
A comparative assessment of noise and non-linear echo effects
in acoustic echo cancellation

Moctar I. Mossi, Christelle Yemdji and Nicholas Evans
EURECOM

06560 Sophia-Antipols, France
{mossi, yemdji, evans}@eurecom.fr

www.eurecom.fr

Christophe Beaugeant
Infineon Technologies

06560 Sophia-Antipolis, France
{christophe.beaugeant}@infineon.com

www.infineon.com

Abstract—This paper addresses the problem of adaptive filtering for
acoustic echo cancellation in noisy and non-linear environments. The first
contribution relates to a new analysis on the comparative impact of addi-
tive noise and non-linear echo on the performance of adaptive filtering for
linear acoustic echo cancellation (AEC). A comprehensive performance
assessment is reported, including echo return loss enhancement (ERLE),
convergence time and system distance metrics. This work better highlights
differences between algorithm performance than previously published
work and sheds new light on algorithm behavior. Results showthat, in
non-linear and noisy environments, the normalized-least mean square
(NLMS) algorithm gives similar performance to the more complex
affine projection algorithm (APA). The more computationally efficient
frequency block least mean square (FBLMS) algorithm is particularly
adversly effected and gives poorer performance than the basic least
mean square (LMS) approach. These observations question thepersuit
of increased computational efficiency and reduced convergence time
over robustness to distortions. The second contribution relates to an
original account of the effects of non-linear echo and noisewhich,
perhaps surprisingly, are greater for the latter. This observation highlights
the need for more comprehensive studies on the effects of non-linear
distortion and supports continuing efforts to tackle non-linear echo.

Keywords: echo cancellation, non-linear distortion, noise, AEC, LMS,
NLMS, APA, FBLMS.

I. I NTRODUCTION

There is a vast volume of work in the literature related to adaptive
filtering in noisy and non-linear environments. Noisy environments
are usually accomodated by restricting the rate of filter adaptation so
as to limit divergence, e.g. [1], [2], [3]. For non-linear environments,
i.e. involving non-linear echo, two dominant solutions have emerged.
The first is based on the Volterra filter [4] and the second involves
post-filtering [5] in combination with acoustic echo cancellation
(AEC) adaptive filtering. The Volterra solution is generally slow to
convergence and is highly computationally complex. Post-filters are
less complex but rely on the performance of linear adaptive filters
that are still disturbed by non-linear echo. Linear adaptive filtering
is still popular in these situations and it is thus of interest to assess
their performance in such environments, as reported in our previous
work [6].

In [6] the performance of five adaptive filters was assessed by
comparing the echo return loss enhancement (ERLE) in the presence
of (i) linear echo and (ii) linear and non-linear echo. This work
showed that, with higher levels of non-linear distortion, the NLMS
algorithm can perform as well as APA and that the lower complexity
FBLMS algorithm gives the worst performance in the same environ-
ment. However, the assessment protocol in [6] perhaps does not best
reflect the true robustness of each algorithm to non-linear echo alone,
since the comparison was made independently of the ERLE that is
achieved with each algorithm under conditions involving only linear
echo.

The first contribution in this paper is a new, comparative assess-
ment of the same linear adaptive filters, but here with a different focus
on their relative robustness to non-linear and noisy environments
with an improved, fairer experimental setup. Compared to [6], where
the level of steady state echo reduction is different for all adaptive
filters, in all experiments reported here we tuned the different AEC
algorithms so that they each obtain the same ERLE after convergence

under linear echo conditions. Also, given the well-known trade-off
between steady state ERLE and the adaptation step size, which is
used to control the rate of converge, the same step size is used for
all algorithms. With the same amount of ERLE under linear echo
conditions and a fixed step size, the assessment reported here can
more reliably attribute differences in performance to differences in the
prevailing environment, i.e. non-linear echo or noise, and less so due
to differences in algorithm configurations. The second contribution
relates to a comparison of the two environments to determine whether
or not the effects of non-linearities resemble those of noise and thus
to validate, or otherwise, the common assumption that the two effects
are practically equivalent.

The remainder of the paper is organized as follows. In Section II
we describe a general echo cancellation system and the different
approaches to AEC that are investigated here. Our experimental work
is presented in Section III and our conclusions in Section IV.

II. A COUSTIC ECHO CANCELLATION

We here describe a typical system/echo model and a general
framework for AEC with adaptive filtering. Also described are the
four approaches to AEC that are investigated in this paper.

A. System/echo model

A general system/echo model, which was used for all experiments
reported in this paper, is illustrated in Figure 1. The terminal receives
a down-link (or loudspeaker) signalx(n) from a far-end speaker,
and transmits an uplink (or microphone) signaly(n). In addition to
near-end speechs(n) and additive background noisen(n) the uplink
signal potentially includes an additional echo componentd(n), which
is a result of the acoustical coupling between the loudspeaker and
the microphone. It is generally modelled with a linear convolution,
d(n) = x(n) ∗ h(n), whereh(n) is the impulse response which
characterizes the acoustical coupling. AEC may thus be implemented
by estimatingh(n) with a filter ĥ(n) in order to give an estimate
of the coupled echo signal̂d(n) = x(n) ∗ ĥ(n). The echo is
attenuated simply by subtractinĝd(n) from the uplink signal. Since
the acoustical coupling is generally time varyingĥ(n) is usually
an adaptive filter. Near-end speech disturbs the adaptive filter and
so ĥ(n) is usually updated during echo-only periods, i.e. when
s(n) = 0. Noise can also disturb the adaptive filter but, if we also
suppose that the noise is negligible, i.e.n(n) = 0, theny(n) = d(n)
and thus the resulting error signal,e(n) is simply the difference
between the echo signal and its estimate, i.e.e(n) = d(n) − d̂(n).
The errore(n) is used to update the filterh(n) whose goal is to
drive e(n) to zero.

AEC rarely operates under such ideal conditions, however, and
thus it is interesting to study the robustness under more realistic
conditions. i.e. with near-end speech, non-linear echo and additive
background noise. As adaptation is simply paused during intervals
of near-end speech, only disturbances from non-linear echo and
background noise are considered here. Each of the approaches to
AEC that are considered are described below.
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Fig. 1. System/echo model illustrating the acoustical coupling between the
loudspeaker and microphone and a general approach to adaptive AEC.

B. Linear adaptive filtering algorithms

The adaptive AEC filters considered in this paper are updated
according to a general adaptation recursion given by:

ĥ(n+ 1) = ĥ(n) + ∆h(n), (1)

where ĥ(n) is the vector of filter taps at timen and where∆h(n)
is the gradient used to update the filter. Everywhere in this paper
boldface denotes vectors whereas boldface capitals denote matrices.
The gradient is different for each algorithm but, in all cases, should
ensure that̂h(n) converges to the optimal Wiener solutionhopt after
sufficient iterations. Only the barest of details for each approach
considered are given below as full details can be found in the open
literature [7].

Least Mean Square (LMS): The LMS filter update∆h(n) is equal
to µx(n)e(n), whereµ is a scalar or step size which aims to control
the rate of adaptation (and hence convergence/divergence),x(n) =
[x(n), x(n − 1), ..., x(n − L + 1)]T is the input vector of the filter
andL is the filter length (256 for all algorithms used here).

Normalized-LMS (NLMS) : The NLMS algorithm uses a normalized
step sizeµ. Here the update∆h(n) is equal to µ

‖x(n)‖2
x(n)e(n).

Affine Projection Algorithm (APA) : The update ∆h(n) is
here given byµX(n)[XT (n)X(n) + ǫIN ]−1e(n) where X(n) =
[x(n)x(n− 1)...x(n−N +1)], anL×N matrix.L is the length of
the filter,N is the order of the APA,IN is the identity matrix and
e(n) is now a vector. For all experiments represented here we use
N = 2.

Frequency Block-LMS (FBLMS): FBLMS is an implementation of
a block-by-block LMS using fast convolution. In the time domain the
update∆h(n) is given byµ

∑B−1

m=0
e(nB + m)x(nB + m) where

n is now a block index,m is the block sample index andB is the
block length. We useB = 256.

III. E XPERIMENTAL WORK

A. Non-linear model

The direct comparison of AEC performance with (i) linear echo
and (ii) linear and non-linear echo is made with otherwise identical
conditions and, for all experiments reported here, both linear and
non-linear echo is added artificially. In practice, non-linearities are
introduced by component imperfections, i.e. from the miniaturization
of components, and can be divided into two groups: those which
arise in the downlink path and those which arise in the uplink path.
Previous work [4] has shown that non-linearities coming from the
loudspeaker and amplifiers in the downlink path dominate those
in the uplink path due to the fact that microphone and uplink

amplifiers generally operate on lower-level signals. As in [6] a third-
order polynomial model is used here to simulate non-linearities
and is an approximation to the Volterra model. The output of the
loudspeaker is given byxnl(n) = x(n) + αx2(n) + βx3(n), where
x(n) is the far-end signal andαx2(n) + βx3(n) are the non-linear
components introduced by the downlink loudspeaker and amplifiers.
The parametersα and β are used to control the relative levels of
second and third order non-linear distortions. A full description of
this setup is given in our previous article [6].

B. Test set-up and metrics

We report different tests on each of the adaptive filters and compare
the effects of non-linearities and white noise. The assessment is based
on ERLE, convergence time and system distance. A 60-second speech
signal is used as the far-end signalx(n) and is sufficiently long
to ensure the convergence of each algorithm. In all cases ERLE
measurements relate to intervals in which the algorithms are deemed
to have converged. Non-linear artefacts are introduced into the down-
link signal according to the model described in Section III-A. The
loudspeaker output is composed of the original speech signalx(n)
and a non-linear component which are both convolved with the echo
pathh(n). This leads to a linear echo componentx(n) ∗ h(n) and
a non-linear echo component[αx2(n) + βx3(n)] ∗ h(n). Then, the
mean linear echo to non-linear echo ratio (SNeR) is computed as
in [8]:

SNeR =
1

K

K∑

i=1

SNeRseg(i), (2)

where the segmentalSNeRseg(i) is given by:

SNeRseg(i) = 10log10

∑M−1

m=0
d2i (n)∑M−1

m=0
d2nl,i(n)

(3)

and wheredi(n) and dnl,i(n) are the linear and non-linear echo
components respectively in theith segment of analysed signals. The
SNRseg(i) is computed using windows of32ms (M = 256 for
a sampling rate of8kHz) over which period speech is relatively
stationarity. A second noisy signal with linear echo is also generated,
where the meanSNR is equal to the meanSNeR. In so doing we
have two linear echo signals that are equally distorted, one with non-
linear echo, and another with additive noise. The weighting factors
α andβ, which are used to control the level of non-linear echo, are
in the range of[0, 1] as in [6]. The same step sizeµ is used for
all algorithms which are furthermore configured to give the same
amount of steady state ERLE in linear conditions (no non-linear
echo and no noise component). This condition is very difficult to
satisfy, as the different algorithms have different convergence rates,
and is here achieved by tuning the regularization factor (generally
used to avoid dividing by zeros during normalization) in each case.
The LMS algorithm, however, converges too slowly and it was thus
necessary to relax the contraints on the step size in this case. The
APA, FBLMS, and NLMS algorithms obtainERLEs of ∼110dB
in linear echo conditions. LMS does not perform sufficiently well
and gives an ERLE of∼80dB.

C. Echo Return Loss Enhancement

Figure 2 shows the maximum ERLE achieved by each algorithm in
non-linear and noisy environments as a function ofSNR or SNeR.
The maximum ERLE is the mean ERLE obtained during a 10 second
(50-60s) period where each algorithm has converged. We observe that
whatever the perturbation (non-linear echo or noise) performance
decreases for all adaptive filters. In non-linear environments the
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Fig. 2. Maximum ERLE (in dB) achieved after convergence as a function
of SNR/SNeR (also in dB). Here theSNR or SNeR corresponds to
added white noise (WN) or to non-linear echo (NL) as indicated. Profiles are
illustrated for both perturbations and for each of the four approaches to AEC.
APA, FBLMS and NLMS are all configured to give equivalent performance
under linear echo conditions.

APA and NLMS algorithms show similar behaviour; decreases of
approximately80dB are observed between the linear echo conditions
(right side of Figure 2) and non-linear echo conditions (left side of
Figure 2). This shows the sensitivity of linear adaptive filters as, in
this range, the non-linearities are inaudible. The FBLMS algorithm
is the most affected. Performance decreases by about 90dB over the
same range and forSNeRs less than75dB performance is worse
than that for the standard LMS algorithm. This is explained in [6] as
the effect of block-by-block processing which is more susceptible to
non-linear effects than a sample-by-sample process. We see that the
LMS algorithm is the most robust of all adaptive filters considered;
it has the least degradation in performance as theSNR or SNeR
decreases. This is due to poor ERLE performance which is so low
that the algorithm cannot even be configured to give equivalent
performance to the other algorithms under linear echo conditions.

In noisy environments the performance of APA, NLMS and
FBLMS algorithms decreases by approximately the same amount. For
the APA and NLMS algorithms, and when theSNR < 100dB, the
difference between the ERLE in non-linear and noisy environments is
about10dB for all algorithms, with better performance in non-linear
environments than noisy environments. Differences in performance
for non-linear and noisy environments are smallest for the FBLMS
algorithm. This can again be explained by the averaging effect of
block-by-block approaches. In the case of noise the perturbation is
effectively averaged over the block and thus has a reduced impact
on performance. This is not the case with non-linear echo, which
is correlated with the input signal. In summary these results show
that white noise perturbations have more effect than non-linearities
on all algorithms except for the FBLMS where the performances are
similar.

The difference between the effects of non-linearities and those of
noise are explained by two hypotheses:

Noise spectrum: The filter frequency response depends on the dif-
ferences in energy of the linear echo component and the perturbation
(non-linear echo or noise). The spectrum of the non-linear echo
component generally has a similar profile to that of the linear echo
component whereas the white noise spectrum is flat. This means
that during peroids of voiced speech the amplitude of the noise
signal can be much lower than the amplitude of the speech signal
at low frequencies, but much higher at high frequencies. At higher
frequencies the linear echo component can thus be masked by the
noise spectrum, leading to significant perturbation during periods of

30 40 50 60 70 80 90 100 110 120
0

5

10

15

20

25

30

35

40

45

SNR/SNeR (dB)

Co
nv

er
ge

nc
e T

im
e (

s)

 

 
APA_NL
FBLMS_NL
NLMS_NL
LMS_NL
APA_WN
FBLMS_WN
NLMS_WN
LMS_WN

(a)

10 20 30 40 50 60
20

30

40

50

60

70

80

90

100

110

time (s)

ER
LE

 (d
B)

 

 

NLMS (Linear)
NLMS_NL (SNeR=52)
NLMS_NL (SNeR=26)
NLMS_WN (SNR=52)
NLMS_WN (SNR=26)

(b)

Fig. 3. Convergence performance with non-linear (NL) and white noise (WN)
perturbations for (a) APA, FBLMS, NLMS and LMS algorithms plotted as
convergence time againstSNR, and (b) the NLMS algorithm plotted as ERLE
against time.

voiced speech.

Non-linearities are correlated with the far-end signal: Since non-
linearities are correlated with the input signal, this can result in the
adaptive filter under-estimating the linear part but slightly attenuating
the non-linearities. This is less so the case for noisy environments
as there is no correlation between the noise and the far-end speech
signal.

D. Convergence Time

The convergence time for each algorithm is computed as given
in [6], and is defined as the time needed for each adaptive filter
to reach95% of its maximum ERLE value. Convergence times are
determined using the same speech signals as used previously and are
estimated for both conditions: linear echo with non-linear echo, and
linear echo with noise. Figure 3(a) shows the convergence time in
seconds againstSNR/SNeR for each of the four algorithms and
both perturbations.

We see that, with the exception of the LMS algorithm, all profiles
have a similar trend even though differences in convergence time
are in the order of25s at 110dB. In addition, for each algorithm,
convergence times are greater for non-linear perturbations than they
are for noise. The LMS algorithm is the slowest to converge where
the SNeR or SNR is low but the fastest where they are high (>
100dB). This is explained by the fact that the ERLE obtained is
lower: about80dB compared to110dB for all other algorithms in
linear echo conditions (right side of Figure 2). We remark that, in all
cases, the more the perturbations increase the lower the convergence
time, since the ERLE obtained is lower.

The plots in Figure 3(a) show the absolute convergence time in
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Fig. 4. Plots of system distance (in dB) against time (in seconds) for the
NLMS algorithm. Profiles are illustrated for linear echo and also for linear
echo with either non-linear echo(NL) or added white noise (WN) at two
different levels.

seconds but do not give an impression of the dynamic performance
and neither do they reflect the ERLE that is eventually achieved.
They are thus potentially misleading and for this reason we present
in Figure 3(b) a plot of ERLE against time (here for the NLMS algo-
rithm only) to better illustrate the dynamic and absolute performance.
Figure 3(b) shows the ERLE against time with linear echo only and
added non-linear echo or noise at52 and26dB.

These plots show that higher levels of perturbation result in lower
levels of ERLE. In the case of linear echo (top profile) convergence
is slow and is not even reached during the60s illustrated. Crucially,
though, the ERLE is much higher than it is for non-linear and
noise perturbations. However, in these cases the algorithm converges
faster, but to a lower level (i.e.∼55dB for non-linear echo with
an SNeR of 52dB and ∼20dB at 26dB SNeR, cf. ∼45dB for
noise with anSNR of 52dB and∼25dB at 26dB SNR). Hence
consideration of the convergence time or maximum obtained ERLE
are not sufficient on their own to properly appreciate performance.
Similar profiles were obtained for the other adaptive filters and
show an identical trend to that shown here for the NLMS algorithm
albeit to different levels of ERLE. Finally, since all algorithms
are shown to converge reasonably quickly in noise and non-linear
environments it is of questionable advantage to focus effort on more
computationally efficient algorithms; efforts are better directed toward
the development of more robust algorithms. Indeed, more stable and
straight forward algorithms, such as NLMS, are arguably of more
interest for mobile terminal applications than their less stable and
more computationally demanding alternatives.

E. System distance

The assessment of performance with linear echo is commonly mea-
sured according to the system distance which is measured according
to 10log10[|h(n) − ĥ(n)|2/|h(n)|2]. The system distance indicates
the accuracy of̂h(n). It is less appropriate in the case of non-linear
echo as the system distance shows only how well the linear echo
path is estimated and thus does not necessarily reflect the level of
echo attenuation actually achieved. Figure 4 shows the behaviour
of the NLMS system distance as a function of time. Whilst there
are differences in exact values of system distance, the order of the
profiles and general trends are indicative of performance for all the
other filters. In general, the better the system distance, the better
the ERLE. However, upon comparison of Figures 3(b) and Figure 4
we observe an apparent disparity. Figure 3(b) shows that performance
with non-linear echo is generally better than that under additive noise
with the sameSNR, whereas Figure 4 shows almost no differences.
This is due to the fact that system distance is only equivalent to

ERLE under the condition of total linearity. The ERLE reflects
the global performance according to the residual error, whereas the
system distance reflects the accuracy ofĥ(n). Equivalent values of
system distance show that linear echo can be attenuated equally well
with either non-linear echo or noise perturbations. The differences
in the ERLE, however, show that non-linear echo perturbations are
better attenuated than noise. This is due to the fact that in non-
linear environments some of the non-linearities are indeed effectively
attenuated by the adaptive filter even if the residual error is still higher
than in the linear situation. This is due to the fact that adaptive filters
aim to reduce the correlation (increase the orthogonality) between the
error and the input signal. Since non-linear echo is correlated with
the input signal it can also be attenuated, albeit only slightly. This is
not the case with additive noise. This does not imply that adaptive
filters are better in non-linear environments than they are in noisy
environments as the adaptive filter does not aim to reduce the noise,
but rather the echo signal which includes the non-linear component.

IV. CONCLUSIONS

This paper presents a new comparison of the effects of non-
linearities and noise on four adaptive filters. Experimental results
show that APA and NLMS have comparable behaviour in non-
linear environments whereas FBLMS is badly affected. In noisy
environments, however, there is little difference between each ap-
proach and, being less computationally demanding than the other
approaches, FBLMS is an appealing solution in this case. Results
confirm that performance decreases as the level of perturbations
increase but that echo cancellation seems to be more robust to non-
linearities than noise with a similarSNR (with the exception of the
FBLMS algorithm). We show that the linear component of the echo
path is under estimated but is as accurate in the case of non-linear
echo as it is in noisy environments, again with a similarSNR. In
addition, as the non-linear component is correlated with the far-end
signal a fraction of non-linearities are effectively attenuated. Noise,
in contrast, is neither correlated, nor attenuated.

This paper demonstrates the different nature of non-linear echo
and additive noise and their effects on adaptive filtering performance.
Whereas the effects of additive noise are well understood there are
relatively few studies on the effects of non-linear echo in the existing
literature. This contribution sheds new light on the problem and
supports continuing efforts to tackle non-linear echo.
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