not query the
oracle Oown. He can as well read Tc’s internal state, eavesdrop on
Tc’s up to s times, cf., OBSERVEINTERACTION(Tc). However, A
is not allowed to alter Tc’s internal state.

4

for i := 1 to r do
Ti ← OT ;
refO

Ti
← Oown;

for j := 1 to s do
s(Ti,j) := READSTATE(Ti);
MODIFYSTATE(Ti, s

′
Ti

);
RUNAUTH(Ti, A);
VERIFY(Ti,A,V);
Oi ← OO;
TRANSFEROWNERSHIP(Ti,A, Oi);

end
end

Algorithm 7: A’s exclusive ownership learning phase

At the end of the challenge phase, A queries the oracle OO. OO
returns a challenge owner Oc. A then, runs an ownership transfer
protocol for Tc with an owner Oc, cf., TRANSFEROWNERSHIP(Tc,
A, Oc). Oc outputs a bit b = 1, if the ownership transfer was
successful, and b = 0 otherwise.

Tc ← OT ;
for i := 1 to s do

si
Tc

:= READSTATE(Tc);
OBSERVEINTERACTION(Tc);

end
Oc ← OO;
TRANSFEROWNERSHIP(Tc,A, Oc);
Oc outputs b;

Algorithm 8: A’s exclusive ownership challenge phase

A is successful, if b = 1.

DEFINITION 4 (EXCLUSIVE OWNERSHIP). ROTIV provides ex-
clusive ownership ⇔ For any adversary A, inequality Pr(A is
successful) ≤ ε holds, where ε is negligible.

2.3.5 Issuer verification
The second security requirement that will be discussed below,

is issuer verification security. The issuer verification is secure if,
when verifier V outputs that T ’s issuer is I, it implies that I is T ’s
issuer with high probability.

An adversary A’s goal is to run an issuer verification protocol
with V for tag T that was not issued by I, and still V outputs that
I is the issuer of T .

In the learning phase, A queries the oracle OT that provides A
with r random tags Ti. A queries the oracleOown with tags Ti and
gets Ti’s ownership references. A is allowed to read and modify
Ti’s internal state up to s times. Given the ownership reference
for tag Ti, A can run s mutual authentications between tag Ti, cf.,
RUNAUTH(Tc ,A). The adversary can also run s issuer verification
protocol for tag Ti with the verifier V , cf., VERIFY(Ti, A,V) and
to transfer Ti’s ownership to an owner Oi select from the set of
owner O.

In the challenge phase, A creates a tag Tc 6∈ T and write some
state s′Tc

in it.
Then, A starts a verification protocol for tag Tc with the verifier
V , cf., VERIFY (Tc, A, V).

Finally, V outputs a bit b = 1, if the issuer verification protocol
outputs I, and b = 0 otherwise.
A is successful, if b = 1 and s′Tc

does not correspond to a state
of tag Ti that was provided to A in the learning phase.

DEFINITION 5 (ISSUER VERIFICATION SECURITY). ROTIV is

for i := 1 to r do
Ti ← OT ;
refO

Ti
← Oown;

for j := 1 to s do
s(Ti,j) := READSTATE(Ti);
MODIFYSTATE(Ti, s

′
Ti

);
RUNAUTH(Ti, A);
VERIFY(Ti,A, V);
Oi ← OO;
TRANSFEROWNERSHIP(Ti,A, Oi);

end
end
Algorithm 9: A’s issuer verification security learning phase

CREATETAG Tc;
MODIFYSTATE(Tc, s

′
Tc

);
VERIFY (Tc, A, V);
V outputs b;

Algorithm 10: A’s issuer verification security challenge phase

secure with regard to issuer verification⇔ For any adversary A,
inequality Pr(A is successful) ≤ ε holds, where ε is negligible.

In real world, a secure issuer verification will prevent a partner in
the supply chain from injecting tags that were not issued by a legit-
imate/trusted party.

3. PROTOCOL DESCRIPTION
ROTIV takes place in DDH-hard subgroups of elliptic curves

that support bilinear pairings, cf., Ateniese et al. [1, 2], Ballard
et al. [3].

3.1 Bilinear pairing
Let G1, G2 and GT be groups, such that G1 and GT have the

same prime order q. Pairing e: G1 × G2 → GT is a bilinear
pairing if:

1. e is bilinear: ∀ a, b ∈ Zq , g1 ∈ G1 and g2 ∈ G2, e(ga
1 , gb

2) =
e(g1, g2)

ab;

2. e is computable: there is an efficient algorithm to compute
e(g1, g2) for any (g1, g2) ∈ G1 ×G2;

3. e is non-degenerate: if g1 is a generator of G1 and g2 is a
generator of G2, then e(g1, g2) is a generator GT .

In ROTIV, we use bilinear groups where DDH is intractable, i.e.,
groups where the symmetric external Diffie-Hellman (SXDH) as-
sumption, see Ateniese et al. [1, 2], Ballard et al. [3], holds. Such
groups can be chosen as specific subgroups of MNT curves. Fur-
thermore, results by Galbraith et al. [7] indicate the high efficiency
of this pairing.

DEFINITION 6 (SXDH ASSUMPTION). The SXDH assump-
tion holds if G1 and G2 are two groups with the following proper-
ties:

1. There exists a bilinear pairing e : G1 ×G2 → GT .

2. The decisional Diffie-Hellman problem (DDH) is intractable
in both G1 and G2.

For our pairing, we also assume Bilinear CDH.

5

DEFINITION 7 (BCDH ASSUMPTION). Let g1 be a genera-
tor of G1 and g2 be a generator of G2. We say that the BCDH
assumption holds if, given g1, g

a
1 , gb

1, g
c
1 ∈ G1 and g2, g

a
2 , gb

2 ∈ G2

for random a, b, c ∈ Fq , the probability to compute e(g1, g2)
abc is

negligible.

3.2 ROTIV
Overview: In ROTIV, a tag Ti stores a state s(i,j) = (k(i,j), c(i,j)),

where k(i,j) is a key shared with the owner of Ti, and c(i,j) an El-
gamal encryption of Ti’s identification information.

When an owner O(Ti,k) starts a mutual authentication with Ti,
Ti replies with c(i,j) along with an HMAC computed using his se-
cret key k(i,j). O(Ti,k) uses the Elgamal ciphertext c(i,j) to identify
the tag. To do so, O(Ti,k) uses his secret key to decrypt c(i,j). Af-
ter the decryption, O(Ti,k) checks if the resulting plaintext is in his
databaseDk. If so, O(Ti,k) looks up the symmetric key of tag Ti in
his database and verifies the HMAC sent by Ti. In this manner RO-
TIV allows for mutual authentication with tag Ti in constant time,
while the tag is only required to compute a symmetric primitive,
i.e., HMAC.

To allow for ownership transfer of tag Ti, the current owner
O(Ti,k) of Ti provides O(Ti,k+1) with refO

Ti
that will be used by

O(Ti,k+1) to authenticate himself to Ti and to update Ti’s state.
In order to ensure Ti’s forward and backward privacy, the owner

O(Ti,k) of Ti is required to update the ciphertext stored on Ti in
every authentication he runs with Ti, using re-encryption mecha-
nisms. Moreoever, Ti is required as well to update its key k(i,j)

after each successful authentication.
Finally, for secure issuer verification, ciphertext c(i,j) stored on

Ti will contain a signature of I on the identifier of Ti. When a
verifier V wants to start a secure issuer verification for a tag Ti, he
reads the ciphertext stored in Ti. Then, Ti’s owner, O(Ti,k) sends
Ti’s identifier and a trapdoor information noted refV

Ti
to V . This

will allow V to verify the signature stored in Ti.
A ROTIV system comprises m owners O(Ti,k) and n tags Ti.

Each tag Ti can evaluate a cryptograpgic hash function G to com-
pute HMAC. An HMAC with key k, a message m is defined
in ROTIV as HMACk(m) = G(k ⊕ opad||G(k ⊕ ipad||m)),
where || is concatenation. For more details about opad and ipad see
Krawczyk et al. [10]. The HMAC is used to authenticate Ti and
Ti’s owner, and to update the symmetric key after each successful
authentication.
• Setup: The issuer I outputs (q, G1, G2, GT , g1, g2, e), where

G1, GT are subgroups of prime order q, g1 and g2 are random
generators of G1 and G2 respectively, and e : G1 × G2 → GT is
a bilinear pairing. The issuer chooses x ∈ Z∗q and computes the
pair (gx

1 , gx
2). I’s secret key is sk = (x, gx

1) and his public key is
pk = gx

2 .
For each owner O(Ti,k) I randomly selects αk ∈ Z∗q and com-

putes the pair (g
αk
1 , g

αk
2). The system provides each owner O(Ti,k)

with his secret key sk = αk and his public key pk = (g
α2

k
1 , g

αk
2).

All owners know each other’s public key.
• Tag Initialization: The issuer I initializes a tag Ti owned by

O(Ti,k). I picks a random number ti ∈ Fq . Using a cryptographic
hash function H : Fq → G1, I computes hi = H(ti) ∈ G1.
Then, I computes u(i,0) = 1 and v(i,0) = hx

i . Finally, I chooses
randomly a key k(i,0) ∈ Fq . Tag Ti stores: s(i,0) = (k(i,0), c(i,0)),
where c(i,0) = (u(i,0), v(i,0)).
I provides O(Ti,k) with tag Ti, refO

Ti
= (kold

i , knew
i , xi, yi) =

(k(i,0), k(i,0), ti, h
x
i).

Before accepting the tag, O(Ti,k) reads Ti and checks if the own-

ership references verify the following equation:

e(H(xi), g
x
2) = e(yi, g2)

This equation implies that Ti is actually issued by I, that is yi =
H(xi)

x.
The owner O(Ti,k) adds an entry ETi for tag Ti in his database
Dk: ETi = (yi, ref

O
Ti

). yi acts as the index of Ti in O(Ti,k)’s
database Dk.

Once the owner O(Ti,k) accepts the tag, he overwrites its con-
tent. He chooses randomly r(i,1) ∈ Fq and computes an Elgamal
encryption of yi using his public key gα2

1 : c(i,1) = (u1
i , v(i,1)) =

(g
r(i,1)
1 , yig

α2
kr(i,1)

1), see El Gamal [5]. Therefore,

s(i,1) = (k(i,1) = k(i,0), c(i,1)).

3.2.1 Authentication protocol
To authenticate a tag Ti, the owner O(Ti,k) decrypts the cipher-

text c(i,j) = (u(i,j), v(i,j)) and gets yi. Using yi, O(Ti,k) identi-
fies Ti and starts a hash-based mutual authentication. to compute

yi(g
r(i,j)
1 , δig

α2
kr(i,j)

1). If the mutual authentication succeeds, both
the owner O(Ti,k) and the tag Ti update their keys.

Tag Ti Owner O(Ti, k)1. N

2. m(i, j) , c(i, j) , R(i, j)

3. m’(i, j) , c(i, j+1)

Figure 1: Authentication in ROTIV

1) To start an authentication with tag Ti, the owner O(Ti,k) sends
a random nonce N to Ti as depicted in figure 3.2.1.

2) Ti generates a random number R(i,j) ∈ Fq . Using his secret
key k(i,j), Ti computes:

m(i,j) = HMACk(i,j)(N, R(i,j), c(i,j)) (1)

Ti finally replies with (R(i,j), c(i,j) = (u(i,j), v(i,j)), m(i,j)). To
generate R(i,j), Ti can either use physical noise to extract R(i,j), or
use a counter counti and computes R(i,j) = HMACk(i,j)(counti).

3) Upon receiving Ti’s reply, the owner O(Ti,k) computes:

yi =
v(i,j)

(u(i,j))
α2

k

O(Ti,k) checks if yi ∈ Dk. If not, O(Ti,k) aborts authentication.
Otherwise, O(Ti,k) looks up Ti’s ownership references refO

Ti
=

(kold
i , knew

i , ti, h
x
i) in Dk and checks if:

m(i,j) = HMACknew
i

(N, R(i,j), c(i,j))OR

m(i,j) = HMACkold
i

(N, R(i,j), c(i,j))

If not, O(Ti,k) aborts authentication. If HMACkold
i

(N, R(i,j), c(i,j)) =

m(i,j) then k(i,j) = kold
i , otherwise k(i,j) = knew

i .
O(Ti,k) chooses a new random number r(i,j+1) ∈ F∗q and com-

putes:

c(i,j+1) = (u(i,j+1), v(i,j+1)) = (g
r(i,j+1)
1 , hx

i g
α2

kr(i,j+1)
1)(2)

m′
(i,j) = HMACk(i,j)(R(i,j), c(i,j+1)) (3)

6

O(Ti,k) sends c(i,j+1) and m′
(i,j) to Ti. Finally, O(Ti,k) updates

the symmetric keys kold
i and knew

i in his database Dk:

(kold
i , knew

i) = (k(i,j), G(k(i,j), N)) (4)

4) Once Ti receives m′
(i,j) and c(i,j+1), and checks if m′

(i,j) =
HMACk(i,j)(R(i,j), c(i,j+1)). If not Ti aborts authentication, oth-
erwise, Ti updates its state s(i,j) to s(i,j+1). To do so, Ti computes
its new key k(i,j+1).

k(i,j+1) = G(k(i,j), N) (5)

Ti updates its state s(i,j+1) = (k(i,j+1), c(i,j+1)).

3.2.2 Issuer verification protocol
In order to verify whether a tag Ti owned by O(Ti,k) is issued by
I, V proceeds as follows:

Tag Ti Verifier V
1. N

3. m(i, j) , c(i, j) , R(i, j)

Owner O(Ti, k)

4. m(i, j) , c(i, j) , R(i,j) , Av

Ti‘s authentication5. refVTi

Issuer verification

2. N

Figure 2: Issuer verification in ROTIV

1) V sends a Nonce N to Ti, as if he is starting a mutual authen-
tication with Ti, as depicted in figure 2.

2) Ti replies with c(i,j) = (u(i,j), v(i,j)) = (g
r(i,j)
1 , hx

i g
α2

kr(i,j)
1),

a hash m(i,j) = HMACk(i,j)(N, R(i,j), c(i,j)) and a random num-
ber R(i,j).

3) V chooses a random number rv ∈ F∗q , he computes Av =

(u(i,j))
rv = g

r(i,j)rv

1 . V forwards N , R(i,j),c(i,j), m(i,j) along
with Av to O(Ti,k).

4) Upon receiving the tuple (N , R(i,j), c(i,j), m(i,j), Av), O(Ti,k)

identifies and authenticates Ti. If O(Ti,k) is not willing to run the
verification protocol for Ti he aborts the verification. Otherwise,
O(Ti,k) computes:

refV
Ti

= (A(i,j), B(i,j), C(i,j)) = (ti, H(ti)
x, Aαk

v)

Finally, O(Ti,k) sends refV
Ti

= (A(i,j), B(i,j), C(i,j)) to V .
5) Provided with the verification references refV

Ti
, V checks whether

the following equations hold:

e(H(A(i,j)), g
x
2) = e(B(i,j), g2) (6)

e(C(i,j), g2) = e(Av, g
αk
2) (7)

Equation (6) verifies whether B(i,j) = H(A(i,j))
x, i.e., whether

B(i,j) is the signature of A(i,j) by issuer I. Equation (7) checks
whether C(i,j) = A

αk
v .

Finally, V checks whether c(i,j) is the encryption of B(i,j) with

the public key g
α2

k
1 . To do so, V checks if the following equation

holds:

e(v(i,j), g2)
rv = e(B(i,j), g2)

rv e(C(i,j), g
αk
2) (8)

Note that if c(i,j) is the encryption of B(i,j) with the public key

g
α2

k
1 , we have: c(i,j) = (u(i,j), v(i,j)) = (g

r(i,j)
1 , B(i,j)g

α2
kr(i,j)

1).

Therefore,

e(v(i,j), g2)
rv = e(B(i,j), g2)

rv e(g
α2

kr(i,j)
1 , g2)

rv

= e(B(i,j), g2)
rv e(g

rvr(i,j)
1 , g

α2
k

2)

= e(B(i,j), g2)
rv e(Av, g

α2
k

2)

= e(Bx
(i,j), g2)

rv e(Aαk
v , g

αk
2)

= e(B(i,j), g
x
2)rv e(C(i,j), g

αk
2)

If all the equations hold, V outputs b = 1 meaning that I is Ti’s
issuer. Otherwise, V outputs b = 0 meaning that I is not the issuer
of Ti.

3.2.3 Ownership transfer protocol
The setup of the ownership transfer in ROTIV consists of a pre-

vious owner O(Ti,k), a new owner O(Ti,k+1) and a tag Ti as shown
in figure 3. The ownership transfer consists of a mutual authenti-
cation between Ti and O(Ti,k+1), and an exchange of ownership
references refO

Ti
between O(Ti,k) and O(Ti,k+1). These ownership

references refO
Ti

are what allows for for O(Ti,k+1) authentication.

Tag Ti

1. N

3. m(i, j) , c(i, j) , R(i, j)

Owner O(Ti, k)

4. m(i, j) , c(i, j) , R(i, j) , Av

Ti‘s authentication5. refOTi, refVTi

Owner O(Ti, k+1)

Issuer verification6. m’(i, j) , c(i, j+1)

2. N

Figure 3: Ownership transfer in ROTIV

The ownership transfer protocol between O(Ti,k) and O(Ti,k+1)

for tag Ti proceeds as follows:
1) The new owner O(Ti,k+1) sends a nonce N to tag Ti.
2) Ti replies with c(i,j) = (u(i,j), v(i,j)), a hash m(i,j) and a

random number R(i,j).
3) O(Ti,k+1) selects a random number rv and computes Av =

urv
(i,j). O(Ti,k+1) sends N , R(i,j), c(i,j), m(i,j) and Av to Ti’s

owner Ok.
4) Provided with N , R(i,j), c(i,j) and m(i,j), O(Ti,k) authen-

ticates Ti. If the authentication fails, O(Ti,k) informs O(Ti,k+1)

who re-sends his first message to Ti. Otherwise, O(Ti,k) provides
O(Ti,k+1) with the following:

refO
Ti

= (kold
i , knew

i , xi, yi) = (k(i,j), k(i,j), ti, h
x
i = H(ti)

x)

refV
Ti

= (A(i,j), B(i,j), C(i,j)) = (ti, h
x
i , Aαk

v)

5) O(Ti,k+1) checks if the data provided by O(Ti,k) is valid by
verifying whether the following equations hold:

e(H(xi), g
x
2) = e(yi, g2) (9)

If not O(Ti,k+1) aborts the ownership transfer protocol.
Otherwise, Provided with refV

Ti
, O(Ti,k+1) verifies whether the

issuer of Ti is I.
If the verification fails, O(Ti,k+1) aborts the ownership transfer.

If not, O(Ti,k+1) finishes the authentication with Ti.
7) To finish the authentication with Ti, O(Ti,k+1) chooses a new

7

random number r(i,j+1) ∈ F∗q and computes:

c(i,j+1) = (u(i,j+1), v(i,j+1)) = (g
r(i,j+1)
1 , yig

α2
k+1r(i,j+1)

1)

m′
(i,j) = HMACk(i,j)(R(i,j), c(i,j+1))

c(i,j+1) is the encryption of yi with O(Ti,k+1) public key: g
α2

k+1
1 .

O(Ti,k+1) sends (c(i,j+1), m′
(i,j)) to Ti and updates its database

Dk+1 as in the authentication protocol presented above. Upon re-
ceiving c(i,j+1) and m′

(i,j), Ti authenticates O(Ti,k+1). If the au-
thentication succeeds Ti updates its state accordingly.

Note. In order to prevent the old owner O(Ti,k) from tracing
the tag later in the future, the new owner O(Ti,k+1) has to run a
mutual authentication with Ti outside the range of O(Ti,k) after the
ownership transfer. In this manner, Ti and O(Ti,k+1) will share a
symmetric key that O(Ti,k) cannot retrieve without physical access
to Ti.

4. PRIVACY ANALYSIS

4.1 Forward Unlinkability

THEOREM 1 (FORWARD UNLINKABILITY). ROTIV provides
forward unlinkability under the SXDH assumption (DDH is hard in
both G1 and G2).

PROOF. Assume that there is an adversary A(r, s, ε) who suc-
ceeds in the forward unlinkability experiment with a non negligible
advantage ε. We will now construct an adversary A′(ε

2
), using A

as a subroutine, who breaks the DDH assumption in G1, therewith
contradicting the SXDH assumption.

Let ODDH be an oracle that selects elements α, β ∈ Fq . Fur-
thermore, ODDH sets γ = αβ in 50% of the queries or selects
a random γ ∈ Fq in the remaining 50% of the queries. ODDH

returns the tuple (g1, g
α
1 , gβ

1 , gγ
1). Adversary A′ breaks DDH, if

given (g1, g
α
1 , gβ

1 , gγ
1), A′ can tell whether gγ

1 = gαβ
1 .

Rationale: The idea of the proof is to build a ROTIV system
with an issuer I of secret key gx

2 , and an owner O whose pub-
lic key is gα

1 . A tag Ti in ROTIV therefore stores a ciphertext
c(i,j) = (g

r(i,j)
1 , hx

i gα
r(i,j)

1). To break DDH, A′ stores in Tb in
the challenge phase, a ciphertext c(b,j+1) = (gβ

1 , hbg
γ
1).

If γ = αβ and A’s advantage ε in breaking ROTIV is non-
negligible,Awill be able to output a correct guess for b. Therefore,
A′ will be able to break DDH.

Construction: First,A′ queriesODDH to receive (g1, g
α
1 , gβ

1 , gγ
1).

Now, A′ simulates a complete ROTIV system for A, i.e., issuer
I, owners, and tags. However for simplicity, we assume here that
all tags in the simulation belong to the same owner O. A′ issues
tags. He randomly selects x ∈ Fq . Here, x represents the secret
key of the issuer.

To issue a tag Ti in the simulation, A′ randomly selects ti, ri,0

and k(i,0) ∈ Fq , computes hi = H(ti), and c(i,0) = (u(i,0), v(i,0))

= (g
r(i,0)
1 , hx

i (gα
1)r(i,0)) = (g

r(i,0)
1 , hx

i g
αr(i,0)
1). Finally,A′ stores

s(i,0) = (k(i,0), c(i,0)) in tag Ti.
Therefore, Ti is a tag issued by an issuer with public key gx

2

and owned by owner O with a public key pk = (gα
1 , g

√
α

2). A′
publishes gα

1 , gr
2 as public key for O, where r is selected randomly

in Fq . Note that given the DDH assumption in G2, A cannot tell if
gr
2 is equal to g

√
α

2 .
Note that, at this time, A′ cannot compute the secret key sk =√
α of O. Still, A′ can successfully simulate O: as A′ knows the

symmetric keys k shared with tags, A′ can compute the HMAC
and authenticate tags.

• In the learning phase of the forward unlinkability experiment,
A′ simulates OT and provides A with tags T0 and T1. A can
eavesdrop on T0 and T1 a total of s times. A′ provides A with r
tags T ′

i . A can read T ′
i ’s internal state, modify it and eavesdrop on

T ′
i ’s interactions with its owner O (simulator A′) up to s times.
• In the challenge phase, A′ starts authentications outside the

range ofA with T0 by sending a nonce N0 and with T1 by sending
a nonce N1. We assume T0 stores s(0,j) = (k(0,j), c(0,j)) and T1

stores s(1,j) = (k(1,j), c(1,j)).
• At the end of an authentication, A′ updates the state of T0 and

T1 as follows: s(i,j+1) = (k(i,j+1), c(i,j+1)), i ∈ {0, 1}, where
k(i,j+1) = G(Ni, k(i,j)) and c(i,j+1) = (gβ

1 , hx
i gγ

1).
• A′ simulates Oflip and gives Tb to A. A can read the internal

state of Tb, modify Tb’s state and eavesdrop Tb’s interactions up to
s times.
• A′ simulates OT and provides A with r tags T ′′

i . Again, A
can read the internal state of T ′′

i , modify T ′′
i ’s state and eavesdrop

on T ′′
i ’s authentications up to s times.
•Given thatA does not have access to Ni, i ∈ {0, 1}, k(i,j+1) =

k(i,j+1) = G(k(i,j), Ni) cannot giveA any information about Tb’s
past interactions. So, A must focus on ciphertext c(i,j+1).
• At the end of the challenge phase, A outputs his guess of b.
If γ = αβ, the state c(b,j+1) = (gβ

1 , hx
b gαβ

1) corresponds to a
valid state of tag Tb. Therefore, A can output a correct guess for
the tag corresponding to Tb with non negligible advantage ε.

If γ 6= αβ, the probability that A′ can break the DDH is a ran-
dom guess, i.e., 1

2
.

In general, given two events {E1, E2}, the probability that event
E1 occurs is Pr(E1) = Pr(E1|E2) · Pr(E2) + Pr(E1|E2) ·
Pr(E2).

Let E1 be the event that A′ can break DDH, and E2 is the event
that γ = αβ holds. The probability of event E2 is 1

2
.

Pr(E1) = Pr(E2) · Pr(E1|E2) + Pr(E2) · Pr(E1|E2)

=
1

2
Pr(E1|E2) +

1

2
Pr(E1|E2)

=
1

2
(
1

2
+ ε) +

1

2
Pr(E1|E2)

≥ 1

2
(
1

2
+ ε +

1

2
) =

1

2
+

ε

2

Therefore, with A’s non negligible advantage in breaking for-
ward unlinkability of ROTIV, A′’s advantage in breaking DDH in
G1 is also non negligible.

4.2 Backward Unlinkability

THEOREM 2 (BACKWARD UNLINKABILITY). ROTIV provides
backward unlinkability under the SXDH assumption.

PROOF SKETCH. The idea behind this proof is similar to the
proof above. An adversary A′ can break DDH in G1, using an
adversary A who breaks ROTIV.

Unlike the forward unlinkability experiment A can read the in-
ternal state of T0 and T1 in the learning phase of the backward un-
linkability experiment. That is, A knows T0’s secret key and T1’s
secret key.

When T0 and T1 are authenticated outside the range of A, their
symmetric keys are updated using the nonces sent by A′. There-
fore, even ifA knows the keys stored in T0 and T1 before the chal-
lenge phase, he cannot use this information to distinguish keys in
the challenge phase. Therefore, the backward unlinkability of RO-
TIV boils down to solving a DDH instance in G1.

8

5. SECURITY ANALYSIS

5.1 Ownership Transfer

5.1.1 Secure authentication

THEOREM 3 (SECURE AUTHENTICATION). The ownership trans-
fer protocol in ROTIV provides secure authentication under the se-
curity of HMAC.

Before giving the security analysis, we introduce the security
properties of HMAC.

HMAC Security: a secure HMAC fulfills the two following
properties:

1.) Resistance to existential forgery: LetOforge
HMACk

be an HMAC
oracle that, when provided with a message m, returns HMACk(m).
An adversary A′(N, ε) can choose N messages m1, . . . , mN , and
provide them to the oracle Oforge

HMACk
to get the corresponding

HMACk(mi). Yet, the advantage ε of A′ to output a new pair
(m, HMACk(m)), where m 6= mi, 1 ≤ i ≤ N , is negligible.

2.) Indistinguishability: Let Odistinguish
HMACk

be an oracle, when
provided with a message m, it flips a coin b ∈ {0, 1} and returns a
message m′ such that: if b = 0, it returns a random number. If b =
1, it returns HMACk(m). A′ cannot tell if m′ is a random number
or m′ = HMACk(m) without having the secret key k.

PROOF. To simplify the proof, we assume that the key ki shared
between tag Ti and Ti’s owner is not updated after each authenti-
cation. As the key update is only required to achieve privacy and
exclusive ownership, it is irrelevant for the authentication proof.

We show that if A(r, ε) is able to break the security of the au-
thentication scheme with non-negligible advantage, then we can
construct adversary A′(r′, ε) that breaks the resistance to existen-
tial forgery of HMAC with non-negligible advantage ε.

Rationale: To break the HMAC existential forgery, A′ simu-
lates both the challenge tag Tc, and Tc’s owner. To compute the
HMAC, A′ queries the oracle Oforge

HMACk
. If A’s advantage ε is non

negligible in succeeding in the authentication experiment, A′ will
be able to compute a valid HMAC HMAC for a message m which
he has not seen before.

Therefore, to break HMAC security A′ answers with the pair
(m, HMAC(m)).

Construction: A′ simulates issuer I and creates tags:
1)A′ selects randomly x ∈ Fq . Here, x will be the secret key of

the issuer.
2) A′ selects randomly ti ∈ Fq and computes hi = H(ti).

Finally, A′ selects randomly αk ∈ Fq and computes : c(i,0) =

(u(i,0), v(i,0)) = (g
r(i,0)
1 , hx

i g
α2

kr(i,0)
1).

Finally,A′ selects randomly ki ∈ Fq and stores s(i,0) = (ki, c(i,0))
into Ti.
• A′ simulates OT and provides A with tag Tc.
• A′ will simulate both Tc and O(Tc,k) in the rest of experiment.
• In the learning phase,A′ starts mutual authentications with Tc

thatA can eavesdrop on or alter by injecting fake messages. A can
start authentications with Tc while impersonating Tc’s owner. He
can as well start authentications with O(Tc,k) while impersonating
Tc.
•When Tc receives a nonce N , A′ generates a random number

R and queries the oracle, Oforge
HMACk

with m = (N, R, c(i,j)), and
Oforge

HMACk
returns σ = HMACk(m) . A′ replies with R, c(i,j) and

σ.
• When O(Tc,k) receives (R, c(i,j), σ), A′ identifies Tc by de-

crypting c(i,j), if the identification fails A′ aborts the authentica-

tion. Otherwise, A′ queries the oracle with message m = (N, R,

c(i,j)), and Oforge
HMACk

returns HMACk(m), A′ checks whether
σ = HMACk(m), if not, A′ aborts authentication. Otherwise,
A′ computes c(i,j+1) and queries Oforge

HMACk
with message m′ =

(R, c(i,j+1)). Oforge
HMACk

returns σ′ = HMACk(m′). A′ sends the
last message of authentication (R, c(i,j+1), σ

′)
•When Tc receives the last message (R, c(i,j+1), σ

′),A′ queries
Oforge

HMACk
with m′ = (R, c(i,j+1)). Oforge

HMACk
returns HMACk(m′).

A′ checks whether σ′ = HMACk(m). If not, A′ aborts the au-
thentication. Otherwise, he writes c(i,j+1) into Tc.
• In the challenge phase, A runs a mutual authentication, either

with
1) Tc while impersonating O(Tc,k). A sends a nonce N ′ to Tc.
A′, generates R′, and queries the oracle Oforge

HMACk
with message

m = (N ′, R′, c(i,j)). Oforge
HMACk

returns σ = HMACk(m). A′

sends R′, c(i,j) and σ to A.
A replies with (c′, σ′).
If A’s advantage ε in impersonating Tc’s owner is not negligi-

ble, we will have σ′ = HMACk(R, c′). Therefore, to break the
existential forgery of HMACk with non negligible advantage ε,A′
simply outputs ((R, c′), σ′). This leads to a contradiction under the
security of HMAC.

2) or with Tc’s owner while impersonating Tc. A′ sends a fresh
nonce N to A. Upon receiving N , A generates a random number
R. A sends with R, c′ and σ to A′.

If A’s advantage ε in impersonating Tc is non negligible, we
have σ = HMACk(N, R, c′). Therefore, to break the existential
forgery of HMACk, A′ can output ((N, R, c′), σ) and is success-
ful with non negligible advantage ε. This also leads to a contradic-
tion of the HMAC security assumption.

5.1.2 Exclusive Ownership

THEOREM 4 (EXCLUSIVE OWNERSHIP). The ownership trans-
fer protocol in ROTIV provides exclusive ownership under the se-
curity of the hash function H .

PROOF. Assume there is an adversary A(r, s, ε) who succeeds
in the exclusive ownership game with a non negligible advantage
ε. If so, we can construct an adversary A′ who breaks the “one
wayness” of H with a non negligible advantage ε.

One Wayness: Let OH be an oracle that, when queried, returns
a hash H(m). A′ breaks the one wayness of H , if given H(m), he
outputs m with non negligible advantage over simple guessing.

Rationale: To break the one wayness of H , A′ queries the or-
acle OH which returns a hash hn. A′ creates a tag Tc such that

s(0,n) = (k(0,n), c(0,n)), where c(0,n) = (g
r(0,n)
1 , hx

ng
α2

kr(0,n)
1).

If A has a non negligible advantage ε in succeeding in the exclu-
sive ownership transfer, A will be able to transfer the ownership
of Tc with a non negligible advantage. That is, A outputs valid
ownership references for Tc, refO

Tc
= (tn, hx

n, kold, knew), where
hn = H(tn).

To break H’s one wayness, A′ outputs tn.
Construction: A′ simulates the issuer I and creates (n − 1)

tags.
1) A′ selects randomly x ∈ Fq . x will be the secret key of the

issuer.
2) For each tag Ti, A′ selects randomly ti ∈ Fq and computes

hi = H(ti). A′ selects randomly αk ∈ Fq and computes c(i,0) =

(u(i,0), v(i,0)) = (g
r(i,0)
1 , hx

i g
α2

kr(i,0)
1). Also, A′ selects randomly

k(i,0) ∈ Fq and stores s(i,0) = (k(i,0), c(i,0)) into Ti. A′ creates

9

refO
Ti

= (ti, h
x
i ,

k(i,0), k(i,0)).
3) A′ queries OH that returns hash hn. A′ selects a random

number r(n,0) and computes c(n,0) = (u(n,0), v(n,0)) =

(g
r(n,0)
1 , hx

ng
α2

kr(n,0)
1).

Therewith, A′ selects randomly k(n,0) ∈ Fq and stores s(n,0) =
(k(n,0), c(n,0)) into tag T ′

c.
• A enters the learning phase. A′ simulates OT . A′ selects

randomly a tag Ti from the n tags he created and checks if Ti = T ′
c.

If so, A′ aborts the experiment, otherwise, A′ provides A with tag
Ti.
• Simulating Oown, A′ provides A with Ti’s ownership refer-

ences. A can read Ti’s state, modify it, and run mutual authentica-
tions with Ti.
• In the challenge phase,A′ simulatesOT and selects randomly

a tag Tc for which A did not query the oracle Oown.
If Tc 6= T ′

c, A′ stops the experiment. Otherwise, A′ provides A
with Tc.
• A now can read Tc’s internal state for up to s times, he can as

well eavesdrop on Tc.
• A′ simulates OO and returns an owner Oc.
•At the end of the challenge phase,A runs an ownership transfer

with Oc.
IfA’s advantage in breaking the exclusive ownership is non neg-

ligible, A will provide Oc during the ownership transfer protocol
with refO

Tc
= (tn, hx

n, kold, knew), where hn = H(tn).
Therefore, to break the one wayness of H , A′ outputs tn.
Note that A′ succeeds in breaking H , if he does not stop the

experiment. The probability that A′ does not stop the experiment
corresponds to not choosing T ′

c in the learning phase, and choos-
ing T ′

c in the challenge phase. The probability that A′ does not
choose T ′

c in the learning phase is (1 − 1
n
)r . The probability that

A′ chooses T ′
c in the challenge phase is 1

n
Hence, A′’s advantage is

ε′ = Pr(A′ does not abort the experiment)ε = (1− 1

n
)r 1

n
ε

This leads to a contradiction under the security of H .
Note. Someone could argue that if n, i.e., the total number of

tags, is large, the advantage ε will be non-negligibe. In what fol-
lows, we show that if ε is non negligible, so is ε′.

Let k be the security parameter of ROTIV. If ε is non negligible,
we have:
∃ c, ∃Nc such that ∀ k > Nc: |ε| ≥ 1

kc .
Therefore,
∃ c, ∃Nc, ∀ k > Nc: |(1− 1

n
)r 1

n
ε| ≥ (1− 1

n
)r 1

n
1

kc .
Thus, ∀ k > Nc: |ε′| ≥ (1− 1

n
)r 1

n
1

kc .

Note that for ∀ k > 2n
1
r > n

1
r

1− 1
n

⇒ (1 − 1
n
)r 1

n
> 1

kr , hence,

∀ k > Nc and k > 2n
1
r : |ε′| > 1

kr
1

kc ≥ 1
kc+r .

That is, ∀ k > max(Nc, 2n
1
r): |ε′| > 1

kc+r .

If we denote c′ = c + r, and Nc′ = max(Nc, 2n
1
r), we have,

∃ c′, ∃Nc′ , ∀ k > Nc′ : |ε| > 1

kc′ .
Consequently, ε′ is non negligible. This leads to a contradiction.

5.2 Issuer verification protocol

THEOREM 5 (ISSUER VERIFICATION SECURITY). The issuer
verification protocol in ROTIV is secure under the BCDH assump-
tion.

PROOF. Assume there is an adversary A who breaks the issuer
verification protocol with a non negligible advantage ε, we build

an adversaryA′ that usesA to break the BCDH assumption with a
non negligible advantage ε′.

Square BCDH assumption: We use a modified version of the
BCDH assumption: square BCDH, sq-BCDH for short. The sq-
BCDH assumption states that given g1, g2, gx

1 , gx
2 , gy

1 , one cannot
compute e(g1, g2)

x2y .
We show in the appendix the equivalence between BCDH and

sq-BCDH.
Rationale: If A has a non negligible advantage in succeeding

in the issuer verification experiment, A will be able to output valid
verification references for a fake tag Tc which he creates. That is,
refV

Tc
= (Ac, Bc, Cc) = (tc, h

x
c , Cc), where hc is the hash of

tc. Therefore, to break the sq-BCDH assumption, A′ simulates the
outputs of H , during the issuer verification experiment. When A
queries H with Tc’s identifier tc,A′ selects randomly rc ∈ Fq and
outputs hc = H(tc) = gyrc

1 .
At the end of the challenge phase,A outputs a valid tuple: refV

Tc
=

(Ac, Bc, Cc) = (tc, h
x
c , Cc) = (tc, g

xyrc
1 , Cc). To break sq-

BCDH A′ outputs e(g1, g2)
x2y = e(gxyrc

1 , gx
2)r−1

c .
Random oracle H: On a query H(t), if t has never been queried

before, A′ picks rt ∈ Fq and stores the pair (t, rt) in a table TH .
Then,A′ flips a random coin coin(t) ∈ {0, 1} such that: coin(t) =
1 with probability p, and is equals to 0 with probability 1 − p. To
compute H(t), A′ checks coin(t) : if coin(t) = 0, A′ looks up rt

in TH , and answers H(t) = grt
1 . Otherwise, if coin(t) = 1, A′

answers with H(t) = (gy
1)rt .

This motivates why in our protocol design, we use different hash
functions for tags and issuer. That is, G for tags and H for issuer.
If tags Ti implements the same hash function as the issuer, A will
not need to queryA′ to get the output of H , he can only use one of
the tags he controls to compute H .

Construction: A′ first queriesOsq−BCDH to receive (g1, g2, g
x
1 ,

gx
2 , gy

1).
A′ simulates an issuer I of public key gx

2 to create r tags Ti:
1) He selects randomly ti ∈ Fq , then computes hi = H(ti) as

above. If coin(ti) = 1 A′ aborts the experiment. Otherwise, A′
computes hx

i . To do so, he looks up his table TH for ti, gets rti ,
and computes hx

i = (gx
1)rti . A′ selects randomly αk , r(i,0) ∈ Fq

and computes c(i,0) = (u(i,0), v(i,0)) = (g
r(i,0)
1 , hx

i g
α2

kr(i,0)
1).

Finally,A′ chooses randomly a key k(i,0) ∈ Fq and stores s(i,0) =
(k(i,0), c(i,0)) into Ti.

2)A′ stores the ownership references of tag Ti, refO
Ti

= (k(i,0),
k(i,0), hi, h

x
i).

• A enters the learning phase.
• A′ simulates OT and provides A with r tags Ti.
• A′ simulates Oown and provides A with Ti’s ownership ref-

erences refO
Ti

. Provided with the ownership references A has full
control of Ti, and he can now run authentications with Ti, issuer
verification and ownership transfer for Ti.
• In the challenge phase, A′ simulates the verifier V .
• A is required to create a new tag Tc. Therefore, A selects ran-

domly tc ∈ Fq and queries H . To answer this query,A′ flips a coin
coin(tc), if coin(tc) = 0, A′ stops the experiment. Otherwise, A′
selects randomly rc ∈ Fq and answers with hc = (gy

1)rc = gyrc
1 .

IfA’s advantage in breaking ROTIV verification protocol is non
negligible, A will provide a valid verification reference refV

Tc
for

Tc during the issuer verification protocol. That is:

refV
Tc

= (Ac, Bc, Cc) = (tc, h
x
c , Cc) = (tc, g

yxrc
1 , Cc)

Finally, to break sq-BCDH, A′ computes the following:

e(Bc, g
x
2)r−1

c = e(hx
c , gx

2)r−1
c = e(gyrc

x

1 , gx
2)r−1

c = e(g1, g2)
x2y

10

Note thatA′ succeeds in breaking BCDH is he does not stop this
experiment. A′ does not stop the experiment, if for all the r tags Ti

he created for the learning phase, coin(ti) = 0, and if for tag Tc

coin(tc) = 1.
Therefore the probability thatA′ does not stop the experiment is

p(1− p)r . Thus, A′’s advantage is:

ε′ = p(1− p)rε

If ε is non negligible, so is ε′. This leads to a contradiction under
the BCDH assumption.

6. RELATED WORK
Molnar et al. [13] address the problem of ownership transfer in

RFID systems by relying on a trusted party during the actual trans-
fer itself. When a reader reads a tag T , it sends the tag pseudonym
he receives from T to the trusted party in order to identify T . If
the reader is actually T ’s owner, the trusted party replies with T ’s
identity. To transfer ownership of T , the owner of T and the new
owner of T ask the trusted party. Once the ownership transfer of
T takes place, the trusted center refuses identity requests from T ’s
previous owner. The requirement for a trusted third party is, how-
ever, a drawback: in many scenarios, the availability of a trusted
third party during tag ownership transfer is probably unrealistic.

Similar, Saito et al. [16] suggest two approaches for ownership
transfer. To allow for ownership transfer for tag T , T ’s previous
owner O provides the new owner O′ with a symmetric key, then O′

sends this key to a trusted third party. The trusted third party helps
in finalizing the ownership transfer. Again, this approach, like Mol-
nar et al. [13], relies on a trusted third party – a major drawback.
Moreover, Saito et al. [16] require tamper resistant memory to store
keys, Otherwise, anyone can impersonate the trusted third party.

The ownership transfer protocol introduced by Song [17] has
been shown to have security weaknesses as highlighted by Peris-
Lopez et al. [15].

Lim and Kwon [12] rely on hash chains to provide forward un-
linkability during tag ownership. However, this scheme, as well as
all the others mentioned above, does neither allow owners to verify,
whether a tag T was issued by a legitimate party nor constant-time
authentication. These are major contributions of the paper at hand.

7. CONCLUSION
In this paper, we presented ROTIV to address security and pri-

vacy issues related to RFID ownership transfer in supply chains.
Moreover, ROTIV enables ownership transfer together with issuer
verification. Such verification will prevent partners in a supply
chain from injecting fake products. ROTIV’s main idea is to store
a signature of the issuer in tags that can be verified by every partner
in the supply chain. Also, to allow for efficient ownership transfer,
ROTIV comprises an efficient, constant time authentication proto-
col. To guarantee tag privacy, we use re-encryption and key up-
date techniques. Despite the high security and privacy properties,
ROTIV is lightweight and requires a tag to only evaluate a hash
function.

References
[1] G. Ateniese, J. Camenisch, and B. de Medeiros. Untraceable

rfid tags via insubvertible encryption. In CCS ’05: Proceed-
ings of the 12th ACM conference on Computer and communi-
cations security, pages 92–101, New York, NY, USA, 2005.
ACM. ISBN 1-59593-226-7.

[2] G. Ateniese, J. Kirsch, and M. Blanton. Secret handshakes

with dynamic and fuzzy matching. In Proceedings of the Net-
work and Distributed System Security Symposium, NDSS. The
Internet Society, 2007.

[3] L. Ballard, M. Green, B. de Medeiros, and F. Monrose.
Correlation-resistant storage via keyword-searchable encryp-
tion. Cryptology ePrint Archive, Report 2005/417, 2005.
http://eprint.iacr.org/.

[4] M. Burmester, B. de Medeiros, and R. Motta. Robust, anony-
mous RFID authentication with constant key-lookup. In Pro-
ceedings of the 2008 ACM symposium on Information, com-
puter and communications security, ASIACCS ’08, pages
283–291, New York, NY, USA, 2008. ACM. ISBN 978-1-
59593-979-1.

[5] T. El Gamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. In CRYPTO 84 on Ad-
vances in cryptology, pages 10–18, New York, USA, 1985.
Springer New York, Inc.

[6] S. Fouladgar and H. Afifi. An Efficient Delegation and Trans-
fer of Ownership Protocol for RFID Tags. In First Inter-
national EURASIP Workshop on RFID Technology, Vienna,
Austria, September 2007.

[7] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart.
Pairings for cryptographers. Discrete Appl. Math., 156:3113–
3121, September 2008. ISSN 0166-218X.

[8] P. Golle, M. Jakobsson, A. Juels, and P. Syverson. Universal
re-encryption for mixnets. In RSA Conference, Cryptogra-
pher’s track, pages 163–178. Springer, 2004.

[9] A. Juels and S.A. Weis. Defining Strong Privacy for RFID.
In PerCom Workshops, pages 342–347, White Plains, USA,
2007. ISBN 978-0-7695-2788-8.

[10] H. Krawczyk, M. Bellare, and R. Canetti. Hmac: Keyed-
hashing for message authentication, 1997. RFC 2104, http:
//www.ietf.org/rfc/rfc2104.txt.

[11] Y. K. Lee, L. Batina, D. Singelée, and I. Verbauwhede. Low-
Cost Untraceable Authentication Protocols for RFID. In Su-
sanne Wetzel, Cristina Nita-Rotaru, and Frank Stajano, ed-
itors, Proceedings of the 3rd ACM Conference on Wireless
Network Security – WiSec’10, pages 55–64, Hoboken, New
Jersey, USA, March 2010. ACM, ACM Press.

[12] C. H. Lim and T. Kwon. Strong and Robust RFID Authenti-
cation Enabling Perfect Ownership Transfer. In ICICS, pages
1–20, 2006.

[13] D. Molnar, A. Soppera, and D. Wagner. A Scalable, Dele-
gatable Pseudonym Protocol Enabling Ownership Transfer of
RFID Tags. In Bart Preneel and Stafford Tavares, editors, Se-
lected Areas in Cryptography, volume 3897 of Lecture Notes
in Computer Science, pages 276–290. Springer Berlin / Hei-
delberg, 2006.

[14] R. Paise and S. Vaudenay. Mutual authentication in RFID:
security and privacy. In Proceedings of the 2008 ACM sympo-
sium on Information, computer and communications security,
ASIACCS ’08, pages 292–299, New York, NY, USA, 2008.
ACM. ISBN 978-1-59593-979-1.

11

[15] P. Peris-Lopez, J. C. Hernandez-Castro, J. M.E. Tapiador,
T. Li, and Y. Li. Vulnerability analysis of rfid protocols for tag
ownership transfer. Computer Networks, 54(9):1502 – 1508,
2010. ISSN 1389-1286.

[16] J. Saito, K. Imamoto, and K. Sakurai. Reassignment scheme
of an rfid tag’s key for owner transfer. In Embedded and Ubiq-
uitous Computing, volume 3823 of Lecture Notes in Com-
puter Science, pages 1303–1312. Springer Berlin / Heidel-
berg, 2005.

[17] B. Song. RFID Tag Ownership Transfer. In Workshop on
RFID Security – RFIDSec’08, Budapest, Hungary, July 2008.

[18] S. Vaudenay. On privacy models for RFID. In Proceedings
of the Advances in Crypotology 13th international confer-
ence on Theory and application of cryptology and informa-
tion security, ASIACRYPT’07, pages 68–87, Berlin, Heidel-
berg, 2007. Springer-Verlag. ISBN 3-540-76899-8, 978-3-
540-76899-9.

APPENDIX
THEOREM 6. The BCDH assumption and the sq-BCDH assump-

tion are equivalent.

PROOF. Let OBCDH be an oracle, when queried selects ran-
domly a, a′, b ∈ Fq , returns g1, g

a
1 , ga′

1 , gb
1, g2, g

a
2 , ga′

2 .
An adversaryA breaks BCDH, if given (g1, g

a
1 , ga′

1 , gb
1, g2, g

a
2 , ga′

2),
he can compute e(g1, g2)

aa′b with a non negligible advantage ε.
Let Osq−BCDH be an oracle, when queried selects randomly

a, b ∈ Fq and returns g1, g
a
1 , gb

1, g2, g
a
2 .

An adversary A breaks sq-BCDH, if given (g1, g
a
1 , gb

1, g2, g
a
2),

he can compute e(g1, g2)
a2b with a non negligible advantage ε.

Note that sq-BCDH is an instance of BCDH, therefore, if there is
an adversary A who breaks BCDH, the same adversary can break
sq-BCDH.

In what follows, we show that if there is an adversary A who
breaks sq-BCDH with a non negligible advantage ε, we build an
adversary A′ who breaks BCDH with advantage ε.

Construction: First,A′ queriesOBCDH to receive (g1, g
a
1 , ga′

1 , ga′
1 ,

g2, g
a
2 , ga′

2).
• A′ chooses randomly t1 ∈ Fq , and simulates Osq−BCDH by

giving A g1, g
a
1 , gt1b

1 , g2, g
a
2 . A outputs e(g1, g2)

a2t1b, and A′

computes A1 = (e(g1, g2)
a2t1b)

t−1
1

= e(g1, g2)
a2b.

• A′ chooses randomly t2 ∈ Fq , simulates again Osq−BCDH,
and provides A with g1, g

a′
1 , gt2b

1 , g2,

ga′
2 . A outputs A2 = e(g1, g2)

a′2t2b, and A′ computes A2 =

(e(g1, g2)
a′2t2b)

t−1
2

= e(g1, g2)
a′2b.

•A′ selects randomly r1 and r2 in Fq , and then, simulatesOsq−BCDH

and provides A with g1, g
r1a+r2a′

1 , gb
1, g2, g

r1a+r2a′

2 . A outputs
A3 = e(g1, g2)

(r1a+r2a′)2b = e(g1, g2)
(ar1)2b+2r1r2aa′b+(a′r2)2b.

• A′ computes B = A
r2
1

1 = e(g1, g2)
(ar1)2b, C = A

r2
2

2 =

e(g1, g2)
(a′r2)2b, and computes D = A3

BC
= e(g1, g2)

2r1r2aa′b.

To solve BCDH, A outputs D
1

r1r2 = e(g1, g2)
aa′b.

Therefore, if A breaks sq-BCDH with a non negligible advan-
tage ε, A′ breaks BCDH with the same advantage ε.

12

