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Abstract—In this paper, we consider the case of single mi- parameters recursively. In our work, we use the joint model
crophone Blind speech separation. We exploit the joint model put using only one observation. Mono-microphone case is not
of speech signal (the voiced part) that consists on modeling the 5, \ngantly treated like the over-determined case or therund

correlation of speech with a short term autoregressive process determined but with more than one observation. Some
and its quasi-periodicity with a long term one. A linear state ete €d case bu ore than one observation.

space model with unknown parameters is derived. The separation WOrks tackled the signal microphone case but they were more
is achieved by estimating the state as well as the unknown likely to be classification methods based on the techniques

parameters. This task is assured by using the Kalman filtering of codebook. Since our case is relatively difficult (only a
algorithm. single sensor is used),we propose a rather simplified model
of speech propagation : the observation is the instantaneou
sum of sources. Nevertheless, this model is still relevant i
Blind Source Separation techniques are heavily neededsiveral scenarios. Using some mathematical manipulagion,
the speech processing domain to solve classical problestate space model with unknown parameters is derived. Since
such as the ‘cocktail party problem’ where each speakgte involved signals are Gaussians, Kalman filtering can be
needs to be retrieved independently. The difficulties obspe used to estimate the state. Since the parameters of that stat
separation can get more complex due to the impact of tbpace model and therefore Kalman filtering equations are
propagation environment that can introduce the problem ofiknown and should be estimated, The EM algorithm will
reverberation. The description ‘Blind’ may not have the sanbe used for that aim ([5], [6], [7]). This paper is organized
impact with speech separation like it is in the general caas follows: The state space model is introduced in section Il
when we do know absolutely nothing about the target sourcBlse EM-Kalman algorithm is developed in section Ill and the
except some hypothesis we set before such as the famestimators’ expressions are then computed. Numericaltsesu
independence of sources. It is because the studies of spesm@h provided in section IV, and conclusions are drawn in
signal production and modeling have revealed some digtenctsection V.
features, especially the voiced part, that can be sumntarize
in a short time correlation between samples and a quasi- Il. STATE SPACEMODEL FORMULATION
periodicity introduced by the presence of pitch (fundarakbnt e consider the problem of estimatifig, mixed Gaussian
frequency) of the speaker. In literature, several workssbn sources. We use a voice production model [8], that can be
ered the temporal structure of speech signal to help séparatdescribed by filtering an excitation signal with long term

Some work exploits only the short term correlation in speegitediction filter followed by a short term filter and which is
signal and models it with a short term Auto-Regressive (ARhathematically formulated

process [1]. Others model the quasi-periodicity of speech b

I. INTRODUCTION

introducing the fundamental frequency in the analysis ], S

A last category combines the two aspects [4]and seems to yo = Z Skt it

get better performances. In [4], The problem is presented li ’“;f

an over-determined instantaneous model where the aim is to Shy = Z Abn Skton + Frs

estimate jointly the long term (LT)and short term (ST) AR ' — ’

coefficients, as well as the demixing Matrix in order to ®ta Srie = brSrim, + €hi 1)

the speakers in a deflation scheme. An ascendant gradient
algorithm is used to minimize the mean square of the tot&here
estimation error (short term and long term), and thus Idlaen t « 1y, is the scalar observation.

o s is the k" source at time, an AR process of order
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« by is the long term prediction coefficient of thé" source vectors &, = [x{, X3, --- x}_,J*) which results in the time
« T} is the period of thek! source, not necessary arupdate equation 3. Moreover, by reformulating the expogssi
integer of {y;:}, we introduce the observation equation 4. We obtain
o {ert},_,. . are the independent Gaussian distributetthe following state space model
innovation sequences with varianpg
« {n;} is a white Gaussian process with varianeg, X = FX-1 + Ge ®3)
independent of the innovatiods, ¢}, _, vy = h'%, + n 4
This model seems to describe more faithfully the Spee%v']qere
signal, especially the voiced part (the most energetic pfrt -
speech). In fact, on one side, it uses the short term auto® & = [€1+ €2t -~ en,¢]" IS the Ny x 1 column vector
regressive model (AR) to describe the correlation between 'esulting of the concatenation of th¥; innovations.
the signal samples, on the other side, it uses the long term IS covariance matrix is theV, x N, diagonal matrix

AR model to depict the harmonic structure of speech. Let Q_:d'ag(P}\;""PNs)- N
x5.. be the vector of lengtlpy, + N + 3), defined asq,, = ¢ FISthed .2, (pe+N+3) x 307, (p+ N +3) block
(s (t) sp(t—1) - sp(t—pr— 1) | 8t +1) 8(t) - 8t + dla_gonal mﬁtnx given by = blockd|e_19(|?17 o FnL).
1— |Tk]) -+ 8x(t — N +1)]7. This vector can be written in * G isthe} .7, (pr + N +3) x N, matrix given byG =
terms ofx; ;1 as follows block diadg;,---,9y,)
« his the ZkN';l(Pk + N +3) x 1 column vector given by

Xio = Fk Xpt-1 + Op eny @) h = [h{ ---hy ]” whereh; = [10--- 0]7 of length
whereg, is the (p, + N + 3) length vector defined ag;, = (px + N +3).
[00---0]10 ------ 0]7. The non null component is situatedit is obvious that the linear dynamic system derived be-
at the(py, +3)*" row. The(py + N +3) x (pr. + N +3) matrix fore depends on unknown parameters recapitulated in the
F) has got the following structure variabled = { {akan}ke{l,...,Nq}ne{l,...,pk} ,{bk}ke{lwm} ,

F o= { Fiie Fiogk } {petreqr,. Ny ,02 ¢. Hence, a joint estimation of sources
o Fao (the state) and is required. We should mention here that the

where the(py.+2) x (pr.+2) matrix F; x, the (pp+2) x (N +1) pitches are considered as known. In fact, multipitch egtona
matrix F15 , and the(V +1) x (N 4 1) matrix Fyy ;. are given is a whole issue itself where many researches have beeacarri
by and there are reliable algorithms in literature that camurass
_ _ this task. In practice, before treated by our proposed #lgor
k1 Ghz o Gkp, 000 the data can be first processed by a multipitch estimation
algorithm in order to get the values of the pitches. In thet nex
= . section, we develop the EM-Kalman of our model.
1Lk = Tipit)
I1l. EM-K ALMAN ALGORITHM

0 The EM-Kalman algorithm permits to estimate iteratively

parameters and sources by alternating two steps : E-step and

M-step [9]. In the M-step, an estimate of the parameteis

computed. In our problem, there are two types of parameters:
: Lor the parameters of the time update equation 3 which consist on
0O --- 0 --- 0 the short term and long term coefficients and the innovation
power of all the N, sources, and one parameter of the
0 - (I—ax)br arby 0 --- 0 observation equation 4, the observation noise power. From

: the state space model presented in the first part, and for each

sourcek, the relation between the innovation process at time
t—1 and the long term+short term coefficients could be written
as

0 ehi—1=ViXp 1 (5)

It is noteworthy that the choice of they; , matrix size N wherev, = [1 —ag1 -+ —akp, —(1—ag) by —ay b is a
should be done carefully. In fact, the value 6f should (p,-+3)x1 column vector andy ;—1 = [si(t—1,0) - sp(t—
be superior to the maximum value of pitch@s in order pj,—1,60) 5,(t— Tk | —1,0) 3x(t—|Tx] —2,0)]7 is called the
to detect the long-term aspect. It can be noticed that tpartial state deduced from the full statewith the help of a
coefficient b, is situated in the|T}] position of the row selection matrixS;. This lag of one time sample between the
in Fyy 5. Since N, sources are present, we introduce thiill and partial state is justified later. After multiplyin@) by
vectorx; that consists of the concatenation of the. .}, _,. Xg’t_l in the two sides, applying the operatér{ |y;..} and

O =
o O
o O

Fiar =

s

Foox = Iy




doing a matrix inversion, the following relation betweer th Adaptive EM Kalman Algorithm

vector of coefficients and the innovation power is deduced « E-Step. Estimation of the sources covariance
Ke = Pt\tflh(hTPﬂtflh + UA%)%
Vi = ka,;Ll[L 0---0]" (6) Xejp = Kepp—1 + Ke(yy — hT)A(t\t—l)
Pt|t = Pt\t—l - KthTPt\t—l
)A(t+1|t = 'A:)A(t\t
where the covariance matrixR;,—; is defined as Prpip = ,gptltlgT + GOGT

E{y(k,tfl)v(g’tfﬂyl:t}- It is important to notice that the
estimation of R, ;1 is done using observations till time
t, which consists on a fixed-lag smoothing treatment with

o M-Step. Estimation of the AR parameters using line
prediction.k = 1,...., N

lag = 1. As mentioned previously, the relation between the Sk = (Reapdy
partial state at timet — 1 and the full state at time is Rii—1 = AMRpi—2+(1- A)Sk(xmxﬁt + Pt|t)Sf
Xii—1 = SpX;. This key relation is used in the partial state — (R-! !
CO7 . . . pre = k,t—l)(l,l)
variance matrix computation . .
Vit = PkRk,f,—l[la 0---0]
- - 0 22
0%y = ATt +(1-N) [(yt —hT%,) + thtlth}

Ritor = SeB{xox yr | ST (7)

The estimation of the pitchg¥ } .—1.n~, is done along with
this algorithm using a multipitch estimation algorithm J10

Notice here the transition from the fixed lag smoothing with
the partial state to the simple filtering with the full stafduis
fact justifies the selection of the partial state at time 1 In the simulation part, we use artificial data similar to sfee
from the full state at time. This selection is possible due toSignal (artificial sources and observation noise). It cstssin a
the augmented form matri%;, or more preciselyF; . The noisy mixture of two sources of duration equakte- 128 ms.
innovation power is simply deduced as the first componehf€ pitches are respectively equal B = 120 Hz (average
of the matrixR,}_,. The estimation of the observation noiséitch of man voice) andr, = 220 H= (average pitch of

powero? is achieved by maximizing the loglikewood function’oman voice). The order of short time process is set for
log P (ytlxt,ch) relative to o2. The optimal value can be both. TheSNR is set t030 dB. The sampling frequency is

n

easily proved equal to _FS =16 kH~z. In Fig. 1,_ we show t_he results of the analysis
in the frequency domain. We decimate the data by fator
to get more visibility. The figure shows how the spectra of
9 estimated sources are close to the original one with a bitle
oh = E{(yt —h" %) } +h7Pyh (8)  of distortion.
Though results with artificial data are encouraging, Simula
tions with real data are very critical for many reasons. The
o most important is the quality of estimation of the pitches.
The time index int) in o2 is to denote the iteration number.In fact, this algorithm seems to be very sensitive to pitches
The computation of the partial covariance matRy, ;_; is estimation error. An other important point is the number
achieved in theZ — step. This matrix depends on the quantityof sources present in the mixture. In a real context, this
E{katxgtwl:t} the definition of which is |nformat|0n is no more given like in our algorithm. Hence, if
’ the given number of sources exceeds the real present spurces
the algorithm will seek to estimate extra virtual sources.

IV. NUMERICAL RESULTS AND DISCUSSIONS

E{XtXtT|yl:t} _ y(tlt;(gt + Py Q) V. CONCLUSION
In this paper we use the adaptive EM-Kalman algorithm for
the blind audio source separation problem. The model takes
into account the different aspects of speech signals ptimtuc
where the quantitie,; and ﬁ’t‘t are respectively the full esti- and sources are jointly estimated. The traditional smagthi
mated state and the full estimation error covariance coetpusstep is included into the algorithm and is not an additioteph s
using Kalman filtering equations. The adaptive algorithm Simulations show the potential of the algorithm for synithet
presented as Algorithm 1. The algorithm needs an accuratsta. In future works, we need to improve the quality of
initialization, which will be discussed afterward. In thig@ estimation of the pitches and include a step for estimating
rithm §; , is the estimation of the sourdeat time¢. the real number of present sources.



Fig. 1: Source separation :
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