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Abstract—This paper addresses the problem of adaptive filtering for
acoustic echo cancellation in noisy and non-linear enviraments. The first
contribution relates to a new analysis on the comparative irpact of addi-
tive noise and non-linear echo on the performance of adapte/filtering for
linear acoustic echo cancellation (AEC). A comprehensive gsformance
assessment is reported, including echo return loss enhamoent (ERLE),
convergence time and system distance metrics. This work ket highlights
differences between algorithm performance than previousi published
work and sheds new light on algorithm behavior. Results showthat, in
non-linear and noisy environments, the normalized-least man square
(NLMS) algorithm gives similar performance to the more compkx
affine projection algorithm (APA). The more computationally efficient
frequency block least mean square (FBLMS) algorithm is partcularly
adversly effected and gives poorer performance than the bas least
mean square (LMS) approach. These observations question theersuit
of increased computational efficiency and reduced convergee time
over robustness to distortions. The second contribution rates to an
original account of the effects of non-linear echo and noisevhich,
perhaps surprisingly, are greater for the latter. This obsevation highlights
the need for more comprehensive studies on the effects of ndinear
distortion and supports continuing efforts to tackle non-inear echo.

Keywords: echo cancellation, non-linear distortion, noigs, AEC, LMS,
NLMS, APA, FBLMS.
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under linear echo conditions. Also, given the well-known trade-off
between steady state ERLE and the adaptation step size, which is
used to control the rate of converge, the same step size is used for
all algorithms. With the same amount of ERLE under linear echo
conditions and a fixed step size, the assessment reported here can
more reliably attribute differences in performance to differences in the
prevailing environment, i.e. non-linear echo or noise, and less so due
to differences in algorithm configurations. The second contribution
relates to a comparison of the two environments to determine whether
or not the effects of non-linearities resemble those of noise and thus
to validate, or otherwise, the common assumption that the two effects
are practically equivalent.

The remainder of the paper is organized as follows. In Section Il
we describe a general echo cancellation system and the different
approaches to AEC that are investigated here. Our experimental work
is presented in Section Il and our conclusions in Section IV.

Il. ACOUSTIC ECHO CANCELLATION

We here describe a typical system/echo model and a general
framework for AEC with adaptive filtering. Also described are the

There is a vast volume of work in the literature related to adaptifeur approaches to AEC that are investigated in this paper.

filtering in noisy and non-linear environments. Noisy environmenEE
are usually accomodated by restricting the rate of filter adaptation so

as to limit divergence, e.g. [1], [2], [3]. For non-linear enviromtse

System/echo model

A general system/echo model, which was used for all experiments

i.e. involving non-linear echo, two dominant solutions have emergeeported in this paper, is illustrated in Figure 1. The terminal receives
The first is based on the Volterra filter [4] and the second involves down-link (or loudspeaker) signal(n) from a far-end speaker,
post-filtering [5] in combination with acoustic echo cancellatio@nd transmits an uplink (or microphone) signéh). In addition to
(AEC) adaptive filtering. The Volterra solution is generally slow tmear-end speec#(n) and additive background noisgn) the uplink
convergence and is highly computationally complex. Post-filters agignal potentially includes an additional echo compor&nt), which

less complex but rely on the performance of linear adaptive filteis a result of the acoustical coupling between the loudspeaker and
that are still disturbed by non-linear echo. Linear adaptive filterinfpe microphone. It is generally modelled with a linear convolution,
is still popular in these situations and it is thus of interest to asse#3:) = z(n) * h(n), where h(n) is the impulse response which
their performance in such environments, as reported in our previatigracterizes the acoustical coupling. AEC may thus be implemented
work [6]. by estimatingh(n) with a filter h(n) in order to give an estimate

In [6] the performance of five adaptive filters was assessed bf the coupled echo signai(n) = z(n) * h(n). The echo is
comparing the echo return loss enhancement (ERLE) in the preseatienuated simply by subtractingn) from the uplink signal. Since
of (i) linear echo and (ii) linear and non-linear echo. This workhe acoustical coupling is generally time varyihgn) is usually
showed that, with higher levels of non-linear distortion, the NLM@&n adaptive filter. Near-end speech disturbs the adaptive filter and
algorithm can perform as well as APA and that the lower complexit§o h(n) is usually updated during echo-only periods, i.e. when
FBLMS algorithm gives the worst performance in the same environ(n) = 0. Noise can also disturb the adaptive filter but, if we also
ment. However, the assessment protocol in [6] perhaps does siot Iseippose that the noise is negligible, i#n) = 0, theny(n) = d(n)
reflect the true robustness of each algorithm to non-linear echo aloaeg thus the resulting error signal(n) is simply the difference
since the comparison was made independently of the ERLE thato&gtween the echo signal and its estimate, d(@&) = d(n) — d(n).
achieved with each algorithm under conditions involving only linearhe errore(n) is used to update the filtei(n) whose goal is to
echo. drive e(n) to zero.

The first contribution in this paper is a new, comparative assessAEC rarely operates under such ideal conditions, however, and
ment of the same linear adaptive filters, but here with a different foctlas it is interesting to study the robustness under more realistic
on their relative robustness to non-linear and noisy environmermsnditions. i.e. with near-end speech, non-linear echo and additive
with an improved, fairer experimental setup. Compared to [6], whebackground noise. As adaptation is simply paused during intervals
the level of steady state echo reduction is different for all adaptieé near-end speech, only disturbances from non-linear echo and
filters, in all experiments reported here we tuned the different AE@ackground noise are considered here. Each of the approaches to
algorithms so that they each obtain the same ERLE after convergeAEeC that are considered are described below.



from Far-end 5 jifiers generally operate on lower-level signals. As in [6] a third-

M z(n) Downlink order polynomial model is used here to simulate non-linearities
‘ and is an approximation to the \olterra model. The output of the
AEC loudspeaker is given by, (n) = z(n) + az?(n) + Bz*(n), where
ﬁ(n)‘ x(n) is the far-end signal anda?(n) + Bz3(n) are the non-linear
components introduced by the downlink loudspeaker and amplifiers.
d(n) The parametersy and 3 are used to control the relative levels of
D—,f+ - second and third order non-linear distortions. A full description of
y(n) e(n)  Uplink this setup is given in our previous article [6].

s(n) +n(n)

B. Test set-up and metrics

Fig. 1. System/echo model illustrating the acoustical cogpbetween the e report different tests on each of the adaptive filters and compare

loudspeaker and microphone and a general approach to aeldi. the effects of non-linearities and white noise. The assessment is based

B. Linear adaptive filtering algorithms on ERLE, convergence time and system distance. A 60-second speech
The adaptive AEC filters considered in this paper are updat?é;nal is used as the far-end signein) anq is sufficiently long

according to a general adaptation recursion given by: 0 ensure the convergence of egch glgonthm. In. all cases ERLE

measurements relate to intervals in which the algorithms are deemed

o o to have converged. Non-linear artefacts are introduced into the down-

h(n+1) = h(n) + Ah(n), @) link signal according to the model described in Section IlI-A. The

whereh(n) is the vector of filter taps at time and whereAh(n) loudspeaker output is composed of the original speech sigfial

is the gradient used to update the filter. Everywhere in this paperd a non-linear component which are both convolved with the echo

boldface denotes vectors whereas boldface capitals denote matripath h(n). This leads to a linear echo componertt) « h(n) and

The gradient is different for each algorithm but, in all cases, shoutdnon-linear echo componefitz?(n) + Sz*(n)] * h(n). Then, the

ensure thah(n) converges to the optimal Wiener solutibp,; after mean linear echo to non-linear echo rati®NeR) is computed as

sufficient iterations. Only the barest of details for each approaah [8]:

considered are given below as full details can be found in the open 1 K

literature [7]. Z SNeRseq(i), 2

Least Mean Square (LMS) The LMS filter updateAh(n) is equal \here the segmentf NeR.., (i) is given by:
to ux(n)e(n), wherep is a scalar or step size which aims to control

M—-1 ;2
the rate of adaptation (and hence convergence/diverger@g),= SNeR.. (i) = 10l m—o @i (N) 3
[z(n),z(n — 1), ...,z(n — L + 1)]T is the input vector of the filter eftscs (1) HOSTIMT @)

and L is the filter length (256 for all algorithms used here). ) )
and whered;(n) and d,,; ;(n) are the linear and non-linear echo

Normalized-LMS (NLMS): The NLMS algorithm uses a normalizedcomponents respectively in ti€" segment of analysed signals. The
step sizeu. Here the update\h(n) is equal tor X (n)e(n). SN Rseq(i) is computed using windows df2ms (M = 256 for
a sampling rate oBkHz) over which period speech is relatively
Affine Projection Algorithm (APA): The update Ah(n) is stationarity. A second noisy signal with linear echo is also generated,
here given byuX(n)[X™(n)X(n) + elx]"'e(n) where X(n) = where the mea’ N R is equal to the meas' NeR. In so doing we
X(n)x(n—1)..x(n — N +1)], an L x N matrix. L is the length of have two linear echo signals that are equally distorted, one with non-
the filter, V is the order of the APA| n is the identity matrix and linear echo, and another with additive noise. The weighting factors
e(n) is now a vector. For all experiments represented here we usend 3, which are used to control the level of non-linear echo, are
N =2. in the range of]0,1] as in [6]. The same step size is used for
) ] ) all algorithms which are furthermore configured to give the same

Frequency Block-LMS (FBLMS): FBLMS is an implementation of 5mount of steady state ERLE in linear conditions (no non-linear
a block-by-block LMS using fagt_cionvolution. In the time domain th@:-ho and no noise component). This condition is very difficult to
updateAh(n) is given bypy = e(nB + m)x(nB + m) where  gaiisty, as the different algorithms have different convergence,rate
n is now a block index;n is the block sample index an8 is the  anq is here achieved by tuning the regularization factor (generally
block length. We use&3 = 256. used to avoid dividing by zeros during normalization) in each case.

. EXPERIMENTAL WORK The LMS algorithm, however, converges too slowly and it was thus
necessary to relax the contraints on the step size in this case. The
APA, FBLMS, and NLMS algorithms obtait RLEs of ~110dB

The direct comparison of AEC performance with (i) linear echg, jinear echo conditions. LMS does not perform sufficiently well
and (i) linear and non-linear echo is made with otherwise identicghqd gives an ERLE 0f-80dB.

conditions and, for all experiments reported here, both linear and

non-linear echo is added artificially. In practice, non-linearities afe- ECho Return Loss Enhancement

introduced by component imperfections, i.e. from the miniaturization Figure 2 shows the maximum ERLE achieved by each algorithm in
of components, and can be divided into two groups: those whidon-linear and noisy environments as a functior6®f R or SNeR.
arise in the downlink path and those which arise in the uplink patfihe maximum ERLE is the mean ERLE obtained during a 10 second
Previous work [4] has shown that non-linearities coming from th@g0-60s) period where each algorithm has converged. We obseitve th
loudspeaker and amplifiers in the downlink path dominate thoséhatever the perturbation (non-linear echo or noise) performance
in the uplink path due to the fact that microphone and uplindecreases for all adaptive filters. In non-linear environments the

A. Non-linear model
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Fig. 2. Maximum ERLE (in dB) achieved after convergence asretfan (@)
of SNR/SNeR (also in dB). Here theSNR or SNeR corresponds to ~
added white noise (WN) or to non-linear echo (NL) as indicafaufiles are 110 1

illustrated for both perturbations and for each of the fqopraaches to AEC. 100}
APA, FBLMS and NLMS are all configured to give equivalent peniance
under linear echo conditions.
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APA and NLMS algorithms show similar behaviour; decreases
approximately80d B are observed between the linear echo conditio

60

ERLE (dB)

(right side of Figure 2) and non-linear echo conditions (left side 50 e
Figure 2). This shows the sensitivity of linear adaptive filters as, 0

this range, the non-linearities are inaudible. The FBLMS algorith S0/ T T T o

is the most affected. Performance decreases by about 90dB evel - e
same range and faf NeRs less than75dB performance is worse time (s)

than that for the standard LMS algorithm. This is explained in [6] as (b)

the effect of block-by-block processing which is more susceptible to

non-linear effects than a sample-by-sample process. We see thatriges. convergence performance with non-linear (NL) andevhbise (WN)
LMS algorithm is the most robust of all adaptive filters consideregyerturbations for (a) APA, FBLMS, NLMS and LMS algorithms téml as
it has the least degradation in performance asdhéR or SNeR  convergence time againStV R, and (b) the NLMS algorithm plotted as ERLE
decreases. This is due to poor ERLE performance which is so IG#2"St ime-

that the algorithm cannot even be configured to give equivalepdiced speech.

performance to the other algorithms under linear echo conditions.

In noisy environments the performance of APA, NLMS andNon-linearities are correlated with the far-end signal Since non-
FBLMS algorithms decreases by approximately the same amount. foearities are correlated with the input signal, this can result in the
the APA and NLMS algorithms, and when ti$8VR < 100dB, the adaptive filter under-estimating the linear part but slightly attenuating
difference between the ERLE in non-linear and noisy environmentsti® non-linearities. This is less so the case for noisy environments
about10dB for all algorithms, with better performance in non-lineas there is no correlation between the noise and the far-end speech
environments than noisy environments. Differences in performangignal.
for non-linear and noisy environments are smallest for the FBLMS
algorithm. This can again be explained by the averaging effect Bf
block-by-block approaches. In the case of noise the perturbation isThe convergence time for each algorithm is computed as given
effectively averaged over the block and thus has a reduced impact6], and is defined as the time needed for each adaptive filter
on performance. This is not the case with non-linear echo, whith reach95% of its maximum ERLE value. Convergence times are
is correlated with the input signal. In summary these results shalgetermined using the same speech signals as used previously and are
that white noise perturbations have more effect than non-linearitiestimated for both conditions: linear echo with non-linear echo, and
on all algorithms except for the FBLMS where the performances disear echo with noise. Figure 3(a) shows the convergence time in

Convergence Time

similar. seconds against NR/SNeR for each of the four algorithms and
The difference between the effects of non-linearities and those ksith perturbations.
noise are explained by two hypotheses: We see that, with the exception of the LMS algorithm, all profiles

have a similar trend even though differences in convergence time
Noise spectrum The filter frequency response depends on the di&re in the order oR5s at 110dB. In addition, for each algorithm,
ferences in energy of the linear echo component and the perturbatimmvergence times are greater for non-linear perturbations than they
(non-linear echo or noise). The spectrum of the non-linear echee for noise. The LMS algorithm is the slowest to converge where
component generally has a similar profile to that of the linear eclioe SNeR or SNR is low but the fastest where they are high (
component whereas the white noise spectrum is flat. This medf®dB). This is explained by the fact that the ERLE obtained is
that during peroids of voiced speech the amplitude of the noikmver: about80dB compared tol10dB for all other algorithms in
signal can be much lower than the amplitude of the speech sigtiakar echo conditions (right side of Figure 2). We remark that, in all
at low frequencies, but much higher at high frequencies. At higheases, the more the perturbations increase the lower the convergence
frequencies the linear echo component can thus be masked by tihvee, since the ERLE obtained is lower.
noise spectrum, leading to significant perturbation during periods ofThe plots in Figure 3(a) show the absolute convergence time in



., ‘ ‘ ‘ ‘ ‘ ‘ ERLE under the condition of total linearity. The ERLE reflects
T N o . ) the global performance according to the residual error, whereas the
system distance reflects the accuracyfz()h). Equivalent values of
system distance show that linear echo can be attenuated equally well
o I with either non-linear echo or noise perturbations. The differences
in the ERLE, however, show that non-linear echo perturbations are
better attenuated than noise. This is due to the fact that in non-
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NS Nl fameRr=52) linear environments some of the non-linearities are indeed effectively
I I Dy Vi v v ] attenuated by the adaptive filter even if the residual error is still higher
—go L NLMS_WN (SNR=26) ‘ ‘ ‘ — than in the linear situation. This is due to the fact that adaptive filters

10 20 30 40 50 60 aim to reduce the correlation (increase the orthogonality) between the

time (s)

error and the input signal. Since non-linear echo is correlated with
Fig. 4. Plots of system distance (in dB) against time (in sdspror the the input signal it can also be attenuated, albeit only slightly. This is
NLMS algorithm. Profiles are illustrated for linear echo arsoafor linear not the case with additive noise. This does not imply that adaptive
echo with either non-linear echo(NL) or added white noise (V& two fijters are better in non-linear environments than they are in noisy
different levels. . . . . .

environments as the adaptive filter does not aim to reduce the noise,
seconds but do not give an impression of the dynamic performartmg rather the echo signal which includes the non-linear component.
and neither do they reflect the ERLE that is eventually achieved.
They are thus potentially misleading and for this reason we present
in Figure 3(b) a plot of ERLE against time (here for the NLMS algo- This paper presents a new comparison of the effects of non-
rithm only) to better illustrate the dynamic and absolute performandiearities and noise on four adaptive filters. Experimental results
Figure 3(b) shows the ERLE against time with linear echo only arfdhow that APA and NLMS have comparable behaviour in non-
added non-linear echo or noise&ﬁ and26dB Iinear enVirOnments Whereas FBLMS iS badly aﬁected. In nOisy

These plots show that higher levels of perturbation result in lowgpvironments, however, there is little difference between each ap-

levels of ERLE. In the case of linear echo (top profile) convergeng$oach and, being less computationally demanding than the other
is slow and is not even reached during 8 illustrated. Crucially, approaches, FBLMS is an appealing solution in this case. Results
though, the ERLE is much h|gher than it is for non-linear angonﬁrm that performance decreases as the level of perturbations
noise perturbations. However, in these cases the algorithm converéjééease but that echo cancellation seems to be more robust to non-
faster, but to a lower level (i.e~55dB for non-linear echo with linearities than noise with a simila&8 N R (with the exception of the
an SNeR of 52dB and ~20dB at 26dB SNeR, cf. ~45dB for FBLMS algorithm). We show that the linear component of the echo
noise with anSN R of 52dB and ~25dB at 26dB SNR). Hence path is under estimated but is as accurate in the case of non-linear
consideration of the convergence time or maximum obtained ERIGENO as it is in noisy environments, again with a sim#av R. In
are not Sufﬁcien’[ on their own to properly appreciate performanc@jdition, as the non-linear Component is correlated with the far-end
Similar profiles were obtained for the other adaptive filters argignal a fraction of non-linearities are effectively attenuated. Noise,
show an identical trend to that shown here for the NLMS algorithif# contrast, is neither correlated, nor attenuated.
albeit to different levels of ERLE. Finally, since all algorithms This paper demonstrates the different nature of non-linear echo
are shown to converge reasonably quickly in noise and non-linetd additive noise and their effects on adaptive filtering performance.
environments it is of questionable advantage to focus effort on mofdhereas the effects of additive noise are well understood there are
computationally efficient algorithms; efforts are better directed towafglatively few studies on the effects of non-linear echo in the existing
the development of more robust algorithms. Indeed, more stable difgrature. This contribution sheds new light on the problem and
straight forward algorithms, such as NLMS, are arguably of mof!pports continuing efforts to tackle non-linear echo.
interest for mobile terminal applications than their less stable and
more computationally demanding alternatives.

IV. CONCLUSIONS
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