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Abstract— Image segmentation is a fundamental task in many
computer vision applications. In this paper, we describe a new
unsupervised color image segmentation algorithm, which exploits
the color characteristics of the image. The introduced system is
based on a color quantization of the image in the Lab color space
using the popular eleven culture colors in order to avoid the well
known problem of oversegmentation. To partially overcome the
problem of highlight and shadows in the image, which is one of
the main aspect affecting the performance of color segmentation
systems, the proposed approach uses a fuzzy classifier trained on
an ad-hoc designed dataset. A Markov Random Field description
of the full algorithm is moreover provided which helps to remove
resilient errors trough the use of an iterative strategy. The
experimantal results show the good performance of the proposed
approach which is comparable to state of the art systems even
if based only on the color information of the image.

Keywords— color segmentation, fuzzy clustering, Markov Ran-
dom Field, Iterated Conditional Modes.

I. INTRODUCTION

Image segmentation is the process of partitioning an image
into disjoint and homogeneous regions, called segments, and is
one of the classical problems in computer vision. It is widely
accepted that a good segmentation should group image pixels
into regions whose statistical characteristics are homogeneous
and whose boundaries are simple and spatially accurate.

The desirable characteristics that a good image segmenta-
tion should exhibit have been clearly stated in [1] with refer-
ence to gray-level images. “Regions of an image segmentation
should be uniform and homogeneous with respect to some
characteristics such as gray tone or texture. Region interiors
should be simple and without many small holes. Adjacent
regions of a segmentation should have significantly different
values with respect to the characteristic on which they are
uniform. Boundaries of each segment should be simple, not
ragged, and must be spatially accurate.”

In the scientific literature, many statistical models and
methods have been introduced. Generally, one can distinguish
among unsupervised, semi-supervised and fully supervised
methods1. Unsupervised approaches provide segmentation re-
sults without any prior knowledge about the image and do
not require any user-interaction. One of the main directions
of current research in this field is to define the segmentation

1for a survey on color segmentation algorithms please refer to [2].

process as finding the labeling of an image that minimizes
a specific energy term. Despite the success of such energy
minimization methods, still simple appearance based methods
like Mean Shift [3] are considered as state of the art in the
field of color segmentation. Semi-supervised methods require
a user to highlight some regions as a prior, mostly by drawing
some kind of seeds into the image. These methods achieve
impressively accurate results, but have the disadvantage that
results heavily depend on the selection of the seeds. The
correct placement of the seeds by the user needs some training
and expertise, and therefore mostly cumbersome postprocess-
ing is required to correct the results. Finally, fully supervised
methods require labeled training data for the expected type
of image, mostly for the purpose of detecting specific object
categories in images. Of course, the need for accurately labeled
training data limits the scope of these methods.

In most of the existing color image segmentation algorithms,
for all the categories explained before, the definition of a
region is based on the color characteristics of the image within
a chosen color space. This process could be further augmented
by joining information about the objects in the scene, such as
shape or superficial properties. In any case, the assumption
to use color similarity makes it difficult for any algorithms
to separate the objects with highlights, shadow, shadings or
texture which cause inhomogeneity of colors of the object’s
surface. Moreover, segmentation algorithms based on color
are always affected by the oversegmentation problem which is
partially reduced by using specific post processing functions.

In this paper, we introduce a new unsupervised image
segmentation algorithm exploiting the color characteristics of
the image in the Lab color space. The novely of the proposed
work is the use of culture colors as a basis for the segmentation
of the image in order to avoid undesiderable oversegmentation
effect. The proposed approach, moreover, tries to partially
overcome the problem of highlight and shadows in the image,
tipically affecting the performance of segmentation systems,
by using a fuzzy classifier trained on an ad-hoc designed
dataset. A Markov Random Field description of the full
algorithm is also provided which helps to remove resilient
errors through the use of an iterative algorithm.



II. PROPOSED FRAMEWORK

As explained in the introduction, the goal of the proposed
work is to introduce a new approach to color segmentation of
natural images exploiting the property of Lab color space to
be robust in change in illumination conditions.

The proposed approach is described in Fig. 1.
The main steps of the proposed algorithm are the Fuzzy

K-Nearest Neighbors (KNN) classifer which is applied to the
Lab version of the original image using an ad-hoc training
set, as described in Sec. II-B, and the Iterated Conditional
Mode (ICM) which maximizes local conditional probabilities
leading to a suboptimal solution, as explained in Sec. II-C. The
complete algorithm can be described as a Markov Random
Field (MRF) which assign to each pixel of the image a
label corresponding to a segment in the segmentation process.
The single steps are explained in details in the following
subsections.

A. Markov Random Field

In this section we provide a short description of MRF
theory in image processign applications, and, in particular, in
segmentation problems.

Markov random field theory is a branch of probability
theory for analyzing the spatial or contextual dependencies
of physical phenomena [4]. The foundations of the theory
of Markov random fields may be found in statistical physics
of magnetic materials (Ising models, spin glasses, etc..) but
Markov random fields are often used in image processing
applications, because this approach defines a model for de-
scribing the coherence among neighboring pixels.

A random field F = {F1, F2, ..., Fm} is a family of random
variables defined on a set S, in which each random variable
Fi takes a value fi in L.
F is said to be a Markov random field (MRF) on S with

respect to a neighborhood system N if and only if the two
following conditions are satisfied:

P (f) > 0, ∀f ∈ Lm (positivity) (1)

P (fi|fS−{i}) = P (fi|fNi) , ∀i ∈ S (Markov property)
(2)

where f = {f1, ..., fm} is a configuration of F (correspond-
ing to a realization of the field), P (f) is the joint probability
P (F1 = f1, ..., Fm = fm) of the joint event F = f , and

fNi = {fi′ | i′ ∈ Ni} (3)

denotes the set of values at the sites neighboring i, i.e. the
neighborhood N centered at position i. The positivity is due to
technical reasons, since it is a necessary condition if we want
that the Hammersley-Clifford theorem (see below) holds.

To exploit MRFs characteristics in a practical way we need
to refer to the Hammersley-Clifford theorem for which the

probability distribution of a MRF has the form of a Gibbs
distribution, i.e.:

P (f) = Z−1 × e−
1
T U(f) (4)

where Z is a normalizing constant called the partition function,
T is a constant called the temperature and U(f) is the energy
function. The energy function

U(f) =
∑
c∈C

Vc(f) (5)

is a sum of cliques potentials Vc(f) over all possible cliques C,
where a clique c is defined as a subset of neighboring sites in
S. Thus the value of Vc(f) depends on the local configuration
on the clique c. The practical value of the theorem is that
it provides a simple way of specifying the joint probability.
P (f) measures the probability of the occurrence of a particular
configuration: the more probable configurations are those with
lower energies.

In our case, we can model the segmentation of an image
with a random field F defined on the set S of the image pixels.
The value assumed by each random variable represents the
label corresponding to the segment to which the pixel belongs
to. The advantage brought by MRF theory is that by letting
the segment of a generic point (x, y) of the image depending
on the segments of its neighboring points (let us indicate the
neighborhood system of (x, y) with the notation N(x, y)), we
can automatically impose that the resulting segmentation takes
into account (with some constraints depending on the potential
function we chose) the semantic correlation of the pixels in
the image.

In the next sections we will see how we choose the
neighborhood system N and the potential function V and how
these information can be used to generate a segmented image.

B. Fuzzy clustering

The first step of the whole process is the Fuzzy KNN
classifier. The idea of using a fuzzy classifer based on the
Lab colorspace derives from a previous work we did aimed at
understanding the ability of different colorspaces in identifying
colors in different illumination conditions.

In [5] we proposed a new approach to provide a comparison
of the most widely used color spaces in order to understand
which one is the more suitable to identify colors in video.
While the goal of the paper was completely different from
color segmentation, we think that the analysis carried out is
significant in understanding the problem of color identification
in different illumination conditions, which is one of the
main aspect affecting the performance of color segmentation
algorithms.

We employed a statistical approach by conducting extensive
data mining on video clips collected under various lighting
conditions. The goal was to learn how individual colors can
drift in different illumination conditions and with different
color spaces. In order to provide a very general approach,
we need to collect pixels describing different colors. Thus



Fig. 1. Overall scheme of the proposed framework

we quantized the entire color space into eleven bins: black,
white, red, yellow, green, blue, brown, purple, pink, orange,
and grey. These colors are usually referred to as culture
colors, which have been used in literature of different cultures
in the past years to refer to colors [6]. The second step
consisted in collecting pixels based on the above described
color quantization, under various lighting conditions, from
different cameras and from several distances from the cameras.
Our idea to obtain a so diversified dataset of colors was to
collect from the web video clips of eleven teams with the color
of the uniforms corresponding to the eleven culture colors, and
to obtain the sample colors from them. This procedure allowed
us to obtain a great number of samples in real illumination
conditions and, with very high probability, taken from different
cameras.

We collected about 1200 samples for the training and about
1350 samples for the testing and we analyzed five of the most
popular and widely used color spaces (RGB, normalized RGB,
HSV, Lab, YUV) using a fuzzy clustering algorithm.

Fuzzy clustering is particular suited to color quantization
since color boundaries are not well defined. In the proposed
system we adopt the fuzzy k-nearest neighbors algorithm
(KNN) introduced by Keller & al. [7], which works as follows.
Let us assume that a training set of m samples vectors
Z1, Z2, ..., Zm is available. Let X be a new vector considered
as the input to be classified. For a fixed value of k, the first
step consists in identifying, among these sample vectors, the
k nearest neighbors Y1, Y2, ..., Yk of the input X . Then the
membership vectors of the selected labeled samples Y are
combined to find the membership vector of the input X ,
where the membership vector describes the probabilities of
the membership to the possible C classes. Let ui(X) be the
membership of the input X to the ith class (with i ≤ C), and
wij the membership of its jth neighbor Yj to the same class
(wij = ui(Yj)), then (with m > 1):

ui (X) =

k∑
j=1

wij

(
1

∥X−Yj∥

) 2
(m−1)

k∑
j=1

(
1

∥X−Yj∥

) 2
(m−1)

(6)

In the above formula, the inverse distance is used to weight
the membership degrees of the samples by assigning a higher

weight to closest vector.
The obtained results showed that the Lab color space is the

one that provided the best correct classification rate (94.1%2)
among the analyzed ones, thus it seems to be the more suitable
in identify colors in different illumination conditions.

Based on the above considerations, we decided to use the
discussed classifier to the problem of color segmentation. We
apply the Fuzzy KNN algorithm to each pixel of the Lab
version of the image using the same training test we used in the
[5]. The classifier assign to each pixel a label corresponding
to one of the classes given by the eleven culture colors. The
obtained image is the segmented image where disjoint blobs
(i.e. blobs of different colors or non connected blobs of the
same colors) describe different segments. Even if fuzzy clas-
sifiers have been already adopted in image segmentation, the
proposed approach based on culture colors has the advantage
of avoiding the effect of oversegmentation and in the same
time, thanks to the design of the training set, of reducing the
errors due to shadows in the image.

Recalling MRF theory, the segmented image f =
{f1, ..., fP×Q}, where fi ∈ L = {1, 2, .., 11} and P × Q
is the size of the image, is a possible realization of the field
F .

The advantage of using a soft classifier (like the fuzzy
classifier) with respect to the hard classifier is that to each
pixel i is also associated the membership vector u(i) =
{u1(i), u2(i), .., u11(i)} describing the probabilities of the
membership of the pixel to the 11 possible classes. This
information will be exploited in the description of the ICM
as explained in the next section.

C. Iterated Conditional Mode

As we said in Sec. II-A, an MRF is uniquely determined
once the Gibbs distribution and the neighborhood system are
defined. In the approach proposed here, for each pixel (for
sake of clarity let us define the position of a pixel with the
classical notation (x, y)) only four neighbors of first order
and the corresponding four pair-site cliques are considered, as
described by Fig.2.

The potential function we used is expressed by

2the other detection rates are: RGB= 91.3%, normalizde RGB= 89.9%,
HSV= 86.8%, YUV= 91.4%



Fig. 2. Structure of a first order neighborhood system and corresponding
pair-sites cliques.

V((x,y),(x̃,ỹ)) =
1

u(x, y) + u(x̃, ỹ)
(7)

where u(x, y) is the membership vector associated to the
pixel (x, y) and (x̃, ỹ) is a point belonging to N(x, y), that is
the 4-neighborhood system of (x, y).

Since it is difficult to maximize the joint probability of a
MRF as expressed by eq.4, it is common to use a deterministic
algorithm called iterated conditional modes (ICM) which max-
imizes local conditional probabilities sequentially. The initial
state of the ICM is the output of the fuzzy classifier. The
ICM algorithm uses the greedy strategy in the iterative local
maximization to visit all the points of the segmented image
and update their values by minimizing the potential function
in order to maximize the joint probability. When the ICM
algorithm starts each pixel (x, y) of the image is randomly
visited and its value is updated by trying to minimize the
potential function in eq.7. Specifically, a local minimum is
sought by letting

fopt (x,y) = argmin
f∈L

∑
(x̃,ỹ)∈N(x,y)

Vf((x,y),(x̃,ỹ)) (8)

where Vf((x,y),(x̃,ỹ)) is the f th component of the vector
V((x,y),(x̃,ỹ)). The above equation assign to each pixel a value
of the segment based on the probability of the membership
of the neighboring pixels to the eleven segments, that is the
selected value is the one that occurs with a higher probability
in the neighborhood system. The above equation results in a
local minimization of the Gibbs potential. Once each pixel is
visited and the corresponding value updated, a new iteration
starts. The algorithm ends when no new modification is
introduced for a whole iteration, which is usually the case
after 12-13 iterations.

The last step of the system is a post-processing function
applied to connect close regions and remove isolated or small
blobs.

An example of the proposed approach on natural images is
shown in Fig.3. The algorithm, let us call it MFseg (Markov
Field based Segmentation), is applied on two images from the
Berkeley database. Each row contains the original image (on
the left), the first version of the segmented image which is the
output of the fuzzy KNN classifier, the output image of the

ICM algorithm and the final segmented image (on the right)
after some post processing operations. We can observe how the
last two images are a refinement of the first segmented image.
The MRF description of the proposed color segmentation
algorithm exploits, through the use of the ICM algorithm,
the probability of the membership of the pixels to the eleven
classes by allowing a meaningful refinement of the output of
the classifier.

III. EXPERIMENTAL RESULTS

In this section, we demonstrate the segmentation results
of the proposed approach on natural images in the Berkeley
segmentation database [10]. Berkeley provides 300 images and
corresponding ground truth data obtained from human subjects
(at least 4 human segmentations per image).

The performance evaluation is based on four quantitative
measures widely used in the field of image segmentation: (1)
The Probabilistic Rand Index (PRI) [8] counts the fraction
of pairs of pixels whose labellings are consistent between the
computed segmentation and the ground truth averaging across
multiple ground truth segmentations. (2) The Variation of
Information (VoI) metric [9] defines the distance between
two segmentations as the average conditional entropy of one
segmentation given the other, and thus measures the amount
of randomness in one segmentation which cannot be explained
by the other. (3) The Global Consistency Error (GCE)
[10] measures the extent to which one segmentation can be
viewed as a refinement of the other. Segmentations which
are related are considered to be consistent, since they could
represent the same image segmented at different scales. (4)The
Boundary Displacement Error (BDE) [11] measures the
average displacement error of boundary pixels between two
segmented images. It defines the error of one boundary pixel
as the distance between the pixel and the closest pixel in the
other boundary image.

We compare the scores calculated for our algorithm
to eleven state-of-the-art color segmentation algorithms (in
chronological order): the Mean Shift method (Mshift) [3],
the standard normalized cut algorithm (Ncuts) [13], the JSEG
algorithm (Jseg) [16], the pixel affinity based method (Affin)
[15], the spectral clustering method (Spect- Clust) [17], the
graph based segmentation (Graph- Based) [18], the multi-scale
normalized cut approach (Mscuts) [20], the seeded graph cuts
method (Seed)[19], the MSER-based segmentation method
(ROI-Seg) [21], the normalized partitioning tree (NormTree)
[22] and the saliency driven method (TotVar) [12]. Results for
the cited algorithms were taken from [12]. Table 1 summarizes
the scores for all algorithms and the proposed approach
(MFseg). The best two results for each measure are always
highlighted in bold. As we can seen looking at the table,
the proposed algorithm shows competitive results compared
to state of the art systems. We rank in the top two for two
different measures (PRI and BDE) and we achieve the best
Boundary Displacement Error score of all.

Fig.4 shows some results of the proposed algorithm on



Fig. 3. Example of the proposed approach on two images from the Berkeley database. In order from left to right of each row: the original image, the
segmented image output of the classifier, the result of the ICM algorithm, the final segmented image after post processing operations.

Fig. 4. Examples of original and segmented images from the Berkeley database.

images from the Berkeley database. These images are rep-
resentative of the average result of the proposed approach on
natural images. We would like to point out that, thanks to
the fuzzy classifier, each pixel is assigned a label describing
a culture color. This process allows to have a meaningful
description of the segmented image in which each segment
is described by a color as perceived by the Human Visual
System3. This characteristic of the proposed system make it
suitable to be integrated in several applications of image and
video processing (an example could be to track or seach a
person based on clothes colors across the field of view of
multiple camera in a video surveillance system).

To fairly assess an image-segmentation algorithm, we also
need to investigate examples for which the algorithm has
failed to produce good results. In Fig.5 we show two of such
examples from the used database.

3for the sake of clarity, please note that for the classical description of the
segmented images it is enough to describe blobs of different colors and non
connected blobs of the same colors by different segments

By looking at the images in Fig.5, we can derive some
considerations on the disadvantages of the proposed approach.
The MFseg system is based uniquely on the analysis of the
color of the image which is one of the most important features
of the image but it can be not enough to discriminate objects
in a scene. This is the case of the first image on the left:
the system returns an unique segment for the hills in the
background while the users usually associate them to different
segments. This problem, that is a conseguence of the choise
to use a quantization based on only eleven colors, can be
easily overcome by adding in the proposed approach an edge
detection system to categorize different objects of the same
color in different segments. The image on the right shows
another problem affecting most of the state of the art systems:
the presence of texture areas in the image. Texure areas
are usually classified by segmentation algorithms as several
segments (due to the presence of different range of colors,
shapes, highlights, shadows) while users usually associate
them to a unique segment. Several approaches are present in



Fig. 5. Examples of original and bad segmented images from the Berkeley database.

PRI VoI GCE BDE
Mshift 0.7958 1.9725 0.1888 14.41
Ncuts 0.7242 2.9061 0.2232 17.15
Jseg 0.7756 2.3217 0.1989 14.40
Affin X 0.2140 X

SpectClust 0.7357 2.6336 0.2469 15.40
GraphBased 0.7139 3.3949 0.1746 16.67

Mscuts 0.7559 2.4701 0.1925 15.10
Seed X X 0.2090 X

ROI-Seg 0.7599 2.0072 0.1846 22.45
NormTree 0.7521 2.4954 0.2373 16.30

TotVar 0.7758 1.8165 0.1768 16.24
MFseg 0.7797 2.508 0.2010 14.3726

Table 1. Comparison of different methods on Berkeley image database
using Probabilistic Rand Index (PRI), Variation of Information (VoI), Global

Consistency Error (GCE) and Boundary Displacement Error. (BDE).

literature trying to overcome this problem even if a robust
solution is still missing. It is thus necessary to include a texture
analysis as well as an edge detection algorithm in the proposed
approach in order to improve the performance of the system
and increase the scores shown in table 1.

IV. CONCLUSIONS

In this paper we have introduced a new unsupervised
color image segmentation algorithm The main steps of the
proposed algorithm are the Fuzzy KNN classifer and the ICM
which maximizes local conditional probabilities leading to a
suboptimal solution. The complete algorithm is described as
a MRF. The experimantal results show the good performance
of the proposed approach which is comparable to state of the
art systems even if only the color characteristic of the image
is used for the segmentation process. For this reason, we are
confident that the integration of an edge detection algorithm
together with a texture analysis can improve the performance
of the proposed system.
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