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Abstract—This work presents a preliminary statistical analysis
on the reliability of soft biometrics systems which employ multiple
traits for human identification. The analysis places emphasis on
the setting where identification errors occur mainly due to cross-
subject interference, i.e., due to the event that subjects share
similar facial and body characteristics. Finally asymptotic anal-
ysis provides bounds which insightfully interpret this statistical
behavior.

I. INTRODUCTION

Soft biometrics, as defined by Jain [1], [2], are those
characteristics which provide weak biometrical information
about an individual, but lack distinctiveness and permanence,
and thus do not suffice to fully identify a person. This lack
of distinctiveness can be partially overcome by employing
multiple traits to classify individuals in pre-defined categories.
This approach, which draws from Bertillon [3], is currently
being embraced by the research community, with interesting
work (cf. [6]–[10]) providing new aspects and methods.

The associated advantages of multi-trait soft biometrics
systems (SBSs), over classical biometric systems, include:

• the ability to identify unknown subjects, based on de-
scriptions given by humans,

• the ability to handle reduced sensor accuracy and further-
more acquire data in a non-obtrusive manner,

• the ability to process data in a computationally efficient
manner.

At the same time though, the above advantages often come
with different practical restrictions, such as on the number
of detectable traits. This specific restriction in turn results
in increased inter-subject interference, which will play an
important role. We define interference as the random event
where, within a randomly chosen set of subjects, the specific
individual picked for authentication is indistinguishable from
another subject in the same set, by sharing similar characteris-
tics. It then becomes apparent that a measure of performance
must go beyond the detectors’ equal-error-rate measures used
in classical biometrics, and should also account for the detri-
mental effect of interference. Building on the work in [5], the
current work seeks to provide some mathematical analysis of
reliability of general SBS, as well as to concisely bound the
asymptotic behavior of pertinent statistical parameters that are
identified to directly affect performance. This quantification
seeks to provide a meaningful measure of the adequacy of a
given SBS for real life applications.
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A. Soft biometrics systems and operational scenario

This work examines the scenario where an SBS performs
the task of identification of a person drawn uniformly and
randomly from a randomly chosen set of N candidate subjects.
We denote this randomly chosen N -tuple of people as v,
drawn from a sufficiently large population, and we denote by
v(i), i = 1, ..., N the i-th candidate belonging to the specific
group v.

An employed SBS is associated to the following variables:
the number λ of soft biometric traits, the number µi of trait
instances that each trait (labeled by) i can assume, and the
overall number of categories ρ = Πλ

i=1µi. We also let Φ =
[1, 2, · · · , ρ] denote the indexed set of all feature combinations,
i.e., the set of all categories that the SBS can identify.

Example 1:

• Examples of sufficiently large populations include:

– male population of Nice,
– residents of Berlin.

• Examples of randomly chosen N -tuples v include:

– the set of people who logged in to a specific public
computer in Nice, two days ago,

– the set of people whose pictures were captured by a
video surveillance camera in Berlin, yesterday.

• Example SBS can identify λ = 4 different traits which
include hair and eye colors as well as the presence of
beard and glasses. The SBS can identify µ1 = 5 different
hair colors, µ2 = 5 different eye colors, and of course we
have that µ3 = µ4 = 2. As a result the SBS is endowed
with the ability to identify ρ = 100 categories.

• Example categories, members of Φ, may include:

– ‘brown hair, blue eyes, no beard, no glasses’ ∈ Φ
– ‘black hair, blue eyes, no beard, glasses present’ ∈ Φ.

B. Reliability of soft biometrics systems

In the aforementioned operational setting of interest, the
reliability of an SBS captures the probability of false iden-
tification of a randomly chosen person out of a random set
of N subjects. In such a setting, the reliability of an SBS
is generally related to the number of categories that the
system can identify. Furthermore the performance of such
systems can be a function of the degree with which these
features/categories represent the chosen set (of subjects) over
which identification will take place, as well as a function of the
robustness with which these categories can be detected. Finally
reliability is related to N , where a higher N corresponds
to identifying a person among an increasingly large set of
possibly similar-looking people.



C. Results

Section II introduces the operational setting of the SBS. In
this setting, the number of effective categories, to be henceforth
denoted by F , is identified as an important parameter related
to subject interference, and is shown to directly affect the
overall performance of an SBS. In Section III, Lemma 1
and Corollary 2 provide closed form expressions of the exact
probability of system error for a given v. The expressions
reveal the somewhat surprising fact that, in the interference
limited setting of high-sensor resolution (negligible number
of detection errors), the reliability of an SBS is entirely
defined by F (v), and not by the distribution of categories
characterizing the subjects in v.

Lemma 3 then describes the probability of error averaged
over N -tuples of subjects drawn from large populations.
Section IV establishes, under a uniformity assumption, the
statistical distribution and mean of F (Lemma 4 and Lemma 5)
and the closed form expression of the probability of error, for
the interference limited setting, averaged over all possible N -
tuples of subjects (Theorem 6).

Finally towards establishing the scaling laws in soft bio-
metrics systems in this specific operational setting, Section V,
Lemma 8 succinctly bounds the statistical behavior of F
over large populations. These bounds address the following
practical question: if more funds are spent towards increasing
the quality of an SBS by increasing ρ, then what reliability
gains do we expect to see? Specifically, towards answering
this, the work provides bounds on the probability of different
interference patterns in soft biometrics systems. The bounds
suggest that, under the interference limited assumption, dou-
bling ρ will result in a doubly exponential reduction in the
probability that a specific degree of interference will occur.

Section V-A provides intuition on the above bounds, Sec-
tion VI provides some conclusions, and the Appendix provides
the proofs.

II. ERROR EVENTS, INTERFERENCE, AND EFFECTIVE
CATEGORIES

Let the randomly chosen subject for identification, belong in
category φ ∈ Φ, i.e., the subject has the set of facial and body
features that constitute category (labeled by) φ. The SBS first
produces an estimate φ̂ of φ, and based on this estimate, tries
to identify the chosen subject, i.e., tries to establish which
candidate in v corresponds to the chosen subject. An error
occurs when the SBS fails to correctly identify the chosen
subject, confusing him or her with another candidate from the
current N -tuple v. An error can hence certainly occur when
the category is incorrectly estimated, i.e., when φ̂ 6= φ, or can
possibly occur when more than one candidate belongs in the
same category as the chosen subject, i.e., when the chosen
subject is essentially indistinguishable to the SBS from some
other candidates in v. We recall that subject v(i) interferes
with subject v(j) whenever the two subjects belong in the
same category.

For a given v, let Sφ ⊂ v be the set of subjects in v that
belong in a specific category φ. Furthermore let S0 denote the
set of people in v that do not belong in any of the categories in

Φ. We here note that no subject can simultaneously belong to
two or more categories, but also note that it is entirely possible
that |Sφ| = 0, for some φ ∈ Φ. Hence an error is caused due
to estimation noise (resulting in φ̂ 6= φ), due to interference,
or when the chosen candidate belongs in S0.

For a given v, let

F (v) := |{φ ∈ Φ : |Sφ| > 0}|

denote the number of effective categories, i.e., the number of
(non-empty) categories that fully characterize the subjects in
v. For notational simplicity we henceforth write F to denote
F (v), and we let the dependence on v be implied.

III. THE ROLE OF INTERFERENCE ON THE RELIABILITY OF
SBSS: ANALYZING THE PROBABILITY OF ERROR FOR AN

AUTHENTICATION GROUP

Towards evaluating the overall probability of identification
error, we first establish the probability of error for a given
set (authentication group) v. We note the two characteristic
extreme instances of F (v) = N and F (v) = 1. In the
first case, the random N -tuple v over which authentication
will take place, happens to be such that each subject in v
belongs to a different category, in which case none of the
subjects interferes with another subject’s identification. On the
other hand, the second case corresponds to the (unfortunate)
realizations of v where all subjects in v fall under the same
category (all subjects in v happen to share the same features),
and where authentication is highly unreliable.

Before proceeding with the analysis, we briefly define some
notation. First we let Pφ, φ ∈ Φ, denote the probability of in-
correctly identifying a subject from Sφ, and we adopt for now
the simplifying assumption that this probability be independent
of the specific subject in Sφ. Without loss of generality, we
also let S1, · · · , SF correspond to the F (v) = F non-empty
categories, and note that F ≤ N since one subject can belong
to just one category. Furthermore we let

S := ∪F
φ=1Sφ

denote the set of subjects in v that can potentially be identified
by the SBS endowed with Φ, and we note that S = ∪ρ

φ=1Sφ.
Also note that |S0| = N − |S|, that Sφ ∩ Sφ′ = ∅ for φ′ 6= φ,
and that

|S| =
F∑

φ=1

|Sφ|.

We proceed to derive the error probability for any given v.
Lemma 1: Let a subject be drawn uniformly at random

from a randomly drawn N -tuple v. Then the probability
P (err|v) of erroneously identifying that subject, is given by

P (err|v) = 1 −
F −

∑F
φ=1 Pφ

N
, (1)

where F (v) = F is the number of effective categories spanned
by v.
The following corollary holds for the interference limited case
where errors due to feature estimation are ignored, i.e., where
Pφ = 0.



Corollary 2: For the same setting and measure as in
Lemma 1, under the interference limited assumption, the
probability of error P (err|v) is given by

P (err|v) = 1 − F

N
, (2)

for any v such that F (v) = F .
The above reveals the somewhat surprising fact that, given

N , the reliability of an SBS for identification of subjects in v,
is independent of the subjects’ distribution v in the different
categories, and instead only depends on F . As a result this
reliability remains identical when employed over different N -
tuples that fix F .

Proof of Lemma 1: See Appendix.

We proceed with a clarifying example.
Example 2: Consider an SBS equipped with three features

(ρ = 3), limited to (correctly) identifying dark hair, gray hair,
and blond hair, i.e., Φ = {‘dark hair’ = φ1, ‘gray hair’ =
φ2, ‘blond hair’ = φ3}. Consider drawing at random, from a
population corresponding to the residents of Nice, three N -
tuples, with N = 12, each with a different subject catego-
rization, as shown in Table I. Despite their different category
distribution, the first two sets v1 and v2 introduce the same
number of effective categories F = 3, and hence the same
probability of erroneous detection P (err|v1) = P (err|v2) =
3/4 (averaged over the subjects in each set). On the other
hand for v3 with F = 2, the probability of error increases to
P (err|v3) = 5/6.

TABLE I
ILLUSTRATION OF EXAMPLE 2

φ1 φ2 φ3 F P (err|v)

v1 10 1 1 3 3/4
v2 4 4 4 3 3/4
v3 10 2 0 2 5/6

Up to now the result corresponded to the case of specific
realizations of v, where we saw that the probability of error
for each realization of length N , was a function only of the
realization of F (v) which was a random variable describing
the number of categories spanned by the specific group v.
We now proceed to average over all such realizations v,
and describe the overall probability of error. This analysis
is better suited to evaluate an ensemble of distributed SBSs
deployed over a large population. We henceforth focus on
the interference limited setting1 i.e., we make the simplifying
assumption that Pφ = 0, φ > 0.

Lemma 3: The probability of error averaged over all N -
tuples v randomly drawn from a sufficiently large population,
is given by

Ev[P (err|v)] = 1 − Ev[F (v)]
N

, (3)

and is dependent only on the first order statistics of F .
Proof: The proof follows directly from Lemma 1. ¤

1We here note that with increasing ρ, the probability of erroneous identi-
fication is, in real systems, expected to increase. This will be considered in
future work.

An illustration of the probability of error for a real distri-
bution (Feret [4]) is given in Figure 1. An example follows,
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Fig. 1. Ev[P (err|v)] for ρ = 1152, 960, 840, 384, N ∈ [3, 4, ..., 50]. Data
from Feret [4].

related to the above.
Example 3: Consider the case where the city of Nice in-

stalls throughout the city a number of independent SBSs2

and is interested to know the average reliability that these
systems will jointly provide, over a period of two months3.
The result in Lemma 3 gives the general expression of the
average reliability that is jointly provided by the distributed
SBSs, indexed by N , for all N . Indexing by N simply means
that the average is taken over all cases where authentication
is related to a random set v of size N .

We now proceed to establish the statistical behavior of F ,
including the mean E[F ].

IV. ANALYSIS OF INTERFERENCE PATTERNS IN SBSS:
ESTABLISHING THE STATISTICAL BEHAVIOR OF F

Given ρ and N , we are interested in establishing the
probability P (F ) that a randomly drawn N -tuple of people
will have F active categories out of a total of min(ρ,N)
possible active categories4. We here accept the simplifying
assumption of uniform distribution of the observed subjects
over the categories ρ, i.e., that

P (v(i) ∈ Sφ) =
1
ρ
, ∀φ ∈ Φ, i ≤ N. (4)

We also accept that N < ρ. The following then holds.
Lemma 4: Given ρ and N , and under the uniformity as-

sumption, the distribution of F is described by

P (F ) =
FN−F

(ρ − F )!(N − F )!
∑N

i=1
iN−i

(N−i)!(ρ−i)!

, (5)

where F can take values between 1 and N .
Proof of Lemma 4: See Appendix.

2Independence follows from the assumption that the different SBSs are
placed sufficiently far apart.

3In this example it is assumed that the number of independent SBSs and
the time period are sufficiently large to jointly allow for ergodicity.

4Clarifying example: What is the statistical behavior of F that is encoun-
tered by a distributed set of SBSs in the city of Nice?
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Example 4: Consider the case where ρ = 9, N = 5, F = 3.
Then the cardinality of the set of all possible N -tuples that
span F = 3 effective categories, is given by the product of
the following three terms.

• The first term is (ρ · (ρ− 1) · · · (ρ−F + 1)) = ρ!
(ρ−F )! =

9 · 8 · 7 = 504 which describes the number of ways one
can pick which F = 3 categories will be filled.

• Having picked these F = 3 categories, the second term
is (N · (N − 1) · · · (N − F + 1)) = N !

(N−F )! = 5 · 4 · 3 =
60, which describes the number of ways one can place
exactly one subject in each of these picked categories.

• We are now left with N − F = 2 subjects, that can be
associated freely to any of the F = 3 specific picked
categories. Hence the third term is FN−F = 32 = 9
corresponding to the cardinality of {1, 2, · · · , F}N−F .

Motivated by Lemma 3, we now proceed to describe the
first order statistics of F . The proof is direct.

Lemma 5: Under the uniformity assumption, the mean of
F is given by

Ev[F (v)] =
N∑

F=1

FP (F ) =
N∑

F=1

F N−F+1

(ρ−F )!(N−F )!∑N
i=1

iN−i

(N−i)!(ρ−i)!

. (6)

Remark 1: The event of no interference corresponds to the
case where F = N . Decreasing values of F

N imply higher
degrees of interference. An increasing ρ also results in reduced
interference.

Related cases are plotted in Figure 2. A graphical repre-
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sentation of E(F ) for real-life data (Feret [4]) can be seen in
Figure 3.

Finally, directly from the above, we have the following.
Theorem 6: In the described operational setting of interest,

under the interference limited and uniformity assumptions, the
probability of error averaged over all possible N -tuples v, that
is provided by an SBS endowed with ρ categories, is given by

Pav(err) = 1− FN−F+1

(ρ − F )!(N − F )!N
∑N

i=1
iN−i

(N−i)!(ρ−i)!

. (7)

Proof of Theorem 6: The proof is direct from Lemma 3
and from (6). ¤

Related examples are plotted in Figure 4.
Furthermore we have the following.
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Corollary 7: Under the uniformity assumption, the proba-
bility that interference exists, is given by

1 − P (N) = 1 − (ρ − N)!
N∑

i=1

iN−i

(N − i)!(ρ − i)!
. (8)

Related examples are plotted in Figure 5.
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Example 5: Given a group of N = 10 subjects, given
an SBS with ρ = 365 categories, and under the unifor-
mity assumption, the probability that interference exists is
1−P (N) = 0.117. Furthermore the same probability exceeds
0.5 for N ≥ 23 subjects.



V. ASYMPTOTIC BOUNDS ON SUBJECT INTERFERENCE

In this section we seek to gain insight on the role of
increasing resources (increasing ρ) in reducing the subject
interference experienced by an SBS. Specifically we seek
to gain insight on the following practical question: if more
funds are spent towards increasing the quality of an SBS
by increasing ρ, then what reliability gains do we expect to
see? This question is only partially answered here, but some
insight is provided in the form of bounds on the different
subject-interference patterns seen by an SBS. The asymptotic
bounds simplify the hard to manipulate results of Lemma 4
and Theorem 6, and provide insightful interpretations. A
motivating example is presented before the result.

Example 6: Consider an SBS operating in the city of
Berlin, where for a specific N , this system allows for a certain
average reliability. Now the city of Berlin is ready to allocate
further funds, which can be applied towards doubling the
number of categories ρ that the system can identify. Such
an increase can come about, for example, by increasing the
number and quality of sensors, which can now better identify
more soft-biometric traits. The natural question to ask is how
this extra funding will help improve the system? The bounds,
when tight, suggest that doubling ρ, will result in a doubly
exponential reduction in the probability that a specific degree
of interference will occur.

Further clarifying examples that motivate this approach are
given in Section V-A.

The following describes the result.
Lemma 8: Let

r := lim
ρ→∞

N

ρ
, (9)

define the relative throughput of a soft biometrics system, and
let F := fN, 0 ≤ f ≤ 1. Then the asymptotic behavior of
P (F ) is bounded as

− lim
ρ→∞

1
ρ log ρ

log P (f) ≥ 2 − r(1 + f). (10)

Proof of Lemma 8: See Appendix.

A. Interpretation of bounds

Lemma 8 bounds the statistical behavior of P (F ) in the high
ρ regime. To gain intuition we compare two cases correspond-
ing to two different relative-throughput regimes. In the first
case we ask that N is close to ρ, corresponding to the highest
relative-throughput of r = 1, and directly get from (10) that
d(r, f) := 2− r(1 + f) = d(1, f) = 1− f, 0 < f < 1. In the
second case we reduce the relative-throughput to correspond
to the case where N is approximately half of ρ (r = 1/2),
which in turn gives d(r, f) = d( 1

2 , f) = 3
2 −

f
2 , 0 < f < 1/2.

As expected d( 1
2 , f) > d(1, f), ∀f ≤ 1

2 .
Towards gaining further insight, let us use this same exam-

ple to shed some light on how Lemma 8 succinctly quanti-
fies the increase in the probability that a certain amount of
interference will occur, for a given increase in the relative-
throughput of the soft biometrics system. To see this, consider
the case where there is a deviation away from the typical
f = r by some small fixed ε, to a new f = r − ε, and note

that the value of ε defines the extend of the interference5,
because a larger ε implies a smaller f , and thus a reduced
F for the same N . In the high relative-throughput case of
our example, we have that f = r − ε = 1 − ε, and thus
that d(1, 1 − ε) = ε, which implies that the probability of
such deviation (and of the corresponding interference) is in the
order of ρ−ρd(1,1−ε) = ρ−ρε. On the other hand, in the lower
relative-throughput case where f = r − ε = 1

2 − ε, we have
that d( 1

2 , 1
2 − ε) = 5

4 + ε
2 , which implies that the probability

of the same deviation in the lower throughput setting is in the
order of ρ−ρd( 1

2 , 1
2−ε) = ρ−ρ( 5

4+ ε
2 ) << ρ−ρε. In other words

the bound in Lemma 8 implies that, a reduction of the relative-
throughput from its maximal value of N/ρ ≈ 1 to a sufficiently
smaller N/ρ ≈ 1

2 , for high enough ρ, results in a substantial
and exponential reduction in the probability of interference,
from P (r = 1) ≈ ρ−ρε to P (r = 1

2 ) ≈ ρ−ρ( 5
4+ ε

2 ).

VI. CONCLUSIONS

The work explored the use of multi-trait SBSs for human
identification, studying analytically the relationship between
an authentication group v, its size N , the featured categories
ρ, and the effective categories F .

In the first part of the paper we showed that in the
interference limited setting, for a given randomly chosen
authentication group v, of a given size N , the reliability of
authentication (averaged over the subjects in v) is a function
only of the number of non-empty categories F (v).

In the second part we provided statistical analysis of this
reliability, over large populations. The latter part provided
bounds that, in the interference limited setting suggest an ex-
ponential reduction in the probability of interference patterns,
as a result of a linear increase in ρ.

VII. APPENDIX: PROOFS

A. Proof of Lemma 1
Let φ̂ denote the estimated category and let P (Sφ) denote

the probability that the chosen subject belongs to category
indexed by φ, φ = 0, 1, · · · , F . Then we have

P (err|F ) =
F∑

φ=0

P (Sφ, φ̂ = φ)P (err|Sφ, φ̂ = φ)

+
F∑

φ=0

P (Sφ, φ̂ 6= φ)P (err|Sφ, φ̂ 6= φ)

(a)
=

F∑
φ=0

P (Sφ)P (φ̂ = φ|Sφ)P (err|Sφ, φ̂ = φ)

+
F∑

φ=0

P (Sφ)P (φ̂ 6= φ|Sφ)P (err|Sφ, φ̂ 6= φ)

(b)
=

N − |S|
N

+
F∑

φ=1

P (Sφ)P (φ̂ = φ|Sφ)P (err|Sφ, φ̂ = φ)

+
F∑

φ=1

P (Sφ)P (φ̂ 6= φ|Sφ)P (err|Sφ, φ̂ 6= φ). (11)

5Note that interference may occur only if ε > 0.



Hence

P (err|F )

(c)
=

N − |S|
N

+
F∑

φ=1

( |Sφ|
N

(1 − Pφ)
|Sφ| − 1
|Sφ|

+
|Sφ|
N

Pφ

)
=

N − |S|
N

+
F∑

φ=1

(
|Sφ| − 1 − Pφ|Sφ| + Pφ + Pφ|Sφ|

)
(12)

which gives

P (err|F ) = 1 − |S|
N

+
1
N

F∑
φ=1

(
|Sφ| − 1 + Pφ

)
(13)

(d)
= 1 −

F −
∑F

φ=1 Pφ

N
. (14)

In the above (a) is due to Bayes rule, (b) considers that

P (err|S0, φ̂ = 0) = P (err|S0, φ̂ 6= 0) = 1

and that

P (S0, φ̂ = 0)P (err|S0, φ̂ = 0)

+ P (S0, φ̂ 6= 0)P (err|S0, φ̂ 6= 0)

= P (S0, φ̂ = 0)·1+P (S0, φ̂ 6= 0)·1 = P (S0) =
N − |S|

N
,

(c) considers that P (Sφ) = |S|
N , that P (φ̂ = φ|Sφ) = 1 − Pφ,

that P (err|Sφ, φ̂ 6= φ) = 1, and that

P (err|Sφ, φ̂ = φ) =
|Sφ| − 1
|Sφ|

,

and finally (d) considers that
∑F

φ=1 |Sφ| = |S|.
¤

B. Proof of Lemma 4

Let CF be the total number of N -tuples v that introduce F
effective feature categories. Then

CF =
ρ!

(ρ − F )!
N !

(N − F )!
FN−F (15)

where the first term ρ!
(ρ−F )! describes the total number of ways

F categories can be chosen to host subjects, the second term
N !

(N−F )! describes the total number of ways F initial people,
out of N people, can be chosen to fill these F categories,
and where the third term FN−F describes the total number
of ways the F effective categories can be freely associated to
the rest N − F subjects. Finally we note that

P (F ) =
CF∑N
i=1 Ci

,

which completes the proof. ¤

C. Proof of Lemma 8

Recall from (5) that

P (F ) =
FN−F

(ρ − F )!(N − F )!
∑N

i=1 iN−i
(
(N − i)!(ρ − i)!

)−1 ,

(16)
and note that∑N

i=1
iN−i

(
(N − i)!(ρ − i)!

)−1 ≥ (ρ − N)!

corresponding to the N th summand (i = N), and correspond-
ing to the fact that all summands are non-negative. As a result

P (F ) ≤ FN−F

(ρ − F )!(N − F )!(ρ − N)!
.

Using Stirling’s approximation [11] that holds in the asymp-
totically high ρ setting of interest, we have

P (F )≤̇ FN−F

(ρ − F )ρ−F (N − F )N−F (ρ − N)ρ−Ne−(2ρ−2F )
,

(17)

and as a result

P (f)

≤̇ (frρ)rρ(1−f)

(ρ − frρ)ρ−frρ(rρ − frρ)rρ−frρ(ρ − rρ)ρ−rρe2ρ(1+fr)

=
ρrρ(1−f)ρ−ρ(1−fr)

(fr)−rρ(1−f)(1 − fr)ρ(1−fr)

· ρ−ρr(1−f)ρ−ρ(1−r)

(r − fr)ρr(1−f)(1 − r)ρ(1−r)e2ρ(1+fr)
. (18)

In the above we use .= to denote exponential equality, where

f
.= ρ−ρB ⇐⇒ − lim

ρ→∞

log f

ρ log ρ
= B, (19)

with ≤̇, ≥̇ being similarly defined. The result immediately
follows. ¤
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