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ABSTRACT

There are two approaches to speaker diarization. They are
bottom-up and top-down. Our work on top-down systems show
that they can deliver competitive results compared to bottom-up
systems and that they are extremely computationally efficient, but
also that they are particularly prone to poor model initialisation and
cluster impurities. In this paper we present enhancements to our
state-of-the-art, top-down approach to speaker diarization that de-
liver improved stability across three different datasets composed of
conference meetings from five standard NIST RT evaluations. We
report an improved approach to speaker modelling which, despite
having greater chances for cluster impurities, delivers a 35% relative
improvement in DER for the MDM condition. We also describe
new work to incorporate cluster purification into a top-down sys-
tem which delivers relative improvements of 44% over the baseline
system without compromising computational efficiency.

Index Terms— Speaker diarization, speaker segmentation,
speaker clustering, cluster purification, DER, MDM, SDM

1. INTRODUCTION

Speaker diarization, commonly referred to as the ‘who spoke when?’
task, involves the detection of speaker turns within an audio docu-
ment (segmentation) and the grouping together of all same-speaker
segments (clustering). Much progress has been made in the field
over recent years partly spearheaded by the NIST Rich Transcrip-
tion (RT) evaluations [1] in the proceedings of which are found two
general approaches: top-down and bottom-up. The bottom-up ap-
proach is by far the most common. Very few systems, such as the
LIA’s evolutive hidden Markov model (E-HMM) system, are based
on top-down approaches.

The bottom-up, hierarchical, agglomerative clustering approach
trains a number of models N (which exceeds the predicted number
of speakers) and aims to successively merge and reduce the number
of models until there remains only one for each speaker. In contrast,
the top-down approach first models the audio show with a single
speaker model and aims to successively add new speaker models
until the full number of speakers are deemed to be accounted for.

Even though the best performing systems over recent years have
all been bottom-up approaches we believe that the top-down ap-
proach is not without significant merit: first, results on the NIST
RT‘09 dataset show that the top-down approach gives very reason-
able performance on the multiple distant microphone (MDM) con-
dition (even though we did not use estimates of inter-channel delay
as features) and that it gives extremely competitive results on the

single distant microphone (SDM) condition; second, top-down ap-
proaches such as the E-HMM system are significantly less compu-
tationally demanding than bottom-up approaches and third, there is
as-yet-untapped potential to reduce model impurities through cluster
purification.

The contribution in this paper is two-fold. First we report new
enhancements to the top-down, E-HMM speaker diarization system
for conference meeting data that result in improved speaker mod-
elling, and hence better diarization performance. Second, we present
new work undertaken since the most recent NIST RT‘09 evalua-
tion that deliver additional significant improvements in performance
through cluster purification.

Given their dominance in the literature, previous attempts at
cluster purification have generally focused only on bottom-up di-
arization systems. Small improvements in LIA’s top-down E-HMM
diarization system using purification were reported in [2] but the
module was later removed as subsequent developments in model ini-
tialisation and speaker modelling rendered the improvements negli-
gible. This paper argues why cluster purification should nonethe-
less have particular potential in a top-down approach and presents
a novel attempt at integrating a new approach to cluster purification
first proposed in [3] in our system to speaker diarization. Whilst
performance is not as good as that of the best performing system
(also bottom-up) the gap in performance between state-of-the-art
top-down and bottom-up systems is significantly reduced while re-
taining computational efficiency.

The remainder of this paper is organised as follows. Section 2
describes new E-HMM system enhancements and justifies our ef-
forts to incorporate cluster purification into a top-down speaker di-
arization system. The purification algorithm used in this work is
described in Section 3 and our experimental work is presented in
Section 4. Finally, our conclusions are presented in Section 5.

2. THE E-HMM SPEAKER DIARIZATION SYSTEM

Details of the top-down E-HMM speaker diarization system, devel-
oped using the freely available open source ALIZE toolkit [4], have
been published previously in [2, 5] and a full description of our most
recent system is available in [6]. Accordingly only a brief system
overview is reported here. Highlighted are system enhancements im-
plemented for our submission to the NIST RT‘09 speaker diarization
evaluation. We also explain the motivation to apply cluster purifica-
tion in a top-down speaker diarization system.
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2.1. System overview

Our top-down system is composed of three stages: (i) speech activity
detection (SAD), (ii) speaker segmentation and clustering and (iii)
normalisation and resegmentation, in addition to some preprocessing
such as Wiener filter noise reduction [7] and beamforming [8], where
multiple microphones are available.

Following the first stage SAD (the previous pre-segmentation
stage used in our RT‘07 system [5] has now been removed), the
second stage speaker segmentation and clustering is initialised with
a root speaker model L0 which is trained using all of the speech
segments available. New models, each one characterising a single
speaker, are then introduced iteratively, and are trained with a rel-
evant segment from L0 with several embedded iterations of decod-
ing and adaptation [6]. Finally, a resegmentation is applied, during
which speakers with too few data are removed from the model.

2.2. Enhancements to speaker modelling

In contrast to our previous system, during the first pass segmentation
and clustering stage speaker models are now trained using expec-
tation maximisation (EM) instead of being obtained through maxi-
mum a posteriori (MAP) adaptation of a background model (though
the second-pass resegmentation still uses MAP adaptation). Speaker
models now have 16 components instead of 128 and are now ini-
tialised on the longest available segments (cf. maximum likelihood
criterion previously) that are greater than 6 seconds in length (cf. 3
seconds). In the final stage a further resegmentation is applied but
this time using feature normalisation. Again, full details are avail-
able in [6].

2.3. Cluster purity

As detailed later in Section 4, these modifications lead to significant
improvements in diarization performance. However, despite numer-
ous efforts over recent years, the E-HMM system seems to be par-
ticularly prone to poor speaker model initialisation. In contrast to
bottom-up approaches, new speaker models are trained on relatively
small speech segments and, in addition, there is always the possibil-
ity that (i) the segments do not contain representative or sufficient
speech, or that (ii) they contain speech from more than one speaker.
While the modifications described above lead to models now being
trained on segments of greater length there is an increased chance
for impurities, i.e. data from more than one speaker. In consequence,
the models may not reliably attract all other segments from the same
speaker during subsequent Viterbi decoding. The accuracy of the
segmentation and clustering stage has a strong impact on overall di-
arization performance and in this paper we aim to enhance it through
purification.

Since the sequential adding of speaker models effectively re-
duces the pool of segments, assigned to L0, on which new speaker
models may be trained (both for initialisation and for subsequent
decoding/adaptation), there is significant potential to reduce cluster
impurities through top-down approaches. To illustrate, suppose that
a new speaker L1 is added to the E-HMM and that, during the subse-
quent decoding/adaptation loop, the resulting speaker model does re-
liably attract, from those currently assigned to the root model L0, all
the other segments which correspond to L1. The root model should
then contain few segments corresponding to speaker L1. When the
next speaker L2 is added then there is a reduced chance that its model
will be contaminated with segments corresponding to L1. However,
there is also the possibility that the newly trained model L1 also
contains segments from other speakers. Thus we can envisage two

approaches to purification. The first should aim to further improve
speaker modelling so that, during decoding, newly added speaker
models more reliably attract the speaker’s corresponding segments
from those assigned to the root model L0. The second strategy
should aim to purify newly trained models by reassigning data which
is deemed to correspond to another speaker. In the following we de-
scribe how this is achieved through cluster purification applied after
segmentation and clustering.

3. CLUSTER PURIFICATION

Purification is not a new idea and several different purification ap-
proaches have been reported, e.g. [9]. In contrast to this previous
work using bottom-up systems we here seek to demonstrate the po-
tential for cluster purification specifically in top-down approaches.
We describe our implementation of a new approach to cluster pu-
rification [3] that was first proposed by IIR-NTU researchers at the
NIST RT‘09 evaluations [1]. We begin with a brief description of
the original algorithm and then describe the modifications we have
made in order to exploit its potential in our top-down system.

The diarization system presented in [3] for the processing of sin-
gle channel meeting shows (SDM condition) is initialised with 30
homogeneous clusters of uniform length and a 4-component GMM
is trained on the data in each cluster. Each cluster is then split into
segments of 500ms in length and the top 25% of segments which best
fit the GMM are identified and marked as classified. The remaining
75% of worst-fitting segments are then gradually reassigned to their
closest GMMs, K segments at a time (the value of K is not pub-
lished in [3]), with iterative Viterbi decoding and adaptation until all
segments are classified. Whilst in [3] this algorithm is referred to
as sequential initialisation, it clearly performs a cluster purification
role. The same algorithm was presented with modifications in [10]
for purification purposes and for the processing of multiple micro-
phone meeting shows (MDM condition).

We have found it necessary to modify this approach in order to
bring its potential to the E-HMM system. In our system purifica-
tion is applied after segmentation and clustering which produces a
number of clusters (generally only a few more than the true number
of speakers) each of which, ideally, corresponds to a single speaker.
Of course there remains the distinct potential for impurities and our
experiments on development data have shown that speaker clusters
are typically between 50% and 95% pure.

Thus, in contrast to the bottom-up approach, where the initial
clustering is generally random and uniform, our cluster purification
algorithm operates on clusters which should already contain a dom-
inant speaker. The original algorithm was intended for clusters of
relatively lower initial purity and we have found that the same al-
gorithm applied directly to our system can, in some cases, reduce
cluster purity. However, the algorithm brings impovement in per-
formance with the following modifications. First, we increased the
model complexity to 16 components and second, we increased the
amount of segments kept during each iteration to 55% (both deter-
mined empirically). These modifications are perhaps consistent with
intuition given the initial cluster purity.

4. EXPERIMENTAL WORK

The experiments presented here aim to demonstrate the improve-
ment in diarization performance obtained with modifications to
speaker modelling that were presented in Section 2. Also reported
are new experiments to assess the performance of the cluster purifi-
cation algorithm described in Section 3.
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System Dev. Set Valid. Set Eval. Set

RT‘07 24.8/22.5 24.2/21.5 36.3/32.0
RT‘09 17.8/14.9 17.7/14.3 23.5/18.5
RT‘09+Pur. 16.0/13.0 17.9/14.6 20.3/15.2

Table 1. A comparison of diarization performance on the MDM
condition and three different datasets: development (Dev. Set), vali-
dation (Valid. Set) evaluation (Eval. Set). Results reported for three
different systems: the system used for our RT‘07 submission, that
used for our RT‘09 submission and the same system using cluster
purification (RT‘09+Pur.). Results illustrated with/without scoring
overlapping speech.

4.1. Datasets and metrics

We report experiments on a development dataset comprising meet-
ing shows from the NIST RT‘04, ‘05 and ‘06 datasets (23 shows in
total). This set alone was used to optimise both our baseline system
and the purification algorithm. In addition we present results on a
separate validation set, namely the NIST RT‘07 dataset (8 shows).
Finally, to confirm improvements in performance on unseen data we
present results on the most recent NIST RT‘09 evaluation dataset (7
shows). The use of strictly standard datasets and experimental pro-
tocols allows the direct comparison of results to our own previously
published work [6] and to those of others [1].

In accordance with NIST evaluations we focus on the MDM
condition. However, we do not use inter-channel delay features and
so, in order to give a more meaningful assessment of our core di-
arization system, independently of beamforming performance and
fused delay features, we also report results on the SDM condition.
Except for the front-end beamforming the systems used for MDM
and SDM conditions are otherwise identical. Diarization perfor-
mance is assessed in terms of the standard diarization error rate
(DER) using official NIST scoring tools. Finally, since our current
system is not capable of detecting overlapping speech segments we
report DERs both with (as per NIST standards) and without scoring
overlapping speech.

4.2. Speaker modelling

Table 1 illustrates a comparison of speaker diarization performance
for the MDM condition using the three different system variations
(1st column) and the three different datasets (columns 2 to 4). For
the newer RT‘09 system (using EM speaker modelling) results of
17.8% (Dev. Set), 17.7% (Valid. Set) and 23.5% (Eval. Set) com-
pare favourably with those of 24.8% (Dev. Set), 24.2% (Valid. Set)
and 36.3% (Eval. Set) obtained using the previous RT‘07 system
(using MAP adaptation speaker modelling). For the Eval. Set these
improvements amount to a relative improvement of 35% where over-
lapping speech is scored and 42% where overlapping speech is ig-
nored. Speaker modelling through EM is thus shown to deliver much
better performance than speaker modelling through MAP adapation
even if the amount of data used for initialisation is still relatively
small compared to that usually used by bottom-up systems. How-
ever, even if the results show more consistent and stable average
performance across the three different datasets the DERs for indi-
vidual audio shows in the Eval. Set were found to vary between 6%
and 52%. It is the hypothesis under investigation here that this is
caused by the use of impure segments for model initialisation.

System Dev. Set Valid. Set Eval. Set

RT‘09 80/68/95 79/67/92 72/41/87
RT‘09+Pur. 83/64/95 82/71/92 78/54/96

Table 2. Average/minimum/maximum cluster purities (%Pur) with-
out (RT‘09) and with (RT‘09+Pur.) purification for the Dev. Set,
Valid. Set and the Eval. Set. Results for MDM condition.

4.3. Purification

The fourth line of Table 1 (RT‘09+Pur.) illustrates the results after
purification is applied after segmentation and clustering. The purifi-
cation algorithm has a small effect on the Dev. Set and leads to a rela-
tive improvement of 10% (16.0% cf. 17.8%) over the RT‘09 system.
Results are almost identical on the Valid. Set but are improved on
the Eval. Set. Here results of 23.5% without purification and 20.3%
with purification correspond to a relative improvement of 14% (18%
without scoring overlapping speech) and 44% over the RT‘07 base-
line. Thus the purification algorithm gives as good or better results
and helps to stabalise the results across the three datasets, though it
is of interest to understand why the algorithm performs significantly
better on the Eval. Set than on the dataset on which it was optimised.

To help explain this behaviour we measured the cluster purity
statistics before and after purification. For this we introduce an addi-
tional metric (%Pur) specifically designed to assess the performance
of the purification algorithm. Among all of the data assigned to any
one cluster we simply determine the percentage of data that corre-
sponds to the most dominant speaker, as determined according to ref-
erence transcriptions. The %Pur metric is the average purity for all
speaker models after segmentation and clustering and performance
is gauged by comparing %Pur before and after purification. Note
that the DER is not appropriate for assessing purity as it penalises
the case where there are more models than speakers - this is gener-
ally the case with our algorithm (the later resegmentation stage aims
to reduce their number). Thereafter the final DER metric is the most
suitable and is that used everywhere else in this paper.

Table 2 illustrates the purity for all three datasets both without
and with purification (lines 2 and 3, RT‘09 system and RT‘09+Pur.
respectively). The average, minimum and maximum cluster purity
are shown in each case for the three different datasets. The results
show that in all cases the average cluster purity increases after pu-
rification. Of particular note, is the general increase in the minimum
cluster purity (with the exception of the Dev. Set), whereas the max-
imum purity only changes for the Eval. Set. Note that the lowest
purities before purification (average, minimum and maximum) all
correspond to the Eval. Set and also that the biggest improvement
in minimum purity (54% cf. 41%) is also achieved on the Eval. Set.
This goes someway to explain the behaviour noted above but it is
nonetheless of interest to see the improvement in purity across the
individual shows.

Figure 1 illustrates the %Pur metrics before and after purifica-
tion (solid and dashed profiles respectively) for each of the 7 files
in the RT‘09 dataset (horizontal axis). The results show that where
the initial models are already of high purity (e.g. the first and third
shows) then the purification algorithm has little effect. However,
when the initial clusters are of relatively poor purity (e.g. the fifth
show) then purification leads to a marked improvement. For this
particular show the cluster purity increases from 56% to 67% with
purification. With few exceptions this behaviour is typical of that
across the other datasets. Since the initial cluster purities are par-
ticularly bad for the Eval. Set (illustrated in Table 2) it is thus of
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Figure 1. %Pur metrics for the NIST RT‘09 dataset (MDM condi-
tion) before and after purification (solid and dashed profiles respec-
tively).

no surprise that the effect of purification is greatest here. Even so,
we note that other researchers have found that this dataset was more
‘difficult’ compared to previous datasets and the performance of our
new system is also slightly inferior to that on the Dev. Set and Valid.
Set even if the purification system reduces the difference.

4.4. SDM performance

Finally, since the performance of our MDM system is linked to
beamforming performance, we now present an identical summary
of results for the corresponding SDM datasets. This allows us to
assess the performance of our core diarization system independently
of beamforming performance. The diarization system is absolutely
identical in every way except for the beamforming. Results are pre-
sented in Table 3 in an identical manner to those in Table 1. Here we
see behaviour consistent with that for the MDM set. Performance
is shown to improve across the three datasets and, for the Eval.
Set, a DER of 21.1% with EM speaker modelling and purification
compares well to 29.5% using our RT‘07 system (MAP adapta-
tion speaker modelling without purification) and 26.0% using our
RT‘09 system (EM speaker modelling without purification). These
results correspond to relative improvements of 28% and 19% re-
spectively. Even if the evaluation results are slightly worse than the
development and validation results, the combination of EM speaker
modelling and purification acts to stabilise the results across the
three datasets for both MDM and SDM conditions.

4.5. Computational complexity

These improvements are at the expense of a small increase in com-
putational cost. The submission criteria of the NIST RT evaluations
[1] require the reporting of system efficiency in terms of a speed fac-
tor which gauges the efficiency of the system in relation to real time.
Our RT‘07 system with MAP speaker adaptation achieved a speed
factor of 0.5. This system also included various pre-processing al-
gorithms which greatly increased the efficiency of the speaker seg-
mentation and clustering stage. They were, however, removed in
the RT‘09 system so that models are initialised on more data. This
system achieved a speed factor of 1.5. The purification algorithm
introduces a negligible overhead in processing time which increases
the speed factor of our new system to 1.6. Compared to the speed
factors of other systems published in the proceedings of the NIST
RT evaluations our new system is still among the most efficient.

System Dev. Set Valid. Set Eval. Set

RT‘07 26.4/24.1 24.5/21.3 29.5/24.7
RT‘09 22.7/20.0 18.3/15.0 26.0/21.5
RT‘09+Pur. 21.1/18.3 17.8/14.4 21.1/16.0

Table 3. As for Table 1 except for the SDM condition.

5. CONCLUSIONS

The contributions in this paper include an improved approach to
speaker modelling and a new cluster purification algorithm which,
when applied to our state-of-the-art top-down speaker diarization
system, collectively lead to improvements in stability and overall
performance without sacrificing computational efficiency.

Enhancements to speaker modelling increase the chances of
model impurities at initialisation but nonetheless result in a 35%
relative improvement in DER for the MDM condition of a separate
evaluation dataset when overlapping speech segments are scored.
The new cluster purification delivers further relative improvements
of 14% (44% when compared to the original RT‘07 system) on the
same data. On the SDM task the corresponding relative improve-
ments are 28% and 19%.

These results, whilst not as good as those of the very best per-
forming systems that were presented at the most recent NIST RT
speaker diarization evaluations, greatly reduce the performance gap
between state-of-the-art bottom-up and top-down systems. We be-
lieve that further, ongoing work to purify clusters as they are added
will better realise the potential of top-down systems. The computa-
tional efficiency of such approaches is of particular appeal to many
practical applications such as speaker indexing and other real-time
applications. For these reasons it is our opinion that top-down ap-
proaches to speaker diarization warrant further attention.
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