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ABSTRACT
Bag-of-Visual-Words (BoW) feature has been demonstrated
effective and widely used in video concept detection due to
its discriminative ability by capturing the local information
in images. In the current approaches, all the words in the
visual vocabulary are treated equally for the detection of dif-
ferent concepts. This cannot highlight the concept-specific
visual information, and thus limits the discriminative ability
of BoW feature. In this paper, we propose an approach to
boost the performance of video concept detection based on
BoW. This is achieved by assigning different weights to the
visual words according to their informativeness for the de-
tection of different concepts. Kernel alignment score (KAS)
is used to measure the discriminative ability of SVM kernels,
and the visual words are weighted as a kernel optimization
problem. We show that the SVMs based on weighted visual
words with our approach outperform the uniformly weight-
ing and TF-IDF weighting schemes, and the MAP for the 20
concepts from TRECVID 2009 high-level feature extraction
is significantly improved.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Video analysis; I.5.4 [Pattern Recognition]: Ap-
plications—Computer vision.

General Terms
Algorithms, Experimentation, Performance

Keywords
Bag-of-Visual-Words, Kernel Optimization, Concept Detec-
tion

1. INTRODUCTION
As a basic step for content-based image and video re-

trieval, image/video concept detection has been intensively
studied in the past few years especially due to the great ef-
forts of TRECVID Workshop [8]. Different approaches and
features have been proposed. For classifiers, SVM (Support
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Figure 1: Construction of visual vocabulary.

Vector Machine) has been widely used. Features include
global feature, local feature and audio feature. Among these
features, Bag-of-Visual-Words (BoW) [1, 4] has achieved
great success due to its efficiency and effectiveness by cap-
turing discriminative local image information.

For the generation of BoW feature, a visual vocabulary
is first constructed on a set of training images as illustrated
in Figure 1. In each image, the local interest points (LIPs)
are detected [7], and described with SIFT (Scale Invariant
Feature Transformation) [6]. The LIPs are then clustered
into different groups to form a visual vocabulary. This pro-
cess actually segments the SIFT descriptor space into differ-
ent Voronoi cells, each corresponding to a visual word (see
Figure 1). To compute the BoW feature vector of a given
image, each detected LIP is assigned to one or few nearest
visual word(s) [4, 5]. This results in a histogram on the vi-
sual vocabulary, which can be used as the input for classifier
training and testing.

The typical size of the visual vocabulary is 200 to 5000,
and BoW feature captures the visual distribution of an im-
age on the whole SIFT descriptor space. On the other hand,
the number of keypoints in each image ranges from tens to
thousands. The visual information of a concept actually can-
not be evenly distributed over the whole vocabulary. Given
a concept, some visual words are more informative or impor-
tant for the detection of a specific concept, while the others
may be noisy. For instance, in Figure 1, the visual word
v1 containing a wheel-like image patch is quite important
for detecting the concept Car or Vehicle, but may not con-
tribute to the detection of concept Person. Similarly, the
presence of v2 implies there is a Person or Human face with
high probability. However, the relation between the concept
Car and visual word v2 could be weak.



In the current approaches, for different concepts, each vi-
sual word is treated equally. The discriminative ability of
those informative visual words could be seriously reduced
considering two factors: i) The background of the images
from general videos is extremely complex, which contains a
lot of visual information besides the concept-related objects
and scenes. Thus, the informative visual words can be easily
noised. ii) In most current datasets, the number of positive
examples are limited for many concepts. For instance, in
Sound & Vision data used for TRECVID evaluation, there
are only tens of positive examples for some concepts. There-
fore, denoising is hard without enough data available. This
inspires us to select the visual words which are more infor-
mative to boost the performance of concept detection.

To weight the importance of visual words to a specific
concept, the classical TF-IDF (Term Frequency - Inverse
Document Frequency) approach is the first candidate. Al-
though TF-IDF has proved useful in information retrieval, it
is not appropriate for weighting the visual words in concept
detection. First, DFs of visual words do not convey much
useful information. This is because each image contains a
lot of noisy information in the background, and each visual
word can be found in the positive samples of almost every
concept, meaning that DFs for different words are almost
the same. Second, TF is also not a good hint for the impor-
tance of the visual word. The importance of a visual word
for the detection of a concept is dependent on its informa-
tiveness instead of its frequency. For instance, in Figure 1,
the presence of word v1 is very important for detecting the
car. Although there is only one keypoint assigned to v1,
it is more important compared with those keypoints in the
background assigned to v3. Furthermore, the statistic infor-
mation computed in TF-IDF approach is usually not reliable
due to the lack of positive examples as mentioned above.

In this paper, we propose an approach to measure the
importance of each visual word for given concepts. This
is achieved by iteratively updating the weights to push the
SVM kernel towards the optimal one. For this purpose, ker-
nel alignment score (KAS) is used to measure the discrim-
inative ability of SVM kernel (Section 2). The problem is
then to maximize the KAS score by optimizing the weights
of different visual words (Section 3). Finally, the resulting
weights are used in a modified kernel for concept detection.

2. EVALUATING SVM KERNELS
In current approaches for concept detection, SVM (Sup-

port Vector Machine) has been the mostly frequently used.
Typically concept detection is treated as a one vs. all binary
classification problem. At the training stage, two classes
are manually labelled: positive examples which contain the
given concept and negative ones in which the concept is
not present. To measure the fitness of the weights of visual
words, the performance of SVM classifier is the best hint.
However, it is not applicable to evaluate the performance
by training, cross-validation and testing from time to time
during the weighting procedure.

The performance of SVM is mainly dependent on the abil-
ity of kernel matrix to discriminate between positive and
negative samples. Different factors can affect kernel ma-
trix such as kernel function format, features, and parameter
settings. Kernel optimization is to find a better kernel by
optimizing these factors. In this paper, we weight the visual
words in the framework of kernel optimization, i.e. we at-

tempt to find the optimal weights that can produce the best
kernels.

For SVM, an optimal kernel Kopt [2] should satisfy

Kopt
ij =

{
+1 if li = lj

0 otherwise
(1)

where i, j are two examples and li = +1 (or −1) if i is a
positive (or negative) example. In Kopt, the kernel values
between samples with the same labels are maximized, while
the values between samples with different labels are mini-
mized. Thus, this optimal kernel can perfectly discriminate
between different classes.

However, the actual kernels used in practice are usually
not optimal due to the imperfect features and kernel func-
tions. To measure how well a given kernel K is aligned with
optimal kernel, the kernel alignment score (KAS) [2] is used

Ŝ =

∑
i,j Kij · li · lj

N ·
√∑

i,j K
2
ij

(2)

where N is the total number of examples. Generally, a ker-
nel with higher KAS score is better at discriminating exam-
ples of different classes, and can potentially achieve better
performance for classification. In our approach, we employ
KAS to measure the fitness of SVM kernel and weight the
visual words by maximizing KAS scores.

3. WEIGHTING VISUAL WORDS BY
KERNEL OPTIMIZATION

3.1 Problem Formulation
For visual vocabulary construction, we first detect the lo-

cal interest points (LIPs) with Hessian Laplacian detector
[7] on a set of training images. The LIPs are described with
SIFT [6] and then clustered into c(c = 500 in our exper-
iments) visual words by employing k-means algorithm to
form a visual vocabulary. To generate BoW feature of a
given image i, each detected LIP is assigned to the nearest
cluster (or visual word), and the image is represented by a
histogram on the vocabulary as Xi = [xi1, xi2, · · · , xic].

The resulting BoW features are then used for SVM train-
ing and classification. In our approach, we adopt RBF (Ra-
dial Bias Function) kernel which is the most frequently used
for SVM classification. Given two images i, j and their BoW
representation Xi, Xj , the RBF kernel is defined as

K̂ij = exp(−σ ·
c∑

m=1

(xim − xjm)2) (3)

As discussed in Section 1, the existing approaches assign the
same weights to all visual words. In this paper, we attempt
to measure the importance of visual words for each concept
and assign different weights to them accordingly. Here we
just consider the detection of one concept and denote the
weight vector of visual words as w = [w1, w2, · · · , wc] where∑c
m=1 wi = 1. By considering the weights, Equation 3 can

be rewritten as

Kij = exp(−σ ·
c∑

m=1

wm · (xim − xjm)2) (4)

where the more important visual words contribute more to
the distance measure between examples.

To select a weight vector which can result in better ker-
nels, we employ the kernel alignment score in Equation 2 to
measure the discriminative ability of kernels. Equation 2 as-
sumes the two classes are balanced. However, this is not the
case in current datasets, where there are usually many more



negative examples than positive ones. This may bias the
resulting KAS towards the negative class. To deal with this
imbalance problem of the datasets, we modify Equation 2 by
assigning different weights to positive and negative examples
as follows

αi =

{
1 if li = −1
N−
N+ otherwise

(5)

where N− and N+ are the numbers of negative and positive
examples in training data respectively. Equation 2 is then
modified as

S =

∑
i<j Kij · li · lj · αi · αj

N ′ ·
√∑

i<j αi · αj ·K2
ij

(6)

where N ′ =
∑
i<j αiαj . Eventually the problem is formu-

lated as searching for an optimal weight vector wopt such
that the KAS score defined by Equations 6 is maximized.

3.2 Gradient-based Weights Optimization
Gradient-descent approach is widely used for optimiza-

tion. In [3], gradient-based algorithm is employed to select
SVM parameters for bacterial gene start detection in bio-
metrics. In our approach, we weight the visual words by
adopting a similar gradient-descent algorithm to optimize
the SVM kernels by maximizing the KAS in Equation 6.
Based on Equation 6, we calculate the partial derivative of
S to the weight wm as

∂S

∂wm
=

∑
i<j

∂S

∂Kij
· ∂Kij

∂wm
(7)

∂Kij

∂wm
= Kij · (−σ · (xim − xjm)2) (8)

Besides the weights of visual words, we also optimize σ in
Equation 4 which is an important parameter for SVM ker-
nels

∂S

∂σ
=

∑
i<j

∂S

∂Kij
· ∂Kij

∂σ
(9)

∂Kij

∂σ
= Kij · (−

c∑
m=1

wm · (xim − xjm)2) (10)

In Equation 8, the weights of different visual words are
supposed to be independent on each other. According to our
experiment, this assumption is reasonable. Strictly speak-
ing, there might be some weak correlations between the im-
portance of different visual words. For instance, two visually
similar words may have the similar weights.

Based on Equations 7 − 10, , we iteratively update the
weight vector w of visual words so as to maximize the kernel
alignment score in Equation 6. Below is the algorithm for
optimization:

1. Initialize wm = 1/c for m = 1, 2, · · · , c and σ = σ0.
Calculate the initial KAS score S by Equation 6.

2. For each weight wm and σ, calculate the partial deriva-
tive ∂S

∂wm
and ∂S

∂σ
by Equations 7-10.

3. Update weights w′m = wm·(1+sign( ∂S
∂wm

)·δw) and σ′ =

σ·(1+sign( ∂S
∂σ

)·δσ), where sign(t) =





+1 if t > 0
0 if t = 0
−1 if t < 0

.

δw and δσ are two constants to be determined. Get the

new weights by normalizing wm =
w′m∑c
k=1 w

′
k

.

4. Calculate the new kernel alignment score S′ using the

updated weights and σ. If S′−S
S

< thres, stop; other-
wise, S = S′ and go to step 2.

In step 1, σ0 = N ′/
∑
i<j

∑c
m=1 wm · (xim − xjm)2 which

is the inverse of the average distance between examples, and
a good empirical choice of σ for SVM paramter selection. In
step 3, the weight vector (and σ) is updated by a small value
δw (and δσ). For the determination of δw (and δσ), a larger
value can push the weights (and σ) to the optimal one at
higher speed at the beginning. However, this risks missing
the local minimal point by skipping a large distance in each
step and cannot find the optimal weights. A smaller δw (and
δσ) can avoid this problem, but it takes more iterations to
converge. In our experiments, we empirically set δw = 0.02
and δσ = 0.1. In step 4, thres is set to be 0.5% so as to
stop the optimization when the improvement on KAS be-
comes minor. After the optimization process, the resulting
weight vector is used to train SVMs with the kernel defined
in Equation 4 for concept detection.
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Figure 2: Weights of visual words for two concepts.

4. EXPERIMENTS
The experiments are carried out on the development and

test sets of TRECVID 2007 Sound & Vision data. There are
totally 21532 and 22084 keyframes for development and test-
ing respectively, which are extracted from about 100-hour
videos. The twenty concepts (see Table 1) from TRECVID
2009 high-level feature extraction task are detected. The
definitions of these concepts can be found at [8].

4.1 Concept-Specific Weights of Visual Words
Figure 2 plots the computed weights of visual words for

two concepts: Boat Ship and Telephone by our approach
described in Section 3 (for the convenience of illustration,
we use a small vocabulary with 200 visual words). In Fig-
ure 2, the visual words are sorted in descending order of their
weights for concept Boat Ship, and the weights for Telephone
(red marks) are then plotted accordingly for comparison.

From Figure 2, we can see: i) For one given concept
(Boat Ship), some visual words are assigned with much larger
weights than others. This demonstrates the variations of dif-
ferent visual words’ informativeness for detecting the con-
cept. Therefore, it is important to select the most infor-
mative visual words in order to improve the discriminative
ability of the classifiers. ii) By comparing different concepts,
the weights for the same visual word are also quite differ-
ent. One visual word which is important for a given concept
may not be important for another one. Thus, it is necessary
to weight the visual words for different concepts instead of
assigning the same weights to all concepts.

4.2 Comparison with TF-IDF Weighting and
Uniformly Weighting Approaches

We compare our approach with uniformly weighting and
TF-IDF weighting approaches. For uniformly-weighting scheme,



all visual words are assigned with the same weights as used
in existing approaches.

TF-IDF (Term Frequency-Inverse Document Frequency)
is a classical weighting algorithm which is widely used in
information retrieval. Given a concept t, all the samples con-
taining t compose a documentDt = {Xi|li = +1 for concept t}.
For each visual word v, the Term Frequency is calculated as

tfvt =
Fvt∑
v′ Fv′t

(11)

where Fvt is the occurrence frequency of word v in docu-
ment Dt, and the normalization factor

∑
v′ Fv′t is the total

occurrence frequency of all visual words in Dt.
Inverse Document Frequency is calculated as

idfv = log(
M

|{Dt′ |Fvt′ 6= 0}| + 1) (12)

where M is the total number of documents (concepts), and
|{Dt′ |Fvt′ 6= 0}| is the number of documents that contain
the word v. Thus, the importance of v for concept t can be
weighted by

ŵvt = tfvt · idfv (13)
The resulting weights are then used to compute the kernel
in Equation 4 for SVM training and classification.

In our experiments, we adopt Average Precision (AP)
to evaluate the performance of concept detection. Two-
fold cross-validation is carried out on development and test
set. Table 1 shows the performances of concept detection
by three weighting schemes. For TF-IDF approach, minor
improvement (0.58%) on the MAP (Mean Average Preci-
sion) for 20 concepts is observed compared with uniformly-
weighting approach. For different concepts, the performance
improvement by TF-IDF is inconsistent. As discussed in
Section 1, TF-IDF is not a good hint for the informativeness
of visual words in concept detection. The limited number
of positive examples and the noises in images reduce the
reliability of the statistics information used by TF-IDF.

Table 1: Comparison between different weighting
schemes.

Uniform TF-IDF Our approach
Concept AP AP Improve AP Improve
Airplane flying 0.1177 0.1145 -2.72% 0.1315 11.72%
Boat Ship 0.1698 0.1645 -3.08% 0.1925 13.37%
Bus 0.0086 0.0092 6.98% 0.0117 36.05%
Chair 0.0403 0.0420 4.22% 0.0440 9.18%
Cityscape 0.0845 0.0843 -0.24% 0.0920 8.88%
Classroom 0.0100 0.0096 -4.00% 0.0122 22.00%
Demonstration 0.0256 0.0277 8.20% 0.0280 9.38%
Doorway 0.0836 0.0864 3.35% 0.0907 8.49%
Female Face Closeup 0.0762 0.0752 -1.31% 0.0793 4.07%
Hand 0.0932 0.0920 -1.29% 0.0995 6.76%
Infant 0.0112 0.0120 7.14% 0.0117 4.46%
Nighttime 0.1326 0.1315 -0.83% 0.1354 2.11%
People-dancing 0.0248 0.0258 4.03% 0.0263 6.05%
Person-eating 0.2673 0.2662 -0.41% 0.2687 0.52%
Playing-music 0.0899 0.0987 9.79% 0.0976 8.57%
Person-playing-soccer 0.0740 0.0721 -2.57% 0.0825 11.49%
Person-riding-bicycle 0.2799 0.2841 1.50% 0.2894 3.39%
Singing 0.0284 0.0278 -2.11% 0.0310 9.15%
Telephone 0.0213 0.0232 8.92% 0.0268 25.82%
Traffic-intersection 0.3158 0.3197 1.23% 0.3214 1.77%

MAP 0.0977 0.0983 0.58% 0.1036 6.01%

Table 1 also compares our approach with uniformly weight-
ing scheme. Overvall an improvement of 6.01% is achieved
on MAP. Large margins on the performance of two ap-
proaches can be observed for some concepts including Bus

(36.05%), Telephone (25.82%), and Classroom (22%). These
concepts are mostly object-related with specific exterior ap-
pearance. By assigning larger weights to the visual words
describing their appearances, the detection of these concepts
can be improved. Furthermore, the improvement is con-
sistent for different concepts. This is because our weight-
ing scheme aims to optimizing the discriminative ability
of SVM kernels, and thus improving the performance of
concept detection. Note that for concepts Person-eating,
Riding-bicycle and Traffic-intersection, the performance of
uniformly weighting approach is already quite good and the
improvement with our approach is insignificant. This is be-
cause there are many duplicate examples in training and
testing sets, which almost dominate the APs for these con-
cepts, and to some extent, distort the improvement on MAP.

For speed efficiency, all the partial derivatives in Equa-
tions 7-11 can be calculated by scanning each pair of exam-
ples for one time. In our experiments, one iteration takes
around 10−15 minutes. The whole optimization process can
be finished in around 5 hours for most concepts. The train-
ing and classification of SVM with weighted visual words do
not take extra time compared with original approaches. To
speed up the optimization process, random sampling on the
negative examples can be used without much information
loss since there are more than enough negative ones.

5. CONCLUSION
In this paper, we have presented our approach for video

concept detection with concept-specific weights of Bag-of-
Visual-Words. To the best of our knowledge, this is the first
algorithm to measure the informativeness of visual words in
BoW based concept detection. Given a concept, the weights
of different visual words are calculated in the framework of
SVM kernel optimization. By assigning different weights to
the visual words according to their importance, the discrim-
inative ability of SVM kernel is strengthened and thus the
performance of concept detection is improved. In our exper-
iments, SVM classifier with RBF kernel is employed. The
proposed approach could be extended to select the optimal
weights for other kernels and classifiers.
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